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ABSTRACT 
 

 Majority of the time-frequency representations (TFRs) make some kind of 

compromise between auto-component’s resolution and cross-terms suppression 

during the analysis of time varying signals. Linear TFRs offer no cross-terms but have 

low resolution of auto-components. Quadratic TFRs offer better resolutions of auto-

components but have cross-terms. The proposed research focuses on TFRs that can 

combine the advantages of both linear and quadratic TFRs.  

In the first part of this research, a modified form of Gabor Wigner Transform 

(GWT) has been proposed by using adaptive thresholding in Gabor Transform (GT) 

and Wigner Distribution (WD). The proposed GWT combines the advantages of both 

GT and WD and provides a powerful analysis tool for analyzing multi-component 

signals. This technique is however not very efficient for multi-component signals 

having large abrupt amplitude variation in its auto-components.  

In multi-component signal analysis where GWT fails to extract auto-

components, the combination of signal processing techniques such as fractional 

Fourier transform (FRFT) and image processing techniques such as image 

thresholding and segmentation have proven their potential to extract auto-

components. In the second part of this research, an algorithm is proposed for an 

effective representation in time-frequency domain called Modified Fractional GWT 

that combines the strengths of GWT, image segmentation and FRFT. This 

representation maintains the resolution of auto-components besides recognizing 

FRFT, a powerful tool for signal analysis. Performance analysis of proposed 

fractional GWT reveals that it provides solution of cross-terms of WD and worst 

resolution faced by linear TFRs.  

In the third part of this work, a novel algorithm for effective representation of 

multi-component signals in time-frequency domain is proposed. The scheme not only 

suppresses the cross terms but also ensures that all the auto-components even very 

weak ones are properly shown in time-frequency domain. The scheme also results in 

much localized time frequency representation (TFR). The algorithm uses the strengths 

of GWT and linear time-varying (LTV) filtering in time domain to design a filter in 

time-frequency domain that suppresses cross terms and enhances auto components 

through an iterative approach. Performance analysis of proposed algorithm reveals 
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that it provides concentrated and high resolution auto-components which are desirable 

for a TFR.  

The TFRs are used to separate and extract signal’s auto-components which are 

buried in noise and are used to estimate the instantaneous frequency of a multi-

component signal in low SNR scenarios. The modified GWT can be used for 

detection, identification and classification of power quality disturbances (such as 

voltage sag, voltage swell, transients and harmonics). The LTV based GWT and 

modified fractional GWT can be extended for IF estimation of auto-components of 

EEG Seizure.  
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Chapter 1 
 

Introduction 
 

1.1  Background  
Representation and analysis of a signal play a vital role in various applications 

of signal processing. Signals are commonly represented either in time domain or in 

frequency domain. Time representation of one dimensional signal does not contain the 

frequency description of the signal. Similarly frequency domain representation of the 

signal cannot tell how the frequency contents of the signal change with respect to 

time. This information may be critical in many non-stationary signals found in various 

practical applications, like seismic signals, radar signals, voice communication 

signals, biomedical signals, etc. Therefore a time variable is induced in Fourier 

transform (FT) to obtained information about the changes of frequency content with 

respect to time. Hence, the basic goal of a time frequency representation (TFR) is to 

find out the concentration of signal’ auto-components along the frequency axis for a 

given time [1].  

A TFR is a two-dimensional (2D) function which provides simultaneously, 

temporal and spectral information and therefore is used to analyze the non-stationary 

signals. It provides the information which is unavailable in time or frequency 

representation alone. Time frequency representations (TFRs) provide information, 

such as number of auto-components, time duration, frequency band and relative 

amplitude of the considered signal [2].  

TFRs are classified as Linear TFRs and Quadratic TFRs. Linear TFRs 

including short time Fourier transform, Gabor transform (GT), wavelet transform, 

etc., obey the principle of superposition. Linear TFRs offer no cross-terms but have 

low resolution of auto- components. Quadratic TFRs including Wigner distribution 

(WD), spectrogram, etc., offer better resolutions of auto-components but have cross-

terms [1, 3]. Therefore there is no unique TFR that tackles all types of non-stationary 

signals and the selection of a particular TFR is highly dependent upon specific 

application at hand. However, TFRs have proven their utility in successful 

identification, extraction and classification of signals’ auto-components in various 
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applications.  TFRs are often compared in terms of their ability to suppress cross-

terms, resolution performance and mathematical properties [2]. 

 

1.2  Objectives 
As discussed on the basis of general merits and demerits of linear and 

quadratic TFRs, there is a no unique TFR that tackles all possible applicational 

requirements. WD, which is the most popular quadratic TFR, has high resolution of 

auto-component in case of mono-component signal and it has cross-terms in case of 

multi-component signal and also suffers from inner interference due to non-liner 

frequency modulation. On the other hand linearity of GT avoids cross-terms, but GT 

has low resolution of auto-components than WD. A detailed analysis of most widely 

used linear and quadratic TFRs, their strengths and limitations and the need to 

combine linear and quadratic TFRs is discussed in the initial chapters of this thesis. 

Two main goals for a desirable TFR are,  

• high concentration of auto-components and  

• elimination of the cross-terms. 

For achieving the above desirables, it is necessary to combine the strengths of 

both linear and quadratic TFRs [4]. 

The objective of this research is to propose a TFR with the following features. 

• It should preserve the quality of auto-components for a multi-component 

signal. 

• Eliminate the cross-terms and inner interference due to non-liner frequency 

modulation which is the main bottleneck of quadratic TFRs. 

• It provides better features of both linear and quadratic TFRs 

• The computational requirements should be in acceptable range. 

 

1.3  Contributions 
The research presented in this thesis contributes in the field of time-frequency 

signal analysis as follows. 

. 
• Critical review of widely used linear and quadratic TFRs and their 

combinations 
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As the first part of this research a comprehensive comparative analysis of 

widely used linear and quadratic TFRs, including their merits and demerits has 

been done. In this part, discussion on fractional Fourier transform (FRFT) and 

signal synthesis technique are given, which are used for time varying-filtering. 

This part also provides critical analysis of recent cross-terms suppression 

techniques. In addition comparative analysis of variants of Gabor Wigner 

transform (GWT) defined in [4] have been done by using various performance 

measures. 

 

• 

A modified form of Gabor Wigner Transform (GWT) has been developed by 

using adaptive thresholding in GT and WD. The proposed GWT combines the 

advantages of both GT and WD and proves itself as a powerful tool for 

analyzing multi-component signals. Performance analysis of modified GWT 

shows to have high resolution as well as cross-terms suppression of WD. All 

above techniques are applicable for slowly time varying signals.  

   

Modified Gabor Wigner transform  

• 

In multi-component signal analysis where most widely used variants of  GWT 

fail to extract auto-components, the combination of signal processing 

techniques (FRFT) and image processing techniques including image 

thresholding and segmentation have proven their potential to extract auto-

components. The proposed algorithm maintains the resolution of auto-

components and readability of weak components. This work also shows that 

fractional Fourier transform (FRFT) domain is a powerful tool for signal 

analysis. Performance analysis of modified fractional GWT reveals that it 

provides solution of cross-terms of WD and resolution problem of linear 

TFRs.  

 

Modified fractional  GWT 

• 

In this part, the advantages of GWT are analyzed by using linear time varying 

filtering techniques. In this approach a filter in time-frequency domain is 

designed using an iterative approach in both time-frequency and time 

GWT and  linear time-varying (LTV) filtering based TFR 
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domains. This filter is specifically designed in order to suppress cross-terms 

and enhances concentration of auto-components even weaker ones. In this 

approach the strengths of time varying filtering, GWT and image processing 

are exploited.  

 

1.4  Thesis Overview  
The thesis is organized as follows. 

Chapter 1 gives introduction of joint time-frequency signal analysis, problem 

formulation and contributions in this thesis.  

Literature review is described in Chapter 2. It starts with the review of time 

domain signal representation, Fourier transform and TFRs. This chapter also includes 

discussion and comparison of some of linear TFTRs, quadratic TFRs, cross-terms 

suppression techniques, reduced interference TFRs and IF estimation techniques. It 

also includes a comprehensive discussion on FRFT domain.  

Chapter 3 presents performance measures regarding to TFRs. It includes 

readability criteria, cross-terms suppression criteria, energy concentration criteria and 

resolution criteria.  

Chapter 4 describes the need for combination of linear and quadratic TFRs. It 

describes different ways to combine GT and WD as proposed in [4] and modified 

form of GWT by using adaptive thresholding in GT and WD.  

Chapter 5 describes the advantages of GWT in FRFT domain for a multi-

component signal analysis where GWT fails to extract auto-components. This chapter 

also describes combination of signal processing and image processing techniques to 

extract auto-components.  

Chapter 6 presents another novel iterative technique to find a TFR which fuses 

GWT and LTV filtering techniques. 

Chapter 7 concludes the thesis. It includes limitations and future work.  
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Chapter 2 
 

Review of widely used TFRs 
 

This chapter includes a thorough review of some of the most popular linear 

and quadratic TFRs. It also reviews some of the common signal processing techniques 

which are often combined with TFRs in order to get a better signal representation. 

These techniques include fractional Fourier transform for analysis of time varying 

signals, cross-terms suppression techniques and reduce interference TFRs. In this 

chapter signal synthesis techniques and IF estimation techniques are also discussed. 

 

2.1 Time and Frequency representation of a signal 
Time representation of a signal is a function of time which may be written in 

the form ( )x t . Time domain signal indicates how a signal’s amplitude changes over 

time. This representation leads immediately to the instantaneous power, which shows 

how the energy of the signal is distributed over time, the total signal energy (E) is 

given by the integration of instantaneous power over time and E is expressed as, 

2( ) . (2.1)E x t dt
∞

−∞

= ∫
(2.1)Eq  does not show how the frequency varies with time [3, 5]. 

Fourier transform (FT) maps the signal into a set of frequency components and 

transforms the signal ( )x t  onto the domain of orthogonal basis exp( )j tω− . FT is 

expressed as, 

( ) ( )) exp( ) , (2.2)X x t j t dtω ω
∞

−∞

= −∫
 

where ( )X ω  is FT of ( )x t and the inverse FT is given by, 

( ) 1 2 ( )exp( ) . (2.3)x t X j t dπ ω ω ω
∞

−∞

= ∫
 

The problem of FT is that it does not show where frequency components occur 

in time domain. For stationary signals FT is a favorable representation, since the 

frequency components of the stationary signals do not change with time [3, 5].  
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2.2  Time-Frequency Representations (TFRs) 
A TFR is a two-dimensional (2D) function which provides simultaneously, 

temporal and spectral information and therefore is used to analyze the non-stationary 

signals. 

As a simple demonstration of a TFR, consider a signal consisting of three 

quadratic components. Fig 2.1(a, b) describes time domain analysis of the signal. This 

representation only tells varying amplitude with respect to time and has no 

information about number of auto-components in the signal. Similarly FT (Fig 2.1 (c)) 

of the signal describes frequency contents of the multi-component signal. Fig 2.1(d) 

clearly indicates that there are three quadratic components are present in the signal. In 

this simple example we have shown that how a combined TFR is more descriptive 

and abstract representation as compared to other representations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1 Analysis of a multi-component signal (a) time-domain analysis (real part), (b) 

time-domain analysis (imaginary part), (c) FT analysis and (d) TFR analysis.   
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d c 
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 Four desired properties [2] of an ideal time frequency representation are:  

(a) Readability 

This property depends upon concentration and resolution of auto-component. 

(b) Free of Cross-terms 

This property distinguishes noise and auto-component.  

(c) Fulfilling mathematical properties 

It is required that a given TFR fulfills mathematical properties including energy 

constraints and marginal characteristics etc. 

(d) Low computational cost  

Low computational complexity is required to show a signal on time frequency 

plane. 

Two main analysis approaches for TFRs are Linear and Quadratic techniques. 

 

2.2.1 Linear TFRs 
Linear TFRs obey the principle of superposition. For a signal, ( )x t  the TFR is 

given by, 

,( , ) ( ) ( ) , (2.4)x tTFR t x dωω τ ϕ τ τ
∞

∗

−∞

= ∫
where ( )x t represent signal, , ( )t ωϕ τ  represents the basis functions and ‘*’ represents 

the complex conjugate. Short-time Fourier transform (STFT), wavelet transform 

(WT), and matching pursuit algorithms are typical examples in this category [6, 7, 8]. 

 

2.2.1.1 Short-time Fourier transform 

STFT [3, 5], the simplest TFR, is a two-dimensional representation that has 

been introduced for better time localization of the frequency contents of a signal by 

using a suitable time window. By using STFT, we can observe how the frequency of a 

signal changes with time. It multiplies the signal with a symmetric sliding 

window ( )w t τ−  and then transforms it to the frequency domain. STFT of a signal ( )x t  
is defined as: 

( , ) ( ) ( ) exp( ) . (2.5)xSTFT t x w t j dω τ τ ωτ τ
∞

−∞

= − −∫
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Implementation issues of STFT include how to choose the shape and size of 

window function. Wide window provides high frequency resolution (Fig 2.2) while 

narrow window has high time resolution (Fig 2.3). Once the analysis window is 

chosen, the resolution is set for both time and frequency. We cannot have a window 

function that corresponds to  an arbitrary short time duration and narrow frequency 

bandwidth at the same time. According to Uncertainty Principal it is impossible to get 

both frequency and time resolution at the same time [9].  
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Fig 2.2: Tradeoff between time resolution and frequency resolution (a) the time 

function of the wide Hamming window. (b) The Fourier Transform of the wide 

Hamming window. (c) The amplitude of STFT. 
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Fig 2.3: Tradeoff between time resolution and frequency resolution (a) the time 

function of the narrow Hamming window. (b) The Fourier Transform of the narrow 

Hamming window. (c) The amplitude of STFT. 

 

2.2.1.2 Gabor transform (GT)  

As discussed in previous section, as an outcome of Uncertainty Principal [9], it 

can generally be state that, it is   impossible to achieve both time and frequency 

resolution at the same time. However    Gaussian window achieves an optimal joint 

time- frequency concentration with maximum possible resolution in both domains. 

