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ABSTRACT

With technological advancements, modern engineeystems are improving
in terms of performance, size and cost but at #pemse of complexity; making their
analysis and control extremely difficult. A fundamt& issue regarding these systems
is to ensure their safety and reliability due teithvulnerability to faults; owing to
their complexity. The situation becomes even waasethe corresponding fault
diagnosis algorithms are also becoming more comguheikcomputationally expensive
for the online implementation. The problem at hantb design a simple, reliable and
easy to implement fault detection and isolationesoh for these systems. One
approach to design such a fault detection schemdhfgsse complex engineering
systems is to partition the system into simpleenatting subsystems and designing
the desired fault diagnosis scheme for these simglbsystems. Hybrid modeling
provides us a platform to represent these compigineering systems in simpler
subsystems working collectively. Hybrid systems #rese having both continuous
and discrete dynamics. In these systems, disctatessare known as modes and
switching between modes occurs on discrete eventaur proposed scheme, healthy
and faulty modes are defined by estimating andyairaj continuous states of the
system. This process of state estimation is peddrmby using Sliding Mode
Observers (SMO). The monitoring of system modepeadormed by designing a
Deterministic Finite Automaton (DFA) that uses medef the hybrid systems
represented as symbols of a language, at its ifjat.proposed scheme is validated
both through simulations and experimental dataaDat the experimental validation
of the proposed scheme is acquired from an enggnefra 1.3L production vehicle
compliant with the On-Board Diagnostic 1l (OBD-IlllProposed scheme is easy to
implement on account of being model-based. Instéadalman filter, SMO is used
for the state estimation that is computationallgagher. In general, there are two types
of faults in hybrid systems; ones related to theesut mode behavior and the others
affecting the discrete evolution trajectory. In al@sign, we have detected both these
faults using a single scheme by identifying and nooimg system modes. Moreover,
detection and isolation of new faults can be easilyommodated by introducing new

mode sequences in a fault set.
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CHAPTER 1

INTRODUCTION

Modern engineering systems are complex in natunes gomplexity arises from the
recent technological advancements that involveracteon of various technical

domains for the proper functionality of these syse Due to their inherent

complexity, these systems are more prone to fadt thus have reliability issues.
Fault diagnosis is an efficient way to address pinablem and to meet the reliability
requirement. There is an increasing demand for toong of these engineering
systems to ensure their fault-free, reliable arfé speration. However, due to the
increased complexity of modern engineering systarogesponding fault diagnosis
algorithms are also becoming more complex and cdatipnally expensive for

online implementation. There is always a quest dexveloping simple, reliable,

efficient and easy-to-implement fault diagnosis hteques for these complex
engineering systems. One approach to achieveasiksis to partition the system into
simpler interacting subsystems and design the reduault diagnosis scheme for
these simpler subsystems. However, such partitipoina large complex system is
not an easy task. This can be facilitated by ubiylyyid modeling of the system that
can be used to represent these complex enginegysigms in simpler subsystems
working collectively to complete a required job. Waengineering systems that work
by the interaction of multiple subsystems can measily be modeled as hybrid
systems, with simpler subsystem models that intevét each other periodically at
discrete events to generate the output. The desatttes in the hybrid systems
correspond to the system modes and in each motensylyynamics are governed by
the corresponding continuous dynamics. In hybridteays, the states evolve by
switching between various operating modes basedystem states, time or some

external event.

Representation of real-world complex systems byridyimodels simplifies analysis

and controller design process for these systemeobgidering simpler subsystems
instead of a large complex system. Furthermorgesyperformance can be improved
to a significant extent by designing high perforeamrontrol systems by switching



between simpler systems. Figure-1.1 shows an exaofplepresenting a real-world
system by a hybrid model. The system presentedhia figure represents a
temperature regulation system in a house. Thisesystperates in two modes: “on”
and “off’. The switching between these modes occoased on the system’s
continuous state. If the temperature becomes grethi@n a threshold value
determined by the desired temperature then themystwitches to the “off” mode and
for temperature less than a minimum value deterthimethe desired temperature it
switches to the “on” mode. In each mode, the ewmtutof the temperature is

governed by a differential equation.

th_up

T<T

th_low

Figure-1.1 Temperature control system

This dissertation proposes simple, reliable andy-easmplement, novel Fault
Detection and Isolation (FDI) scheme based on ttadyais of the identified modes,
for a class of hybrid systems. In the current obigptve cover motivation and
objectives of the presented work. The contributiohshis work and thesis outlines

are given subsequently.



1.1 Motivation

Due to the recent technological advancements, moeéegineering systems are
improving in terms of functionality, performancesliability, size and cost. These
improvements, however, come at the expense of eatpl Nowadays, state-of-the-
art systems are designed in multidisciplinary fashiwhere various technical
domains, such as hardware and software, interattt @ach other to complete a
certain task. On one hand, this interactive desigmeliorates the performance and
functionality of the systems, whereas, on the othand, it manifolds their
complexity. Consequently, modern engineering systare more prone to faults and
also the algorithms for the detection of faultshiase systems become more complex.
Therefore, the researchers strive for simpler,céiffe and more reliable FDI schemes
for these systems. Many complex engineering systemsherently designed in such
a way that they operate by periodic repetitionetan operation of their subsystems.
These systems can more accurately be representduylnid models. In hybrid
modeling, a complex engineering system is represelny partitioning it into smaller
and simpler interacting subsystems thus assistirdgveloping a simple and reliable
FDI scheme by considering these simpler subsystestsad of the complex system

itself.

As mentioned above, in modern engineering systdmasricreased complexity has
also enhanced the probability of fault occurren@ek of the ability of in-time fault
detection can cause financial as well as life leséew examples in this regard are

given below:

« On 25" May 1979, American Airline DC 10 crashed at Chiza®’Hare
International Airport, causing 273 deaths. The tpithd not get timely
indication of the fault. Later investigations shalbat the crash could have

been avoided [1].

* In 1986, a famous incident of the nuclear meltdaweourred at Chernobyl,
Russia. This disaster was declared as the worgtamgower plant accident in
the history of nuclear power engineering; botheinrs of finances and human

casualties. In the later investigative studiesyas revealed that the faulty and



obsolete technology and an absence of fault-hagpdimechanisms were

mainly responsible for the calamity [2].

* The Ariane 5 launcher was destroyed on 4th Jun®& 1§9entering in self-
destruction mode 37 seconds after takeoff. Invastgs revealed that the
major cause of the disaster was an error in so&wahich was originally
copied from Ariane 4. Apparently, it worked perfgatvell on Ariane 4, but
was not compatible with Ariane 5 due to its changedtinuous dynamical

system [3].

FDI of a process can be performed by using hardwearanalytical redundancy
methods. In case of hardware redundancy, addit@alponents are used along with
the already available components in the systEne major advantages provided by
this approach are enhanced reliability and dirgafiation of the fault. However along
with these advantages, requirement of additionatdware associates few
disadvantages with this approach like increas@encbst, weight and sizin case of
analytical redundancy, the process model is exdcuieparallel with the actual
process, and then the results are compared foFfheof the processThe primary
advantage of this method is low hardware cost, Issne¢ and lesser weigHdue to
these advantages, analytical redundancy based Fdithoahs are becoming more
popular. Among various available analytical redurya based FDI techniques,
analytical model-based technique requires the dedpmwledge of the process and
thus is the most efficient approach for FDI [4]]. [However, traditional model-based
methods of FDI cannot be directly applied to thérid/ systems due to several
reasons. Firstly, in hybrid systems, monitoring theshold crossing by the residual
may not necessarily be an indication of a fault ibutan be due to the mismatched
modes as mentioned in [6]. Thus, first of all werdn#o identify the operating mode
from various modes of hybrid system, known as mddatification and, therefore, is
a key step and natural way in the identificatiod amonitoring of hybrid systems [7],
[8]. However, the identification of current modeaishard task [9]. In the last decade
or so, the problem of mode identification in hybsigktems is being explored actively
by the research community [6], [7], [8], [9], [1Q]L1]. Secondly, for monitoring of
hybrid systems, mode occurrence sequence may alsorsidered in addition to the

observation of residual signdh the literature, we find that the deviation of daeo



occurrence sequence from that of expected can dxk fos fault detection in hybrid

systems [12].

Standard FDI literature for linear systems givesesal approaches for fault detection
and isolation, one of which is based on state ed¢itom [13]. For the health

monitoring of the hybrid systems, simpler methods be evolved by identifying the
active mode and testing mode sequence along watlartlalysis of system continuous
states. This requirement corresponds to the stbmadion based fault detection of
dynamic systems with some additional work load &vealop a generalized fault
detection scheme. System states can be estimatedaasily for simple subsystems
by utilizing robust methods like sliding mode teue, which provides reliable

estimate of states even on the switching instants.

In many applications of the control systerasprior availability of system states is
assumed. This assumption can be invalid for sotnatgns. In such cases we have to
estimate system states using an observer. SlidiogleMObserver (SMO) is an
observer based on the concepts of sliding modeaqisee Section 2.4) and used for
robust estimation of states and parameters, wlaalbe further utilized in the system
monitoring and fault diagnosis applications. SM@s ia use for many years by the
control community for parameter/state estimatiod fault diagnosis [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24]. Thavide use of sliding mode technique in
such applications is due to its finite time conesrge and robustness properties [25].
Moreover, in contrast to traditional estimation my@zhes that are mostly for linear
systems and thus are useful in only a specific aipgr region, SMO is a nonlinear
technique that is equally applicable to linear adl\as nonlinear systems directly
without requiring the linearization of system arduihe operating point. The major
part of the literature regarding application ofdsly mode technique is for the
continuous time linear or nonlinear models. Howetes trend is now also shifting
towards hybrid systems and many recent works aaingaiapplication of SMO to
hybrid systems can be found in the literature [2B7], [28], [29], [30], [31]. In case
of hybrid systems, the FDI algorithm should be sibenough to cope with model
uncertainties and the discontinuities at the swiighnstants. Sliding mode technique
is a suitable candidate for these requirementstdues aforementioned properties.
Sliding mode approach has been adopted by manymsutor the estimation of



continuous and discrete states for various clasbéybrid systems [26], [27], [28],
[29], [30], [31], [32], [33], [34]. These robustase estimates can be further used for

fault diagnosis of hybrid systems.

Two active communities working in hybrid systems aontrol system community

and computer science community. They both approdrtiteese systems according to
their relevant disciplines, in continuous and disersystems respectively [3], [35].
The computer science community focuses on theatsdehavior of the system and
puts less emphasis on the continuous dynamicsh®anther hand, the control system
researchers emphasize on the continuous dynamidstake hybrid systems as
continuous systems with switching. Both of thesencwnities use different tools

from corresponding disciplines according to th@meins of applications. These both
approaches have their own advantages and disadesnéag. system model used in
model-based approach is just an approximation ef #élctual system and has
uncertainties. This can be tackled by using momiate and detailed model of the
system but it will increase the complexity of thigaaithm. Similarly data-based

methods lack the details of physical link of thgasithm. Integration of methods from

these two communities empowers us to use the aatyamtof both disciplines

depending upon the applications. In the literatunany authors adopted this
integrated approach and claimed more accuracy atbrbperformance in their

proposed methods [36], [37], [38].

1.2 Objectives

The aim of this thesis is designing a simple, dasyaplement, efficient, and robust
FDI scheme for an important class of hybrid systemamely, Switched Linear
Systems (SLS)These are the systems in which each subsystermprissented by the
Linear Time Invariant (LTI) system [39]. The studlySLS has its importance in that
they can be used to model many complex engineaystems. This enables us to
handle these complex engineering systems with giase many powerful tools can
be used for the analysis of SLS from the well dithbd theory of the linear systems.
This approach of analyzing these systems bridgegdp between linear and complex
systems. Due to these important features of SL$§ d@he becoming more popular in

the control community.



1.3 Contributions

The proposed scheme utilizes system model andftinerét can be categorized under
model-based fault detection schemé&odel-based FDI techniques are easy to
implement and need no extra hardware and spaceeqasread by the hardware
redundancy based schemes. The system states ahdbrz¢he FDI purpose are
estimated by the SMO that provides robust estiregt in the presence of model
uncertainties and discontinuities on the switchimgiants. Generally Kalman filter is
adopted for the state estimation but it requiresiynanline computations for its
operation. SMO is a non recursive technique and thiwomputationally economical

than Kalman filter. The computational complexity Etended Kalman Filter (EKF)

is O(N°) while that of SMO isO(N) for a system of ordeN [40]. For this reason

SMO is a better choice for the online implementamd is adopted in this work for

state estimation.
The main contributions of the thesis are summarased
Mode identification scheme for the FDI of SLS

A mode identification scheme is proposed for thé &Dan important class of hybrid
systems known as Switched Linear Systems (SLS}eBystates are estimated using
a stack of SMO and are analyzed to identify moti@$ &are monitored for the FDI
purpose. Detection and isolation of new faults baneasily made by introducing

corresponding mode sequences in a set, calledibiséd
Mode identification scheme for the FDI of SLS withdentical subsystems

A mode identification scheme is proposed for thel 6D SLS having identical
subsystems. The previously used SMO stack cannatitygted for such systems, so it
is enhanced for these systems by utilizing addii@acks of SMO. The proposed
scheme is successfully applied to the Spark Igmi{i§l) engine having identical
subsystems. The application of the proposed FDdreehon the Sl engine provides an
easy to implement technique involving simpler cotapians and still provides

physical insight about the detected fault.



Deterministic Finite Automaton (DFA) design for theFDI of SLS

A Deterministic Finite Automaton (DFA) design isoposed to be used in the FDI of
the SLS. The proposed DFA takes the identified mpdepresented as the symbol of
a language acceptable to the DFA, as the inputhdrhybrid systems, two types of
fault can be considered. The use of the proposedl iDRhe FDI of hybrid systems
enables us to diagnose these both types of faulil&neously and using the same
DFA structure.

Mode identification scheme for the misfire detectio in the Sl engine

The use of the mode sequence monitoring in theff@dess is demonstrated through
misfire fault detection in the Sl engine. A modentfication scheme is proposed for
the detection of misfire fault in the Sl engine.eTangine setup used to acquire
experimental data is a 1.3L spark ignition enginghwour cylinders. A hybrid
observer is defined based on the hybrid model ®3hengine, where discrete event
is identified to select the continuous model olibsystem for the design of observer
using sliding mode technique. The observer outpguffimally utilized in mode
identification and fault diagnosis.

1.4 Thesis Overview

The remainder of the thesis is organized as follows

Chapter 2 provides the necessary background for the forthmgnthapters. It
basically consists of two main parts: the first an@bout the hybrid systems and its

relevant terminology and the second part is admistiding mode technique.

This first part of this chapter covers some keyoemts related to the hybrid systems.
An important class of hybrid systems, known as dwtl systems, is discussed. After
this, different types of switching are explainedheTstability of hybrid systems is an
important issue as it depends on the system dymsaascwell as on the switching
sequence. Two important tools regarding stabilify hybrid systems are also

described.

The second part of the Chapter 2 covers the basicepts and terminology related to
the Sliding Mode Control (SMC). This mainly inclied¢éhe design process of the
SMC, properties of SMC and SMOs.



Chapter 3 gives the basic FDI terminologies and covers thfiie approaches used in
the literature for this purpose. This chapter ceuvee state of the art FDI techniques
for the linear, nonlinear and hybrid systems alomgh their advantages and

disadvantages. This chapter also highlights the feayures and benefits of the

technique proposed in this dissertation in comparisith the existing techniques.

Chapter 4 presents a mode identification scheme for an inapbrtlass of hybrid
systems known as Switched Linear Systems. Thistehagroduces the DFA design
and its use in the FDI of the SLS. The proposedrdlgn is illustrated through a

simulation example by applying it to a switchedein model.

Chapter 5 enhances the mode identification scheme of Chapterthe SLSs with

identical systems as well. This chapter also pitsstre experimental setup used in
this thesis for data acquisition. The proposedrélym is applied to a switched linear
model of the Sl engine and the results for simoietiand experimental data are

presented.

Chapter 6 presents the use of mode sequence monitoringeilrEH by the detection
of the misfire fault in the SI engine. This chaps¢arts with an introduction to the
misfire fault. After this hybrid model of Sl enging presented and the details of the
proposed scheme is described. The proposed mikdiextion and isolation scheme is
validated through simulations and experimental d@ad the results are presented in
this chapter. Finally a comparison of the existimgfire detection approaches and the

proposed approach is presented.

Chapter 7 concludes the dissertation and also provides s@skstrelated to the

presented work that can be performed in future.



CHAPTER 2

PRELIMINARIES

As the work presented in this dissertation is eglab the FDI of the hybrid systems,
so this chapter is written to provide the essert@tkground for the rest of the
material. The FDI concepts and related work, inegahas well as for the hybrid

systems, are given in the next chapter.

This chapter mainly consists of two parts. Thet fitmee Sections discuss hybrid
systems. Hybrid systems have recently gained eofloattention of the research
community as they can be used to model the inferatietween the continuous and
the discrete dynamics in the modern engineerindesys We introduce hybrid

systems and its related terminology in Section hlSection 2.2, we discuss an
important class of hybrid systems, known as swidckgstems. It also contains
discussion on the various types of switching. Intfea 2.3, we discuss the stability of
such systems, which has an important role in thelysof hybrid systems as the
stability of these systems depends on the indiViduadsystems as well as on the

switching signals.

As described in Chapter 1, we are using sliding enoechnique for the state
estimation of hybrid systems so the last two Sestiare added to provide a flavor of
this technique. In Section 2.4, we introduce thecepts of SMC. Subsequently, we
discuss SMO in Section 2.5. We’'ll mainly cover txprelated to the design process
of SMC as well as SMO and their benefits and drakbaFinally, we conclude this

chapter in Section 2.6.
2.1 Introduction to hybrid systems

Hybrid systems have both continuous and discreteamiycs. The discrete states
correspond to system modes and in each mode sybteamics are represented by
corresponding dynamics usually described by diffea¢ or difference equations. The
states of the hybrid system evolve by switchingveen various operating modes that
occur based on system states, time or some exteveat. Many real-world systems

can be represented by hybrid models. Few exampldsylorid systems include
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automotives, air traffic control, robot manipulaordiode, analog to digital
converters, copier, automated highways, gear tressom, bouncing ball etc [3],
[41].

