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ABSTRACT 

 With technological advancements, modern engineering systems are improving 

in terms of performance, size and cost but at the expense of complexity; making their 

analysis and control extremely difficult. A fundamental issue regarding these systems 

is to ensure their safety and reliability due to their vulnerability to faults; owing to 

their complexity. The situation becomes even worse as the corresponding fault 

diagnosis algorithms are also becoming more complex and computationally expensive 

for the online implementation. The problem at hand is to design a simple, reliable and 

easy to implement fault detection and isolation scheme for these systems. One 

approach to design such a fault detection scheme for these complex engineering 

systems is to partition the system into simpler interacting subsystems and designing 

the desired fault diagnosis scheme for these simpler subsystems. Hybrid modeling 

provides us a platform to represent these complex engineering systems in simpler 

subsystems working collectively. Hybrid systems are those having both continuous 

and discrete dynamics. In these systems, discrete states are known as modes and 

switching between modes occurs on discrete events. In our proposed scheme, healthy 

and faulty modes are defined by estimating and analyzing continuous states of the 

system. This process of state estimation is performed by using Sliding Mode 

Observers (SMO). The monitoring of system modes is performed by designing a 

Deterministic Finite Automaton (DFA) that uses modes of the hybrid systems 

represented as symbols of a language, at its input. The proposed scheme is validated 

both through simulations and experimental data. Data for the experimental validation 

of the proposed scheme is acquired from an engine rig of a 1.3L production vehicle 

compliant with the On-Board Diagnostic II (OBD-II). Proposed scheme is easy to 

implement on account of being model-based. Instead of Kalman filter, SMO is used 

for the state estimation that is computationally cheaper. In general, there are two types 

of faults in hybrid systems; ones related to the current mode behavior and the others 

affecting the discrete evolution trajectory. In our design, we have detected both these 

faults using a single scheme by identifying and monitoring system modes. Moreover, 

detection and isolation of new faults can be easily accommodated by introducing new 

mode sequences in a fault set.  
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CHAPTER 1 

INTRODUCTION 

Modern engineering systems are complex in nature. This complexity arises from the 

recent technological advancements that involve interaction of various technical 

domains for the proper functionality of these systems. Due to their inherent 

complexity, these systems are more prone to fault and thus have reliability issues. 

Fault diagnosis is an efficient way to address this problem and to meet the reliability 

requirement. There is an increasing demand for monitoring of these engineering 

systems to ensure their fault-free, reliable and safe operation. However, due to the 

increased complexity of modern engineering systems, corresponding fault diagnosis 

algorithms are also becoming more complex and computationally expensive for 

online implementation. There is always a quest for developing simple, reliable, 

efficient and easy-to-implement fault diagnosis techniques for these complex 

engineering systems. One approach to achieve this task is to partition the system into 

simpler interacting subsystems and design the required fault diagnosis scheme for 

these simpler subsystems. However, such partitioning of a large complex system is 

not an easy task. This can be facilitated by using hybrid modeling of the system that 

can be used to represent these complex engineering systems in simpler subsystems 

working collectively to complete a required job. Many engineering systems that work 

by the interaction of multiple subsystems can more easily be modeled as hybrid 

systems, with simpler subsystem models that interact with each other periodically at 

discrete events to generate the output. The discrete states in the hybrid systems 

correspond to the system modes and in each mode system dynamics are governed by 

the corresponding continuous dynamics. In hybrid systems, the states evolve by 

switching between various operating modes based on system states, time or some 

external event. 

Representation of real-world complex systems by hybrid models simplifies analysis 

and controller design process for these systems by considering simpler subsystems 

instead of a large complex system. Furthermore, system performance can be improved 

to a significant extent by designing high performance control systems by switching 
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between simpler systems. Figure-1.1 shows an example of representing a real-world 

system by a hybrid model. The system presented in this figure represents a 

temperature regulation system in a house. This system operates in two modes: “on” 

and “off”. The switching between these modes occurs based on the system’s 

continuous state. If the temperature becomes greater than a threshold value 

determined by the desired temperature then the system switches to the “off” mode and 

for temperature less than a minimum value determined by the desired temperature it 

switches to the “on” mode. In each mode, the evolution of the temperature is 

governed by a differential equation. 

 

on( )T f T=ɺ off ( )T f T=ɺ

th_upT T>

th_lowT T<
 

Figure-1.1 Temperature control system 

 

This dissertation proposes simple, reliable and easy-to-implement, novel Fault 

Detection and Isolation (FDI) scheme based on the analysis of the identified modes, 

for a class of hybrid systems. In the current chapter, we cover motivation and 

objectives of the presented work. The contributions of this work and thesis outlines 

are given subsequently. 
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1.1 Motivation  

Due to the recent technological advancements, modern engineering systems are 

improving in terms of functionality, performance, reliability, size and cost. These 

improvements, however, come at the expense of complexity. Nowadays, state-of-the-

art systems are designed in multidisciplinary fashion, where various technical 

domains, such as hardware and software, interact with each other to complete a 

certain task. On one hand, this interactive design ameliorates the performance and 

functionality of the systems, whereas, on the other hand, it manifolds their 

complexity. Consequently, modern engineering systems are more prone to faults and 

also the algorithms for the detection of faults in these systems become more complex. 