For example, consider a Gaussian window ( )w t  
2 2( ) .             (2.6)atw t e−=
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 In Fig 2.4 we can analyze the behavior of parameter “ a ” in 

(2.6)Eq . Window parameter “ a ”control the balance of the time-frequency 

concentration. The small value of “ a ”gives narrow frequency bandwidth. The large 

value of “ a ”gives short time duration. 
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Fig 2.4 the behavior of controlling parameter “ a ” of a Gaussian Window, which 

balance the time frequency concentration.  

 

As a reason of choosing a Gaussian mask, further significance of a Gaussian 

function is discussed. The Gaussian function gives the following main benefits. 

 

• Among all functions, the Gaussian function has the advantage that the area in 

time-frequency distribution is minimal. 

• FT of a Gaussian function is also Gaussian function 

2 22 2

-

e . (2.7)t j te dt eω ω
∞

− − −

∞

=∫  

Gaussian function fulfills the lower limit of uncertainty principle [9] 

1 , (2.8)
2t twhere time duration and frequency bandwidthω ω∆ ∆ = ∆ = ∆ =
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The variant of STFT with Gaussian window is called as Gabor transform [4, 

10]. The main feature of the GT is its linearity but GT has less resolution of auto-

components than WD. On the other hand GT does not have the cross-term problem. 

Mathematically GT of ( )x t  is defined as, 

2( ) 2 ( 2)1( , ) ( ) ( ). (2.9)
2

t j t
xGT t e e x dτ ω τω τ τ

π

∞
− − − −

−∞

= ∫
 

Implementation wise GT may consume less computation time after a little 

optimization that exploits the nature of Gaussian function. Gaussian window outside a 

certain boundary can be ignored. Note that, although from (2.9)Eq , range of 

integration for GT is ( , )−∞ ∞  , but we know that 
2 2 0.00001, 4.7985 (2.10)xe when x− < >

 

Therefore, modified GT can be well approximated by 

24.7985 ( ) 2 ( 2)

4.7985

1( , ) ( ) ( ). (2.11)
2

t t j t
x t

GT t e e x dτ ω τω τ τ
π

+ − − − −

−
≈ ∫

 

This modification, as given in (2.11)Eq , reduces the computational time of GT 

significantly. 

As GT is a linear operator and   the cross-term problem is avoided. If ( )x t  

consists of two components then the following equation is fulfilled showing no cross-

terms in case of GT. 

1 2
( , ) ( , ) ( , ). (2.12)x x xGT t GT t GT tω ω ω= +

 

Let us consider the example of (linear component (chirp), transient component 

(Gaussian atom), quadratic component and multiple quadratic components). Analysis 

of these signals through GT (Fig 2.5) shows the effect of linear time frequency 

transformation. GT eliminates cross-terms in case of linear component, Gaussian 

component and quadratic component at the cost of component’s blurring. Our analysis 

reveals that in case of multiple quadratic components, GT blurring, makes it difficult 

to extracts the individual auto-components which are closely placed. 
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Fig 2.5 GT Analysis of (a) linear component (b) atom or transient (c) quadratic 

component (d) multiple quadratic components 

 

In summary merits of GT are  

 it avoids cross-terms problem (GT is a linear operator)and 

 consumes less computation time. 

 The drawback GT is that it has low resolution than WD because of blurring. 

However, the resolution of GT is better than WD for a particular signal of the 

form ( )k
kjate φ+ , where kφ  are remaining terms and 3k ≥  [4].   

 

2.2.1.3 Multi-resolution Fourier transform (MFT) 

This method [11] has a variable resolution and is defined as: 

( , ) ( ) ( ( )) exp( ) . (2.13)xMFT t x sh s t j dω τ τ ωτ τ
∞

−∞

= − −∫
 

a b 

c d 
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In (2.13)Eq , (.)h  is a window and s  a is scale. Since this method is a function of 

multiple variables, it is not very suitable for various applications. 

2.2.1.4 S-transform 

This method [12] also has variable resolution and is defined as: 

( , ) ( ) ( , ( )) exp( ) . (2.14)xS transform t x h t j dω τ τ σ ω ωτ τ
∞

−∞

− = − −∫
In (2.14)Eq , σ  is a standard deviation of Gaussian window (.)h . The parameter ( )σ ω  

in (2.14)Eq provides further flexibility for signal analysis however the drawback of 

this technique is single analysis window.  

 

2.2.1.5 Wavelet Transform 

Due to the sliding window function the spectrum generated by STFT is limited 

in resolution. WT is a TFR which gives variable resolution. It is based on the so called 

“wavelet theory”. It is an advancement of the STFT where length of window is made 

a frequency dependent parameter. The main feature of the WT is its scale which 

provides information about the frequency. So WT is “time-scale representation”. The 

scale is the main parameter of WT for time varying signals. High values of frequency 

correspond to small values of scale and vice-versa [13, 14]. Mathematically, 

0 0( , ) ( ) ( ( )) , (2.15)xWT t x f t d
τ

ω τ ω ω ω ω τ τ∗= −∫
 

where ( )f t is the analyzing wavelet and 0ω ω is scale parameter. WT decomposes the 

signal ( )x t  into shifted and dilated wavelets. Multi-resolution property of WT is a 

main feature of WT over FT. WT may improve resolution of STFT, but it also suffers 

from same resolution limit as that of STFT due to uncertainty principle.  

In summary, as discussed in the review of some famous linear TFRs, these 

TFRs are cross-terms free but have low resolution of auto-components. 

 

2.2.2 Quadratic TFRs 
Quadratic TFRs are expected to fulfill the following marginal criteria [5]. 

Mathematically, 
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2( ) ( , ) , (2.16)xx t TFR t dω ω= ∫
2

( ) ( , ) . (2.17)xX TFR t dtω ω= ∫
 

Apart from marginal criteria, Quadratic TFRs offer better resolution and are 

expected to fulfill large number of other mathematical properties. Quadratic TFRs 

were originally proposed by Cohen [5, 15]. Mathematically these TFRs are generally 

given as, 

( )
2

1( , ) ( 2 ) ( 2 ) ( , ) , (2.18)
4

j t u
xTFR t x u x u e dud dθ ωτ θω τ τ τ τ ϕ θ τ τ θ

π
− + += + ∗ −∫∫∫

where ( , )ϕ θ τ  is a kernel function which determines a particular TFR [1]. Commonly 

used methods for obtaining these TFRs are Wigner distribution, S-method and 

Spectrogram. 

 

2.2.2.1 Spectrogram and its mathematical properties 

Spectrogram [1] is defined as, 
2

( , ) ( ) ( ) exp( ) . (2.19)xSPEC t x w t j dω τ τ ωτ τ
∞

−∞

= − −∫
It is frequently used in the time-frequency analysis. This TFR also obeys the 

uncertainty principle [9] and it is impossible to achieve a high resolution in both time 

and frequency domains at the same time.  Various versions of spectrogram was 

proposed to improve auto-components’ resolution. A 2-D de-convolution operator is 

applied on the STFT spectrogram in [16], but this technique is highly dependent upon 

de-convolution method. Spectrogram’ de-blurring by using neural networks [17] and 

by using fractional windows [18]. All above techniques [16, 17, 18] have low 

resolution of auto-components. 

If a signal ( )x t consist of two auto-components then STFT  of ( )x t  is  

1 2
( , ) ( , ) ( , ). (2.20)x x xSTFT t STFT t STFT tω ω ω= +

Now, 

1 2

2
( , ) ( , ) ( , ) . (2.21)x x xSPEC t STFT t STFT tω ω ω= +

By expanding (2.21)Eq , 

1 2

1 2

( , ) ( , ) ( , )

2Re[ ( , ) ( , )]. (2.22)
x x x

x x

SPEC t SPEC t SPEC t

STFT t STFT t

ω ω ω

ω ω∗

= + +
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In (2.22)Eq  
2

( , )xSTFT t ω∗ is transpose of
2
( , )xSTFT t ω . For 1, 2i = , (2.20)Eq takes the 

form, 
( , )( , ) ( , ) . (2.23)xi

i i

j t
x xSTFT t STFT t e φ ωω ω=

In (2.23)Eq ( , )
ixSTFT t ω is the amplitude and ( , )

ix tφ ω is the phase. Putting (2.22)Eq  

and (2.23)Eq  in (2.21)Eq  we have, 

1 2

1 2 1 2

( , ) ( , ) ( , )

2 ( , ) ( , ) cos( ( , ) ( , )). (2.24)
x x x

x x x x

SPEC t SPEC t SPEC t

STFT t STFT t t t

ω ω ω

ω ω φ ω φ ω

= + +

−
 

In (2.24)Eq , the first and second terms on right hand side are auto-components 

and the third term is a cross-term. In case of spectrogram, the cross-term is zero if 

STFT of two auto-components have no overlap. Similarly its cross-term, if present, 

occurs always at the intersection of auto-components [19]. 

Let us consider the same example of four signals including a linear chirp, 

Gaussian atom, quadratic component and multiple quadratic components. Analysis of 

these signals through spectrogram (Fig 2.6) shows that auto-components has low 

resolution, and in case of multiple quadratic components it is difficult to extract the 

individual auto-components which are closely placed. 

 
 

Fig 2.6 Spectrogram Analysis of (a) linear component (b) atom or transient (c) 

quadratic component (d) multiple quadratic components.  

 

a b 

c d 
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2.2.2.2 Wigner Distribution and its mathematical properties 

WD is the most popular TFR [5, 20]. Mathematically, WD of a signal ( )x t  is 

defined as, 

( , ) ( 2) ( 2) , (2.25)j
xWD t x t x t e dωτω τ τ τ

∞
∗ −

−∞

= + −∫
 

where ( )x t∗ is the complex conjugate of ( )x t . WD is not a linear operator since it 

contains an autocorrelation term. If a signal ( )x t consist of two components then WD 

of ( )x t  is given by,  

1 1
( , ) ( , ) ( , ). (2.26)x x xWD t WD t WD tω ω ω≠ +

 

In (2.26)Eq ,  

1 2( ) ( ) ( ). (2.27)x t x t x t= +  

WD exhibits its high resolution for analysis of a linear chirp  and a Gaussian 

atom, while in case of  multiple quadratic components, WD has a  severe cross terms 

problem [3, 6]. 

We consider the same example of four signals including a linear chirp, 

Gaussian atom, quadratic component and multiple quadratic components. Analysis of 

these signals through WD reveals that in case of linear chirp and Gaussian atom WD 

shows its high resolution property, while in case of quadratic component and multiple 

quadratic components, WD has a severe cross-term as shown in Fig 2.7. 

Fulfillment of mathematical properties including reality, time invariance, 

frequency shift invariance, time marginal, frequency marginal, signal energy, 

instantaneous frequency, group delay, time support, frequency support, convolution 

invariance, modulation invariance and inner product invariance etc. are the strengths 

of WD. This is shown in Table 2.1. These strengths have made WD a powerful tool 

for analysis of signals [20, 21]. Similarly WD has a drawback of its quadratic nature 

and introduces the cross-terms which makes difficult to visualize the time-frequency 

plane [22].  
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Fig 2.7 WD Analysis of (a) linear component (b) atom or transient (c) quadratic 

component (d) multiple quadratic components 

 

Consider a signal ( )x t consisting of M auto-components given as follows, 

1
( ) ( ). (2.28)

M

i
i

x t x t
=

=∑
 

The WD of ( )x t  is given by 

1

1 1 1
( , ) ( , ) 2Re( ( , )). (2.29)

i k l

M M M

x x x x
i k l k

WD t WD t WD tω ω ω
−

= = = +

= +∑ ∑ ∑
 

(2.29)Eq shows that the WD of the multi-component signal ( )x t has M auto-

components and ( 1) / 2M M −  cross-components. The properties of cross- terms are 

defined in [23]. Now consider a signal 0 ( )x t . Let 1( )x t  and 2 ( )x t  be the time and 

frequency shifted version of 0 ( )x t  then these signals are given as, 

a b 

c d 
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21
( )2

0 ( ) , (2.30)o
t tjx t e

βω +
=

( )1
1 1( ) ( ) , 2.31j t

ox t x t t e ω= −
2

2 2( ) ( ) . (2.32)j t
ox t x t t e ω= −

The composition of 1( )x t and 2 ( )x t  is ( )x t  which given in (2.27)Eq . WD of the 

composite signal ( )x t  is given by, 

 

1 1 2 2( , ) 2 ( ( ) ( ) 2 ( ( ) ( )
4 ( ( ) ( ) cos( ( ) ( ) , (2.33)

x o o

m o m d m d m d m

WD t t t t t
t t t t t t

ω πδ ω ω ω β πδ ω ω ω β
πδ ω ω ω β ω ω ω ω

= − + − − + − + − − +
− + − − × − − − +

 

where ( )δ ω is impulse which is zero everywhere except at origin,  2 1dω ω ω= − ,  

2 1dt t t= − , 1 2( ) 2mt t t= +  and 1 2( ) 2.mω ω ω= +  
(2.33)Eq shows that, 

 cross-terms occur at mid-frequency and mid-time, 

 cross-terms oscillates at a frequency proportional to the difference in time-

shift and frequency- shift of the signal,  

 cross-terms oscillates in the direction perpendiculars to the line that connects 

the signal auto-components, and  

 The amplitude of cross-term is twice that of signal component.  

The integration range of the WD ( (2.25)Eq ) is ( , )−∞ ∞ , means that due 

to ( ( 2) ( 2))FT x t x tτ τ∗+ − , the computation time of the WD is very high as 

compared to GT ( (2.11)Eq ), which can be time limited due to limited span of 

Gaussian window. 

In summary WD has the advantage of:  

• Infinite time and frequency resolution.   

• WD gives direct information about time-frequency localization  

• Ideal mono-component signal analysis tool. 

• Nice mathematical properties. 

The disadvantages of WD are: 

• WD is not a linear operator. 

• WD has cross-terms in case of quadratic and multi-component signal. 