Mathematically, hybrid systems can be representgdusing set tuple notation
<X, X,,u,-,Y, H> [42]

where

X represents the states

Xp is the set of initial states

u represents the inputs

— represent transition relations

Y represents the output

H represents the transfer function of the system.

In [41], different modeling techniques for the hgbisystems are described. The
diverse nature of modeling techniques available thar hybrid systems is due to
contributions from different communities working tinese systems. As discussed in
Chapter 1, the computer science community focusethe discrete behavior of the
system and puts less stress on the continuous dgsaithe main issues considered
by the computer science community are well-posesjr&@mulation and verification.
On the other hand, the control systems researdamaphasize on the continuous
dynamics and take hybrid systems as the continugystems with switching,
generally known as switched systems [43]. The nssnes studied by the control
system researchers are stability analysis and a@mynthesis.

2.2 Switched systems

The switched systems can be viewed as an abstragitihe hybrid systems; they can
be obtained by taking into account all possibletawing patterns, and neglecting the
details of discrete dynamics. Mathematically we capresent switched systems as
follows [39]:
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X(t) = £, (x(1), u(9, d(1)) X)= %
y(t) = g, (X(1), WD)

(2.2)
where

X(t) is the state vector

u(t) is the controlled input vector

y(t) is the measured output vector

d(t), w(t) are the external signals like perturbations
f.andg, kO M are vector functions

ois the piecewise constant signal, denoting switghsignal, taking value from an
def

index setM :{1,2,...,m}. Switching signal can be a function of time, statgput, its

own past value and external signal.

The individual constituent model, given as followgsknown asnode of the switched

system.

X(t) = £, (x(1), u(9, d(1)

2.2
y(H) = g (X, WD) KO M (2.2)

A switching device usually known as supervisor picEs the switching signar to

control the switching between modes.
2.2.1 Types of switching

In switched systems, switching mechanism has aalruale. Its importance can be
seen as the stability of these systems is alsatatfeby the switching pattern. There
are several types of switching that can exist iswatched system. In [43], the

switching events are classified as follows:

12



» State dependent switching
* Time dependent switching
* Autonomous switching

» Controlled switching

Switching
surfaces

Figure-2.1 State dependent switching

2.2.1.1 State dependent switching

In this type of switching, system switches from onede to another depending upon
the continuous state of the system. This can beerstmbd by considering a
continuous state space that is partitioned intceisdvoperating regions (finite or
infinite in number) by the switching surfaces. Eagberating region is assigned a
continuous time system. When system trajectorkesdra switching surface it jumps
to a new state value given by a reset map, asteepit Figure-2.1. In this figure, the
dotted lines indicate the switching surfaces ardities with arrow heads indicate the

continuous part of the trajectory.
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2.2.1.2 Time dependent switching

Consider a family of systems given as

x= f(x),i0M (2.3)

The function f, is assumed to be Lipschitz.

We use the notion of switching signal:[0,) - M to define a switched system by
family of systems represented by (2.3). The fumctiw:[0,0) ~ M has finite

number of discontinuities called switching timesddrmas a constant value between
two consecutive switching times. Therefore, we rkefa time dependent switched

system as:

(1) = 1, (O(X(D) (2.4)

2.2.1.3 Autonomous switching

In autonomous switching, we have no control onsivéching mechanism. The state
dependent switching described above belongs to type of switching. Time
dependent switching is said to belong to this aategvhen the rule defining the

switching signal is not known.

2.2.1.4 Controlled switching

In this case, the switching can be controlled keydRsigner to obtain the desired task
from the system. Controlled switching can also fagesor time dependent e.g. in case
of automotives, manual transmission correspondhéocontrolled state dependent

switching.

To understand these switching types, we can takeettample from automotive
industry in which manual gear transmission corraggoto the controlled state

dependent switching whereas automatic transmissioresponds to the autonomous
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state dependent switching. Manual transmissioratsmbe time dependent in case of

parallel parking [43].
2.2.2 Switched Linear Systems

Switched Linear Systems are an important classi@fhiybrid systems consisting of
several LTI systems and a rule for coordinatingang between these LTI systems.
They can be represented as follows [39]:

X(t) = A, (X(1) (2.5)

where o is the piecewise constant signal defined earlier.

The study of SLS is important as they can be usednbdel many complex
engineering systems. This enables us to handle tteaplex systems with ease since
many powerful tools can be used for the analysiswofched linear systems from the
well established theory of linear systems. Thisraggh of analyzing the complex
engineering systems bridges the gap between tkarlisystems and these complex
systems. Due to these important features of swdtcleear systems they are

becoming more popular in the control community.

As an example, we take the switched linear moddbof cylinder engine in which
each cylinder is taken as a linear subsystem obveeall system. At a particular time
instant, ignition occurs in only one cylinder. Thaid model uses only the power
stroke of the cylinders. After completion of thewmy stroke of active cylinder, it
switches to the next subsystem. The switching betwsibsystems occurs based on
system states and is a deterministic process. Etaled description of model is

given in Chapter 5.
2.3 Stability of the hybrid systems

The stability of the hybrid systems has been studig¢g many authors and various
approaches for the stability analysis of switchgsteans can be found in the literature
[41], [43], [44], [45], [46], [47], [48]. Unlike tB conventional dynamic systems, the

stability of the switched systems depends on thd&cking signal as well. It is
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possible to have all the stable subsystems in &lsed system but still the over
system becomes unstaldepending upon the switching signal. Such a scercam

be witnessed in the following examjtaken from [45].

X(t):{A'LX i.f %% <0
Ax if xx%>0
with (2.6)

[-1 101  [-1 10
Aﬁ_[—loo —1}’%{—10 —i

o

Figure-2.2 Phase portrait of A45]
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Figure-2.3 Phase portraitAd5]

Eigen values of bottA and A, are found to bel-0000+31.6228i-1.0000 -31.6228i,

which means that both the subsystems are individatdble. This is depicted by tl

phase portraits of individual subsystems in Fi-2.2 and Figure2.3 respectivel.

1500

1000 - il

500+ =

-500 - o

-1000 -

0 2000 4000
X1

Figure-2.4 Phase portrait of switched systerf][4
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For switching conditions given in (2.6), we findaththe given switched system
becomes unstable even though the individual subsystare stable. The phase

portrait of overall switched system confirming thésult is given in the Figure-2.4.

Contrarily, there can be a situation where alluhstable constituent systems combine
to form an overall stable system by using appro@rgavitching signal. So, for the
stability properties of the switched system, itn@t sufficient to just consider the
stability properties of subsystems only but we malsio take into account the

switching strategy as well.

The following two main issues regarding the stapihf switched systems are pointed
out in [43]:

* Find out the conditions to guarantee the stabibitythe switched systems

under arbitrary switching.

» If the switched system is not stable for arbitrawjtching then identify those

signals for which it is stable.
The solution to the first issue has been found @amms of finding a Common
Lyapunov Function (CLF). If we have a positive déé continuously differentiable
function V:R" - R then it is said to be a CLF if there exists a fsidefinite

functionW:R" - R such that we have the following:

%—\;fi(x)s—W(x) Ox 00 M (2.7)

Based on the above we have the following theorem.

Theorem2.1: If all systems in the family (2.3) share a ralgialinbounded CLF then
the switched system (2.4) is Global Uniform Asyniigt&table (GUAS). [43]

In many situations, a system is not stable forteaty switching, and it is only stable
for few switching signals. There are other situagiowhen the switching strategy is
already defined, thus the arbitrary switching i awailable apart from a class of
switching signals. In such situations where CLFsoet exist we can analyze the
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stability of switched systems using Multiple LyapunFunctions (MLF) [43], [44],
[45].
Theorem2.2 Let (2.3) be a family of globally asymptoticakyable systems and let

V,iOM be a family of corresponding radially unboundedapynov functions.

Suppose that there exists a family of positiverdficontinuous function8V i[1M

with the property that for every pair of switchituiges

(t;.t).j<ksuchthaw tf ot ¥iOM andt(3i fof<t <t,,we have

Vi(X(1)) — M (X(1)) = W( X 1) (2.8)
Then the switched system (2.4) is globally asymgady stable. [43]
Proof Let M ={1,2,...m} with m number of elements. Consider a ball of an
arbitrary radiuse >0 around the origin. Let us consider a $&t contained in this
ball and is of the forn{x:V, (¥ < G}, G,>0. For V,(x(t,)), V,(Xt)).... , let R, be
a set of the forn{xzvj(x) < q}, ¢ >0 contained in the seR,,,. Let us consider a

ball of radiuso that lies in the intersection of all nested segesrof sets constructed
for all possible permutations ¢f, 2,..m}. Let |x(0)| <J. If the first| values ofo are
distinct with | <m then by construction we have(t)|<&. The values ofo will

start repeating then and the condition (2.8) guaemthat the state will always

belong to the one of the above sets (see FigureRm=2)

For the asymptotic stability, the finiteness bf implies that we have an index
qOM with an infinite sequence if switching timegs,t; ,... , such thatatj =qg. The
sequence/, (X(t,)), V, (X)), ... is decreasing and positive and thus has a lirgi0.
We have
0=c-c=limV,(x(t, ) ~lim \( X1))

= |Lrj1m[ V(X)) = V(X )]

< lim[W,( X t ))] <O
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thus W, (X(t, )) - Oasx— . Also W, is positive definite. Therefore(t, ) must

converge to zero ak — . It then follows from the Lyapunov stability prapethat

Valrp=ea

Vilzh=e;

Figure-2.5 Lyapunov stability in theorem 2.2 [43]

In MLF, multiple Lyapunov functions corresponding & certain subsystem are
concatenated to produce an overall Lyapunov funaifathe system that might not be
monotonically decreasing along the system trajextoiThe switching signal can be
restricted such that every time on switching from. xiting) a certain subsystem, its
corresponding Lyapunov function is less than ittueaat previous existing time.

Similarly the energy decreasing trend is capturgdnionitoring the Lyapunov

functions values at entering instants [47], [48].

Note that eachV, decreases when thiéh subsystem is active but it may increase

when theith system is inactive. This is shown in Figure-2.6icluhis showing

V,i=1,2 in which solid lines indicate the Lyanupov functifor that mode when it is

active and dotted lines indicate its value whenntogle is inactive.
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Figure-2.6 Multiple Lyapunov functions [43]

As discussed in the start of this Chapter thatrgjidnode technique is adopted in this
dissertation for the state estimation of hybridteys so second part of this chapter,
starting from the next Section, is dedicated toouhtice the relevant terminology in

this regard.
2.4 Sliding mode control

Sliding Mode Control (SMC) is a form of Variabler&tture Control (VSC) which
was firstly explored in 1950 by Emelyanov and hisresearchers in Russia [49],
[50]. In VSC, the controller is switched among was structures on the basis of
certain rules to get the desired results. SMC var@ant of VSC and is basically a
nonlinear design technique. Owing to its simple aoldust design properties, this
technique is equally applicable for linear as vaslinonlinear systems with ease. SMC
design consists of two phasesachingandsliding [25]. In the first phase, a sliding
surfaces(X) =0 is designed and trajectories are forced towarndsstlrface using the
designed control law. Generally, sliding surfaceasstructed as a hypersurface or
interaction of hypersurfaces in state space arkhasvn asswitching surfaceln the
second phase, the trajectories are kept on thmglgurface by the control law and
steered towards the equilibrium point. The systerthis state is said to be @tiding

mode Once the system is in the sliding mode it becomgariant to parametric
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variations and model uncertainties/disturbance. Miotion of the system in sliding
mode is governed by reduced order dynamics. Foystem with state vector of
dimensionn and input vector of dimensiom, the dimension of state vector in

sliding mode isn—m. This is described in the following example.

Consider a linear system of the form:

X =%

. (2.9)
X, =a,X+ g%+ b

where

xOR?
a,anda, aresystem paramet
uiscontrolinput

Let us take a line of the forrmx + X, =0, ¢> 0 passing through the origin. This line is

calledsliding surfaceor hyperplane
Let

S=cx+ % (2.10)

The task of SMC is to enforce the system trajeesoto be on this sliding surface i.e.

to make

s=0 (2.11)

The reachiblity condition for ensuring convergerufe system trajectories to the

sliding surface is given below: (see Figure-2.7)
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fors>0
$<0
and
2.12
fors<0 ( )
$>0
=85<0

From (2.10)and(2.11) we can find system dynamics on sliding surface as

cx+x=0
= X, =—CX (2.13)
= X =—CX

We can see from (2.13) that during sliding modstesy dynamics are governed by a
reduced order system. These dynamics are freestérais actual parameters. This
property is called parameter invariance.

X1

s=>0
s<0

s=0

Figure-2.7 Sliding surface and reachibility cormfiti

Along with its robustness and order reduction progeg, the sliding mode technique
also exhibits the finite time convergence propewWiith all these attractive features,
sliding mode technique has some disadvantageslgoowne of which is the chattering

phenomenon. Chattering is the high frequency mateursed by imperfections of the
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switching devices, system inertia, delays and ofaetors. In the hybrid system
literature the same phenomenon of infinite disctetesitions in finite time is studied
under the heading of Zeno behaviors. Chatteringbsaharmful for the system and
can damage the actuators etc. For this reasond lesearch work is conducted to
solve this issue and several approaches can bel fiouthe literature in this regard
[51], [52], [53], [54], [55], [56].

2.5 Sliding mode observer

Many applications in control systems assuangrior availability of the state vector.
This assumption is not valid in every situationd @metimes, an estimate of system
states is required. For this purpose, a dynamitesysknown as observer, is used.
The observer was first proposed and developed nherger [57]. Sliding Mode
Observer (SMO) uses concepts of the sliding modénigue to estimate system
states and parameters in a robust and accurate . produces a control signal
while SMO is used to produce an error residue hindstimation process, the SMO
tracks the actual measurement and generates ansgynal by finding the difference
between estimated and actual value [58]. Model maicgy is accommodated by the
SMO injection term that is designed to ensure threvergence of estimated states to
the actual states of the plant. In contrast tottheitional Luenberger observer, SMO
provides robust estimation of system states everarinuncertain environment.
Moreover, traditional estimation approaches aretipésr linear systems and thus are
accurate only in a specific operating region. SMCainonlinear technique that is
equally applicable to linear as well as nonlinegtems. Therefore, we can directly
apply it to nonlinear systems without linearizitg tsystem around an operating point
and thus can get accurate results for a broad megfi@peration. Furthermore, finite
time convergence (being a special feature of glidimde technique) of SMO is
guaranteed. Below we describe SMO design procedura linear system to explain

the above terminologies.

Consider a linear system represented as:

(t) = AX(D) + BU )

2.14
y(t) = CX(1) (244
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where

xOR"

AOR™"and is assumed to be a stable me
BOR™™

CORP"

yORP

The SMO for this system can be designed as follows:

X(t) = A + BU )+ Ksign(eD) (2.15)

where

X(t) represents state estimate
K isobservergain
e(t) representserrorgivenast €)x t € Jx t
sign(.) isdefined as
-life<O
signe)=< Oife=0
life>0

The error dynamics can be obtained by ugih@4) and (2.15) as:

&(t) = Ag ) - Kksign(g(9) (2.16)

For sufficiently large value oK, the estimated states converge to the actual yalue
and we get

e(t) - 0
To illustrate the above procedure, a simulatiomgXa is presented below.

Consider a linear system representing simple haicrastillator given as: [59]
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(1) = A9+ BU
y(t) = CxX(Y)

where

For simplicity, takeu(t) =0

SMO designed for (2.17) is given as

X(t) = AX(f) + BU( Y + Ksign(& D)

(2.17)

(2.18)

where terms used are already defined. For this pheais5.

Error dynamics is obtained from (2.17) and (2.48)

& =g - Ksign(e)
& =-2¢ - Ksign(g)

(2.19)

The simulation results are presented in the folhgfigures.
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Figure-2.8x, and its estimate
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Figure-2.9x, and its estimate
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Error
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Figure-2.10 Observer tracking errer

Error

O
G
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Figure-2.11 Observer tracking errey

Figure-2.8 shows the actuat, and its estimate. Similarly Figure-2.9 gives the
estimation ofx, along with x,. The solid lines in these figures represent theahc

states and dotted lines indicate their estimatks.ifiitial states for model are taken as

X, =1 and x, =-1. The observer tracking error is shown in FigurBd2and Figure-

2.11.
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2.6 Summary

This chapter provided important background requfcedhe upcoming chapters. The
chapter mainly consists of two parts: first paratsout the hybrid systems and the

second part discusses the sliding mode technique.

The first part of this chapter gives an introductim the hybrid systems and the
related terminology. An important class of the hglsystems, known as switched
systems, is discussed. Moreover, this part alsdgagw discussion about different
types of the switching. Another important factosalissed is the stability of the
hybrid system that not only depends on the indi@idsubsystems but also on the

switching signal.

The second part of this chapter gives the intradodi the sliding mode technique
and the related terminology. The main topics covene the design process of SMC
and SMO along with their benefits and drawbackssikulation example is also

presented to illustrate the SMO design process.

In the next chapter, the FDI terminology and relamork for the hybrid systems is

described.
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CHAPTER 3

FDI OF HYBRID SYSTEMS

This chapter introduces terminologies relevanthie EDI and previously devised
approaches for this purpose. This chapter starth thie description of the FDI
standard terminology given in Section 3.1, adofitech the International Federation
of Automatic Control (IFAC) workshop on SAFEPROCE®61996. Section 3.2
gives the fault classification. In Section 3.3, wiscuss different fault diagnosis
schemes for the linear and the nonlinear systerdsSaation 3.4 discusses different
fault diagnosis schemes for hybrid systems withirti@os and cons. Mode
identification in hybrid systems is an importanpitothat is covered in Section 3.5.