• High computation time. 
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Table 2. 1 Properties of WD 

 Property  Description  

Reality ( , )WD t ω is real 

Time Invariance 0( ) ( )x t x t tλ = −  

0( , ) ( , )x xWD t WD t tω ω= −  

Frequency Invariance ( ) ( ) j t
mx t x t e ω=  

0( , ) ( , )x xWD t WD tω ω ω= −  

Time Marginal 2( ) ( , )xx t WD t dω ω= ∫  

Frequency Marginal 2( ) ( , )xx WD t dtω ω= ∫  

Signal Energy ( , )xE WD t dtdω ω= ∫∫  

Instantaneous Frequency ( , )
(arg ( ))

( , )
x

x

WD t d d x t
dWD t d

ω ω ω

ωω ω
=∫

∫
 

Group Delay ( , )
(arg ( ))

( , )
x

x

WD t dt d x
dWD t dt

ω ω
ω

ωω
=∫

∫
 

Time Support If a signal exists in  1 2[ , ]t t then it 

( , )WD t ω will also exist in this interval 

Frequency Support If a signal exists in  1 2[ , ]ω ω then it 

( , )WD t ω will also exist in this interval  

Convolution  Invariance 1 2( ) ( ) ( )x t x t x t= ∗  

1 2
( , ) ( , ) ( , )x x t xWD t WD t WD tω ω ω∗=  

Modulation Invariance 1 2( ) ( ) ( )x t x t x t=  

1 2
( , ) ( , ) ( , )x x xWD t WD t WD tωω ω ω∗=  

 

2.3 Cross-terms suppression methods 
In this section we will describe some of the most widely used cross-terms 

suppression techniques which have been proposed by researchers as extensions to 

WD. 
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2.3.1 Smoothed pseudo Wigner distribution (SPWD) 
Different variants of WD were proposed to eliminate cross-terms of WD. 

Since cross-terms are highly oscillatory, the simple technique to remove them is, by 

applying a 2 dimensional low-pass filter on the signal processed through WD. Now 

the resultant WD is called as smoothed Wigner distribution (SWD) [24]. 

Mathematically SWD is,  

( , ) ( , ) ( , ) , (2.34)x xSWD t u v WD t u v dudvω φ ω
∞ ∞

−∞ −∞

= − −∫ ∫
where ( , )u vφ is a 2D low-pass filter. The effect of this filtering is appeared as low 

resolution of auto-components. In separable form of ( , )u vφ [ ( )p u  and ( )h v ] ,SWD is 

called as  smoothed pseudo Wigner distribution (SPWD) [25]. Mathematically SPWD 

is defined as, 

( , ) ( ) ( ) ( , ) . (2.35)x xSPWD t p u h v WD t u v dudvω ω
∞ ∞

−∞ −∞

= − −∫ ∫
 

The disadvantage of SPWD is degradation of original excellent time frequency 

resolution of WD. Moreover closely placed signal components cannot be separated 

due to  smoothing effect. 

In summary SPWD has the advantage of  

• cross-terms reduction in case of quadratic component and multiple 

components.   

The disadvantages of SPWD are 

• worst resolution of auto-components 

• cannot separates closely placed signal components 

For the same example of four signals including a linear chirp, Gaussian atom, 

quadratic component and multiple quadratic components, the SWD is shown in Fig 

2.8. Analysis of these signals through SWD reveals that in case of linear chirp, 

Gaussian atom and quadratic component it shows its high resolution property, while 

in case of  multiple quadratic components SWD has cross-terms as shown in Fig 2.8. 

The behavior of SPWD for the same signal is shown in Fig 2.9. It is cleared that in 

case of multiple quadratic components it is impossible to extract individual auto-

component as shown in Fig 2.9. 
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Fig 2.8 SWD Analysis of (a) linear component (b) atom or transient (c) quadratic 

component (d) multiple quadratic components 

 

 

a b 

c d 
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Fig 2.9 SPWD Analysis of (a) linear component (b) atom or transient (c) quadratic 

component (d) multiple quadratic components 

 

2.3.2 Reassigned WD 
Signal dependent or independent kernels suppress cross-terms at the cost of 

quality of auto-components. Reassignment technique [2, 26, 27] solves this problem 

by shifting back the auto-components. Eq. (2.9) shows that TFR at any time-

frequency point is weighted sum of its neighboring points in time-frequency plane. 

The averaging of neighboring points may suppress cross-terms at the expense of 

disturbing the location of auto-components. Reassigned TFRs work on the rule that 

every point in a TFR is shifted back to the center of gravity of the TFR. The 

reassigned co-efficients are calculated as: 

 

 

a b 

c d 
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0 0 0 0 0 0 0

0 0 0 0 0 0

( , ) ( , )
( , ) , (2.36)

( , ) ( , )
x

x

t t WD t t dt d
t t t

t WD t t dt d

φ ω ω ω ω
ω

φ ω ω ω ω

− −
′ = −

− −
∫∫
∫∫

0 0 0 0 0 0 0

0 0 0 0 0 0

( , ) ( , )
( , ) . (2.37)

( , ) ( , )
x

x

t WD t t dt d
t

t WD t t dt d

ω φ ω ω ω ω
ω ω ω

φ ω ω ω ω

− −
′ = −

− −
∫∫
∫∫

 

Now the affect of reassignment process is described as: 

0 0 0 0 0 0 0 0( , ) ( , ) ( ( , )) ( ( , )) . (2.38)x xTFR t TFR t t t t t dt dω ω δ ω δ ω ω ω ω′ ′= − −∫∫
Readability of reassigned TFR depends on cross-term reduction and auto-component 

preservation of the original TFR. The negative effect of this reassignment process is 

appeared as a loss of most of important mathematical properties of original TFR.  

As in previous cases let us again consider the same example of four signals 

including a linear chirp, Gaussian atom, quadratic component and multiple quadratic 

components. Analysis of these signals through RSPWD reveals that in case of linear 

chirp, Gaussian atom and quadratic component RSPWD does not show its effect on 

auto-component resolution. In case of multiple quadratic components, it is impossible 

to extract individual auto-component as shown in Fig 2.10. 

 
 
Fig 2.10 RSPWD Analysis of (a) linear component (b) atom or transient (c) quadratic 

component (d) multiple quadratic components.  

a b 

c d 
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2.3.3 Polynomial WD 
This technique was proposed in [28] for signals having higher order 

instantaneous frequency variation. Mathematically,  

2 2( , ) ( 2) ( 2) ( 2) ( 2) . (2.39)j
xWD t x t x t x t x t e dωτω τ τ τ τ τ

∞
∗ ∗ −

−∞

= + − + −∫  

This method is only used for analysis of mono-component signals and fails in case of 

multi-component signals due to increasing cross-terms. 

 

2.3.4  Cross-terms suppression by using Bessel function expansion 
In this method [27, 29], a multi-component signal is decomposed into mono-

component signals by using Fourier Bessel expansion. These mono-components are 

studied individually by using WD and at the end all WD are summed for a resultant 

TFR which is cross-term free. The main limitation of this method is that it requires 

auto-components separation in frequency domain. This method cannot be used for 

signals whose auto-components can be separable in time-frequency domain. 

Moreover, this method needs manual input to locate auto-components and is only 

partially automatic. 

 

2.3.5 Matching Pursuit TFRs 
This method [2, 27, 30] decomposes a signal onto a linear sum of time-

frequency atoms and computes WD of auto-component which is chosen from a 

redundant dictionary. Mathematically, 

1
( ) ( ) ( ). (2.40)

N
m

n n
n

x t x t g g R x tλ λ
=

= 〈 〉 +∑
 

In (2.40)Eq  , mR  represents residual vector and ngλ  (time frequency atom) is given 

as: 

1( ) ( ) exp( ), (2.41)t ug t g j t
xxλ ξ−

=  

and ( , , )x uλ ξ= . Now WD of the decomposed auto-components is summed up for a 

cross-term free TFR. Mathematically, 
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1
( , ) ( ) ( , ). (2.42)

N

x n g
n

TFR t x t g TFR tλω ω
=

= 〈 〉∑
 

The distinguishing feature of this technique is that, it does not suffer from 

cross-term reduction and auto-components resolution trade off. On the other hand the 

limitation of this method is that prior knowledge of auto-components of the signal and 

of dictionary choice is needed. 

 

2.3.6   S-Method 
To obtain the best features of both WD and Spectrogram, S-Method was 

proposed in [31]. Mathematically it is described as, 

( , ) ( , ) ( ) ( , ) exp( ) , (2.43)SM t STFT t P STFT t j dω ω θ θ ω θ ωθ θ
∞

−∞

= + − −∫
 

where ( )P θ  controls the cross-term suppression. If ( )P θ  is chosen as a delta 

function ( )δ θ , S-Method is reduces to a spectrogram. For ( ) 1P θ = , S-Method is a 

WD. In S-Method, proper choice of ( )P θ  will make the auto-components’ resolution 

close to WD, but this is only happened when auto-components are distantly placed. 

To overcome limitations of S-Method, the adaptive S-Method was also proposed by 

Stankovic et al in [32]. It was shown that the resolution of S-Method can be increased 

by computing a signal dependent window in fractional Fourier transform domain [18]. 

 

2.3.7   Non-Linear Filtering for Cross-terms Suppression of WD 
A non-linear filtering method was proposed in [33] to reduce cross-terms of 

WD. This technique depends upon the statistical behavior of the auto-components 

regions and cross-terms regions. The proposed non-linear filter behaves like an 

identity function in auto-components regions and a low pass filter in cross-terms 

region. This non-linear filtering based technique outperforms the kernel based 

methods but in regions where cross-terms overlap auto-components this method fails 

to give high resolution of auto-components. 
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2.3.8  Cross-term Suppression of WD Using Morphological Operator 
It is a non-linear morphological filtering based technique to eliminate cross-

terms of WD was proposed in [34]. In this method a marker is obtained through 

spectrogram which is used for morphological analysis of WD. The technique 

preserves auto-component’s resolution. The non-linear morphological filter performs 

better than kernel based techniques but this technique also fails to give good results in 

regions where auto-components overlap cross-terms.  

 

2.4 Fractional Fourier Transform for Analysis of Time 

Varying Signals 
FT is one of the widely used tools in signal processing [35]. The fractional 

Fourier transforms (FRFT), was introduced in [36] as a generalization of FT. FRFT 

has established itself as a powerful tool for the analysis of time-varying signals in a 

very short span of time [34, 37]. FRFT has many applications in filter design, pattern 

recognition, and communication [34, 38], TFRs [25], etc. FRFT can be used in 

applications where FT fails to work due to time varying spectrum of signals and its 

cost of implementation is also adequate. Windows can be analyzed using FRFT [39]. 

FRFT can be used for detection of cross terns in WD [40]. FRFT can isolate signal 

components from multi-component signal [41]. 

Mathematically, FRFT [42] of a signal ( )x t is defined as,   

( ) ( , , ) ( ) , (2.44)X u K t u x t dtα α
∞

−∞

= ∫
 

where 2aα π=  and ( , , )K t uα  is kernel function defined as 

2 2( / 2) cot csc ( / 2) cot1 cot( , , ) . (2.45)
2

j u ju t j tjK t u e α α ααα
π

− +−
=   

Following are some important characteristics of FRFT : 

1. FRFT becomes FT when 2α π=   

2.    FRFT with 0 2orα α π= =  is equal to identity operation. 

3. (0 2 )α π< <  corresponds to rotation of time-frequency plane.` 

4. FRFT is linear, commutative and associative. 
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In signal analysis we need a wider window to filter a pure sinusoidal signal, 

while on other hand a narrower window is needed to filter a delta pulse. If the auto-

component of signal cannot be aligned either to time axis or to frequency axis, the 

time–frequency plane is rotated by taking the FRFT of the signal. The reason of this 

signal’s TFR rotation is to find out appropriate concentration of auto-components 

[43].  

The rotation of time-frequency plane by angle α  is described mathematically 

as, 

cos sin
. (2.46)

sin cos
t u

v
α α

ω α α
−    

=    
    

Now the relationship for the FRFT kernel is given as, 
2 2( , , ) [ ( , , ) ] . (2.47)o oj u v j tj uv j t

o o o oK t u u e e K u t t e eπ ωπ ωα α− − ∗− = − −
 

Clockwise rotation of WD, GT and GWT is equal to FRFT of these distributions [4, 

44]. Mathematically, 

( , ) ( cos sin , sin cos ), (2.48)x xWD u v WD u v u v
α

α α α α= − +

( , ) ( cos sin , sin cos ), (2.49)x xGT u v GT u v u v
α

α α α α= − +  

( , ) ( cos sin , sin cos ). (2.50)x xGWT u v GWT u v u v
α

α α α α= − +

 

(2.48,2.49 2.50)Eqs and show that FRFT gives us rotated version of these TFRs. The 

filtering process by using FRFT [4] is given by following equation,  

( ) { [ ( )] ( )}, (2.51)X Xr t O O x t H uα α−=
 

where ( )x t and ( )r t are the filter  input and the output, [ ( )]XO x tα  represents FRFT 

of ( )x t and ( )H u  is the transfer function. For a FRFT filter bank, the signal is filtered 

in time–frequency domain using a series of rotation angles 1 2 3, ,........, nα α α α , i.e, 

1 1( ) { [ ( )] ( )},1 1x t O O x t H ux x
α α−

=  

2 2
2 1 2( ) { [ ( )] ( )},X Xx t O O x t H uα α−=  

1 1
1 2 1( ) { [ ( )] ( )}n n

n X X n nx t O O x t H uα α− −−
− − −= …….. 

1( ) { [ ( )] ( )}. (2.52)n n

XX n nr t O O x t H uα α−
−=
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(2.52)Eq  tells that choice of nα  is critical in FRFT domain for successful 

elimination of noise.  

To design a filter in fractional domain, it is necessary to choose 

 1) proper rotation angleα , 

 2) selection criteria for cutoff lines [4, 41].  

 

2.4.1  FRFT and Signal Synthesis for Cross-terms Suppression of WD 
Signal synthesis from a TFR was proposed in [55]. This technique can be used 

for time varying filtering and signal separation. In this estimation technique, a signal 

is generated in such a way that signal’s TFR approximates the desired TFR. This 

method has following main steps. 

Suppose ( ) ( , )x tTFR t ω  represents TFR of ( )x t . The objective is to find out ( )x t whose 

( ) ( , )x tTFR t ω is close to ( ) ( , )x tTFR t ω . To achieve this goal we have to minimize ( )e x , 

which is mathematically described as follows,  

( ) ( )( ) ( , ) ( , ) . (2.53)x t x te x TFR t TFR t dω ω ω
∞

−∞

= −∫ 

(2.53)Eq  allows minimization for even ( ex ) and odd ( ox ) samples of ( )x t   

Even ( eM ) and odd ( oM ) matrices elements are given as: 

( 1, 1) ( , ) ( , ), , 0,....., 1 (2.54)e eM i j g i j i j g i j j i wh ere i j L∗+ + = + − + + − = −

( , ) ( 1, ) ( 1, ), , 0,....., (2.55)o oM i j g i j i j g i j j i wh ere i j L∗= + + − + + + − =
 

In (2.54 2.55)Eqs and , ( , )g i j  is  inverse Fourier transform of ( ) ( , )x tTFR t ω , oL is 

length of ex and eL is length of ox . 

Phase estimation of eϕ (even) and oϕ (odd) is described as follows,  
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1

01
1

0

Re (2 ) ( )
tan , (2.56)

Im (2 ) ( )

e

e

L

e
p

e L

e
p

x p x p

x p x p
ϕ

−
∗

=−
−

∗

=

  
  
  =  

      

∑

∑





01

0

Re (2 1) ( )
tan . (2.57)

Im (2 1) ( )

o

o

L

e
p

o L

e
p

x p x p

x p x p
ϕ

∗

=−

∗

=

  
−  

  =  
  −    

∑

∑





 

In (2.56 2.57)Eqs and , ( )ex p  and ( )ox p  are given as, 

( ) ( ) , (2.58)ej
e ex p x p e ϕ= 

0( ) ( ) . (2.59)oj
ox p x p e ϕ= 

 

A FRFT and signal synthesis based recursive method to suppress cross-terms 

of WD without affecting auto-components resolution was proposed in [27, 40]. This 

method performs better in challenging situations i.e. when auto-components overlap 

cross-terms. This technique exploits the mismatch of fractionally rotated and aligned 

back Wigner distributions to detect cross-terms. A simple mask is used to suppress 

cross-terms. The auto-components are synthesized in time domain. WD of 

reconstructed auto-components gives high resolution TFR. The main limitation of the 

process is that it involves several iterations and each iteration includes signal 

synthesis which itself is an iterative process. Therefore computational cost is too high. 
 

2.4.2   Combination of GT and WD for Cross-terms Suppression 
As explained earlier the main feature of WD is its high resolution property of 

auto-components during the analysis of mono-component signals. But WD has cross-

terms in case of multi-component signals. On the other hand the main strength of the 

GT is its linearity property but it has less resolution of auto-components than WD. For 

achieving the goals such as, (i) high concentration of auto-components and (ii) 

elimination of the cross-terms, it is necessary to combines excellent features of both 

WD and GT [4, 45]. The combination of GT and WD is called as Gabor Wigner 

Transform (GWT) which is described and evaluated in detail in chapter 4. 
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2.4.3 FRFT and 2D Signal Processing Techniques for Cross-terms 

Suppression of WD 
Image processing techniques (image thresholding and segmentation) and 

FRFT can be used for cross-terms suppression of WD [41]. This technique uses 

support vector machine for classification of auto-components.  Auto-components of a 

multi-component signal are isolated in FRFT domain. WD of isolated components is 

computed and their superposition gives a readable TFR. The main drawback of this 

method is auto-component’s discontinuity due to image segmentation. Moreover 

closely placed auto-components are not segmented properly.  

 

2.5 Reduce interference TFRs  
For reduce interference TFRs, kernel is designed in ambiguity domain. This 

kernel acts as a low pass filter to suppress cross-terms. Mathematically ambiguity 

function [3] ( , )xA θ τ  is defined as, 

( , ) ( 2) ( 2) . (2.60)j u
xA x u x u e d uθθ τ τ τ

∞
∗ −

−∞

= + −∫
The reduce interference TFR is of the form: 

2

1( , ) ( , ) ( , ) . (2.61)
4x xTFR t A d dω θ τ φ θ τ τ θ
π

= ∫∫
In (2.61)Eq , ( , )φ θ τ defines kernel of reduce interference TFRs. In this category some 

common examples of TFRs are given in the Table 2.2. 
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Table 2. 2 Kernel functions of reduce interference TFRs 
 
TFRs Kernel function ( ( , )φ θ τ ) 
Born–Jordan 
TFR [1] 

sin( 2)( , )
2

θτφ θ τ
θτ

=  

Choi–
Williams 
TFR [46] 

2 2

2( )
( , ) e

θ τ
σφ θ τ

−
= , whereσ represents scaling factor. 

Zhang–Sato 
TFR [47] 
 

2 2

2( )
( , ) cos(2 )e

θ τ
σφ θ τ πβτ

−
= ,where, σ  and β  are parameters. When 

0β = , it becomes Choi–Williams TFR.  
Radial 
Butterworth 
TFR [48] 

2 2

0

1( , )
1 ( )M

r

φ θ τ
θ τ

=
+

+

, where 0r  and M  are tuning parameters 

Bessel TFR 
[49] 
 

1(2 )( , ) J παθτφ θ τ
παθτ

= ,where 1J  is order one Bessel function and 

0α >  shows scaling factor.  
Generalized 
exponential 
TFR [50, 51] 
 

2 2

1 1
( ( ) ( ) )

( , )
N M

e
θ τ
θ τφ θ τ

−

= ,where N , M are integers, 1θ  is positive 
frequency and 1τ  is time scaling, respectively, in such a way that 

( 1)
1 1( , ) eφ θ τ −= . 

 
S-method 
[31] 
 

( , ) ( ) ( 2) ( 2)
2

j uP u u e duθ
θ

θφ θ τ ω τ ω τ
∞

∗ −

−∞

= − ∗ + −∫ ,where θ∗ shows 

a convolution in θ , ( )tω is window and smoothing function is ( )P θ . 
 

TFR for 
multi-
component 
linear FM 
signals [52] 
 

)( , ) ( )
b

τθ χφ θ τ −
= Π ,where χ shows frequency modulation rate, 

width in the direction of θ  is b and ( ) 1 1 2forξ ξΠ = ≤ . 

A time-lag 
kernel TFR 
[53] 
 

2 12( , ) ( ) ( )
(2 )

j j
α

αφ θ τ τ α πθ α πθ
α

−

= Γ + Γ −
Γ

,where ( )zΓ is the Gamma 

function and bounded parameter is α ( 0 1α< ≤ ). 
 

Hyperbolic 
TFR [54] 
 

1( , )
cosh( )

φ θ τ
βθτ

= ,where β  controls exponential terms. 

 
In all kernel functions described in Table 2.2, tuning of one or more 

parameters is essential for cross-terms suppression and high resolution of auto-

components (only for specific application in hand). Hence an addition complexity is 

added in order to select a correct parameter value.  
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2.6 IF estimation techniques 
An important feature of a non-stationary signal is its Instantaneous Frequency 

(IF) parameter. IF has a key role in motion estimation, biomedical signals and radar 

[27, 56, 57, 58, 59]. 
In the case of a mono-component signal, IF can be defined as the derivative of the 

phase of the signal. Mathematically, 

1( ) (arg( ( ))). (2.62)
2

dt s t
dt

ω
π

=  

In (2.62)Eq , ( )s t is analytic form of ( )x t and is defined as,  

1( ) ( ) ( ). . (2.63)s t x t js t
tπ

= +  

(2.62)Eq  describes the exact time location of frequency, which is only applicable for 

a mono-component signal. 

Instantaneous Frequency is mostly estimated by identifying the peaks in a 

TFR at a given time instant. For this purpose WD is mostly used as it gives accurate 

IF estimation for a linearly-frequency-modulated signal. In case of non-linearly 

frequency-modulated- signals, WD has biased IF estimation. Windowed WD can 

overcome this bias. The negative effect of this windowing is the increase in variance 

of IF estimates as there is always a trade-off between bias and variance. Various 

techniques proposed for IF estimations are described in the following subsections. 

 

2.6.1   ICI based IF estimation technique  
 A technique was proposed for IF estimation in [60]. This method is based on 

Intersection of the confidence interval (ICI) rule, for selection of optimal window to 

compute the IF of an auto-component. The drawback of this technique is that it is only 

applicable for mono-component signals.  

 

2.6.2   IF estimation by tracking the maxima of auto-components  
    A scheme was proposed in [61] for IF estimation which tracks maxima of 

each auto-component while leaving the local maxima due to cross-terms for a multi-

component signal. This method needs knowledge of auto-components location and 

manual selection of thresholds so it is not automatic. 
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2.6.3   IF estimation by Viterbi algorithm 
It was shown that Viterbi algorithm can be used for IF estimation of multi-

component signal buried in high noise [62]. The limitation of this scheme is that it is 

only applicable for linearly-frequency- modulated signals. 

 

2.6.4   IF estimation by image segmentation 
 An automatic scheme of IF estimation based on image processing was 

proposed in [63]. In this method modified B-distribution is used. IF estimation of 

auto-components is done with the help of image segmentation and auto-component 

connectivity criteria. This method fails when auto-components have significant 

frequency modulation. 

 

2.6.5   IF estimation by modified ICI rule 
A modified ICI rule based IF estimation technique was proposed in [21]. The 

main subsections of this technique are auto-components extraction and improved ICI 

rule. The technique involves modified component extraction method [21] that has 

following major steps: 

(i) Compute reduce interference TFR of a multi-component signal. 

(ii) Detect highest peak 0 0( , )t ω in time-frequency plane, followed by 

0( , ) 0t ω = ,where 0 0[ , ]ω ω ω ω ω∈ −∆ + ∆ . Now divide vicinity of 

0 0( , )t ω in two ( , )t ω  sub-portion followed by the 

condition 0 0[ 2, 2]W Wω ω ω∈ − + ,where 

0 0 0 0[ 1, ] [ , 1]t t t and t t t∈ − ∈ + for first and second sub-portion. Above 

procedure will give maximum value 0 0( , )t ω′ ′  for the both sub-portions. 

(iii)  In next stage 0 0 0 0( , ) ( , )t tω ω′ ′= , step (ii) is repeated until TFR boundary 

is reached. These extracted 0 0( , )t ω values form the auto-component. 
The same procedure is adapted for rest of auto-components of the 
multi-component signal. 

The overall improved ICI rule has following major steps: 

(i)  The overlap ( , )mC n l of   two consecutive intervals is defined as, 

 ( , ) ( , ) ( , 1) . (2.64)m m mC n l D n l D n l= ∩ −  

In (2.64)Eq , ( , )mD n l  and ( , 1)mD n l −  are confidence intervals. 
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(ii) The normalized confidence interval is defined as, 

( , )( , ) . (2.65)
( , )

m
m

m

C n lO n l
D n l

=  

In (2.65)Eq , ( , ) [0,1]mO n l ε  

(iii) Now the threshold cO  criteria for window width is described as,  

( , ) . (2.66)m cO n l O≥  

In (2.66)Eq , ( , )mO n l is defined as, 

0 ( , ) 0
( , ) 1 ( , ) ( , ) . (2.67)

0,1

m

m m m

C n l
O n l C n l D n l

elsewhere

 =


= =



 

Algorithmic steps of modified ICI rule based IF estimation technique are: 

• Compute a set of reduced interference TFRs for different smoothing windows. 

Extract auto-components for each reduced interference TFR.  

• Calculate IF of each auto-component by using following relation, 

( , ) arg[max ( , , )] (2.68)m k mn h TFR n k hω =  

In (2.68)Eq , ( , , )mTFR n k h  is the mth auto-component’s TFR  and h  is length 

of window 

• Select best IF estimate (based on modified ICI rule) for each auto-component. 

 

2.6 Conclusion 
In this chapter the advantages and disadvantages of most widely used linear 

and quadratic TFRs are analyzed. Some more techniques which combine signal 

processing and image processing techniques along with these TFRs are also 

discussed. The strengths and limitations of each approach are highlighted. Based on 

mentioned facts it is necessary to combine linear and quadratic TFRs in order to get 

merits of both linear and quadratic transforms. As we know that significant efforts are 

required to define algorithms for cross-terms suppression of quadratic TFRs. To 

overcome this difficulty it is required to define new combinations of linear and 

quadratic TFRs which are robust against complicated multi-component signals and 

simple in implementation.  
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Chapter 3 
 

Performance measures 
 

The choice of a right TFR to analyze a given signal is not straightforward task, 

even for a mono-component signal, and this choice becomes more difficult while 

considering a multi-component time-varying signal. A common way of determining 

the appropriate TFR for a given signal is the visual comparison among the plots of 

considered TFRs. However selection of a TFR based on visual inspection is generally 

difficult and requires the introduction of some performance measures [64]. Therefore 

for detailed performance evaluation of existing and proposed TFRs, these 

performance measures are important. This chapter discusses these measures as these 

measures will be used in the comparative analysis given in subsequent chapters.  

In literature, TFRs are compared on the basis of following criteria: 

• Readability [64] 

• CT suppression [68] 

• Energy concentration [69] 

• Resolution [72] 

 

3.1 Entropy Measures 
Entropy measures the information for a given probability density function. 

The alternative terms used in the meaning of entropy are uncertainty and information. 

Entropy can be used for TFRs to compute the information by measuring the signal’s 

complexity [65, 66, 67]. According to probability theory, minimization of complexity 

or information contained in a TFR is equal to maximizing the TFR’ peakiness, 

concentration and resolution [64, 68]. 

 

3.1.1 Shannon entropy 
Shannon entropy [27, 69] is described as, 

2( , ) log ( ( , )). (3.1)shanon
n

E Q n Q n
ω

ω ω=∑ ∑  
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Mathematically, unit energy case of Shannon entropy can be described in following 

equation, 

( , ) 1. (3.2)
n

Q n
ω

ω =∑ ∑
 

(3.2)Eq  cannot be used for TFR having negative values, for such cases absolute 

values of entropy are used. Mathematically it is described as, 

2( , ) log ( ( , ) ). (3.3)shanon
n

E Q n Q n
ω

ω ω=∑ ∑
(3.3)Eq  increases the overall energy of a TFR. Shannon entropy is a strong candidate 

for estimating the concentration of a TFR and can be viewed as the inverse of a 

measure of concentration of the TFR in the time-frequency plane. TFRs of signals 

with high concentration would yield small entropy values and vice versa.  