Finally Section 3.6 concludes this chapter.
3.1 FDI terminology

The work in the FDI had been initialized in 1978swever, the FDI terminology was
not consistent during those times. With the advarese of technology, the systems
become more efficient, yet more complex. Hence, diigaificance of the FDI has
been enhanced due to the requirement of the reliabtl safe operation of these
systems and a standard terminology for FDI has beenulated. For this purpose a
steering committee called SAFEPROCESS was formélairwiFAC in 1991. In the

following we start with the basic FDI terminologigisen in [59].
3.1.1 Fault

Fault is defined as an un-permitted deviation deast one characteristic property of
a variable from an acceptable behavior. It sho@dbted that the fault occurrence
does not necessarily mean that the system hasestopprking. The system can be

still working but with the degraded performance.
3.1.2 Failure

Another related concept is the failure which isimedl as the permanent inability of a
system to perform a desired task under given opegratnditions. For instance, a
small leakage in the cooling system of an autoneobdn be termed as a fault,
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whereas, if the coolant amount in the system dbgyend a certain threshold value, it

can result in the system failure.
3.1.3 FDI

Fault Detection and Isolation (FDI) is relatedhie monitoring of the systems in order
to identify the faults and pinpoint their locatio#s more advanced term is known as
Fault Detection, Isolation and Identification (FPIFault detection means to detect
the occurrence of a fault in the system. Faultisoh is the process of identifying the
faulty component. Fault identification provides iadication of the severity of the

fault.
3.2 Fault classification

Faults are normally classified on the basis of titoeation, and modeling. In the

following we briefly describe these classifications

3.2.1 Fault classification based on time

The fault can be classified in the following thiegories based on time [60]
* Abrupt Faults
* Intermittent Faults
* Incipient Faults

3.2.1.1 Abrupt faults

In this type of the fault, the time between theltfaeccurrence and its appearance is
very small. These faults are relatively easierdtedt because of abrupt change in the
system parameters coupled with the fault. Few eXasngf the abrupt fault include
sudden fall of the actuator gain to some exterthefdesired value, actuator jamming
etc.

3.2.1.2 Intermittent faults

This type of fault appears and disappears at therete intervals. Few examples of
the intermittent faults are loose electrical corime; misfiring in engine cylinder at
different intervals etc.
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3.2.1.3 Incipient faults

These faults are usually caused due to wear anafte¢lae components. Faults of this
type grow slowly and regularly with time. Their iagd on a system becomes
noteworthy only when their magnitude increases bdya certain level. For this
reason, these faults are difficult to detect air timtial level. A slow drift in sensor is

an example of an incipient fault.

Figure-3.1 shows the time behavior of these thaeé# fypes.
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Figure-3.1 Time-based classification of faults.

3.2.2 Fault classification based on location

Based on the location the faults are categorizeddriollowing three types.
* Actuator faults
* Component faults
» Sensor faults

3.2.2.1 Actuator faults

Actuators are responsible for converting the cdnt@mmmands into the actuation

signals. Actuator faults can result in the failafethe commands execution by the
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controller. The most common actuator faults incllatd-in-place, hardening and loss

of effectiveness of the actuator.

3.2.2.2 Component faults

Faulty components result in the performance de@i@adar failure of the system.
This can be viewed by monitoring the system behlausing system states or
parameters because these faults appear as theeahasygtem parameters. In general,
the component faults occur due to the wear and #&sar aging of the system
components. Common examples of the component fandtsde breakage, cracks,

leakage, filter clogging etc.
3.2.2.3 Sensor faults

The system information is normally collected by tbentroller through sensors.
Therefore, a fault in the sensors can directly ichphe controller performance. The
common faults that occur in the sensor are biaff, ffleezing and loss of accuracy.
Bias indicates an offset in the sensor reading ftbat of the actual value. Drift
represents the change in sensor output from thidtechctual value with time. In case
of freezing fault, the sensor shows a constanteviiitoughout the process. In case of
loss of accuracy, the sensor gives the output vidaeis quite different from the

actual value.
3.2.3 Fault classification based on modeling

Faults can also be classified in the following telasses based on the way they are
modeled [60]

+ Additive faults

» Multiplicative faults

3.2.3.1 Additive faults

This type of the fault affects the system outputalyoffset and can be expressed in
terms of addition in model. These faults are nolyndle to the disturbances and
noise. The actuator and the sensor faults can lweeatently represented in terms of

additive faults.
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3.2.3.2 Multiplicative faults

Multiplicative faults occur due to the change i® thystem parameters and they are
expressed in terms of multiplication with systemrgpaeters or states. Component
faults can be easily modeled as multiplicativet&ul

Figure-3.2 gives the description of these faultserg Y(t) represents system output,
U(t) represents the input of the system, f reprisstiie system fault and G represents

the system model.

f lf
Y(t) Y (t)+ u(t) (G+HU(t)

Additive Fault Multiplicative Fault

Figure-3.2 Modeling based classification of fault

3.3 Fault diagnosis schemes

Fault diagnosis schemes can be broadly categanz®e types [61]:
1) Model-free approaches

2) Model-based approaches
3.3.1 Model-free approaches

In many cases—for instance, in chemical plants rocgss industries—the system
model is either unavailable or too complex to beadle for FDI purpose. In these
situations, model-free approaches are suitablecebothat do not use the system
model in the FDI process. Model-free approachesbednroadly classified as:

» Signal-based approach
* Plausibility check

* Hardware redundancy

The description of each one of these is given kewe:
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3.3.1.1 Signal-based approach

In signal-based approach, the process signal gieperre used for the FDI purpose.
These signal properties include magnitude, tremdit icheck, statistical properties
etc.

Figure-3.3 gives a description of this scheme. #tfen the actuator, sensor or system
varies the signal properties that are analyzedgusignal processing techniques for
the FDI. In [62], the authors adopted this approfarhthe engine fault diagnosis.

However, signal-based fault diagnosis is mosthdusesteady state conditions and its

efficiency is limited in the processes with wideeogting range [63].

u
—— Actuator » Process » Sensor y >
3 Fault
Symptom ) Detection
: » Analysis ———
Generation

Figure-3.3 Signal-based fault detection

3.3.1.2 Plausibility check

Plausibility check is performed by testing the glaility (i.e. apparently valid) of the
sensor measurements. Such checks are normally ceadlby validating the
measurements against their expected behavior kiee heasurement sign etc.
However, plausibility check is not efficient in tlm®mplex systems and is suitable
only for simple applications. Figure-3.4 gives ahematic description of the

plausibility check approach.
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Figure-3.4 Plausibility check approach

3.3.1.3 Hardware redundancy

In hardware redundancy, additional redundant coraptsnare installed for the FDI
purpose. Process output is compared with the owtipredundant component for the

fault detection purpose.

[
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Figure-3.5 Hardware redundancy approach

The main advantage of this approach is reliabifityd direct isolation of fault.
However, due to the additional hardware the majgadi/antages associated with this
approach are extra hardware along with increagbarcost, weight and size. Figure

3.5 gives a schematic depiction of this approach.
3.3.2 Model-based approaches

Model-based FDI approach replaces the hardwarendaohey by using the process
model in parallel to the system under observatidre model used for the analytic
redundancy can vary but the structure of the mbdskd FDI scheme mainly consists

of the following parts as shown in Figure-3.6:
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* Residual generation
e Residual evaluation
* Threshold definition

One of the most popular model-based FDI methods, ctmtinuous dynamical
systems, is observer-based FDI approach. ObseagadbFDI generates a residual
signal by comparing the estimated values of measemé with the actual
measurements. Residual gives indication of any miisim between observed
behaviors of system from that of desired. Undealidenditions, this residual value is
zero in case of fault-free system. However, duéhopresence of disturbances and
model uncertainties this residual is not exactlyozeven in the fault-free case.
Therefore a threshold is selected such that théuaiscrosses the threshold in case of
occurrence of a fault [63]. The selection of thiseshold is crucial in the FDI process
as too low a threshold results in false alarm aodiigh a threshold results in missing
some faults detection. To solve this problem, tbiecept of variable threshold was
introduced in the literature [63], [64].

/P O/P
Process

.............................................

Residual Decision | -Fault
Model § > ! [
Processing Logic
Residual Generation Residual Evaluation

Figure-3.6 Model-based fault diagnosis

Based on the model used for the FDI purpose, wdwémer divide model-based FDI

approaches as follows:

* Analytical models

» Knowledge-based models
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3.3.2.1 Analytical models

Analytical models are usually represented by thHéemintial equations. The three

famous approaches under this category are:

» Parity space approach
* Observer-based approach

» Parameter estimation approach
Each one of these is discussed below:
3.3.2.1.1Parity space approach

This approach is based on the consistency chedhkeofparity equations. In this
approach, the measurements obtained from the syatenused to derive a set of
properly modified equations (known as parity relas) that decouple the states from
the residuals. The parity equations can be obtagiber from the state space model
[65] or from the transfer function of the systen6][6In the parity space approach,
same input is applied to the system as well agypapace equation and residual is
generated by finding the difference in the actuehsurement and the model output.
The authors of [67] used parity relations for thi# Bf the SI engine. [68] used parity
relation for the fault diagnosis of a class of mosdhr systems. Parity space approach,

however, is sensitive to the noise effects.
3.3.2.1.20bserver-based approach

This is one of the most widely used model-basedt fdagnosis approach. In the
observer-based FDI approach, an observer is usegtrierate the estimate of the
actual measurement. This estimate is used alorg tvé actual measurement from
the system to generate the residual signal. Oneldhmwte that there is a difference
between observers used for control purposes anthdofault diagnosis purpose. The
former are state observers used to estimate theownkstates while the later are the
output observers used to estimate the measurenTdr@sdea of using observers for
the FDI started in early 70’s and later researcthis field focused on the robustness
of the residual signal against disturbances andsarement noise [69], [70], [71],
[72].
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3.3.2.1.3Parameter estimation approach

Estimation of critical parameters of the system &&na useful way of the fault
detection [73]. The parameters of a system refigcsystem health can be estimated
and analyzed for the fault diagnosis purpose. Thestenated parameters can be
compared against their normal operating values tfi@r detection of fault. The

commonly used approaches under this category are

» Least square method
» Kalman filter

» Sliding mode technique
Each of these is described below.

The least square and its variants have been stgltgssed for the fault diagnosis
purpose [74], [75]. In this method, model of thetsyn is predicted using the input
data by minimizing the squared sum of the residudie relevant parameters, critical
to system health, are then analyzed for the faeeation. This method, however,

provides offline estimates of the linear systems.

Kalman filter is most widely used for the state gagdameter estimation of systems in
stochastic settings. In case of parameter estimatsing Kalman filter, the required
parameters need to be represented as additionalvstaables i.e. the original state
vector is augmented with these state variables iankhown as augmented state
vector. The Kalman filter approach is applicabléht® linear systems and uses system
linear model along witla prior information of the process noise distribution. Ee
nonlinear systems, we have to use a variant of Kalrilter known as Extended
Kalman Filter (EKF). The estimation algorithm in IKean filter uses systera prior
information to generate initial estimates and threprove them recursively using its
gain. The approach of Kalman filter for state aratameter estimation, however,
requiresa prior information about the process and needs to lineahe nonlinear

system on the operating point.

Sliding mode technique is vastly used by contromgwnity for the state and
parameter estimation due to its finite time coneag, simple design and robustness
against uncertainties [14], [17], [19], [20], [24R2], [23], [24]. SMO is used to

estimate system states and parameters by trac&inglaneasurements. In contrast to
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the Kalman filter, it does not need to linearize flystem on the operating point and is
equally applicable to linear as well as nonlinegstesm. Moreover, it is simple in
design and easy to implement online. However, FEnster Sliding Mode Observer
(FOSMO) suffers from chattering that can be takare ®f by High Order Sliding
Mode Observer (HOSMO).

3.3.2.2 Knowledge-based models

This approach is useful in situations in which #ystem model is too complex or
hard to find. Knowledge-based models can be reptedeby fuzzy logic, neural
networks etc. The residual is generated using ttwsviedge-based model along with

a symptom table.

Fault Diagnosis

! }

Model Free Techniques Model-Based Techniques
Signal-Based Plausibility Hardware Analytical Knowledge-Based
Techniques Check Redundancy Models Models

l
! }

Neural Fuzzy Logic
Networks

! ' }

Observer-Based Parameter
Technique Estimation

Parity Space

Figure-3.7 Fault diagnosis approaches
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3.3.2.2.1Neural networks

In this approach, the model used to provide armalggdundancy is composed of
neurons, input and output layers. Neural netwoekglire training data for each class.
Once the training phase is completed, the modebeansed for fault diagnosis. This
approach, however, suffers from the lack of avditsgtof large number of training

samples required for efficient fault diagnosis.
3.3.2.2.2Fuzzy logic

In this approach, the model used to provide armalgdundancy is formed from the
fuzzy rules. These rules provide the symptoms &ty and healthy operation as
defined in fuzzy reference sets. Using this apgrp&ault detection is performed by
comparing the rules of reference models with thkesrwf partial fuzzy model

obtained from the actual fault-free measurementplaft. This approach, however,
requires expert knowledge and offline training dagdiore it can be applied for the

fault detection.

Figure-3.7 gives a summary of different fault diagis schemes discussed so far. This
Section provided a review of the fault diagnosiprapches generally used for the
dynamical systems. In the next Section, we reviawt fdiagnosis techniques used for

the hybrid systems monitoring.
3.4 Fault diagnosis schemes for hybrid systems

As mentioned in Chapter 1, hybrid systems invohahbthe discrete and the
continuous dynamics that have to be monitored I fteliable operation of the
system. Due to the simultaneous presence of the dygtamics, chances of fault in
these systems become higher and thus for the ssamerr they become more difficult
to diagnose than the conventional systems. To ertheir safe and reliable operation
an efficient FDI scheme is required. A general apph to study these systems was to
approximate them either as purely continuous ocrdis systems, suppressing the
effect of one dynamics and concentrating on theerotfihis approach has few
advantages e.g. a system model designed for spegplication area needs not to

cover all the details of the system thus liberatirgn the avoidable complexity.
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Moreover, in using this approach, standards algmst and well established
techniques are readily available from the corredpandomain for use on the system
under study. However, in more sophisticated apiina like the nuclear power
plants, space shuttles and aerial vehicles et@rilgg/suppressing a dynamics can
result in significant loss. Moreover, the use @& BEDI scheme from the corresponding
single domain can result in the overlooking of thgortant fatal faults. Purely
discrete event approaches for the FDI of the hybgistems might not be able to
detect faults reflecting in the system continuoushavior. Similarly, purely
continuous approaches might not always be suit@abléhe FDI of these systems as
they can result in complicated nonlinear behaviod ahus become difficult to

implement in the real world.

Another important factor that should be taken cdn@ the FDI of the hybrid systems
is the identification of the active mode among @asi modes of the hybrid system.
This is so because in these systems, the threshudding by the generated residual in
the model-based FDI may not necessarily be anatidic of a fault but it can be due
to the mismatched modes and thus can result ifatee alarm. Also in the observer
based FDI approaches, the active mode of the hydysiem is required for the
estimation of the states used in the process ofabidual generation. Besides these
factors, the identification of the active mode @dso be used for the FDI of the
hybrid systems as the deviation of the mode ocnagesequence from that of
expected sequence can be used for the fault detantihe hybrid systems. The mode
identification, therefore, is a key step and ndtway in the identification and

monitoring of the hybrid systems.

Due to its inherently multidisciplinary nature, @aschers from various back grounds
became interested in these systems. Two commuratiégely working in these
systems are the control system community and thgpuater science community. The
emphasis of the computer science community is manl the discrete behavior of
these systems and they give little attention todhmetinuous dynamics. The control
system researchers, on the other hand, mainly foouke continuous dynamics and
approximate the hybrid systems as continuous systeithh switching. These both
approaches come up with some pros and cons e.gystem model that is adopted in
the model-based FDI approach is just an approxomaif the actual system and have
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modeling uncertainties in it. A more accurate aethiled model of the system can
take care of this issue but this will increase ¢benplexity of the algorithm and the
resulting solution might not be suitable for thdim® implementation. Similarly, the
data based FDI methods lack the details of theiphlysnk of the algorithm. A useful
FDI approach can be to integrate the methods fiweet two communities to utilize
the positive features of both and avoid the negabines that should result in better

and improved performance.

Several existing approaches that can be found enliterature for the FDI of the
hybrid systems are [7], [76], [77], [78], [79], [BQ81], [82]. A petri-net approach is
used in [7] to form a timed abstraction of the hglaystems. For this purpose, a fault
symptom table is produced, which is used to forndeaision tree offline. This
method, however, requires experience and the domspetific knowledge for
constituting the fault symptom table. Moreover tlse of the decision tree confines
the approach to the assumption of only one faul &itme. In [76], the structured
parity residuals have been used for the FDI ofhylerid systems. Two fault types
have been considered in this case: the ones rdlatiné current mode behavior, and
the ones affecting the discrete evolution trajgctbtowever this approach cannot be
easily extended for the nonlinear systems. In [@7Hybrid Bond Graph (HBG) is
used in the FDI of the hybrid systems that useghaith observer consisting of the
Kalman filter and a mode change detector. Howekatman filter requires prior
system and noise information. Moreover, it is cotapanally heavier than the SMO
since the former requires several matrix calcutatid-urthermore, the Kalman filter
cannot be used for the nonlinear systems direcitivee have to use the EKF for this
purpose which involves further calculations likelcaéating Jacobian based
linearization etc. In [78], the state estimationused for the FDI of the hybrid
systems. The authors of [78] proposed a mode obsamnwd a continuous observer
using bank of the Unknown Input Extended KalmarteFi(UIEKF). This suffers
from the same issues of Kalman filter mentionedvabdMoreover, the dedicated
mode observer can be replaced by adopting the agiprof [30] that provides
simultaneous estimation of the discrete and thdimeous states using the SMOs.
The approach used in [80] requires an excitatianadi for the fault diagnosis
purpose. Another approach used for the fault disignof the hybrid systems is the

particle filter approach [81], [82]. The issue withis approach is that of the sample
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impoverishment (reduction of particle diversity,ielhin the extreme cases results in
“collapsing” of all the particles into a signal pele [83]) that decreases the

probability of the transition to the faulty state.

The major issues in the existing FDI approachesh{dorid systems are summarized

below:

* A general approach to study these systems waspim@amate them either as
purely discrete or continuous system. This appraesciseful in the sense, that
depending upon the application, if some details lmamgnored then we get a
simplified version of the system for the controldaanalysis purposes.
However, in more sophisticated applications, igng@rsuch details can result
in significant loss. Moreover such simplified repeatations can also skip the

details that can be useful for the FDI purpose.

* Some existing FDI techniques for hybrid systemssmmr only either the
discrete fault or continuous fault and not bothha&t same time. Most of the
techniques that consider both types of fault siamdbusly are not able to
distinguish the fault type since the residual usethe FDI process can be
affected in the same way by both faults. Our predoscheme differentiates
between these residuals and is not only able tecti@nd isolate the fault
simultaneously but also identifies the fault tyseng the same scheme.

* Conventional model-based FDI approaches cannotirketly applied to the
hybrid systems as the inconsistency indicated ey résidual in the FDI
process can also be due to the mode mismatch. Slawe to identify the
operating mode before the application of the egtomaechnique in the FDI
process. Moreover these identified modes can be teselevelop novel FDI

approaches to capture both types of faults simediasly.

* The class of approaches that use observer in theDess suffers from the

following issues.

» Use of bank of Luenberger observer or Kalman filterthe FDI
process as compared to our proposed approach ¢ésebask of SMO
for the FDI purpose. Luenberger observer can ety applied to the
linear systems only and is not a robust approachybrid systems
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where switching is involved we need a robust apgrofor the
accurate of the state estimation. Similarly Kalnfdier is directly
applicable to the linear systems only and is coetputally heavier
than the SMO. Moreover it requires prior informat@bout the system
noise. Furthermore if we extend it for the nonlmegstems then it

involves more computations.

» The existing approaches for the FDI of hybrid systeise a dedicated
mode observer for the identification of the actiwede and a dedicated
scheme for the estimation of continuous stateslewhé are adopting
an approach involving SMOs that simultaneouslynesties both states

through single scheme.

» Class of the probabilistic FDI approaches for hybsystems is unable to
handle the unknown faults (un-modeled behaviorsystem) as they use the
observations history to develop a probability dwttion over system states to
find the information of the present possible std8. In the FDI approach

we are using, new modes are added to handle tinékse@wn faults.
3.5 Mode identification in hybrid systems

Mode identification refers to the estimation ofiaetmode from various modes of
hybrid systems. It is a key step in the identifimatand monitoring of the hybrid
systems. The problem of mode identification in tmgbrid systems is actively
explored by the researchers in the last decadeo d6]s [7], [8], [30], [31]. The
authors in [6] used the consistency of AnalyticabBndancy Relations (ARR) for the
mode identification purpose. They adopted HBG mdolegjenerating the ARR. HBG
models the discrete mode changes by using switcjuingtions. In [7], a discrete
model based approach is adopted for mode idertiditand the authors used a timed
Petri net to focus only the discrete dynamics. Thdel is used to generate event
predictions by focusing the signal processing allgors. In [8] the authors applied
the model based diagnosis for active mode recagnitefore state estimation. The
method was however applied on academic problem dilg identifications of faults
and its effects on state estimation are also remudsed. [30] used the injection signal
of SMO for the estimation of active mode of the SI8e advantage of using SMO is
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the simultaneous estimation of both the active maul the continuous state of the
SLS. Another approach using SMO for mode estimaisopresented in [31]. This
approach features a finite time converging estimatkrecovers both the active mode
and continuous state. Sliding mode technique has badely used by the control
industry in different applications. Owing to itsrgle and robust design properties,
this technique is equally applicable for lineamasl as nonlinear systems with ease.
This trend is now shifting towards hybrid systenssweell to get the benefits of this
technique for these systems.

In the present work, we are using mode identifasafior the FDI of hybrid systems
by defining healthy and faulty modes. In the hybsigstems represented through
hybrid automaton model, the interaction betweemrrdie dynamics and continuous
dynamics is defined through invariants and traositielations. Each mode has an
associated invariant that contains the condititlesdontinuous state has to fulfill at
this mode. Similarly each transition between motflas an associated transition
relation that describes the conditions on the omwotus state under which that
transition can occur [41]. On the event of faultweence, the continuous state of the
system does not satisfy the invariant related & garticular mode and transition
occurs from healthy mode to, what we call as faoltde, under a transition relation.
So we can estimate and analyze the continuoussstéitthe system to identify the
healthy or faulty mode. However, in case of hylsydtems, two types of faults can be
considered: the ones related to the current mobdeviber and the others affecting the
discrete evolution trajectory. To detect this sectype of fault, we have to identify
and monitor modes sequence as well. Instead ogusw different schemes for
detecting these both types of fault, we devisenglsischeme for this purpose. This is

the topic discussed in the next chapters.

3.6 Summary

In this chapter, we discussed various terminologsesl in the FDI process. We have
also discussed different types of fault dependipgnulocation, time and modeling.
Then we discussed various fault diagnosis techsigsed for the linear and nonlinear
systems and later on the state of the art techsigsed by the researchers for the FDI
of hybrid systems are discussed. Process of mastdifidation and its use in fault
diagnosis is also described in this chapter.
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The terminology and concepts presented in this tehawill be useful for the
upcoming chapters that present the proposed maaieifidation scheme for the FDI
of the SLS.
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CHAPTER 4

MODE IDENTIFICATION SCHEME FOR THE FDI OF SLS —
PART |

In this chapter, we present a mode identificaticimesne for the FDI of an important
class of the hybrid systems known as Switched lirggstems. The presented
scheme estimates the system states using SMO ahgas these states in the mode
identification for the FDI purpose. These modeseapmt the input of a Deterministic
Finite Automata (DFA) as symbols of a language ptadde to it. The DFA process
this stream of symbols in search of a fault. Neultacan be detected and isolated by
introducing new strings. The proposed algorithnillisstrated through a simulation

example by applying it to a switched linear model.

This chapter starts with an introduction to thepmsed scheme. Section 4.2 describes
the proposed FDI scheme. Section 4.3 demonstriageagplication of the proposed
scheme through a simulation example. Section 4éludes the whole work.

4.1 Introduction

As described in Chapter 1, any deviation in theeetgd mode sequence of a hybrid
system can be used for the fault indication. Ttenddrd FDI literature provides
several approaches for the fault detection anati®wl of the dynamical systems, one
of which is based on the state estimation. FoFEof the hybrid systems, testing of
the mode sequence along with the analysis of tmimemus states can be used to
evolve simpler methods. This corresponds to thie ststimation based fault detection
of dynamical systems with some additional work ltadievelop a generalized fault
detection scheme for the hybrid systems. The exygEDI techniques for the hybrid
systems utilize dedicated mode observer for theveachode identification and the
continuous observer for continuous state estimatiat are analyzed for the FDI
purpose (see Section 3.4). Generally, bank of Kalfiti@rs is used for the estimation
of the continuous states of the hybrid systems. ¢d@n Kalman filter is directly
applicable only on the linear systems and alsoirega prior information about
process noise. For the nonlinear systems, onechase EKF that requires further

calculations in linearizing the system on the opegapoint. On the other hand, SMO
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is a nonlinear robust estimation technique thatirisctly applicable to the nonlinear
systems without the need of linearization on theragpng points. Sliding mode

technique alters the dynamics of the system byirfgrd to a manifold and can be
used for the robust estimation of states even énuificertain conditions. Moreover,
Kalman filter is computationally heavier than SMG d@he former requires

calculations of several matrices during its operatiDue to these features, we
adopted SMO for the state estimation that will p@lgzed for the fault diagnosis
purposes. Another advantage of the SMO is the kiangsof the requirement of the
dedicated mode observer by the simultaneous estimaf discrete and continuous

states as presented in [30].

As mentioned in the previous chapter, two typedaafts can be considered in the
hybrid systems. These faults can be diagnosed hyitonmg the continuous and
discrete states separately. However, if thesesstate be translated in terms of each
other, then a single technique can be developethéodiagnosis of these both types
of fault in the hybrid systems. If we assume thalenfwhether healthy or faulty) of a
hybrid system as a symbol of a language, then asgiple combination of modes can
be considered as the string of that language. Tidrexea sef of system faults can be
defined that contains all those combinations witiehrespond to the various faults in
the system. The detection and identification of ndéawlts can be easily
accommodated by introducing new strings in thetfagiF. The sef can be formed
by identifying signal features [85], defining furats to fulfill specific needs [86] or
integrating qualitative knowledge of systems in tbien of rules or constraints [87].
The process of the FDI is thus reduced to the dete®f strings and to check
whether they belong to the detThe fault detection process can therefore balddi

into three major steps:

* Symbol generation
» Generation of a valid string

* Analysis of string to identify that it belongs tet&

The proposed FDI technique exploits the fact thatiation of the mode sequence
from that of expected can be used for the faulymisis. For the analysis of mode
sequence, a Deterministic Finite Automaton (DFASide is proposed to be used in

the FDI of the SLS. The proposed DFA takes thetifled modes, represented as the
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symbol of a language, as the input. The use optbposed DFA in the FDI of hybrid
systems enables us to diagnose these both tygasalbgsimultaneously and using the
same DFA structure. Our proposed algorithm starth the state estimation of the
active mode using the SMO. In the later part of dlgorithm these estimated states
are translated into string of symbols and finatlg DFA analyze this string to identify
the fault.

4.2 The proposed scheme

Consider a switched linear system withsubsystems represented as:

X(t) = Ay XY
y(t) = CX(9)

(4.1)
where X O R' represents the state vectyft) 0 R® represents the output vector and
jt)OM ={1,2,...m} determines the active system dynamics amongrthgossible

subsystems.

It can be observed that for a fault event in thievacsubsystem of the hybrid system,
it switches from “healthy mode” to a new mode, ndnas “faulty mode”. Thus we

have

X (0= Ay % (9

4.2
Y () =Cx (Y (@2

where p(t)OM ={m+1, m+2,...,2nk determines the faulty system dynamics among

the m possible faulty subsystems i.e. for each healtiysgstem, a corresponding
faulty subsystem exists that will be active on theresponding fault event. Now the

complete mode set is given as:

M. =M OM (4.3)
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We assume that each subsystem has only a sindterd¢tated to it. Moreover, only
one subsystem can be faulty at a time and no f@ssumed to occur at switching

times.

Definition 4.1
A non-empty setS, is said to beadmissible seif it contains only those mode
switching sequences that result in the non-faultyavior of (4.1).

It is clear from the above definition that

p(h)Os, OpdO M OsO S. (4.4)

This set can be obtained using system model byrging the expected behavior of

the system and/or using knowledge about the sysperation.

For the symbol generation, we analyze the statédseo$ystem. These states might not
always be available and so we have to estimate.tféerefore we first describe the

state estimation process as under.

States of the SLS given in (4.1) are estimated dypting the approach of [30].
Following assumptions are made for this.

Assumption 1The minimum dwell time between any two mode shiig is known

e. t, —t,_, 2A>0 whereA is known constant greater than zero ap#=1,2,...)

are the switching time instants with=0.
Assumption 2The matrix pair§ A, C), are observable for ail=1,2,...m.

Consider the state transformation given in [58hstiat output appears as part of the

state vector i.e.

T x:{‘q tn-p (4.5)
yJTp
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with

c

NT
T = LC } N, OR™"™ P and columns span the null space&c  (4.6)
This is a nonsingular transformation and the tramséd matrices are defined as:

a2

B, .
, 1. B= ,CT =[0 | 4.7
A A, { } vl ! @)

BZ
Using the above transformation on system (4.1)gete

wt) = Ail,j(t)l//(t) + A12J ()Y(t)

4.8
y(t):Aﬁl,j(t)l//(t)+Az2J()Xt) (4.8)
where
TAT' = V‘“ v e “} (4.9)
Py P
The observer stack for (4.8) is defined as:
GO = A GO+ Ay O+ Ly (9, 1={1,2,...n} (4.10)

Y.(0)= Ay ()+ Ay Y()-1 (D
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where
L, OR™ P*Pare the observer gain matrices and

v, ORPis the discontinuous injection term that ensuressliding motion and

is designed as:

v, =Ksign,; ). i={12,..m

411
Re{o-j{Alj + LTAZJL}} S_y!Dj: 112""n_ py> O":{ 1’2'n}( )

where

KOR"

4.12
e, =¥-vi{L2..n (4.12)

and

0;(N),j=1,2,..n for a square matriN of ordern denotes the set of

corresponding real eigenvalues.

Assumption 3The sub-matrices\,,, are not full row rankdJi =1,2,....m

A slightly modified form of Theorem 3 of [30] fodeéntifying the discrete modes is

given below.

Theorem 4.1Let us consider the switched linear system (4ulfiJling Assumptions

1, 2 and 3, and the observer stack (4.10). Letstimatev__.(t) be available then the

eq,i

discrete state estimation

i) =argminR ¢).R ()= |

Vs €Yo i= 2,2, (4.13)
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will be such that

jt) =)t +T <t<t,, k=1,2,.. (4.14)

where

Veqi(t) =U [V, (t),U, is the basis matrix of the left isbace ofs,,; foi = {1,2,..m

andv,,, €)=K (v, €0, ¢)

eq i

The proof of the observer convergence and abowedhecan be seen in [30].

The estimated continuous states of the SLS aredisenetized by using a discretizer

function defined as:
Definition 4.2

When jth mode is active, discretizer functioh maps the continuous state of the

system to a discrete statéelonging toM_ i.e.
s= f; (¥ .wheresd M, xOR" (4.15)

A simplest function can be considered to be a coispa of the value ofx with

some pre-defined threshold value.

j+m x(t)—h=¢, jOM

4.16
] X(t)-h<eg, jOM ( )

s:g(@:{

whereh is a set point and is a small number.
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In the next step, these symbols are convertedeistiing to be used at the input of the
proposed DFA. A DFA is a Finite State Machine (FSNBt accepts or rejects finite
strings of symbols [88]. FSM is a way of modelingstem behavior with finite
number of states [87]. In addition to its vast a&ilons in the computer technology,
it was applied for modeling, analysis and faultgtiesis of the hybrid systems by
both computer science and control community [890], [91], [92]. In the design
process of the proposed DFA, the states of the Beéfassigned to ensure the validity
of the input string sequence. A separate stateeseguis kept in the DFA to identify
each possible valid string. In the proposed FDlesoh for the SLS, the string
acceptance or rejection property of the DFA is eitetl for the processing of the
identified modes in developing a systematic wagnohitoring mode sequence for the
fault detection and isolation. This systematic nmnmg of mode sequence enables us
not only in the immediate detection and isolatidnfaults but also facilitates in
finding the involved dynamics (whether continuousliscrete) of the hybrid systems.
This is achieved by designing a DFA in such a wayts states immediately detect
and isolate the faulty component in the SLS anthatsame time indicates the cause
of the fault whether it occurred due to the conunsi behavior or is reflected in the

discrete evolution trajectory.

The proposed DFA is formally defined as a 5-tugig][[93].

D=(QX.4,4,F). (4.17)
where

Q =Set of states

)y = Set of symbols called alphat

0:Qx2 - Q=Transition function

o = Initial state

F = Final state

S

55



We define a regular languagerecognized by the DFA. This language consisthef t
strings formed through symbols generated by us#hd6). For a SLS withm
subsystems we defin@m symbols  symbols corresponding to the healthy
subsystems anth symbols corresponding to their faulty behaviohu3 the alphabet

in this case becomes as:

>={12,..,m=M. (4.18)

and

(4.19)

= Set of strings ovep. /each stri
corresponds to specific fault

String of symbals

Figure-4.1 General structure of the proposed DFA

Figure-4.1 gives a general representation of tbpgeed DFA. This figure shows that
this DFA has three stateg; is the start stateg, is the state indicating healthy system

and q, is the desired or accepted state indicated by ldoaiocle. The transition

between states occurs depending upon the inputgstior a string containing

symbols corresponding to the healthy system thesitian occurs to the statg, .

Similarly the presence of any symbol correspondmghe faulty system forces the
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system to transition ta,. It should be noted that the real applications icamolve

more states of the DFA than presented in the FHdukd.e. for each subsystem we
can have two states; one indicating its healthyabieln and the other is for faulty
behavior. Also note that the DFA of Figure-4.1 tenuseful only in the applications
involving the detection of faults reflected in tlw®ntinuous states. However it

provides the advantage of simplicity and easy imglietation.

m+1

Figure-4.2 General structure of the proposed DFRAlfe fault detection and isolation

For the detection as well isolation of faults amdfind about the nature of the
dynamics involved in the fault occurrence, we havedd more states in the DFA.
This is shown in the Figure-4.2 that assumes tladtthemode sequence as 1, 2, ...,
m. Moreover, new faults can be diagnosed by usirtitiadal states in the designed
DFA. The number of states in the DFA of Figure-4s2equal to 3m+1 i.e.
Q={qa, 9,..., q,,} , wWhere q, is the start state{q, q,...,q,} correspond to the

healthy modes{q,,., Uy »---» Gy COrrespond to the faulty modes of the hybrid
system corresponding to the continuous states{and, d,.»-.-» ds,} represents the

faulty modes corresponding to the discrete stafs. transition between the DFA

states is governed by (4.19) and (4.20) given below
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_ | Set of strings ovep. /each string reptesmsequende (4.20)
corresponding to healthy system '

System
measurements | Stack of
1 SMO

Continuous states
estimate

h 4

Discretizer
function

Generated
symbols

h 4

DFA

StringdF

StringdF

Faulty
component

Figure-4.3 Proposed methodology for the FDI of SLS

For healthy operation of the system, the transitiocurs only between the DFA states
corresponding to the healthy modes and is based (420). This path is represented
by the dotted arrows in the Figure-4.2. The tramsiamong healthy and faulty states
is governed by (4.19). The occurrence of any syntbal sequence corresponding to
the faulty mode results in the corresponding “ateestate” of the DFA represented
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by the double circle in the Figure-4.2, thus deteciand isolating this fault. The
switching from healthy modes to the faulty modegresenting faults reflecting in
discrete states can be described in the similar Whig transition, however, can also
occur in the presence of a symbol representinghiedthy mode of the system

depending upon its sequence.
The complete FDI scheme is summarized in the FiguBe In the next Section, a
simulation example is presented to explain the alpresented FDI scheme.

4.3 Simulation example

This Section gives the simulation example to illatg the effectiveness of our
proposed scheme. For this purpose, the switchedrlisystem given in [30] is taken

as a benchmark system and is described as below:

X(t) = Ay XY

(4.21)
y(t) = CxX(9)

This system has two modes ire= 2 , thus j(t) O{1, 2} with A, as given below

0 06 -1 0 03 -0.
A=|-05 -08 1l A=l-1-04 O (4.22)
01 04 -0. 1 06 - OF

S0 (4.3) becomes as:

M ={1,2}, M =3,4}and M_ ={L, 2,3, 4} (4.23)

Output matrixC is given as:
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100
C{o ) 0} (4.24)

The initial conditions are taken ag=[-3 -1 6]T . The system starts with modg
and the switching times are defined t@s{8,14,20,2}1. To transform the system in

new coordinates, (4.6) becomes as

001
T.=/100 (4.25)
010

So the system in new coordinates becomes as

V/(t)}:rnm AZH)}V@)} (4.26)
YO [ Ao Aol XD
with

A, =-07,A,,=[0.1 04]A, = F1 1] ,Azz,lz[_o'g —glj (4.27)
and

0 03
A,,=-03A,,=[L 0.6],A,,= F0.8 0.8 Aﬂ,z{_l _0.4} (4.28)

Figure-4.4 presents the simulation results of thminal system described by (4.27)

and (4.28). The observer stack is defined accorting4.10) andL, and K are
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chosen as defined in (4.11) and (4.12). The slidingace is designed in terms of

tracking error and corresponds to the subspaceenhéput error is zero:

e, =¥-y=0, i={1,2,..n} (4.29)

The residuals for the mode identification are gatest according to the (4.13) and are

shown in this figure. The estimated active modesadso plotted in this figure that

provides the information of the active mode on tleresponding switching times.