 

3.1.2 Renyi entropy 
Renyi entropy [65] overcomes the limitations of Shannon entropy and is 

defined as, 

Re 2
1 log ( ( , )). (3.4)

1nyi
n

E Q nα

ω

ω
α

=
− ∑ ∑  

In (3.4)Eq , α  describes the order of entropy. Now normalized Renyi entropy 

measure is described as, 

Re 2

( , )
1 log ( ). (3.5)

1 ( , )
n

nyi

n

Q n
E

Q n

α

ω

ω

ω

α ω
=

−

∑ ∑
∑ ∑

 

The normalized Renyi entropy measure with the TFR volume is described as, 

Re 2

( , )
1 log ( ). (3.6)

1 ( , )
n

nyi

n

Q n
E

Q n

α

ω

ω

ω

α ω
=

−

∑ ∑
∑ ∑

(3.6)Eq  is used to design adaptive kernels design [70].  

 

3.2 Ratio of Norms 
Ratio of norms is a measure of TFRs’ concentration and is presented in [68]. It 

divides the fourth power norm of a TFR by its second power norm. Mathematically, 
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4

2 2

( , )
. (3.7)

( ( , ) )
n

jp

n

Q n
E

Q n
ω

ω

ω

ω
=
∑ ∑

∑ ∑
 

Higher value of jpE  gives better energy concentration which is opposed to entropy 

based measures. In equation (3.7)Eq  numerator’ fourth power describes the peaky 

TFR. The maximum value of the ratio of norms gives the appropriate TFR for a signal 

being considered. Mathematically, 

( , ) arg max [ ]. (3.8)optimum Q jpQ n Eω =
 

3.3 LJubisa Measure 
Energy concentration of time limited signal can be assessed by method 

proposed in [71]. Consider a signal ( )x t is limited in time 1 2[ ]t t , now the length of 

( )x t  is equal to 
1

lim ( ( ) )x t dt
β

β

∞

→∞
−∞
∫ . For large values of β , Ljubisa measure ( Jβ ) 

is defined as, 
1

( , ) . (3.9)J Q t dtd
β

β ω ω
∞ ∞

−∞ −∞

= ∫ ∫
 In discrete form Ljubisa measure is defined as, 

1
[ ( , )] ( ( , ) ) . (3.10)J Q n Q n

β βω ω=  

In (3.10)Eq , 1β >  and  

( , ) 1. (3.11)
n

Q n
ω

ω =∑ ∑
TFRs that minimize  [ ( , )]J Q n ω  are considered as better TFRs. 

 

3.4 Boashash Performance Criteria 
Boashash performance criteria takes resolution and concentration of auto-

components of the signals having closely placed auto-components. The parameters 

that influence the resolution of a TFR are: 

• auto-components concentration 

• separation of auto-components 
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• interference terms. 
All above mentioned parameters are used to define Boashash performance criteria 

[64, 72] 
 

3.4.1 Concentration measure 
Consider the time slice ( 0t t= ) of a quadratic TFR of a n-auto-components 

signal that has the instantaneous bandwidth ( 0( )
ni

V t ), the IF ( 0( )
ni

f t ), the side lobe 

amplitude ( 0( )
nxA t ), and the main lobe amplitude ( 0( )

nmA t ) for each of the thn  

component at time 0t t= . The magnitude of cross-terms is represented by 0( )xA t . At 

any time instant, concentration of a TFR can be improved by minimizing side lobes 

amplitudes 0( )
nxA t  relative to main lobe amplitudes 0( )

nmA t  and main lobe bandwidth 

0( )
ni

V t about the signal IF 0( )
ni

f t for each auto- component [72]. As a result, for a 

given time slice 0t t= of a TFR of n-auto-component signal, which is defined below 

( ) ( ), (3.12)n
n

x t x t=∑
the TFR concentration parameter ( )nc t  is defined as [72], 

0 0

0 0

( ) ( )
( ) . (3.13)

( ) ( )
n n

n n

x i
n

m i

A t V t
c t

A t f t
=

 

 

3.4.1.1 Modified concentration measure 

This performance measure is an alternative to the performance measure 

described in (3.13)Eq . It is the sum of 0

0

( )
( )

n

n

x

m

A t
A t

 and 0

0

( )
( )

n

n

i

i

V t
f t

, and hence it accounts 

their effects separately. This modified concentration measure ( )nC t  is defined as,  

0 0

0 0

( ) ( )
( ) . (3.14)

( ) ( )
n n

n n

x i
n

m i

A t V t
C t

A t f t
= +  

If ( )nC t is near to zero then a TFR has a good performance. 
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3.4.2 Resolution measure 
The minimum difference 2 1f f−  of two auto-components tones 1f  and 

2f describes frequency resolution and satisfy following inequality, 

1 2
1 2 1 2, . (3.15)

2 2
V Vf f f f+ < − <

 

In (3.15)Eq 1V  is the bandwidth of the first sinusoid and 2V is the bandwidth of the 

second sinusoid. For a multi-component signal, (3.15)Eq takes the 

form
2 1 2
( ) ( ) ( )i i if t f t f t− 〈 , where 

1
( )if t  and 

2
( )if t  are IFs of auto-components’ main 

lobes having separation D, which is positive. Components’ main lobes separation 

( )D t is described as, 

2 1

2 1

2 1

( ) ( )
( ( ) ) ( ( ) )

2 2( ) . (3.16)
( ) ( )

i i
i i

i i

V t V t
f t f t

D t
f t f t

− − −
=

−

Simplified form of (3.16)Eq is given below, 

( )
( ) 1 . (3.17)

( )
i

i

V t
D t

f t
= −

∆

In (3.17)Eq , ( )
2

ni
i

V
V t =∑ , ( )iV t  is the auto-components’ main lobes average 

bandwidth and 
1

( ) ( ) ( )
n ni i if t f t f t
+

∆ = −  is the difference between the components’ IFs. 

For better resolution of quadratic TFRs, it is required to maximize the separation 

measure D and minimize the interference terms. The resolution measure R [72] of a 

TFR for a pair of auto-components is described by, 

0

0

( ) ( ) 1( ) . (3.18)
( ) ( ) ( )

x x

m m

A t A t
R t

A t A t D t
=

 

In (3.18)Eq , ( )XA t , 
( )

( )
2

nS
S

A t
A t =∑  and

( )
( )

2
nm

M

A t
A t =∑  are the cross-terms 

amplitude of two adjacent auto-components, the average amplitude of the auto-

components’ side lobes and the average amplitude of the auto-components’ main 

lobes respectively. Good resolution of a TFR is happened when R is near to zero. The 

(3.18)Eq  can be expressed in normalized form [72] as, 
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( ) ( )1 1( ) 1 (1 ( )) , 0 ( ) 1. (3.19)
3 ( ) 2 ( )

S X
i i

m m

A t A t
R t D t R t

A t A t
 

= − + + − < < 
  

 

In summary, the performance of a proposed TFR is evaluated on the basis of 

quantative measures like entropy measures, Ljibisa measure and ratio of norms. If the 

proposed method has a maximum value of ratio of norms and minimum value of 

entropy and Ljubisa measure then it is considered as a concentrated and high 

resolution TFR. 
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Chapter 4 
 

Gabor Wigner Transform 
 

In chapter 2 various time-frequency techniques for analysis of time-varying 

signals have been critically evaluated. It is observed that most of the TFRs make some 

kind of compromise between auto-components resolution and cross-terms 

suppression. Linear TFRs offer no cross-terms but have low resolution of auto- 

components. Quadratic TFRs offer better resolution of auto-components but have 

cross-terms [1, 3]. Therefore, there is a need of a TFR that can combines advantages 

of both linear and quadratic TFRs. In this chapter GWT is studied with the help of 

some commonly used case studies. Our simulation results show that there is a need to 

propose further combinations of linear and quadratic TFRs in order to overcome 

obvious limitations. A modified GWT is also proposed and the results are compared 

with already existing definitions of GWT. 

The combination of GT and WD is called as Gabor Wigner Transform (GWT) 

[4, 45]. Mathematically some of these combinations are defined as,   

( , ) ( , ) ( , ), (4 . 1)x x xGWT t GT t WD tω ω ω=
2( , ) min{ ( , ) , ( , )}, (4.2)x x xGWT t GT t WD tω ω ω=

( , ) ( , ){ ( , ) 0.25}, (4.3)x x xGWT t WD t GT tω ω ω= >
2.6 0.6( , ) ( , ) ( , ). (4.4)x x xGWT t GT t WD tω ω ω=

 (4.1, 4.2, 4.3 4.4)Eqs and  show that there is no unique definition of GWT and 

choice of GT and WD is critical in order to extract strengths of GT and WD. However 

different combinations of GWT ( (4.1,4.2,4.3 4.4)Eqs and ) are only applicable for 

slowly time varying signals.  

  

4.1 Modified GWT 
Here a modified scheme for computing GWT that gives better concentration 

of auto-components is proposed. The proposed GWT [73] can be written in the form 

of algorithm based on the following steps. 

Step 1. Compute ( , )xWD t ω  of the signal ( )x t   and its mean value T  , where  
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( , ). (4.5)xT meanof WD t ω=

Step 2. Classify the transformed data into two classes ( , )AWD t ω  and ( , )BWD t ω   as 

( , ) ( , ) ( , ) , (4.6)A x xWD t WD t if WD t Tω ω ω∈ ≥
( , ) ( , ) ( , ) < . (4 . 7)B x xWD t WD t if WD t Tω ω ω∈

Step 3. Compute averages of ( , )AWD t ω  and ( , )BWD t ω   and update T [74] as  

( , ) ( , ) . (4.8)
2

A BWD t WD tT ω ωµ µ+
=

In Eq (4.8), T is updated in each iteration. WhenT does not change in two consecutive 

iterations, then  iterations are terminated. 

Step 4. Same steps 1 to 3 will be repeated for GT analysis of the signal ( )x t    

Step 5. 

Choose     

{
0 ( , )

( , ) (4.9)
( , ) .

x
x

x

if WD t T
WD t

WD t otherwise
ω

ω
ω

≤
=

 
Choose     

{
0 ( , )

( , ) (4.10)
( , ) .

x
x

x

if GT t T
GT t

GT t otherwise
ω

ω
ω

≤
=

 

Step 6. Multiply ( , )xWD t ω  and ( , )xGT t ω  obtained in step 5 as: 

.5( , ) ( , ) ( , ). (4.11)x x xGWT t GT t WD tω ω ω=  
All the steps of this proposed technique are shown in the following block 

diagram. 

Adaptive 
Thresholding of 
WD image by 
Otsu’ method

Adaptive 
Thresholding of 

GT image by Otsu’ 
method

Readable TFR

Time varying signal
0.5( , ) ( , ) ( , )x x xGWT t GT t WD tω ω ω=

 
 

Fig. 4.1  Adaptive threholding based GWT 



 

    
                                                                                                                          43 

                                                                                                                                      
 
 
 

4.1.1 Numerical Simulations 
Five different test examples have been considered to demonstrate the potential 

of the modified GWT and comparison with existing GWT defined 

in (4.1,4.2,4.3 4.4)Eqs and . These examples are: 

(i) a Gaussian atom,  
2( ) 2exp( 2 (70 ))exp( 15 ), (4.12)x t j t tπ= − −  

(ii) a linear component,  
2( ) 2exp( 2 (7 55 )), (4.13)x t j t tπ= − +  

(iii) a quadratic component, 
3( ) 2exp( 2 (7 55 )), (4.14)x t j t tπ= − +  

(iv) two linear components,  
2 2( ) 2exp( 2 (7 55 )) 2exp( 2 (7 35 )), (4.15)x t j t t j t tπ π= − + + − +  

(v) three quadratic components,  
3 3

3

( ) 2exp( 2 (7 55 )) 2exp( 2 (7 35 ))
2exp( 2 (7 15 )). (4.16)

x t j t t j t t
j t t

π π

π

= − + + − + +

− +
 

As shown in Fig 4.2a and Fig 4.3 a, WD is an ideal analysis tool for a linearly 

modulated mono-component signal and a Gaussian atom. However as shown in Fig 

4.4a, WD suffers from inner interferences in case of quadratic component. Since 

quadratic nature of WD produces cross-terms, therefore in case of multiple 

components WD has both inner and outer interferences (Fig 4.5a).  

GT provides suppression of both inner and outer interferences at the cost of 

blurring of auto-components (Fig 4.4b).  

 Analysis of these signals through different variants of GWT show that, these 

variants of GWT provide high resolution property of WD and linearity of GT as 

shown in Fig 4.5 (c, d, e, f and g).  

In case of three quadratic components, modified GWT extracts successfully 

three quadratic components and provides better readability as compared to other 

variants of GWT (Fig 4.6). 

In noisy case (SNR=3dB), analysis of Eq (4.16) also proves the potential of 

modified GWT with respect to auto-component extraction as shown in Fig 4.7. In this 

case different variants of GWT have very low readability of auto-components as 
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shown in Fig 4.7(c, d, e and f). WD has severe cross-terms (Fig 4.7a), where as GT 

has blurring in auto-components (Fig 4.7b). 

These examples have shown the potential of modified GWT for multi-

component signal analysis. Adaptive choice of GT and WD makes the resultant GWT 

to avoid the cross-term problem while maintaining the resolution of auto-components 

as good as that of the WD. That is, it can combine the advantages of both GT and 

WD and will be a powerful tool for analyzing the characteristics of a multi-

component signal. Performance analysis of modified GWT reveals that it provides 

high concentration of auto-components as compared to other variants of GWT. 
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Fig 4.2  Analysis of a Gaussian atom (a) WD, (b) GT, (c) GWT (Eq. 4.1), (d) GWT 

(Eq. 4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified GWT. 

 

a b 

c d 

e f 

g 
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Fig 4.3  Analysis of a linear chirp (a) WD, (b) GT, (c) GWT (Eq. 4.1), (d) GWT (Eq. 

4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified GWT. 