The estimated state, is shown in the Figure-4.5.

R1
30 \
207 *
10{ M |
0 | | | |
0 5 10 15 20 25 30
R2
40 \
30
20
. A
0 | | | 1
0 5 10 15 20
ihat(t)
2.5 \
2 |
1.5 -
1
0.5 | | | | |
0 5 10 15 20 25 30

Time (seconds)

Figure-4.4 Residuals for mode identification antinegted modes
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| |

— — x3 hat \

R | | | | |
5O 5 10 15 20 25 30

Time (seconds)

Figure-4.5 Actual vs estimated state

Introducing a fault in the first subsystem of (4,2&t timet=4to7 seconds as

a,,=(@1-J)a,, J=0.5 we get the following

{%(t)} Ao Azp) {wf(o} 4.30)
yi (1) Ao Popo yi (1)

with

_ _ _ _ 0 03
A,,=-07,A,,=[0.1 0.4]A, = F1 1 A, = {_0'5 _0.8} (4.31)

The faulty system is simulated and the residualgife mode identification and the

estimated modes are shown in the Figure-4.6. Tiue between desired state for the
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nominal system and the same state for the faukyesy is shown in the Figure-4.7,
from which we find using (4.16) that the systemtshés into new mode (faulty
mode)m=3. Using Figure-4.2, the DFA for this example t@ndesigned as presented
in the Figure-4.8. This DFA ha8m+1= 7 states. The alphab@f becomes in this

case as:

>=M,={1,2,3,4 (4.32)

The DFA statesy, g, represent the healthy operation of the systemstiduesq,, g,
represent the fault in the continuous states of dpgtem and the stateg, g,

correspond to the modes representing the faullsctetl in the discrete states of the
system. In the fault case mentioned above, the DR#e Figure-4.8 switches to the

stateq, thus detecting and isolating the fault.

40 \

20 N

5 10 15 20 25 30
R2
60 \
40+ B
. | | [ |
0 5 10 15 20 25 30
jhat(t)
2.5 \
2 - —
1.5F B
1
05 ! ! ! ! !
0 5 10 15 20 25 30

Time (seconds)

Figure-4.6 Residuals for mode identification antihested modes for faulty system
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Figure-4.7 Error between desired state and faykjesn state

Figure-4.8 DFA for simulation example
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Next consider that the fault in the system (4.2t tare modelled by an incorrect
order of discrete modes. In this case the systess dot follow the desired switching
sequence mentioned in the start of this Sectiors TBult is introduced by vanishing
the switching at=8 sec. In real world systems such faults can oatien the system
stuck in a particular mode e.g. due to the jamnoing valve etc. The residuals for the
mode identification and the estimated modes forpitesented case are shown in the
Figure-4.9 from which it can be seen that the dwiiig at time instant=8 sec is
missing. Note that this type of fault too can catle(4.16) to generate a symbol that
can be used to indicate the fault due to the contis dynamics of the hybrid system,
but our designed DFA recognizes this case alscsauitthes to the correct state even
in these cases (see Figure-4.8). For the present tt&e DFA of Figure-4.8 switches

from g, to q, , thus detecting and isolating the fault.

R1
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20h a
10J\ f
0 ! ! ! e W
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2 - —
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Time (seconds)

Figure-4.9 Residuals for mode identification antihested modes for faulty system
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A similar robust state estimation based fault dosgm technique is presented in [78]
for the uncertain hybrid systems where faults apelelied in terms of discrete modes.
As compared to our proposed technique, the apprpeesented in [78] requires a
dedicated observer scheme for mode estimation sseparate observer scheme for
continuous estimation. These observers consisaok lof Unknown Input Extended
Kalman Filter (UIEKF). As mentioned earlier Kalmélter is a recursive technique
and requires more computations in the estimatiatgss as compared to the SMO
that is a computationally economical for online iempentations. Moreover in [78]
robustness to the disturbances and model unceesistachieved through decoupling
technique thus further increasing the computati@eehplexity. In contrast to this,
SMO used in our proposed scheme is inherently astotechnique and does not
require additional computations for achieving rdhass to disturbances and model
uncertainties. Furthermore the time taken in thedenestimation process by the
approach of [78] is quite high as compared to tN©Sapproach adopted by us that
provides the mode estimate almost instantly (seerEi4.4, Figure-4.5 and Figure-
4.6). Another issue is that, in [78] fault detentie performed only for the continuous
faults of the hybrid system and discrete faultsrareaddressed while in our proposed
FDI technique we used the estimated modes in dsggoboth the discrete and

continuous faults of the system using the samensehe
4.4 Summary

This chapter presented a FDI scheme for an impodiass of the hybrid systems
known as Switched Linear Systems. The presentezhsekestimates the system states
using SMO and performs the mode identification F@1 based on the analysis of
these states. A DFA is designed that analyze thadersequence for the FDI purpose.
These identified modes, represented as symbols laihnguage acceptable to the
proposed DFA, acts as the DFA input. The propodeidseheme directly detects and
identifies the faults in the SLS and also indicates involved dynamics in the fault
process. New faults can be easily diagnosed byngdtle new strings to a fault det
and using additional states in the DFA.

The proposed technique is successfully validateautfh simulations and the results

are presented. Being a model-based FDI techniquprbposed scheme is simple and
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easy to implement for the practical purposes. Magedhe use of SMO ensures the

robustness in the state estimation process.
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CHAPTER 5

MODE IDENTIFICATION SCHEME FOR THE FDI OF SLS —
PART I

In this chapter, we enhance the mode identificaticmeme for the FDI of the SLS
presented in the previous chapter. The presenteehse removes the need for state
estimation and analysis used in the symbol gemgrgtrocess but at the cost of
additional SMO stacks. These symbols representistgs modes appear at the input
of a DFA that processes them in search of a f&ldiv faults can be detected and
isolated by introducing new strings. The proposigoréghm is applied to a switched
linear model of the Sl engine for the misfire fadktection and the results for

simulations and experimental data are presented.

This chapter starts with an introduction to thepmsed scheme. Section 5.2 describes
the proposed FDI scheme. Section 5.3 demonstriageagplication of the proposed
scheme on the SI engine and Section 5.4 conclhdeshole work.

5.1 Introduction

The FDI approach presented in the previous chagdimates the system states and
use them in the mode identification process thaiaaalyzed by the DFA for the fault
detection and isolation. The use of the SMO indtate estimation process provides
several advantages over the approaches using Kalittem as mentioned in the
previous chapter. However, the proposed approasia tianitation in the FDI process
for the switched systems having identical subsystekn example of such systems is
the Sl engine that consists of four identical ayéirs that actuate sequentially on the
corresponding events. From the FDI perspectivethis chapter a new mode
identification scheme is proposed for such systeli®e proposed scheme uses
additional SMO stacks, each one of which represamt®de and captures a specific
fault reflected in the continuous dynamics. Thiprapch also simplifies the symbol
generation process of the previous chapter by remgahe need for state estimation
and analysis process. Moreover, the number of thRA Btates is also reduced as

compared to the approach presented in the precioayster.
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The proposed FDI technique monitors the mode seguienthe FDI process. A DFA
is designed for the analysis of mode sequencesinsid@ detection and isolation of
fault. The DFA takes the identified modes as thmiinrepresented as the symbol of a
language acceptable to that DFA. The proposed ithigoistarts with the formation of
the SMO stacks and used these to generate the /fobthe DFA.

5.2 The proposed scheme

Consider a switched linear system withidentical subsystems represented as:

X(t) = Ay XY

5.1
y(t) = CX(Y) o

where x(t) O R" represents the state vectort) O1RP represents the output vector,
and jt)OM ={1,2,..m} determines the active system dynamics among rthe

possible subsystems.

In case of healthy system, all subsystems of th® (SL1) are working in the normal

way and a system behavior can be obtained usingnabrmaystem model and/or

knowledge about system operation. In case of fthdtsystem behavior deviates from
that of the nominal one and can be generated foows faults using system model
and knowledge in a similar way. The SMO stacks bandesigned to track these
behaviors of the SLS by taking each faulty situats a new switched system. This
approach also takes care of the SLS with identaalof phase subsystems as will be

shown in the Section 5.3.

For the present case, we assume only a single faulelated to a subsystem.
Moreover, only one subsystem can be faulty at @ taimd no fault is assumed to occur
at switching times.

The faulty systems are represented as:

69



X (1) = Ai(t) X (1)
Y, () =Cx (9, A(HD{m+1,2,3,...,n}

X (1) = z}i(t) X (1)
Y () =Cx (9, A(HO{1,m+2,3,....nh (5.2)

X (1) = Ai(t) X (9
Y () =Cx (9, A(HD{L2,..m- 1,2

where M ={m+1,m+2,...,2n} is an index set fom possible faulty subsystems such

that:
M.=MOM (5.3)

For the symbol generation, we design stacks of Sk®seach of the system given in
(5.2). The number of stacks used for the proposbdmee arem+1; one stack for the
nominal system (5.1) anoh stacks for the systems given in (5.2). So tramsiiog the
(5.1) in the new coordinates as in (4a8)d designing first stack of SMOs, we get the

following:

Yt)= A a#’(t) +A,, ¢ )y(t)

_ (5.4)
y() = A, t )g[/(t) + Ay, ¢ )y(t)

with
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[l//} =T.X (5.5)

The observer stack for (5.4) is defined as:

GO =APO+A, YO+ Ly (), i={,2,...,m) 56)
Y0 =ALG O+ A, Y(O-1 (D
where

L OR™P*Pandy, OR * are defined as in Section 4.2.

Similarly, the systems in (5.2) are transformedtlie new coordinates and the
observer stacks are defined as:

gy () = Ay () + A, YD+ Ly (9,i={1,2,...n} , (based on system 5.2
V()= A () + Ay V(-1 (9 A0 1,2, h)

Gy (t) = Ay () + A, V(D + Ly (9,i={1,2,...n} , (based on syste5.2 with
50 = Ay (0+ Ay V(-1 () A(90{1,2,...,m-1,2h )

(5.7)

These stacks are used to track the output of teemsyfor generating the symbols

representing the system modes, and are indexedg uam index set as
s(t)DS:{ S S ,§T]} The process of symbol generation using thesekstac

performed as:

(=15, p=arge()- 0,e(d="y(¥- ¥+ {L.2..m I (58)
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For the cases wheg(t) 20 O1={1,2,...m+ }, the p is replaced withm+2.

In the next step, a DFA similar to that of Chap#eris designed to develop a
systematic way of monitoring mode sequence forféhudt detection and isolation.
This designed DFA, however, provides the advantdgemplicity for involving less

number of states.

A regular languagé-, recognized by the designed DFA, is defined. Taigguage

consists of the strings formed through symbols gead by u g (5.8). For a SLS with
m subsystems we definen+2 symbols fn symbols corresponding to (5.7), one
symbol corresponding to the healthy operation amel corresponding to the faulty

operation reflected as unknown fault). Thus théal®t}. in this case becomes as:

2={S) S Suak (5.9)

and

Set of strings oved. /each stri
F:{ ings ovep. '}" (5.10)

corresponds to specific fault’

Figure-5.1 gives a general representation of tbpgeed DFA. This figure shows that

this DFA hasm+3 states;q, is the start stateg, is the state indicating healthy
system,q,,...,q,., (Mstates represent desired or accepted states (indicatatbblyle
circle in the Figure-5.1) and corresponds to thit$areflected in the continuous states

of the system andj_,, is the state indicating unknown faults. The traosibetween

-2
states occurs depending upon the input string. &atring containing symbols
corresponding to the healthy system the transiimurs to the statg, . Similarly the
presence of any symbol corresponding to the fasjtstem forces the system to
transfer to one of the,,...,q,.,. The detailed interpretation of Figure-5.1 cardbae

as already given in Section 4.2.
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Figure-5.2 gives the summary of the complete Fzhtéque. The proposed FDI
scheme is validated both through simulations arel @kperimental results using
switched linear model of a Sl engine. The next iBagtresents the application of the
proposed FDI scheme on the hybrid model of thenglre and results are presented

in the later Section.

[S1,Sm+2] [S1,Sm+2] [S1,Sm+2]

Figure-5.1 General structure of the proposed DFA
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measurements | Stacks
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else Tracking errors
symbol=s+2
If e; >0
then
symbol=s;
——» DFA
StringOF
StringdF
Faulty
component

Figure-5.2 Proposed methodology for the FDI of SLS

5.3 An application example

This Section describes the application of the psedoFDI scheme on a real world
system with identical subsystems. The proposed nelgification scheme for the
FDI of the SLS is applied on a Sl engine modelea asvitched linear system. The
scheme is successfully applied to detect the miédiult in the Sl engine. This engine
contains four cylinders coupled together throughkirayle shaft to transmit engine

power to the wheels. These cylinders are repredesdesubsystems of a switched

linear engine model. Thus here

M ={1,2,3,4}
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and

M ={5,6,7,8} (5.12)

so (5.3) becomes

M, ={12,...,8 (5.13)

Under ideal conditions all subsystems are assumée identical and are working in
fault-free mode. A predefined correct ignition seqce in cylinders ensures the
healthy operation of the Sl engine. The sequenttes than this predefined sequence
will indicate faulty engine operation. In the curtedemonstration, misfire fault is
introduced in the engine to produce the faulty sagbperation. This disturbs the
correct ignition sequence as the ignition of misgrcylinder is missing and no power

is generated in the misfiring cylinder.

The model of the Sl engine used here for the olesatesign is the switched linear

model proposed in [94] and is described in theofelhg sub-section.
5.3.1 Hybrid model of SI engine

Before explaining the hybrid model of the Sl engiadorief description of the engine
ignition cycle is presented to introduce the temtogy used in the sequel. Sl engines
are based on the Otto cycle that takes four inddgr@nstrokes of the piston for

completion. These are given below:

* Intake stroke

» Compression Stroke
* Power Stroke

» Exhaust Stroke

The intake stroke starts with the piston at Top d€&nter (TDC). The input port
opens and the output port remains closed. Air frotake manifold is sucked in the
cylinder by piston motion from TDC to Bottom Deadr@er (BDC).
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————— TDC
< B—>
Vg— |

Figure-5.3 Engine cylinder [95]

Intake Stroke Compression Stroke Power Stroke Exhaust Stroke

air _ fuel
S| ok 1L

exhaust

e

b\

Figure-5.4 Sl engine ignition cycle [96]

In the compression stroke the piston moves from BBADC. Both the input and

output ports are closed. This is an isentropic aesgion and the temperature inside

cylinder rises due to the compressive heating.

In the power stroke the heat is added to the sysfdma process is assumed to be

constant volume process but in actual engine heditian starts when the piston
reaches just before the TDC and ends when it tsgfisr TDC. The temperature of
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the air inside cylinder rises to very high valu€bis also causes high pressure in the
cylinder that result in piston motion from TDC tdB. The energy added in this
stroke is divided in three parts; one part is z#ili in useful work in moving the piston
from TDC to BDC, second part is transferred to¢belant and the third part resides

in the cylinder in the form of hot gases.

In the exhaust stroke the remaining gases in thedey after power stroke are
exhausted to the environment through engine exh&hstoutput port of the cylinder
opens and piston moves from BDC to TDC resultinghim sweeping out of exhaust

gases.

Figure-5.3 gives the engine cylinder along with thlevant terms used in the ignition
cycle and Figure-5.4 gives the four strokes deedribove with the corresponding
piston position in these strokes.

The Sl engine hybrid model used in this work repnés a four cylinder engine. Itis a
switched linear hybrid model in which each cylindéthe Sl engine is considered as
a subsystem. These cylinders activate one by ortbenrespective events i.e. only
one of the cylinder will be in the power stroke atparticular time instant. The

remaining cylinders will be in one of the intakengression and exhaust stroke,
depending upon the ignition cycle. In this modestjpower stroke of the cylinders is
considered. On completion of the power stroke & oylinder, it switches to the next

cylinder. This switching is state dependent swiighand is a deterministic process.

The hybrid model of the SI engine captures thedstestate behavior of the engine in
which only small fluctuations exists in the crankfthspeed. Moreover, due to the
frequent switching between subsystems, the modelat®n time is very less and
thus each subsystem can be assumed to be repreastieear time invariant model.

For overall system, the output is the combinedoefdé all the subsystems.

Mathematically, the hybrid model of the Sl engisedefined as a 5-tuple model

<u, X,I,2.,9¢> in [94]. For our proposed FDI technique, we modifis model to

include fault states as well.

M,=u¢=M0OM (5.13
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where terms are already explained in (5.11) to3}6.1

X OR? represents the states of the continuous subsystartise present case each
subsystem contains two states, crankshaft velaciticrankshaft acceleration.
r={G is a singleton for a maximally balanced engine,emehG represents

mathematical model of all subsystems as state spackel. The state space models
for the subsystems are derived on the first prieciasis as in [94] that proposed a
second order system for the subsystems of the chybddel of an Sl engine. The
elements of the sdt contain the equivalent state space representafiohe model
defined as:

X=Ax+ Bu
y=Cx '

(5.15)
where

uOR, AOR?? BOR*, COR*? 10{L,2,3,4}
2. M — [ represents the generator function used to defi@@éxt transition model.

@:TxuxXxu- X defines the initial condition for the next subsystafter a

switching event, where represents input to the subsystem. The last dondihat

provides the initial condition to the next subsystensures the continuity of response.
5.3.2 Application on Sl engine

Each subsystem in SI model described above isgsepted as second order system

given below.
v,. =V
o . . (5.16)
Vzvj = _kZ,jvzj - klj V];, + a‘E) ' JD{li 21314}
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For application of the SMO stack, the observabiitythe pair(A,C) fori=1,2,3,4

can be seen as

C
rank@©, )= 2, whereQ = C:A :E) ﬂ (5.17)
CAn—l

Using transformation (4.6), (5.16) is transformechew coordinates as

YO =k (- k; UD+ak

5.18
y(O) = (1) 6-18)

with

0 1
TC—L o] (5.19)

m+1 observer stacks defined in (5&)d(5.7)becomes as

G.(1) ==k, B (D -k, V() + aP+ Ly (), i={1.2,...,)

Y (=g 1) -v 0

GO =AM+ A, YO+ aP+ (), i={1,2,...,m)

¥.(0)= Ayl ()+ A, Y(D-u (1), (based on system with t () nf+  1,2,m})

Gt = Ay () + A, Y+ aP+ Ly (), i={1.2,...n)
9.0 = Al ()+ A, Y(D-u (1), (based on system with t (fL,2,...,m—1,2m})
(5.20)
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Using (5.9), the alphabet for Sl engine is defined

>={s, Sy S} - (5.21)

The SMO stacks are then used for the mode idestific (see Section 5.3.3 and
5.3.4), which are represented as symbols of thgulage acceptable to the DFA. The
DFA designed for this particular example is shownFigure-5.5. The transition
between the DFA states takes place based on thkeotymresent in the DFA input
string and can be interpreted in the same way #seiprevious chapter. We can see

that this DFA has 7 states wit}) as the start state. The presence of the systemyin
of statesq,,q,, q,,q indicates the fault reflected in the continuouates of the

engine. The unknown faults can be given by theesysgiresence in the statgs.

Figure-5.5 DFA for the application example
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5.3.3 Simulation results

In this Section, we describe the simulation restdtsboth the healthy and faulty
cases. The switched linear model of Sl is paranzetras in [94] and then it is
simulated in the first step for fault-free casetdraon, the process is repeated with the

misfire introduced in the engine model.

The crankshaft speed data for the healthy engirstosvn in the Figure-5.6. In the
first stage, this speed profile is provided to 8O stacks as inputs. The resulting
tracking errors are shown in the Figure-5.7. U4iB@), it can be clearly seen from

Figure-5.7 that the generated symbosisn this case that results in tlog state of the
DFA of the Figure-5.5, thus indicating healthy babar of the system.

15.5;

Speed (rps)

14.5; 1

16 17 18 19 2 21 22
Time (second)

Figure-5.6 Crankshaft speed for fault-free case
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Figure-5.7 SMO stacks error plots for fault-fresea

Figure-5.8 presents the crankshaft speed datehomisfire fault in the Sl engine.
This speed profile is provided to the SMO stackspat and the resulting error plots

are shown in the Figure-5.9, from which it can eersthat the generated symbokijs
that results in they, of the DFA of the Figure-5.5, thus detecting asolating the

fault.

From these simulation results, the effectivenesthefproposed scheme is evident in
detection and isolation of faults in the SLSs. Tie&t Section gives the experimental

validation of these results.
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Figure-5.8 Crankshaft speed for misfire fault itirogyer 1
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Figure-5.9 SMO stacks error plots for misfire irsficylinder
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5.3.4 Experimental results

This Section gives the description of the experitalesetup along with the results
used to validate the proposed FDI scheme. Firstlloive describe the experimental
set up used for the work presented in this dissentaData for the validation of the
proposed scheme is acquired from an engine rig3tf groduction vehicle compliant
with the On-Board Diagnostic Il (OBD-II). This i©iewn in Figure-5.10. This engine
is equipped with the Electronic Control Unit (ECWdpmpliant to the OBD-II

standards.
We can acquire data from this experimental setupgusther of the following:

* Using the National Instrument (NI) data acquisit@@ard connected directly to
the vehicle sensors. LabVIEW is the software usethis process. (Figure-
5.11)

» By using the OBD-II connector provided in the védicin this method an
OBD-II cable is used to connect an OBD-II scanmethe OBD-II connector

to acquire the sensors data. (Figure-5.12)

Figure-5.10 Engine rig of 1.3 L production vehicle
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Figure-5.12 Data acquisition through OBD-II conmect

During the experiments, misfire fault is introdudeg removing one spark circuit.
(Figure-5.13)
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Figure-5.13 Misfire fault production

The experimental rig is also equipped with wheatsl ®#rakes. During the data
acquisition process, the wheels of the rig wersedin the air to stop its movement
and brakes were used to apply load on the engime cfankshaft speed is kept close
to 1000 rpm by the manual control of throttle amdkies. This manual control of the
speed and load also added disturbances in theradagd@ta. Moreover, the working
environment of the engine is always noisy due &ftittors like EMI interference of
igniter coil, combustion process in engine cyliredand engine vibrations etc. These
all factors also effect the data acquisition frohe tengine. This noisy data was
supplied to the proposed algorithm to ascertaimuggedness for the practical noisy

signals.

Data from the crankshaft position sensor is acquirging data acquisition card from
the National Instrument Inc. This data was proagdeeobtain the crankshaft speed
signal that is applied to the observer after appatg filtering using a low pass filter.

In the next stage, misfire fault is introduced e t3° cylinder of the SI engine by
inhibiting the igniter signal to the engine. Thengaprocess is repeated again and the

speed data is acquired for the misfire case.

Figure-5.14 shows the filtered signals of the spekthined from the experimental

measurements for the fault-free case. The resultancking errors are shown in the
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Figure-5.15 indicating that the generated symbg] i# this case, which results in the

g, state of the DFA of the Figure-5.5.

o1 =
(@e] (@)
1 1

o1
(®))
1

Measured Speed

15.4r 1

15 16 17
Time (second)

Figure-5.14 Crankshaft speed measurement for feadtease

Figure-5.16 presents the speed signal with theimmishult in the third cylinder.
Figure-5.17 presents the resulting tracking eradrhe SMO stacks. The analysis of
these error plots using (5.8) implies that the gateel symbol in this case &, that

results in theg, state of the DFA of the Figure-5.5, thus detecting isolating the

fault.
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Figure-5.16 Crankshaft speed measurement for miffirlt in cylinder 3

88



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
ed
0.1 T T
0 )
01 I I I I I I I | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
e5
100 T
07
-100 I | I I | | I I I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

Figure-5.17 SMO stacks error plots for misfire yireder 3

The representation of a highly nonlinear S| engiseng a switched linear hybrid
model provides quite simpler tracking techniquengsihe SMO. The model also
provides an easy way for the association of theanamith the complex non-linear
system and the proposed technique demonstratesppkcation how the mode
identification and the allowable mode sequence lmamsed for the fault diagnosis

applications.
5.4 Summary

This chapter presented a mode identifications sehémn the FDI of the hybrid

systems that can be equally applicable to the Sitls identical subsystems as well.
The proposed scheme also eliminates the need tef estimation and analysis steps.
Moreover, the designed DFA also contains fewerestas compared to the previous

approach.

The scheme is successfully validated on a Sl entjaehas four identical cylinders,

represented as the four subsystems in a switchedrlmodel. The representation of a
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highly nonlinear Sl engine as switched linear aystdlows the development of the

simple FDI technique based on the definition amhidication of the system modes.
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CHAPTER 6

MODE IDENTIFICATION SCHEME FOR THE MISFIRE
DETECTION IN SI ENGINE

This chapter demonstrates the use of the mode segumonitoring in the FDI
process by detecting and isolating the misfire tfanl the Sl engine. The work
presented in this chapter is published in [26]. Emgine setup available for the
experimental purposes is a four cylinder 1.3L spanition engine. Using the hybrid
model of the Sl engine, a hybrid observer is defimbere discrete event is identified
and then the continuous model of the subsysteralésted for the design of observer
using the sliding mode technique. The observerwutpfinally used for the mode

identification and fault diagnosis.

This chapter starts with the introduction of thesfing fault in the Sl engine. Section
6.2 gives the description of the hybrid model o @Bl engine used in this work.
Section 6.3 gives the detail of the proposed mddatification scheme for the FDI of
the Sl engine. Section 6.4 describes the simula@eunlts and Section 6.5 is about the
experimental results. Section 6.6 gives a comparigdhe existing misfire detection

approaches and the proposed approach. Sectionves’aysummary of this chapter.
6.1 Introduction

In the Sl engine, the ignition of the air-fuel mixé¢ in the engine cylinder produces
energy used in generating torque. The combustioogss involved in this process is
initiated through a spark generated by a spark.plagcase of misfire fault, this

combustion process is either missing or cannot &fopned completely in the

corresponding stroke of the engine ignition cydmgine misfire can be due to
several reasons like missing spark, poor fuel tiga¢ poor fuel quality, incorrect air-

fuel mixture etc. Misfire fault is formally defineds fault due to missing spark, air
leakage from cylinder or fault in the fuel injectio[97]. There are several

disadvantages related to this fault, few of theenlisted below.

» Environmental pollution caused by exhausting unedrfuel

* Unable to produce required torque
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* Damage to the catalytic convertor
* Bad fuel economy

* Low millage

* Uncomfortable travelling etc

The misfire problem was given a lot of attentiontbg scientific community in the
past but new techniques are still being developedhe solution of this issue [94],
[98], [99], [100], [101], [102], [103], [104], [105[106], [107]. Variety of methods
was adopted for the detection of the misfire fautluding model-based techniques,
data based techniques and a combination of botlehii@sed and data based methods
[94]. Model-based methods utilize the S| engine ehddr developing the misfire
detection algorithm and can be easily implementeithe as discussed earlier. The
most frequently used model of the SI engine foapeater and state estimation using
observer design is the Mean Value Engine Model (MNEas indicated by the
literature [20], [21], [22], [23], [24]. This modé&d simple and less complex due to its
averaging nature and thus is suitable for manyrobmipplications. However, the
details skipped by the MVEM contain information fusdor the fault diagnosis [12],
[94]. Recently, hybrid models capturing more dstail the Sl engine are evolving for
the fault diagnosis applications [12], [94]. Thesedels indicate the potential of the
hybrid model for the fault diagnosis applicationsatt lead to the significant
simplification due to the replacement of highly hoear engine dynamics with linear

model for the estimation of states in all differemdes.

In the proposed misfire detection scheme, we appB®O on the engine hybrid
model for the state estimation. These estimatetk stariables are analyzed for
identifying the system modes for the FDI purposke Tdentified modes are then
monitored to detect the misfire fault in the Sl imeg The presented misfire fault
detection technique is simple and easy to implemathihe as it is computationally
cheap involving only linear models, and being mduided technique it gives the
physical insight of the origin of the misfire fauMoreover the robust state estimates

are provided by the SMO even in the presence ofeinaricertainties.

The next Section gives the details of the hybridleiaised for the development of the
proposed FDI scheme.
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6.2 Hybrid model of Sl engine

The hybrid model of the SI engine used in this ithés adopted from [94] and is
already discussed in Section 5.3.1. In this Sectibis model is briefly discussed

along with the modifications made in it for the ggat work.
Mathematically, the hybrid model of Sl engine isfiged as a 5-tuple model
<u, X,I 2, ,@¢> in [94]. For our proposed FDI technique, we modifis model to

include fault states as well.

Q=u=u, 04 . (6.1

where 1, :{,ul,,uz,,ug,,u4} represents the discrete modes corresponding téotire

subsystems of the healthy engine apg:{y5,u6,/,17,/,18} represents the discrete

modes corresponding to the four subsystems of dloétyf engine andQ is the
complete mode set.

X OR? represents the states of the continuous subsystantise present case each
subsystem contains two states, crankshaft velaciticrankshaft acceleration.

r={G is a singleton for a maximally balanced engine,erehG represents
mathematical model of all subsystems as state spackel. The state space models
for the subsystems are derived on the first priechasis as in [94]. The referenced
model proposed a second order system for the signsy<of the hybrid model of an

Sl engine. The elements of the Fetontain the equivalent state space representation

of the model defined as:

x= Ax+ Bu

= Ox (6.2)

where

uOR, AOR*? BOR?*Y, COR*?,10{L, 2,3, 4}
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2. . M — [ represents the generator function used to defi@eéxt transition model.

In Sl engine, during ignition cycle there is oneotee correspondence between piston
position and crankshaft position, so switchingedirted in terms of the instantaneous

shaft positiond, as:

W anrr< j g,dt < (4n+ 1y7
4, (4n+1yrs J'éldt < (4n+ 2y7

For u, 2= ] (6.3)
U, (An+2)r< I gdt< (4n+ 3yr :
U4, (4n+3)r< I g,dt< (4n+ 4yt
e anrr< j g,dt< (4n+ 1y7
U (An+Dyrs j g.dt< (4n+ 2y7

For . 2=

fy,  (4n+2)< [Gdt< (4n+ 3yr (6.4)

4 (4n+3)rs j g.dt< (4n+ 4yt

wheren=0,1,2,3....

During each stroke of the S| engine ignition cyttle crankshaft rotates by 180°. One
whole ignition cycle of the SI engine completesanyangular movement of 720° i.e.
by two complete revolutions of crankshaft (see Fegb4 of Chapter 5). At a given
time instant, the nature of combustion stroke inheaylinder of the Sl engine is
different from others i.e. if one cylinder is inake stoke at a particular time, no other
cylinder can be in this stroke at that time and/timegght be in one of the compression,
power or exhaust stroke at that time.

@:TxuxXxu- X defines the initial condition for the next subsystafter a

switching event, where represents input to the subsystem. The last dondihat

provides the initial condition to the next subsystensures the continuity of response.

In the next Section, the proposed FDI scheme ®mntisfire detection is given.
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6.3 The proposed scheme

The proposed FDI technique exploits the fact tleiation of mode sequence from
that of expected can be used for the fault diagn¢$R]. We start with some

definitions that will be used in this chapter.
Mode Sequence Estimation Function (MSEF)

It uses the output of the discretizer function arfdrmation of active subsystemas

its arguments and estimates the next mode appeaarthg sequence.

p=9(j,i),plQ. (6.5)

where the discretizer function is defined in (4.46) for the Sl engine it becomes as:

j = (x).where j0Q,xOR? (6.6)

Switching Sequence

Switching sequenc& associated with switched systems is indexed bynitial state

X, and is given as [45]:

S= 3% (b &)y (it s iz oty oo (6.7)

6.3.1 Mode identification of Sl engine

In our present work, healthy/faulty modes corresptm the actual production/non-
production of the power in the cylinders due to bthening of air fuel mixture. The

corresponding healthy and faulty modes are mutubdipint at any instant. Therefore
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fy 0 1 =0. (6.8)

In other words, the system must be in only one mbdalthy or faulty, at a particular

time instant.

For the FDI purpose, the modes are identified iyneting and analyzing continuous
states of the system. In S| engine misfire faultecigon, the estimation of the
continuous state is physically motivated as atstiaet of the power stroke of healthy
engine the piston is accelerated inside a cylirwerthe energy produced in the
combustion process of the air-fuel mixture. Thequisstarts to decelerate in the later
part of the power stroke. When a misfire fault éveccurs in the engine, then no
energy is produced in the cylinder to accelerate piston and it continues to
decelerate. As a result, large peak of deceleratterproduced in this process [101],
which corresponds to the faulty mode in this c&eacceleration can be analyzed for
identifying healthy and faulty modes, which canrbenitored for the FDI purpose.
Unfortunately there is no acceleration sensor pteisethe production vehicle with Si
engine. So to use it for the mode identificatiore thave to estimate it using an
observer. For this purpose a FOSMO is designed dlserver is based on the hybrid
model of the Sl engine described in Section 6.8sés crankshaft speed as input and
provides the estimate of the crankshaft accelerahe discussed earlier, the use of
SMO for state estimation comes with the benefit robustness against model
uncertainties and switching discontinuities. Sogeerobust and reliable estimates of
states even under uncertain environment. Furtheymbrmakes simple and easy
online implementation of the designed scheme. Tloekbdiagram of the hybrid

observer is shown in Figure 6.1.

Each subsystem in Figure 6.1 is represented asanderder system given below
[94].

Vii = V2

. _ . (6.9)
Vi, = _Kz\(z_ l|(1V1'|' aP, F1,2,3,¢

where
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v, represents the crankshaft velocity
v, represents the crankshaft acceleration

a is a constant
P is the power generated in the cylinder

k, is elasticity coefficient

k, is friction coefficient

D Process

f
subsysterrfl

/
subsystem? ~_ .
/

subsyfiem3
/
subsfstem
( Check active
subsystem and

use its observer

Figure-6.1 Structure of hybrid observer

Under ideal conditions, it is assumed that allghlksystems are identical and working
in the healthy mode. A FOSMO is designed for thenmegion of the crankshaft
acceleration. The indaxs dropped in the observer design for notatiomap§city.

v, =0, +Ksigne,) (6.10)
'jz = _kzﬁz - k1|)1+ Ksign(e)+ aF
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where

v, represents the estimated velocity of crankshaft
v,represents the estimated acceleration of crankshaft
g represents the speed error

The function sign(.) is defined as:

+1 wheneg > 0

. 6.11
-1 wheng < 0 (6.11)

Sign(el)={

The error dynamics are obtained from (6.9) andd)6.dnd are given as follows:

& =&~ Ksign(e)

. _ . (6.12)
& =-ke- ke- Ksign(e)

The convergence of the estimated state to the lastat@ is ensured by finding the
stability of the error dynamics. Below we give th®bility analysis of the error
dynamics given in (6.12).

Stability Analysis

For the stability of the error dynamics, we considd_yapunov function of the form

=%§ . For convergenc¥ <0, so we have

1.
V=528 (6.13)
=e(e — Ksign(g))
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As ¢ is taken as switching surface, so from (6.13) aefind K, > e, for V <0.

Next we consider a result on the existence of the ftom [43], [108] that show that
the CLF exists for the switched system if all ths/stems commute pair-wise. So
using the assumption of identical subsystems, ¢tineesponding Lie bracket becomes
as:

[f.f,]=00i,j0{123} (6.14)

(6.13) and (6.14) imply that a CLF exists for thystem. So using the work of [43], if
a CLF exists for all the subsystems of a switchedesn then the switched dynamics
is stable for an arbitrary switching sequence. Ener dynamics of the hybrid
observer are thus stable and convergence of threatst states to the actual states is

guaranteea

The modes are then identified by analyzing therest®d acceleration based on the

following set of rules developed in accordance Wdtii6).