 

a b 

c d 

e f 

g 
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Fig 4.4  Analysis of a quadratic component (a) WD, (b) GT, (c) GWT (Eq. 4.1), (d) 

GWT (Eq. 4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified GWT. 

a b 

c d 

e f 

g 
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Fig 4.5  Analysis of two linear components (a) WD, (b) GT, (c) GWT (Eq. 4.1), (d) 

GWT (Eq. 4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified GWT. 

 

a b 

c d 

e f 

g 
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Fig 4.6  Analysis of a three quadratic components (a) WD, (b) GT, (c) GWT (Eq. 4.1), 

(d) GWT (Eq. 4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified GWT. 

a b 

c d 

e f 

g 
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Fig 4.7  Analysis of a three quadratic components (SNR= 3dB)   (a) WD, (b) GT, (c) 

GWT (Eq. 4.1), (d) GWT (Eq. 4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) 

Modified GWT. 

 

a b 

c d 

e f 

g 
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4.1.2 Performance analysis of modified GWT  
The performance of a TFR can be evaluated on the basis of its readability, 

energy concentration and cross-terms suppression. Cross-terms suppression and 

energy concentration of a TFR can be computed by visual inspection or on the basis 

of performance measures, like Shannon entropy [69], Renyi entropy [65], ratio of 

norms [68] and LJubisa measure [71]. Readability of TFRs can only be tested by 

visual inspection [27].  

The performance of modified GWT is evaluated on the basis of quantative 

measures including entropy measures [65] and ratio of norms [68] as described in last 

chapter. The proposed method has a maximum value of ratio of norms as shown in 

table 4.1 and minimum value of entropy as shown in table 4.2.  Therefore the 

modified GWT shows good energy concentration property as compared to other 

considered TFRs. Hence our analysis shows that, it provides advantages of both WD 

and GT. 

 
Table 4. 1  Comparison of modified GWT with other TFRs (based on ratio of norms) 

 
Test signal WD SPWD GT GWT 

(Eq 4.1) 

GWT 

(Eq 4.2) 

GWT 

(Eq 4.3) 

Proposed 

GWT 

Gaussian 
atom 

1.7 1.1 0.8 2.4 1.7 1.8 2.5 

Linear chirp 1.1 0.1 0.1 1.2 1.1 1.1 1.3 

Quadratic 
component 

0.0198 0.2321 0.0685 0.2701 0.1544 0.3311 0.3428 

2 linear 
chirps 

0.5559 0.0316 0.0347 0.7716 0.6586 0.6475 0.8649 

3 quadratic 
components 

0.0261 0.0452 0.0219 0.1599 0.0835 0.0849 0.2489 
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Table 4. 2  Comparison of modified GWT with other TFRs (based on Renyi entropy) 

 
Test signal WD SPWD GT GWT 

(Eq 4.1) 

GWT 

(Eq 4.2) 

GWT 

(Eq 4.3) 

Proposed 

GWT 

Gaussian atom 9.8955 10.4266 10.9410 9.3150 9.7509 9.7793 9.3149 

Linear chirp 12.3137 14.2874 14.3732 11.1482 11.3292 11.4733 10.64 

Quadratic 
component 

16.3826 14.1037 14.7630 13.0494 13.0027 12.8098 12.5322 

2 linear chirps 13.2392 15.5037 15.2019 11.9084 12.1326 12.3899 11.3706 

3 quadratic 
components 

16.2640 15.7187 16.1286 14.2950 14.5171 14.8538 13.5344 

 

In this chapter, the advantages of the proposed modified GWT are analyzed 

for multi-component signals. The proposed combination of GT and WD leads to the 

resultant GWT eliminates cross-terms while keeping the resolution of auto-

components closer to WD. Moreover, the proposed TFR provides better concentration 

of auto-components comparing to other GWT forms. 
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Chapter 5 
 

Modified FRFT based GWT approach 
 

In chapter 4, we have shown the potential of modified GWT for a multi-

component signal analysis. Unfortunately this method and different combinations of 

GWT given in (4.1, 4.2, 4.3 4.4)Eqs and are only applicable for slowly time-varying 

signals. In multi-component signal analysis where GWT fails to extract auto-

components, the combination of signal processing and image processing techniques 

has proven their potential to extract auto-components. In this chapter a new scheme 

for TFR of multi-component signals has been described that includes FRFT along 

with image segmentation techniques to find a cross-term free TFR. The proposed 

modified fractional GWT is an extension of Nabeel’s work [41] which also includes 

FRFT and image segmentation. The proposed algorithm maintains the resolution of 

auto-components and it shows that FRFT domain is a powerful tool for signal 

analysis. Before going to describing modified FRFT based GWT, it is necessary to 

describe image segmentation and classification processes, which will be later used in 

the proposed scheme.  

 

5.1 Classification process 
Classification based on a TFR is preferred due to the capability of TFRs to 

discriminate between different auto-components taken as different segments in time-

frequency domain. Before going to discuss a particular classification method, let us 

consider sample auto-component patterns depicted in Fig 5.1. The patterns in Fig.( 

5.1 a, b and c) are non-overlapping and pattern in Fig. 5.1d is overlapping.  Time or 

frequency domain filtering can be easily used in case of non-overlapping auto-

components. However, in case of overlapping auto-component a classification 

mechanism is required to segment out auto-components of a particular segment. 
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Fig 5.1 Auto-component patterns in the TFR domain: (a) Auto-components (same 

time band), (b) Auto-components (same frequency band), (c) Non intersecting auto-

components (same frequency band), (d) auto-components overlap on some frequency 

and time bands [76]. 

 

5.1.1 Overall segmentation Procedure 
The linear TFR (GT) is transformed into a binary image, by assigning the 

value one to local peaks, and assigning zero value for all other locations. The binary 

image ( , )B t ω of a TFR is given by:  

2

2

( ( , )) ( ( , ))1 0 0
( , ) (5.1)

0 .

TFR t TFR tif
B t

else

ω ω
ω ω ω

  ∂ ∂ = ⊕ <    = ∂ ∂  



 
In (5.1)Eq ,⊕  is a and operator. This binary transformation followed by a 

component- linking procedure [74] defines edges in a image. A linked component in a 
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binary image is called as a independent object [75]. The problem of a false component 

linking arises due to large neighboring set. Therefore, it is necessary to define a 

threshold value to identify true connected and falsely connected components.  This 

threshold value is application dependent [63].  

 

5.1.2 Support vector machine (SVM) 
For identification of boundaries among various auto-components we use 

Support vector machine (SVM). SVM [27, 41, 77] is a powerful classification tool 

used in signal processing applications and is one of the most widely used algorithm of 

machine learning. SVM is used to separate boundary between different segments in a 

time–frequency plane as shown in Fig 5.2. Let us consider a set of data points having 

the form, 

{ }{ }2

1
( , ) , 1,1 . (5.2)

n

i i i i i
D c R cε ε

=
= −x x

In (5.2)Eq , 1 1ic or= − , represents the segment to which the point belong and ix  is a 

two-dimensional vector showing a pixel belonging to image segment in time–

frequency plane. The main goal is to find out the line having maximum margin 

between the points following the condition 1ic = and 1ic = − . Two lines are drawn 

parallel to the classification line in such a way that they can classify the data points. 

Mathematically these lines can be described as: 

1, (5.3)T
i b+ =w x

1. (5.4)T
i b+ = −w x  

This problem of finding the optimal classifying line is solved by minimizing 

the objective function ( 21minimize ( )
2

w ) subjected to the constraint ( ) 1i ic w b− ≥x . 

Now quadratic programming [27, 41, 77] solves this Lagrangian dual problem as, 

1 1 1

1maximize  ( , ), (5.5)
2

n n n

i i j i j i j
i i j

c c Kα α α
= = =

−∑ ∑∑ x x  

such that 0 i Cα≤ ≤  and 

1
0. (5.6)

n

i i
i

cα
=

=∑
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In conditions (5.5 and 5.6), ( , )i jK x x is kernel function, C is the measure of 

misclassification and α  is Lagrange multiplier. The solution of discriminant function 

is given by 

( ) ( , ) . (5.7)i i j
i

g K bα= +∑x x x

 SVM can use several types of kernel functions (polynomial, linear, sigmoid and 

Gaussian radial basis function). Mathematical representations of these kernel 

functions are,  

( , ) (5.8)T
linear i j i jK =x x x x

( , ) (1 ) (5.9)T d
polynomial i j i jK = +x x x x

2
( , ) exp( ) (5.10)radial basis function i j i jK γ= − −x x x x

In (5.8,5.9 5.10)Eqs and , ix  represents feature vector, jx describes target vector, 

d represnts degree of polynomial and γ  represent width of Gaussian funtion. In 

summary, linear kernel function is computationally efficient than non-linear kernels. 

 
Fig 5.2 Classi ficat ion of signal described in (5.16)Eq . 

 

5.2 Application of FRFT  
FRFT is used to isolate the auto-components that are linearly separable in time-

frequency plane. SVM is used to draw a boundary between two auto-components. If 

two auto-components are linearly separable, then single line would be enough. 

However, for nonlinearly separable auto-components, multiple straight lines are 

required. Slope and y-intercept of classifying line between auto-components defines 

two important parameters of fractional filtering. These two parameters are: 

( Segmented Image) (auto-components classification) 
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 Rotation angle α  [4, 41]  

 Selection criteria for cutoff lines [4, 41].  

The rotation angle [41] α is defined as, 

1 2 1( )2 tan ( ). (5.11)m x x
N

α
π

− −
=

In (5.11)Eq , m is defined as, 

2 1

2 1

. (5.12)y ym
x x
−

=
−

The cutoff frequency is defined as, 

2 1 . (5.13)y y
N

ω π +
=

In (5.11,5.12 5.13)Eqs and , α , m ,ω , N , 1x , 2x , 1y , 2y  are rotation order, slope, cutoff 

frequency, starting point on x -axis, ending point on x -axis, starting point on y -axis 

and ending point on y -axis [41].  

5.3 Modified Fractional GWT 
     The objective of this work is to propose a TFR which should preserve the 

quality of auto-components for a multi-component dynamic signals and suppress the 

cross-terms. For this purpose a proper combination of linear and quadratic TFRs such 

as GT and WD is designed which can achieve better results as compared to already 

proposed definitions of GWT [78]. Steps of proposed method are given as: 

Step 1.  Transform the given signal ( )x t  in 2D using (2.11)Eq . 

Step 2. Adaptive thresholding (detailed discussion in chapter 4) and image 

segmentation (8-connectivity criterion) of the process performed in step 1 

[19].  

Step 3. Classification of auto-components by support vector machine (SVM) of the 

process performed in step 2 [41]. Location and slope of classification line will 

determine two important parameters (cut-off lines and rotation angle) for 

filtering in FRFT domain [4, 41]. 

Step 4.  Isolation of auto-components in FRFT domain, using step 3 [40, 41]. 

Step 5. Compute GT and WD of isolated auto-components by using step 4. 

Step 6. Compute GWT using following relation, 
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0.5( , ) ( , ) ( , ). (5.14)x x xGWT t GT t WD tω ω ω=
(5.14)Eq  will give high readability of auto-components in case of weak components 

as compared to method proposed in [27, 41].  

Now high readable TFR can be obtained by using following relation, 

( , ) ( , ) . (5.15)
kx x

k
TFR t GWT t where k noof auto componentsω ω= = −∑

 

All the steps of this proposed technique are shown in the following block diagram. 

 

 
 

Fig. 5.3  FRFT based GWT 
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5.3.1 Numerical simulations 
     To show the strength of modified Fractional GWT two examples are 

considered, (i) three quadratic components and a Gaussian atom, (ii) amplitude 

varying bat signal. In both examples, auto-components overlap in frequency or in time 

and they are also buried in interferences. Thus, these particular case studies show 

challenging task to isolate auto-components from cross-terms in case of WD. 

 

5.3.1.1 Example 1 

( )

3 3

3 2

( ) 0.2exp( 2 (7 55 )) 0.5exp( 2 (7 35 ))
0.9exp( 2 (7 15 )) 0.7exp( 2 (70 ))exp( 15 ). 5.16
x t j t t j t t

j t t j t t
π π

π π

= − + + − + +

− + + − −
     Consider (5.16)Eq , the example of a three quadratic components with time 

varying amplitude and a Gaussian atom as shown in Fig.5.4 (sampling frequency = 

200 Hz, time duration = -1 to 1 seconds). The quadratic nature of WD produces cross-

terms (Fig.5.4 a). Analysis of this signal through GT shows that, it provides cross-

terms elimination property of GT but auto-components are blurred (Fig.5.4 b).  The 

behavior of different variants of GWT (Eq 4.1, Eq 4.2, Eq 4.3, and Eq 4.4) represent 

issues of readability and missing of auto-components (Fig.5.4 c, d, e, f). By applying 

proposed algorithm step by step, it proves it’s potential to study a multi-component 

signal (Fig.5.4 g). It provides cross-terms elimination property of GT and high 

resolution property of WD. It extracts successfully all auto-components and gives 

highly readable TFR. This example also proves that the combination of signal 

processing and image processing techniques successfully removes the cross- terms of 

WD and gives a high resolution TFR which is also shown in Tables 5.1 & 5.2. Fig 5.6 

reveals that proposed method completely beats ZAM and PAGE TFRs and its 

readability is higher than method proposed by Nabeel et al. [41].  

 

5.3.1.2 Example 2 

     Consider the example of a real life bat signal [23] as shown in Fig.5.5 

(sampling frequency = 200 Hz, time duration = -1 to 1 seconds). This signal is 

commonly used for comparison of TFRs.  The quadratic nature of WD produces 

cross-terms (Fig.5.5 a). Analysis of this signal through GT shows that, it provides 

cross-terms elimination property of GT but auto-components are blurred (Fig.5.5 b).  

The behavior of different variants of GWT (Eq 4.1, Eq 4.2, Eq 4.3, and Eq 4.4) 
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represent issues of readability and missing of auto-components (Fig.5.5 c, d, e, f). By 

applying proposed algorithm step by step it proves its potential to study the behavior 

of a multi-component signal (Fig.5.5 g). It provides cross-terms elimination property 

of GT and high resolution property of WD. It extracts successfully all auto-

components and gives a highly readable TFR. Fig 5.7 reveals that proposed method 

completely beats ZAM and PAGE TFRs and its readability is higher than method 

proposed by Nabeel et al. [41].  
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Fig 5.4  Analysis of a three quadratic and a Gaussian atom (a) WD, (b) GT, (c) GWT 

(Eq. 4.1), (d) GWT (Eq. 4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified 

Fractional GWT. 
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Fig 5.5  Analysis of a bat signal (a) WD, (b) GT, (c) GWT (Eq. 4.1), (d) GWT (Eq. 

4.2), (e) GWT (Eq. 4.3), (f) GWT (Eq. 4.4) and (g) Modified Fractional GWT. 
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Fig 5.6  Analysis of a three quadratic and a Gaussian atom (a) ZAM, (b) PAGE, (c) 

Nabeel et al. and (d) Modified Fractional GWT. 

 
Fig 5.7  Analysis of a bat signal (a) ZAM, (b) PAGE, (c) Nabeel et al. and (d) 

Modified Fractional GWT. 
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5.3.2 Performance analysis of Fractional GWT 
The performance of a TFR can be evaluated on the basis of its readability, 

energy concentration and cross-terms suppression. Since modified FRFT based GWT 

method uses a linear TFR (GT) for allocation of auto-components, and hence, it faces 

resolution limitation as that of linear TFRs [9]. Cross-terms suppression and energy 

concentration and of a TFR can be computed by visual inspection or on the basis of 

performance measures, like Shannon entropy [69], Renyi entropy [65], ratio of norms 

[68] and LJubisa measure [71]. Readability of TFRs can only be tested by visual 

inspection [27].  

The performance of proposed method is evaluated on the basis of quantative 

measures like entropy measures [65], LJubisa measure [71] and ratio of norms [68]. 

The proposed method has a maximum value for ratio of norms for both signals (Table 

5.1) and minimum value of entropy and LJubisa measure as shown in table 5.2.  

Therefore proposed GWT shows good energy concentration property as compared to 

other TFRs. Hence our analysis show that proposed GWT provides advantages of 

both WD and GT and also gives solution of cross-terms of WD. 

 

Table 5. 1 Performance measures (three quadratic components and a Gaussian atom) 

 
TFR     Shannon Renyi Ratio of 

Norms (×10-3) 
Ljubisa (×109) 

WD    16.1481   15.1764              0.0495               1.4116 
GT    15.9242   15.0367              0.0532               1.5082 
GWT (Eq 4.1)    14.7101   13.3563              0.2066               0.2782 
GWT (Eq 4.2)    14.8139   13.3118              0.1355               0.2811 
GWT (Eq 4.3)    14.7700   13.4737              0.1871               0.3052 
GWT (Eq 4.4)    14.6396   13.3426     0.4077      0.3678 
ZAM    16.7161   14.3490              0.2830               1.1864 
PAGE    16.7507   15.4222              0.0538               2.0772 
Nabeel    14.2968   13.1015              0.2320               0.2675 
Modified Fractional 
GWT 

   13.8139   12.3426    0.4663      0.2460 
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Table 5. 2  Performance measures (bat signal) 

 
TFR Shannon Renyi Ratio of Norms Ljubisa (×108) 
WD    15.3288   13.5606              0.0003               2.7967 
GT    15.2583   14.2951              0.0001               6.3033 
GWT (Eq 4.1)    12.3199   10.7382              0.0015               0.0919 
GWT (Eq 4.2)    11.9194   11.1182              0.0008               0.0519 
GWT (Eq 4.3)    12.7364   11.3310              0.0009               0.1567 
GWT (Eq 4.4)    11.6490   10.3088     0.0018      0.1362 
ZAM    15.0218   13.5436              0.0002               3.5857 
PAGE    15.1744   14.1914              0.0001               3.7244 
Nabeel    11.7711   10.6054              0.0012               0.0587 
Modified 
Fractional GWT 

   11.4099   10.2685     0.0023      0.0426 

 
 In this chapter, the advantages of GWT are analyzed in FRFT domain for a 

multi-component signal. A modified fractional GWT is proposed which is a modified 

form of Nabeel’s work [41]. In the proposed technique, cross-terms are eliminated 

with minimal distortion in the auto-components through FRFT domain. The 

combination of signal processing and image processing techniques and by using the 

new combination of linear and quadratic TFRs( (5.11)Eq ) successfully removes the 

cross-terms of WD and gives high resolution TFR. Performance analysis of proposed 

method reveals that it provides solution of cross-terms of WD and low resolution of 

GT.  
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Chapter 6 
 

Linear Time Varying filtering based GWT  
 

In this chapter, a new method has been developed by combining Linear Time 

Varying (LTV) filtering technique [79] with image processing techniques (adaptive 

thresholding and image segmentation [74]) for cross-terms suppression. In the 

proposed method a filter in time-frequency domain is designed using an iterative 

approach in both time-frequency and time domains. This filter is specifically designed 

in order to suppress cross-terms and enhances concentration of auto-components even 

weaker ones. The proposed algorithm is applied to extract auto-components of a 

multi-component signal, to enhance weaker auto-components and to tackle resolution 

problem faced by linear TFRs. This work shows that this method adopts the merits of 

both WD and GT. 

 

6.1 Linear Time Varying (LTV) filtering  
It can be proved mathematically that FT can be described as a output of LTV 

signal ( )x t  , Mathematically it is described as,  

( ) ( , ) ( ) .y t h t t x dτ τ τ
−∞

∞

= −∫                 (6.1) 

In Eq (6.1), ( , )h t τ is defined as the impulse response of the time varying system and 

( )y t  is the output of the filter. By putting ( )( , ) jt th t e ττ − −=  in Eq 6.1 which takes the 

form, 

( ) ( ) .jty t x e dττ τ
−∞

∞
−= ∫                  (6.2) 

By simplification, Eq 6.2 takes the form 

( ) ( ).y t X t=                   (6.3) 

Similarly we can write 

( ) ( ).y Yω ω=                   (6.4) 

STFT can be interpreted as a LTV filter bank and hence its time varying 

spectrum can be described as an output of LTV filter [79]. By considering (2.5)Eq  it 
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can be shown that for a particular value of 1ω ω= , STFT has an interpretation of 

modulated filtering which is described in Eq (6.1). Time varying transfer function 

( , )H t ω  is described by the following relation,      

   ( , ) ( , ) .jH t h t e dωτω τ τ−== ∫                 (6.5) 

( , )xGWT t ω can be used as a linear operator if auto-components of WD do not overlap 

with its cross-components then it is considered as a linear operator. Mathematically it 

is described as,  

 
1

1 1 1
( , ) ( , ) 2Re( ( , )).

i k l

M M M

x x x x
i k l k

GWT t GWT t GWT tω ω ω
−

= = = +

= +∑ ∑ ∑             (6.6) 

By putting Re( ( , )) 0
k lx xGWT t ω =  in Eq 6.6, then ( , )xGWT t ω is a linear operator and 

mathematically,  

 
1

( , ) ( , ).
i

M

x x
i

GWT t GWT tω ω
=

=∑                 (6.7) 

In order to show the strength of the LTV filtering an example of a synthetic 

signal having three quadratic components is considered. Fig. 6.1(a, b) shows the time 

domain and joint time-frequency (t-f) domain representations of the signal. Suppose 

that if we want to filter out two components of the signal through LTV filtering, the 

desired output signal with only one auto-component is shown in time and t-f domain 

in Fig. 6.1 (c) and (d) respectively. Fig. 6.1 (e) describes the filtering mask in t-f 

domain and finally Fig. 6.1 (f) show the output signal obtained after LTV filtering 

given in Eq 6.5, where the filter ( , )h t τ is obtained by taking the inverse FT of the t-f 

filtering mask.  Fig. 6.1 (g) and (h) shows the filtered signal in t-f domain given by its 

GT and WD respectively. It is clear that the purpose of LTV filtering has been fully 

achieved as the desired signal and true output signal are nearly similar in time domain 

as demonstrated in Fig. 6.1 (c) and (f), as well as in t-f domain as demonstrated in Fig. 

6.1 (d) and (g).  
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Fig. 6.1. Signal consisting of three quadratic components, (a) time domain 

representation of the signal, (b) TFR of the signal (GT), (c) time domain 

representation one auto-component, (d) TFR of the one auto-component (GT), (e) 

filtering mask in frequency domain, (f) LTV filtering, (g) filtered auto-component 

(GT) and (h) filtered auto-component (WD) 
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6.2 The proposed algorithm 
Our aim is to obtain a TFR which not only has strong localization but also 

keeps intact the weak auto-components [80]. For this purpose we propose an 

algorithm which is based on designing a filter which rejects cross terms and enhances 

auto-components, even weaker ones. The filter is designed in an iterative way where 

in each iteration new auto-components are identified (strongest auto-components are 

identified first). The procedure is given in the following steps. 

For the first iteration, 

1.  Initialize ( ) ( )ix t x t= , where i  stands for ith iteration  

2.  Compute GWT of the given signal ( )ix t  by using the following relation [4], 

( , ) ( , ) ( , ) ( , ).i i i
i

x x x
X t GWT t GT t WD tω ω ω ω= =              (6.8) 

3.  2D thresholding and segmentation [78] of ( , )iX t ω  by using the following 

procedure. 

(i). Calculate the mean  iT  of ( , )iX t ω   

( , ) .i iT mean X t ω =                   (6.9) 

(ii). Thresholding ( , )i
AX t ω and ( , )i

BX t ω  against iT  and dividing it into two 

portions 

( , ) ( , ) ( , ) ,i i i i
AX t X t if X t Tω ω ω∈ ≥             (6.10) 

( , ) ( , ) ( , ) .i i i i
BX t X t if X t Tω ω ω∈ <             (6.11) 

(iii). Calculate means of ( , )i
AX t ω  and ( , )i

BX t ω  separately and update    

iT as ( , ) ( , ) .
2

i i
A B

i i
X t X tiT ω ω

µ µ+
=

                                               
(6.12)

 

Go back to (ii). Repeat (ii) & (iii) until iT does not change further. 

   (iv). Now the binary representation of ( , )iX t ω is taken out as     

    { 0 ( , )
( , )

1 .

i i
i
T

if X t T
X t

else
ω

ω
≤

=             (6.13) 

(iv). The number of auto-components identified in ith iteration ( i
XN  ) are 

calculated by using 2-D 8-connectivity criteria for a component linking [75]. 
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Two points j  and k  in ( , )i
T

X t ω  are connected if the following two 

conditions are fulfilled: 

(a) ( , ) ( , ) 1,
j k

i i
T T

X t X tω ω= =
                

(6.14) 

(b) both are within eight neighbors of each other as follows. 

{
}

8 ( 1, 1) , ( 1, ), ( 1, 1), ( , 1),

( , 1), ( 1, 1), ( 1, ), ( 1, 1) .

neighborhood t t t t

t t t t

ω ω ω ω

ω ω ω ω

− = − − − − + −

+ + − + + +
     (6.15)

 
5. For obtaining a smooth transition, 2D Gaussian smoothing is performed on 

the ( , )i
TX t ω  by masking operation with mask ( , )M t ω . The smoothing is given 

by 

ˆ ( , ) ( , ) ( , ).i i
T TX t X t M tω ω ω= ∗                  (6.16) 

6. The identified signal components in the ith iteration are then suppressed by LTV 

filtering [described in section 6.1] of the original signal ( )ix t  by using the 

following equations. The filtered signal is used in the next iteration.  

ˆ( , ) 1 ( , ),i i
TH t X tω ω= −                  (6.17) 

( , ) ( , ) ,i i jh t H t e dωττ ω ω= ∫                                                       (6.18) 

  
1( ) ( ) ( , ) .i i ix t x t h t dτ τ+ = ∗∫                                                                  (6.19) 

Repeat 1-4 until all auto-components are extracted and the total energy of ( )ix t  is less 

than predetermined threshold.   

7. The final filter is given as: 

ˆ( , ) . . ( , ) . 
n

i
TFR T

i
H t a i X tω ω 

=  
 
∑                                    (6.20) 

   In (Eq 6.20), i shows the iteration number, i.e. for first iteration it is 1, for second it 

is 2 and so on, a is a scaling factor the value of which depend on how much we want 

to scale up the weaker components and n is the order of the filter and we can set n =1, 

2, 3, or 4, depending on how much concentration is required in a given TFR.  

    It should be noted that the number of iteration is not equal to the number of auto-

components. The number of iterations depends on how much variation is present in 

the strength of different auto-components. In most cases all auto-components are 

detected within 2~3 iterations.   
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Finally the highly readable TFR is obtained as follows: 

( )

( )

( , ) ( , ) ( , )

( , )  or  or . 
readable x t TFR

x t

TFR t TFR t H t
where TFR t GT WD GWT or etc

ω ω ω

ω

=

=
                         (6.21) 

All the steps of this proposed technique are shown in the following block diagram. 
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Fig. 6.2  LTV filtering based GWT 
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6.2.1 Numerical simulations 
     In order to demonstrate the effectiveness of the proposed technique, an 

example of the synthetic signal having three quadratic components (with same and 

varying strengths of auto-components) is considered. The analysis of this signal 

through WD, GT, GWT (Eq 4.1), GWT (Eq 4.2), GWT (Eq 4.3) and GWT (Eq 4.4) is 

illustrated in Figs. (6.3 to 6.10 by taking noise free and noisy cases (SNR=1dB). The 

steps of the proposed algorithm for filter design are followed exactly as shown in the 

previous section and in the final step only, these TFRs are filtered by the designed 

filter as given in Eq 6.21.     

Figs. (6.3 (a, c), 6.4 (a, c)) describe WD of the signal for noise free and noisy 

cases. Figs. (6.3 (b, d), 6.4 (b, d)) clearly represent the effectiveness of the proposed 

technique where cross-terms of WD are highly suppressed.  

     Figs. (6.5 (a, c), 6.6 (a, c)) show GT of the signal for noise free and noisy 

cases. Fig. Figs. (6.5 (b, d), 6.6 (b, d)) clearly represents the effectiveness of the 

proposed technique where resolution of GT is highly improved. 