Cylinder IDk = Modek ok+ 4
if
positive peak of acceleration occurs floekth subsystel
= Mode=k
else
Mode=k+ 4

For a healthy Sl engine the switching between sstbays occurs sequentially and is a
deterministic process. Any deviation of mode seqaeinom that of expected is an
indication of fault. So fokth modeg, , the switching sequence of the modes for the
healthy and faulty cases will be as follows: (segufe-6.2). Also note that for the
given application example of SI engine, the corigeition sequence is assumed to be

1234 for the simulation results.
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Figure-6.2 Sl engine modes with switching sequence

He = Hin fork<4

- fork=4
Fault free case  ~ #4 . (6.15)
U, — M, for8k> 4

M, - fork=8

Mo —~ Hys fork<4

- fork =4
lllk IL[5 (6.16)

Faulty case .
He = M for 83> 4

M — s fork=38
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which implies that

M Oy
or : (6.17)

i O e

wherek [0{, 2,...,8}
Figure-6.3 describes the complete fault diagnogthodology.
6.4 Simulation results

This Section gives the simulation results usedalasate the above FDI scheme. This
is performed by simulating the hybrid model of tBeengine given in Section 6.2,
firstly for healthy case and then the process peagd by introducing the misfire
fault in it. The model is parameterized as in [9%he modes are identified by
analyzing the continuous state estimates and thie iladetected by monitoring the

identified modes.

For the simulation purposes, the engine model naulsited and data of the active
cylinder identification and crankshaft speed iseshun an array. The cylinder
identification is assigned when a pulse input isvited to the subsystem. Cylinder
ID is assigned a value 1 for first subsystem, v@der second subsystem and so on.
However, in all the figures given in this Sectidre tCylinder ID is plotted after
suitable scaling for better visualization. The &sraft speed is obtained from the
engine hybrid model and is tracked by the obselwethe estimation of crankshaft
acceleration. Figure 6.4 shows the crankshaft spéduealthy engine used as the
input to the SMO and Figure-6.5 gives the speefdilprof the faulty engine used for

tracking.
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Figure-6.3 Proposed methodology for SI misfire diéd@ and isolation

Figure-6.6 shows the observer tracking for the thgaéngine case and Figure-6.7
gives the same result for faulty case. It is evideam these figures that the SMO is
tracking quite well. However, as in the case of MD8e unwanted chattering effect
can be seen in Figure-6.8 that presents the zoemedof peak of observer tracking
response to highlight this. In the present work,wilé carry on with the FOSMO for
simplicity. Figure-6.9 gives the plot of error oiokad in observer tracking and Figure-
6.10 shows the estimated acceleration for the ineadingine while Figure-6.11
presents the acceleration estimate for the fauigyne.

Using the estimated acceleration, the modes aretiiigel for the FDI purpose
according to the set of rules mentioned in Seddié1l. This information along with

(6.15) and (6.16)s utilized in the monitoring of the mode switchisgquence. So
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from Figure 6.10, we can clearly find that for hkglengine the analysis of mode

switching sequence implieg, [y, . Similarly for the misfire fault in cylinder 1

shown in Figure 6.11, the mode switching sequeecemes as:
253545, 25 35 451

Instead of

25354515 25 35 45

That is, for the misfire case at-least one mode ltkeéongs to they. appears in the
mode switching sequence. The presence of mode thaensequence gives the
indication that the cylinder 1 of the Sl engindaslty. Appearance of more than one
member of the . within one ignition cycle indicates multiple misfs. The

simulation results described the use and effectisgmf the proposed scheme for the

misfire fault detection and isolation in Sl engine.
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6.5 Experimental results

This Section gives the description of the experitaleresults used to validate the
proposed FDI scheme. The experimental set up usethé work presented in this
dissertation has already been explained in Seétid4. Data for the validation of the
proposed scheme is acquired from an engine rig3tf production vehicle compliant
with the On-Board Diagnostic Il (OBD-II).

A crankshaft position sensor is always installedramt of a gear assembly in all the
EFI vehicles. A missing or double tooth is providedthe gear to act a reference
position and to keep track of the cylinder idenéafion. In our experimental rig, the
gear mounted for the crankshaft position monitorwogtains 13 teeth. So even for
very high data acquisition rate, only 13 data powodn be acquired for each complete
rotation of crankshaft. This low resolution datauléed in noisy signal as compared to
the data used in simulations. This noisy data waplseed to the proposed algorithm

to ascertain its ruggedness for the practical nsigyals.
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For the validation of the proposed FDI scheme ctla@kshaft acceleration is required
but as mentioned earlier the acceleration sensoioisavailable in the production

vehicle. So we use the FOSMO for the estimatiothefcrankshaft acceleration by
using the crankshaft speed. Data from the crankgleaftion sensor is acquired using
data acquisition card from the National Instrumert This data was processed to
obtain the crankshaft speed signal that is apglethe observer after appropriate

filtering.

In the next stage, misfire fault is introduced fre t3° cylinder of the SI engine by
inhibiting the igniter signal to the engine. Thengaprocess is repeated again and the
speed data is acquired for the misfire case. FHur2 shows the filtered signals of
the speed obtained from the experimental measuttenienthe fault-free case and
Figure-6.13 presents the speed signal with theimmishult in the third cylinder.

Figure-6.14 gives the observer tracking error.

For the healthy engine, the estimated acceleraigiven in Figure-6.15 and for the
misfire case the estimated acceleration is platidedgure-6.16. The basic trend of the
experimental results shown in Figure-6.15 and FEgud6 are sufficiently similar to

the simulation results of the estimated cranksheafeleration shown in Figure-6.10
and Figure-6.11. So adapting the same analysisegure as in Section 6.4, we
validate the proposed scheme experimentally. Ie chAshe misfire fault, the absence
of positive peak can be seen in Figure-6.16. Thadyars of this data indicates the

presence of one mode from tjae, thus detecting and identifying the faulty mode.
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Representation of a highly nonlinear S| engine gisirswitched linear hybrid model
provides quite simpler state estimations technigsiag the SMO. The model also
provides an easy way for the association of theenaslith the complex non-linear
system and the proposed technique demonstratespplkcation how the mode
identification and the allowable mode sequence lwarused for the fault diagnosis

applications.
6.6 Comparison of methods

This Section gives a brief comparison of the prepomisfire detection technique
with some of the others misfire detection techngjagailable in the literature. In

[105], the author worked on both the model-basetrtgues and the data-based
techniques for the misfire detection and accredited the model-based technique is
better on the basis of the error rate. He conclugsgdg his analysis based on the
same data set that data-based technique resultetiB% error rate while in

comparison the model-based approach have 8% e®r The model used in [105]

was a nonlinear model involving many computationgach iteration, thus making it
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computationally heavier. However the procedure thasadvantage of the physical

reasoning.

Our proposed scheme uses the linear models fosttte estimation and is simpler
and easier to analyze than the technique adoptgld%j. Moreover, as our proposed
scheme is model-based so it shares the advantahe physical reasoning with [105]

method.

In [104], the authors adopted the model-based a@gprdor the misfire detection in
the Sl engine and used the FOSMO to estimate theown cylinder pressure that is
further utilized in the misfire fault detection pess. The authors acknowledged that
the use of the nonlinear sliding mode observer dase the speed measurements
provides the cheap, accurate and reliable solutiorestimate the desired states.
However, the model used in [104] was a nonlineadehan which observability is
lost at the TDC.

As we used SMO based on the speed measuremehefetate estimation process, so
our proposed method shares the simplicity and ehahility of the method given in
[104]. Moreover our proposed scheme is simplert aseés linear models instead of

nonlinear one.

In [101], Kalman filters are used for the estimatiof acceleration using linear
models. However Kalman filters are computationdiavier than SMO and also
require the noise matrices Q and R which are dilfito estimate.

Data-based approaches lack the physical insighihefproblem while our proposed
approach has the advantage of being supportedebghissical reasoning. Moreover,
most of the data-based techniques are sensitiactors like engine speed [105].
This can be seen if the correlation analysis isduee the comparison of some
recorded signal of faulty engine speed, then fdialvke results engine must be
operated at the same speed at which the faulttsiggsawere taken. The identification
of misfire fault in more than one cylinder, mulgpkignatures are required to be
compared with the observed data. This kind of nelagy is adopted in [106] for

identification of misfiring cylinder. When the opging speed of engine was not the
same at which fault signatures were captured then signals will have different

frequencies and will be difficult to compare. Then be taken care of if large number
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of fault signatures is taken at various speeds,thist approach will increase the

computational requirements.
6.7 Summary

In this chapter, a mode identification scheme isspnted for the misfire fault
diagnosis in Sl engine. Modes are defined in teoimengine health. The modes are
identified based on the analysis of the continustetes of the system. These
estimated modes are monitored to detect and istiatenisfiring cylinder. For the
state estimation, a FOSMO is designed based ohyitwéd model of Sl engine. This
observer provided the robust state estimates ewernheé uncertain and noisy
environment. The proposed technique, being modstdahas the advantages of

physical reasoning, simplicity and easy implemeaomat

The validation of the proposed scheme is performi@@dugh simulations and
experimental data and the results obtained arespted with discussion. An engine
rig of 1.3L production vehicle is used for the aisgiion of the experimental data. The
proposed technique correctly detected the mishrdt feven in the presence of this
noisy data, which gives a clear indication of tbbustness of the presented misfire
detection scheme.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter gives a summary of the whole work gmeed in this dissertation along
with some future directions. The presented workeigted to the FDI of hybrid

systems, in which we focused on a special clasthege systems known as SLS.
Hybrid systems enable us to represent a complexeagng system in smaller,

simpler interacting subsystems. Due to the incikasenplexity, chances of the fault
occurrence in complex engineering systems arehadgo Moreover, the design of the
FDI schemes for these systems is also becoming leamphis dissertation proposed
simple and easy to implement FDI schemes for thesglex engineering systems by
representing them as a set of simple interactibgystems. This is achieved by using
hybrid models of these complex engineering syst@maisdesigning FDI scheme using
state estimation and specific methods of hybrid ehddurthermore, instead of using
Kalman filter for state estimation in the FDI presg SMO is adopted that is

computationally lighter and easy to implement.

For identification and monitoring of hybrid systenmsode identification is a natural
way and key step. Two types of fault can be comslen hybrid systems; ones
related to the current mode behavior and the oth#esting the discrete evolution
trajectory. These both types of fault can be detediy defining and identifying
healthy and faulty modes, and monitoring their sege by designing a DFA that
takes as inputs the modes of the hybrid systemresepted as symbols of a language
acceptable to the DFA. New faults can be detechellisolated by introducing new

strings and using additional states in the DFA.

The proposed FDI scheme was validated through stimaks and experimental data.
Data for the experimental validation of the progbseheme is acquired from an
engine rig of 1.3L production vehicle complaint lwithe OBD-II. This engine is

equipped with the ECU complaint to the OBD-II stards. Using the acquired data,
system states are estimated by the SMO based dmylbinel model of the S| engine
and are analyzed for the mode identification fréwa EDI perspective. The identified
modes are then monitored by the DFA for fault dedecand isolation.
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After a brief summary of the presented work, thecdgtion of the main contributions

of this dissertation is given in the next Section.

7.1

Contributions

The main contributions of the thesis are summarased

A mode identification scheme is proposed for thé &0an important class of
the hybrid systems known as the Switched Lineate®ys (SLS). The states
of the SLS are estimated using SMO stack and aakyzad to identify modes
to be used in the FDI process. Detection and isoladf new faults can be
easily made by introducing new strings in a selledaasfault setin this
dissertation.

A mode identification scheme is proposed for the 605LS having identical
subsystems. The presented scheme also covers tBs ®ith identical
subsystems that were not taken care of by the que\scheme. The proposed
scheme is successfully validated through a Sparkidg (SI) engine having
identical subsystems.

To monitor the identified modes sequence for thé &BLS, a Deterministic
Finite Automaton (DFA) is designed that provides thenefits of detecting
and isolating the fault in SLS at the same timewadl as identifying the
corresponding dynamics of the SLS involved in theltf occurrence. The
identified modes are used at the input of DFA asisyls of a language
acceptable to it. In hybrid systems, two typesaniitf can be considered. The
use of proposed DFA in the FDI of hybrid systemskesait possible to
diagnose these both types of fault by using a sisgheme.

Development of a mode identification scheme fordbtection of the misfire
fault in the Sl engine. The experimental data guaed from a four cylinder
Sl engine of 1.3L production vehicle. Using hybnebdel of the Sl engine, a
hybrid observer is designed and based on the fa=htdiscrete event the
continuous model of the corresponding subsysteselexcted for the design of
SMO. The observer output is finally analyzed in thede identification and

fault diagnosis process.
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7.2 Future work

The work presented in this dissertation can be nelde for the following new

directions of research.

* In this dissertation, we used FOSMO for the estiomatf states of the hybrid
system. FOSM has inherent properties of finite tioomvergence, simple
design and robustness. However it suffers from dhevanted chattering
phenomena. This can be tackled by using the HigteOSliding Mode
(HOSM) that retains these vital properties of tli@SMO and also minimizes
the chattering effect. The existing work can beeeged by using the HOSMO
for the state estimation of the hybrid systems taat be further analyzed for
the FDI purpose.

* It can be explored to develop set of rules forraf the fault seF described

in this thesis.

* In this manuscript, we analyzed the states of tis¢éem for the FDI purpose.
We can also exploit critical parameters of hybgidtems for the FDI purpose.
However, these parameters, although vital for tHel, Fmight be un-
measureable. In such situations, we need to estithatn first. So this can be
divided in two tasks given below.

» Parameter estimation of the hybrid systems.

> Development of a parameter estimation based FDémsehfor the

hybrid systems.

* SMO can be used to estimate discrete states as Swalilarly HOSMO can
also be explored for the estimation of the discstates.

» Continuous states of the system are estimatedefoergting the input symbols
for the DFA proposed in this work for the FDI pusgo Other techniques, like
the one given in chapter 5 that avoid the procdsth@ continuous state
estimation, can be explored for symbol generatieaduby the DFA, thus

resulting in the further simplification of the Fpiocess.

* The proposed approach can be extended for the FBikorete faults in the

switched systems having identical subsystems.
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» The proposed FDI schemes can be explored for thigpheufaults case.

117



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

R. J. Patton. “Fault-tolerant control: the 199Ta&ion.” in IFAC Symposium
on Fault Detection, Supervision and Safety of TeetriProcesses]1997, pp.
1033-1054.

M. Mahmoud, J. Jiang, and Y. Zhamctive fault tolerant control systems:
stochastic analysis and synthediecture Notes in Control and Information
SciencesSpringer, vol. 287, 2003.

A. V. Schaft and H. SchumachefAn introduction to hybrid dynamical
systemsLecture Notes in Control and Information Scienc8pringer, vol.
251, 2000.

P. M. Frank. “Analytical and qualitative model-bds&ault diagnosis - a
survey and some new resultEtropean Journal of Contrplol. 2(1), pp. 6—
28, 1996.

P. M. Frank. “On-line fault detection in uncertamonlinear systems using
diagnostic observers: a surveinternational Journal of Systems Scieneel.
25(12), pp. 2129-2154, 1994

S. A. Arogeti, D. Wang and C. B. Low. “Mode idemddtion of hybrid
systems in the presence of faultlEEE Transactions on Industrial
Electronics vol. 57(4), pp. 1452-1467, April 2010.

F. Zhao, X. Koutsoukos, H. Haussecker, J. Reictd,RanCheung. “Monitoring
and fault diagnosis of hybrid system$EEE Transactions on Systems, Man,
and Cyberneticsyol. 35(6), pp. 1225-1240, Dec. 2005.

E. A. Domlan, J. Ragot, D. Maquin. “Switching Syste Active mode
recognition, identification of the switching law.Hindawi Publishing
Corporation, Journal of Control Science and Engmeg, vol. 2007, Dec.
2007. Article ID 50796, DOI:10.1155/2007/50796.

N. Messai, P. Thomas, D. Lefebvre, B. Riera andEAnoudni. “Modeling
and monitoring of hybrid dynamic systems with fdedvard neural
networks: application to two tanks hydraulic systeMvorkshop on advanced
control and diagnosis, Mulhouse Fran@9)05, pp. 103-109.

M. S. Mouchaweh, N. Messai. “A clustering-based rapph for the
identification of a class of temporally switcheddar systems.’Pattern
Recognition Lettersvol. 33, pp. 144-151, Jan. 2012.

A. N. Kouzehgarani. “Mode identification using stastic hybrid models with
applications to conflict detection and resolutiorPhD Dissertation in
Aerospace Engineering, Graduate College of the &taity of lllinois at
Urbana-Champaign, 2010.

S. Sengupta, S. Mukhopadhay, A. Deb, K. Pattada @ndDe. “Hybrid
automata modeling of Sl gasoline engine towardte statimation for fault
diagnosis.”"SAE Int. J. EnginesSSAE 2011-01-2434, vol. 5(3), pp. 759-781,
Dec. 2011.

118



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R. Isermann. “Process fault detection based on hmgdend estimation
methods—a surveyAutomaticavol. 20(4), pp. 387-404, Jul. 1984.

A. I. Bhatti, J. A. Twiddle, S. K. Spurgeon, and Bl.Jones. “Engine coolant
system fault diagnostics with sliding mode obsesvaand fuzzy analyser.” in
Proceedings IASTED conference on Modelling, Ideatibn and Contral
Innsbruck, Austria, 1999

C. Edwards, S. K. Spurgeon, and R. J. Patton. it8Jidnode observers for
fault detection and isolationAutomatica vol. 36(4), pp. 541-553, Apr. 2000.

C. P. Tan and C. Edwards. “Sliding mode observers detection and
reconstruction of sensor faultsRutomatica vol. 38, pp. 1815-1821, Oct.
2002.

K. B. Goh, S. K. Spurgeon and N. B. Jones. “Fai#lgdostics using sliding
mode techniques.Control Engineering Practicgevol. 10, pp. 207-217, Feb.
2002.

X. G. Yan and C. Edwards. “Robust sliding mode olsebased actuator
fault detection and isolation for a class of noedin systems.44th IEEE

Conference on Decision and Control, 2005 and 20@Bopgean Control

Conference. CDC-ECC 'Q2005, pp. 987-992.

M. Saif, W. Chen, and Q. Wu. High order sliding raodbservers and
differentiators application to fault diagnosis perh. Modern Sliding Mode
Control Theory Springer, Berlin, 2008.

Q. R. Butt and A. I. Bhatti. “Estimation of gasaiengine parameters using
higher order sliding modelEEE Transactions on Industrial Electronicsl.
55(11), pp. 3891-3898, Nov. 2008.

M. Igbal, A. I. Bhatti, S. I. Ayubi, and Q. KhanRbbust parameter estimation
of nonlinear systems using sliding-mode differeotiaobserver.” IEEE
Transactions on Industrial Electronicgol. 58(2), pp. 680-689, Jan. 2011.

Q. Ahmed, A.l. Bhatti, and M. Igbal. “Virtual sensofor automotive engine
sensors fault diagnosis in second-order slidingesbdEEE Sensors Journal
vol. 11(9), pp. 1832-1840, Sep. 2011.

Q. Ahmed and A. I. Bhatti. Estimating Sl enginei@éincies and parameters
in second-order sliding modedcEE Transactions on Industrial Electronics,
vol. 58(10), pp. 4837-4846, Oct. 2011.

M. A. Akram, A. |. Bhatti and Q. Ahmed. “Air/fuelatio estimation of Sl
engine using higher order sliding mod&™ IFAC Symposium on Advances in
Automotive Control2013, pp. 501-506.

V. Utkin. Sliding Mode Control in Electromechanical Systefaylor and
Francis, London, UK, 1999.

M. A. Akram, M. A. Rizvi, A. |. Bhatti and N. Messd'Mode identification
for hybrid model of SI engine to detect misfire [fauJournal of Control
Engineering and Applied Informaticgol. 16, No. 3, pp. 65-74, 2014.

119



[27] H. Rios, J. Davila and L. Fridman. “High-order stig mode observers for
nonlinear autonomous switched systems with unknavpuits.” Journal of
Franklin Institute vol. 349(10), pp. 2975-3002, Dec. 2012.

[28] M. A. Rizvi, S. H. Zaidi, M. A. Akram and A. |. Blita “Misfire fault
detection in Sl engine using sliding mode obsetv&8th Annual Conference
on IEEE Industrial Electronics Society IECOMpntreal, Canada, 2012, pp.
5114-5119.

[29] J. Davila, H. Rios and L. Fridman. “State obsexvatior nonlinear switched
systems using nonhomogeneous high-order slidingenaizservers.’Asian
Journal of Contral vol. 14(4), pp. 911-923, Jul. 2012.

[30] T. Floquet, D. Mincarelli, A. Pisano and E. UsaCdntinuous and discrete
state estimation in linear switched systems byirglidnode observers with
residuals’ projection.” irProceedings of the 4th IFAC Conference on Analysis
and Design of Hybrid Systen#)12, pp. 265-270.

[31] J. Davila, A. Pisano and E. Usai. “Continuous aisdréte state reconstruction
for nonlinear switched systems via high-order slidimode observers.”
International Journal of Systems Scieneal. 42(5), pp. 725-735, May 2011.

[32] H. Rios, J. Davila, L. Fridman and D.Efimov. “Stagstimation of linear
switched systems with unstable invariant zeros ankhown inputs.”51st
IEEE Conference on Decision and Contr2012, pp. 5499-5504.

[33] F. J. Bejarano and L. Fridman. “State exact recano8bn for switched linear
systems via a super-twisting algorithmriternational Journal of Systems
Sciencevol. 42(5), pp. 717-724, May 2011.

[34] H. Saadaoui, N. Manamanni, M. Djemai, J. P. Baeat T. Floquet. “Exact
differentiation and sliding mode observers for sived lagrangian systems.”
Nonlinear Analysis, Theory, Methods and Applicagiovol.65(5), pp. 1050—
1069, Sep. 2006.

[35] G. Biswas, M.O Cardier, J. Lunze, L. T. Massuyas] #. Staroswiecki.
“Diagnosis of complex systems: bridging the methodies of FDI and DX
communities.”IEEE Transactions on Systems, Man, and CybernBticsB:
Cyberneticsyol. 34(5), pp. 2159-2162, Oct. 2004.

[36] J. Luo, K. R. Pattipati, L. Qiao, and S. ChigsuAn “integrated diagnostic
development process for automotive engine contrgstesns.” IEEE
Transactions on Systems, Man and Cybernetics-ParAgiplications and
Reviewsyol. 37(6), pp. 1163-1173, Nov. 2007.

[37] J. Luo, M. Namburu, K. R. Pattipati, L. Qiao, and Ghigsua. “Integrated
model-based and data-driven diagnosis of automo#iméilock braking
system.” IEEE Transactions on Systems, Man and Cybernetics-R:
Systems and Humansl. 40(2), pp. 321-336, Nov. 2009.

[38] E. S. Tehrani and K. Khorasamiault diagnosis of nonlinear systems using a
hybrid approach Lecture Notes in Control and Information Sciences
Springer, vol. 383, 2009.

[39] Z. Sun and S. S. G&witched linear systems, control and desi§pringer
2005.

120



[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

Q. Raza. “Higher order sliding mode based onlineupgter estimation of a
nonlinear model of gasoline engines.” PhD Thesient& for Advanced
Studies in Engineering (CASE), UET Taxila, Pakistangust 2013.

B. D. Schutter and W. P. M. H HeemelModeling and control of hybrid
systemslLecture Notes of the DISC Cousskelft Center of Systems and
Control, Delft University of Technology, 2008.

P. TabuadaVerification and control of hybrid systentpringer, 2009. ISBN:
978-1-4419-0224-5.

D. Liberzon.Switching in systems and contr8bringer, 2003.

M. S. Branicky. “Studies in hybrid systems: modwili analysis and control.”
PhD Thesis, Massachusetts Institute of Technolbgye1995.

M. S. Branicky. “Multiple lyapunov functions andhatr analysis tools for
switched and hybrid systemdBEE Transactions on Automatic Contrebl.
43(4), pp. 475-482, Apr. 1998.

J. P. Hespanha. “Uniform stability of switched Anesystems: extensions of
LaSalle's Invariance PrinciplelEEE Transactions on Automatic Contrabl.
49(4), pp. 470-482, Apr. 2004.

R. A. Decarlo, M. S. Branicky, S. Pettersson, and [Bnnartson,
“Perspectives and results on the stability and ilstability of hybrid
systems,” inProc. IEEE: Special Issue Hybrid Syste@800, pp. 1069-1082

H. Lin and P. J. Antsaklis, “Stability and stabdkility of switched linear
systems: a survey of recent result§EE Transactions on Automatic Control
vol. 54(2), pp. 308-322, Feb. 2009.

S. V. EmelyanovVariable Structure Control SystemNauka (in Russian),
Moscow, 1967.

Y. Itkis. Control Systems of Variable Structuiiley, New York, 1976.

A. Levant. “Sliding order and sliding accuracy ihd&g mode control.”
International Journal of Contrglvol. 58(6), pp. 1247-1263, 1993.

G. Bartolini, A. Ferrara, A. Pisano, and E. Usdi@n the convergence
properties of a 2-sliding control algorithm for fioear uncertain systems.”
International Journal of Controlvol. 74(7), pp. 718-731, 2001.

Yuri B. Shtessel, llya A. Shkolnikov, and Mark DBrown. “An asymptotic
second order sliding smooth sliding mode contrdkfan Journal of Control
vol. 5(4), pp. 498-504, Dec. 2003.

Y. Pan, K. Furuta, and S. Hatakeyama. “Invariaitirglj sector for variable
structure control.” inProceedings of the 38IEEE Conference on Decision
and Contro] 1999, pp. 5152-5157.

K. Furuta and Y. Pan. “Variable structure controithwsliding sector.”
Automaticavol. 36(2), pp. 211-228, Feb. 2000.

H. Sira-Ramirez. “Dynamical sliding mode contralas¢gies in the regulation
of nonlinear chemical procesdriternational Journal of Controlvol. 56(1),
pp. 1-21, 1992.

121



[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

D. G. Luenberger. “Observing the state of a linegistem.” IEEE
Transactions on Military Electroniajol. 8(2), pp. 74-80, Apr. 1964.

C. Edwards and S. K. Spurgeoiliding mode control: theory and
applications CRCPress 1998.

R. Isermann and P. Ballé. “Trends in the applicatidd model-based fault
detection and diagnosis of technical procesgestitrol Engineering Practice
vol. 5(5), pp. 709-71May. 1997.

R. Isermann. “Model based fault detection and dagstatus and
applicationsAnnual Reviews in Contro29(1), pp. 71-85, 2005.

J. J. Gertler. “Survey of model-based failure débec and isolation in
complex plants."EEE Control Systems Magazjneol. 8(6), pp. 3-11, Dec.
1988.

M. Abbas, A. A. Ferri, M. E. Orchard, and G. J. Yfevanos. “An intelligent
diagnostic/prognostic framework for automotive #ieal systems.” inEEE
Intelligent Vehicles Symposiu2007, pp. 352—-357.

S. X. Ding. Model-based Fault diagnosis techniques, design raele
algorithms and toolsSpringer, 2008.

A. Johansson, M. Bask, and T. Norlander. “Dynarhieshold generator for
robust fault detection in linear systems with pagten uncertainty.”
Automaticavol. 42(7), pp. 1095-1106, Jul. 2006.

E. Y. Chow and A. S. Willsky. “Analytical redundan@and the design of
robust failure detection system3EEE Transactions o Automatic. Control,
vol. 29(7), pp. 603-614, Jul. 1984.

J. Gertler and D. Singer. “A new structural framekvéor parity equation
based failure detection and isolatio®utomatica vol. 26(2), pp. 381-388,
Mar. 1990.

M. Mostofi, A. H. Shamekhi and M. Ziabasharhagh.ei®@loping an
algorithm for Sl engine diagnosis using parity tielas.” ASME Conference
Proceedings2006, pp. 199-205.

S. K. Nguang, P. Zhang and S. X. Ding. “Parity tielabased fault estimation
for nonlinear systems: An LMI approacHrit. J. Automation & Computing
vol. 4, pp. 164-168, Apr. 2007.

P. M. Frank and L. Keller. “Sensitivity discrimimat observer design for
instrument failure detectionfEEE Trans. Aero. Electron. Systol. 16(4),
pp. 460-467, 1980.

J. Wuennenberg and P. M. Frank. “Sensor fault tietecvia robust
observers.” irFirst European Workshop on Fault Diagnostics. Rality and
Related Knowledge-Based ApproachiE386, pp. 147-160.

W. Ge and C. Z. Fang. “Extended robust observatipproach for failure
isolation.” International Journal of Controlvol. 49, pp. 1537-1553, 1989.

122



[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

P. M. Frank and X. Ding. “Frequency domain approtxioptimally robust
residual generation and evaluation for model-badadlt diagnosis.”
Automaticavol. 30(5), pp. 789-804, May. 1994.

V. Reppa and A. Tzes. “Fault detection and diagnbased on parameter set
estimation.”IET Control Theory Applicationsol. 5(1), pp. 69-83, Feb. 2011.

M. Nyberg, A. Perkovic and L. Nielsen. “Model-bas#idgnosis of leaks in
the air-intake system of an Sl engine.”SAE World Congres4998, Paper
no. 980514.

X. Zha and F. Crusca. “A robust least square fdeliection approach for
linear systems with structured time-varying peratidns.” inChinese Control
and Decision Conferenc2008, pp. 3372-3377.

V. Cocquempot, T. Elmezyani and M. StaroswieckiadF detection and
isolation for hybrid systems using structured pariesiduals.”5" Asian
Control Conference2004,pp. 1204-1212.

S. Narasimhan and G. Biswas. “Model-based diagnaisisybrid systems.”
IEEE transactions on Man and Cybernetios]. 37(3), pp. 347-361, May.
2007.

W. Wang, L. Li, D. Zhou, and K. Liu. “Robust stagstimation and fault
diagnosis for uncertain hybrid nonlinear systenohlinear Analysis: Hybrid
Systemsvol. 1(1), pp. 2—-15, Mar. 2007.

N. O. Maget, G. Hétreux, J. M. L. Lann, and M. \. lann. “Model based
fault diagnosis for hybrid systems: application ohemical processes.”
Computers & Chemical Engineeringol. 33(10), pp. 1617-1630, Oct. 2009.

S. Tabatabaeipour, A. P. Ravn, R. |. Zamanabadi, TarBak. “Active fault
diagnosis of linear hybrid systems/th IFAC International Symposium on
Fault Detection, Supervision, and Safety of TeainRrocesses2009, pp.
211-216.

X. Koutsoukos, J. Kurien and F. Zhao. “Monitoringdadiagnosis of hybrid
systems using particle filtering methods.” Broceedings of thd-ifteenth
International Symposium on the Mathematical Theofy Networks and
Systems (MTNS '022002.

J. B. Guo, D. F. Ji, S. H. Du, S. K. Zeng, and Bn.S‘Fault diagnosis of
hybrid systems using particle filter based hybristireation algorithm.”
Chemical Engineering Transactignsol. 33, pp. 145-150, 2013.

E. Orhan. (2012, Aug.), Particle filtering. Techaliceport. The Center for
Neural Science at NYU. [Online].
Available: http://www.cns.nyu.edu/~eorhan/notesipke-filtering.pdf

M. Wang and R. Dearden, "Detecting and learningnomin fault states in
hybrid diagnosis”, Proceedings of the 20th Inteamati Workshop on
Principles of Diagnosis, pp. 19-26, 2009.

J. A. Crossman, H. Guo, Y. L. Murphy, J. CardilAutomotive signal fault
diagnosis-part I: signal fault analysis, signal segmentatfeature extraction

123



[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]
[96]

[97]

[98]

and quasi-optimal feature selectionfEEE Transactions on Vehicular
Technologyvol. 52(4), pp. 1063-1075, Jul. 2003.

Y. L. Murphy, J. A. Crossman, Z. H. Chen, J. CdodifAutomotive fault
diagnosis-part II: a distributed agent diagnostic systetEEE Transactions
on Vehicular Technologyol. 52(4), pp. 1076-1098, Jul. 2003.

F. D. Torrisi, A. Bemporad. “HYSDEA tool for generating computational
hybrid models for analysis and synthesis problentSEE Transactions on
Control System Technolagyol. 12(2), pp. 235—-249, Mar. 2004.

J. E. Hopcroft, R. Motwani and J. D. Ullmdntroduction to automata theory,
languages and computatian8rd Edition, Pearson/Addison Wesley. 2007,
ISBN 0321455363, 9780321455369.

Q. Guo, R. M. Herions, M. Harman and K. Derderidteuristics for fault

diagnosis when testing from finite state machinekurnal of Software
Testing, Verification and Reliabilitywol. 17 (1), pp. 41-57, Mar. 2007. DOI:
10.1002/stvr.352.

D. C. Tarraf. “A finite state machine framework foobust analysis and
control of hybrid systems.” PhD Dissertation, Depant of Mechanical
Engineering, Massachusetts Institute of Technol@g96.

Z. Pap, G. Csopaki and S. Dibu2n FSM-based fault diagnosikecture
Notes in Computer Scien{®8pringer), 3502, 2005, pp. 159-174.

Y. X. Xi, K. W. Lim, W. K. Ho and H. A. Preisig. “&ult diagnosis using
dynamic finite state automaton models.” IMECON’01-27th Annual
Conference of the IEEE Industrial Electronics Stgi2001, pp. 484—489.

S. P. E. Xavier.Theory of automata, formal languages and computatio
New Age International Publishers, New Delhi, 2005.

M. A. Rizvi, A. |. Bhatti and Q. R. Butt. “Hybrid odel of gasoline engine for
misfire detection.”IEEE Transactions on industrial Electronjcgol. 58 (8),
pp. 3680-3692, Jul. 2011.

W. W. Pullkrabec,Engineering Fundamentals of the Internal Combustion
Engines Prentice Hall, 2004.

U. Kiencke and L. NielsorAutomotive control systemSpringer, 2005, ISBN
3-540-23139-0.

California Environmental Protection Agency, Air Resces Board (CARB),
Staff Report: Initial Statement of Reasons for Bsmul Rulemaking;
Technical Status and Revisions to Malfunction anthgBostic System
Requirements for Heavy-Duty Engines (HD OBD) anddeager Cars, Light-
Duty, Trucks, and Medium Duty Vehicles and Engi@8D I1), 2009, pp.
117.

S. B. Devasenapati, K. |I. Ramachandran and V. Sagum “Misfire
detection in spark ignition engine using supportctoe machines.”
International Journal of Computer Applicatigngol. 5(6), pp. 25-29, Aug.
2010.

124



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

G. W. Malaczynski and R. VanderPoel. “Phase diagrahdifferent modes of
misfire calculated from the digital fourier transfmation of angular crankshaft
velocity.” SAE, 2010-01-0167

C. Bohn, O. Magnor, M. Schultalbers. “State obsexyer periodic signals: a
case study in misfire detection.” Automation Tedogy, vol. 54(1), pp. 29—
35, 2006.

C. Bohn, O. Magnor and M. Schultalbers. “State oleebased analysis of
crankshaft speed measurements with application tsfiren detection.”

International Conference on Control and Automat{€@CA), 2005, pp. 239-
244,

M. Lee, M. Yoon, M. Sunwoo, S. Park and K. Lee. ¥Blpment of a new
misfire detection system using neural networkaternational Journal of
Automotive Technologyol. 7(5), pp. 637—-644, 2006.

M. Montini and N. Speciale. “Multiple misfire idefitation by a wavelet-
based analysis of crankshaft speed fluctuatiolEEE International
Symposium on Signal Processing and Information A@olyy, 2006, pp. 144—
148.

Y. Shiao and J. Moskwa. “Cylinder pressure and amstibn heat release
estimation for Sl engine diagnostics using nonlirs@ing observers.TEEE
Transactions on Control Systems Technaloggl. 3(1), pp. 70-78, Aug.
1995.

A. K. Sood, A. A. Fahs and N. A. Henein. “Enginallfaanalysis: part II-
parameter estimation approactEEE Transactions on Industrial Electronics,
vol. 32(4), pp. 301-307, Nov. 1985.

G. Rizzoni, J. Pipe, R. N. Riggins and M. P. VanQy#-ault isolation and
analysis for IC engine on-board diagnosticdEEE 38th Vehicular
Technology Conferenc&988, pp. 237-244.

M. A. Rizvi and A. |. Bhatti. “Hybrid model for elr detection of misfire
fault in Sl engines.TEEE 13th International Multitopic Conferenc2009, pp.
1-6.

K. S. Narendra and J. Balakrishnan, “A common Lyeqpufunction for stable
LTI systems with commuting A-matriceslEEE Transactions on Automatic
Control, vol. 39, no. 12, pp. 2469-2471, Dec. 1994.

125