     Figs. (6.7 (a, c, e, g), 6.8(a, c, e, g)) show GWT (Eq 4.1), GWT (Eq 4.2), 

GWT (Eq 4.3) and GWT (Eq 4.4) of the signal. Figs. (6.7 (b, d, f, h), 6.8 (b, d, f, h)) 

clearly represents the effectiveness of the proposed technique where readability of 

different variants of GWT is highly improved. 

     Figs. (6.9 (a, c, e, g), 6.10(a, c, e, g)) show GWT (Eq 4.1), GWT (Eq 4.2), 

GWT (Eq 4.3) and GWT (Eq 4.4) of the signal for the noisy cases. It is cleared in 

Figs. (6.9 (b, d, f, h), 6.10 (b, d, f, h))  that in the noisy case the proposed filter works 

very well to represent the complicated signals in a noise free manner. 
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Fig. 6.3. Results of three quadratic-components (same strengths) by using proposed 

filtering scheme (a) WD, (b) WD after proposed filtering, (c) WD (noisy case >1dB) 

and (d) WD after proposed filtering. 

                        

 
 

               
       
Fig. 6.4. Results of three quadratic-components (varying strengths) by using proposed 

filtering scheme (a) WD, (b) WD after proposed filtering, (c) WD (noisy case >1dB) 

and (d) WD after proposed filtering. 
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Fig. 6.5. Results of three quadratic-components (same strengths) by using proposed 

filtering scheme (a) GT, (b) GT after proposed filtering, (c) GT (noisy case >1dB) and 

(d) GT after proposed filtering.  

 

Fig. 6.6. Results of three quadratic-components (varying strengths)  by using 

proposed filtering scheme (a) GT, (b) GT after proposed filtering, (c) GT (noisy case 

>1dB) and (d) GT after proposed filtering.  

 a  b 

 a  b 

 c  d 

 c  d 
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Fig. 6.7. Results of three quadratic-components (same strengths) by using proposed 

filtering scheme  (a) GWT (Eq 4.1), (b) GWT (Eq 4.1) after proposed filtering,  (c) 

GWT (Eq 4.2), (d) GWT (Eq 4.2) after proposed filtering,  (e) GWT (Eq 4.3),  (f) 

GWT (Eq 4.3) after proposed filtering (g) GWT (Eq 4.4) and (h) GWT (Eq 4.4) after 

proposed filtering. 
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Fig. 6.8. Results of three quadratic-components (varying strengths) by using proposed 

filtering scheme  (a) GWT (Eq 4.1), (b) GWT (Eq 4.1) after proposed filtering,  (c) 

GWT (Eq 4.2), (d) GWT (Eq 4.2) after proposed filtering,  (e) GWT (Eq 4.3),  (f) 

GWT (Eq 4.3) after proposed filtering (g) GWT (Eq 4.4) and (h) GWT (Eq 4.4) after 

proposed filtering. 
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Fig. 6.9. Results of three quadratic-components (same strengths)  by using proposed 

filtering scheme (noisy case >1dB) (a) GWT (Eq 4.1), (b) GWT (Eq 4.1) after 

proposed filtering,  (c) GWT (Eq 4.2), (d) GWT (Eq 4.2) after proposed filtering,  (e) 

GWT (Eq 4.3),  (f) GWT (Eq 4.3) after proposed filtering (g) GWT (Eq 4.4) and (h) 

GWT (Eq 4.4) after proposed filtering. 
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Fig. 6.10. Results of three quadratic-components (varying strengths)  by using 

proposed filtering scheme (noisy case >1dB) (a) GWT (Eq 4.1), (b) GWT (Eq 4.1) 

after proposed filtering,  (c) GWT (Eq 4.2), (d) GWT (Eq 4.2) after proposed filtering,  

(e) GWT (Eq 4.3),  (f) GWT (Eq 4.3) after proposed filtering (g) GWT (Eq 4.4) and 

(h) GWT (Eq 4.4) after proposed filtering. 
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6.2.2 Performance analysis of proposed scheme  
It is discussed in detail in chapter 3 that the performance of a TFR can be 

evaluated on the basis of its readability, energy concentration and cross-terms 

suppression. Cross-terms suppression and energy concentration of a TFR can be 

computed by visual inspection or on the basis of performance measures, like Shannon 

entropy [69], Renyi entropy [65], ratio of norms [68] and LJubisa measure [71]. 

Readability of TFRs can only be tested by visual inspection [27].  

The performance of proposed method is evaluated on the basis of quantative 

measures like entropy measures [65], Ljubisa measure and ratio of norms [68]. Table 

6.1 reveals that after LTV filtering the considered TFRs have high concentration of 

auto-components (high value of ratio of norm and low value of Ljubisa measure and 

entropy). Figs. 6.3-6.10 also describe concentration of auto-components which is due 

to proposed filtering mechanism.   

 

Table 6. 1 Performance measures (test signal: three amplitude varying quadratic 

components ) 

 
Ratio of norms 

TFRs Before LTV filtering After LTV filtering 
WD 0.0013 0.0075 
GT 0.0005 0.0017 
GWT (Eq 4.1) 0.0034 0.0063 
GWT (Eq 4.2) 0.0018 0.0075 
GWT (Eq 4.3) 0.0024 0.0075 
GWT (Eq 4.4) 0.0026 0.0035 

 
Ljubisa measure ((×107) 

TFRs Before LTV filtering After LTV filtering 
WD 1.1687 0.0594 
GT 2.4494 0.2395 
GWT (Eq 4.1) 0.7858 0.1093 
GWT (Eq 4.2) 0.4713 0.0570 
GWT (Eq 4.3) 0.4643 0.0548 
GWT (Eq 4.4) 2.0957 0.4361 
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Renyi Entropy measure  
TFRs Before LTV filtering After LTV filtering 
WD 10.6598 8.6888 
GT 11.3305 9.9068 
GWT (Eq 4.1) 9.5237 8.6453 
GWT (Eq 4.2) 10.2094 8.6827 
GWT (Eq 4.3) 9.9949 8.6596 
GWT (Eq 4.4) 9.4888 9.0290 

 
 

Shannon Entropy measure  
TFRs Before LTV filtering After LTV filtering 
WD 11.7506 10.2604 
GT 11.8067 10.6997 
GWT (Eq 4.1) 10.8421 9.9585 
GWT (Eq 4.2) 11.1737 10.2357 
GWT (Eq 4.3) 11.1965 10.1912 
GWT (Eq 4.4) 10.4488 9.9515 

 
     

    In this chapter, the advantages of GWT are analyzed by using LTV filtering 

for a multi-component signal. In our proposed technique, we introduce a novel 

strategy to eliminate cross terms with minimal distortion in the auto-components 

through image processing techniques. The combination of signal processing and 

image processing techniques successfully removes the cross- terms of WD and gives a 

high resolution TFR. Performance analysis of proposed method reveals that it 

provides solution of cross-terms of WD and resolution problem faced by linear TFRs.  
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Chapter 7 
 

Conclusion and future direction 
 

As discussed in previous chapters, time representation of one dimensional 

signal does not contain the frequency description of the signal. Similarly frequency 

domain representation of the signal have no information of frequency content of the 

signal changes with respect to time. Therefore, the basic goal of a time frequency 

representation (TFR) is to find out the energy concentration along the frequency axis 

at a given time [1]. A TFR provides simultaneously, time and frequency information 

and therefore is used to study the behavior of non-stationary signals. It provides the 

information which is unavailable in time or frequency representation alone. Time 

frequency representations (TFRs) provide information, such as number of auto-

components, time duration, frequency band and relative amplitude of the considered 

signal [2].  

TFRs are classified as Linear TFRs and Quadratic TFRs. Linear TFRs obey 

the principle of superposition. Linear TFRs offer no cross-terms but have low 

resolution of auto-components. Quadratic TFRs offer better resolutions of auto-

components but have cross-terms [1, 3]. This discussion shows that there is a no 

unique TFR that tackles every kind of non-stationary signals. Therefore, the selection 

of a particular TFR is highly dependent upon specific application at hand. However, 

TFRs have proven themselves in successful identification, extraction and 

classification of signals’ auto-components in various applications. TFRs are often 

compared in terms of their ability to suppress cross-terms, resolution performance and 

mathematical properties [2]. 

 

7.1 Main Contributions 
This thesis contributes in the field of time-frequency signal analysis as 

follows: 

• Review of most widely used linear and quadratic TFRs 

This part of the thesis contains most widely used linear and quadratic 

TFRs [81], including their merits and demerits. In this section, a brief 
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discussion on fractional Fourier transform (FRFT) and signal synthesis 

techniques are also given, which is used for time varying filtering. This 

part also provides critical analysis of some of recent cross-terms 

suppression techniques. 

• Modified Gabor Wigner transform  

Gabor Wigner transform consists of two time-frequency transforms GT 

and WD, and hence GWT takes the advantages of both transforms (high 

resolution of WD and cross-terms free GT). Different ways to combine GT 

and WD are proposed in [4].  A modified form of Gabor Wigner 

Transform (GWT) has been developed by using adaptive thresholding in 

GT and WD [73]. The proposed GWT combines the advantages of both 

GT and WD and proves itself as a powerful tool for analyzing multi-

component signals. Performance analysis of modified GWT shows to have 

high resolution as well as cross-terms suppression of WD. These different 

variants of GWT are applicable for slowly time varying signals [73].    

• Comparison of different variants of GWT and Modified  Fractional 

GWT 

In multi-component signal analysis where GWT fails to extract auto-

components, the combination of signal processing techniques (FRFT) and 

image processing techniques (image thresholding and segmentation) have 

proved their potential to extract auto-components. A Modified Fractional 

GWT scheme was proposed which maintained the resolution of auto-

components. This work also shows that FRFT domain is a powerful tool 

for signal analysis. Performance analysis and comparison of Modified 

fractional GWT reveals that it provides solution of cross-terms of WD and 

worst resolution faced by linear TFRs [78].  

• LTV filtering based GWT 

In this part of the thesis, the advantages of GWT are analyzed by using the 

LTV filtering to study a multi-component signal. In our proposed 

technique [80], we introduce a novel strategy to eliminate cross-terms with 

minimal distortion in the auto-components through image processing 

techniques. In this approach a filter in time-frequency domain is designed 

by using an iterative approach in both time-frequency and time domains. 
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This filter is specifically designed in order to suppress cross-terms and 

enhances concentration of auto-components even weaker ones. The 

combined effect of signal processing and image processing techniques 

have shown their strength to successfully removes the cross-terms of WD 

and gives high resolution TFR.  

 

7.2 Future work 
• New combinations of linear and quadratic TFRs  

We have discussed in detail that time frequency representations (TFRs) are 

used for non-stationary signal analysis. TFRs are generally classified as 

linear TFRs and quadratic TFRs. The linear TFRs provide cross-terms free 

representation but with low time-frequency resolution. The time-frequency 

resolution is improved by using quadratic TFRs. However significant 

efforts are made to define algorithms for cross-terms suppression, which 

appear due to quadratic nature of these distributions. To overcome this 

difficulty it is required to define new combinations of linear and quadratic 

TFRs with respect to applications. 

• Use of signal synthesis techniques to study GWT 

      Signal synthesis based techniques can be used for time varying filtering 

and signal separation [56]. For the analysis of more complicated signals 

(overlapping cross-terms and auto-components), it is necessary to use 

advanced synthesis method instead of technique described in [56].  

• Intelligent image segmentation in proposed TFR [78] 

      The proposed method [78] can be applied to signals having crossing auto-

components by intelligent image segmentation methods. In this way 

continuity of time-frequency signature of auto-components can be 

maintained [27].  

• Use of de-blurring techniques 

The modified FRFT based GWT technique [78] initially processes the 

signal through linear TFR (GT), and hence suffers from resolution 

limitation in case of closely placed auto-components [9, 41]. This 

limitation can be solved by de-blurring techniques [27]. To improve 
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resolution of linear TFR a 2-D de-convolution operator is applied on the 

STFT spectrogram in [16], but this technique is highly dependent upon de-

convolution method. Another method to improve resolution of the linear 

TFRs is based on de-blurring of spectrogram by using neural networks is 

described in [17]. 

• Local  adaptive thresholding 

      The proposed algorithm described in [78, 80] forms a binary image by 

using global adaptive thresholding technique. Good result can be achieved 

by using region based adaptive thresholding [27]. 

• Modified ICI rule for IF estimation of auto-components 

      The proposed method [78, 80] can be modified to computes IF of     

separated auto-components by using modified ICI rule [21].  

• Analysis of more complicated signals  

      The proposed techniques [78, 80] can be modified to study the behavior of 

signals’ auto-components with complicated IF laws by using other 

methods including approximation of the IF by applying  Hough transform  

[82] and combined Wigner Hough transform [83, 84] for cross-terms 

reduction [64].  
 

7.3 Applications 
TFRs are used to separate and extract signal’s auto-components which are 

buried in noise [85] and also used to estimate instantaneous frequency of a multi-

component signal in low SNR [21]. Many TFRs, like wavelet transform, short time 

Fourier transform and GWT have been used for detection, identification and 

classification of power quality disturbances [45, 85]. 

• New Born EEG Seizure   

The multi-component behavior of a newborn EEG was proposed in [86] 

and its detail are given in [87]. There are two important features which 

completely describes the new born EEG seizure: 

 Number of auto-components 

 IF of auto- components  
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It was discussed in [87, 88] that raw EEG data has energy concentration in 

frequency band having range 0.4 to 8Hz. The proposed TFR methods [78, 

81] can be extended for IF estimation of auto-components of EEG Seizure. 

• Power quality disturbances 

      Many TFRs have been used for detection, identification and classification 

of power quality disturbances [45, 85]. The modified GWT [73] can be 

used in electromagnetic phenomena (voltage sag, voltage swell, transients, 

harmonics, inter-harmonics, voltage change and flicker).    

• Synthetic aperture radar (SAR) imaging 

Synthetic aperture radar (SAR) image processing is a hot research field. 

SAR is widely used in the military, accessing of space information and 

remote sensing. TFRs are used for SAR image processing [89]. The 

method proposed in [89] uses adaptive thresholding and adaptive selection 

of frequency window width to obtain highly focused radar images. The 

proposed techniques [78, 81] can be extended for SAR imaging in order to 

get focused images . 
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