Therefore, the researchers strive for simpler, effective and more reliable FDI schemes 

for these systems. Many complex engineering systems are inherently designed in such 

a way that they operate by periodic repetition of certain operation of their subsystems. 

These systems can more accurately be represented by hybrid models. In hybrid 

modeling, a complex engineering system is represented by partitioning it into smaller 

and simpler interacting subsystems thus assisting in developing a simple and reliable 

FDI scheme by considering these simpler subsystems instead of the complex system 

itself.  

As mentioned above, in modern engineering systems the increased complexity has 

also enhanced the probability of fault occurrence. Lack of the ability of in-time fault 

detection can cause financial as well as life losses. Few examples in this regard are 

given below:  

• On 25th May 1979, American Airline DC 10 crashed at Chicago O’Hare 

International Airport, causing 273 deaths. The pilot did not get timely 

indication of the fault. Later investigations showed that the crash could have 

been avoided [1].  

• In 1986, a famous incident of the nuclear meltdown occurred at Chernobyl, 

Russia. This disaster was declared as the worst nuclear power plant accident in 

the history of nuclear power engineering; both in terms of finances and human 

casualties. In the later investigative studies, it was revealed that the faulty and 
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obsolete technology and an absence of fault-handling mechanisms were 

mainly responsible for the calamity [2]. 

• The Ariane 5 launcher was destroyed on 4th June 1996 by entering in self-

destruction mode 37 seconds after takeoff. Investigations revealed that the 

major cause of the disaster was an error in software, which was originally 

copied from Ariane 4. Apparently, it worked perfectly well on Ariane 4, but 

was not compatible with Ariane 5 due to its changed continuous dynamical 

system [3]. 

FDI of a process can be performed by using hardware or analytical redundancy 

methods. In case of hardware redundancy, additional components are used along with 

the already available components in the system. The major advantages provided by 

this approach are enhanced reliability and direct isolation of the fault. However along 

with these advantages, requirement of additional hardware associates few 

disadvantages with this approach like increase in the cost, weight and size. In case of 

analytical redundancy, the process model is executed in parallel with the actual 

process, and then the results are compared for the FDI of the process. The primary 

advantage of this method is low hardware cost, small size and lesser weight. Due to 

these advantages, analytical redundancy based FDI methods are becoming more 

popular. Among various available analytical redundancy based FDI techniques, 

analytical model-based technique requires the deepest knowledge of the process and 

thus is the most efficient approach for FDI [4], [5]. However, traditional model-based 

methods of FDI cannot be directly applied to the hybrid systems due to several 

reasons. Firstly, in hybrid systems, monitoring the threshold crossing by the residual 

may not necessarily be an indication of a fault but it can be due to the mismatched 

modes as mentioned in [6]. Thus, first of all we have to identify the operating mode 

from various modes of hybrid system, known as mode identification and, therefore, is 

a key step and natural way in the identification and monitoring of hybrid systems [7], 

[8]. However, the identification of current mode is a hard task [9]. In the last decade 

or so, the problem of mode identification in hybrid systems is being explored actively 

by the research community [6], [7], [8], [9], [10], [11]. Secondly, for monitoring of 

hybrid systems, mode occurrence sequence may also be considered in addition to the 

observation of residual signal. In the literature, we find that the deviation of mode 
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occurrence sequence from that of expected can be used for fault detection in hybrid 

systems [12].  

Standard FDI literature for linear systems gives several approaches for fault detection 

and isolation, one of which is based on state estimation [13]. For the health 

monitoring of the hybrid systems, simpler methods can be evolved by identifying the 

active mode and testing mode sequence along with the analysis of system continuous 

states. This requirement corresponds to the state estimation based fault detection of 

dynamic systems with some additional work load to develop a generalized fault 

detection scheme. System states can be estimated more easily for simple subsystems 

by utilizing robust methods like sliding mode technique, which provides reliable 

estimate of states even on the switching instants.  

In many applications of the control systems, a prior availability of system states is 

assumed. This assumption can be invalid for some situations. In such cases we have to 

estimate system states using an observer. Sliding Mode Observer (SMO) is an 

observer based on the concepts of sliding mode control (see Section 2.4) and used for 

robust estimation of states and parameters, which can be further utilized in the system 

monitoring and fault diagnosis applications. SMOs are in use for many years by the 

control community for parameter/state estimation and fault diagnosis [14], [15], [16], 

[17], [18], [19], [20], [21], [22], [23], [24]. The wide use of sliding mode technique in 

such applications is due to its finite time convergence and robustness properties [25]. 

Moreover, in contrast to traditional estimation approaches that are mostly for linear 

systems and thus are useful in only a specific operating region, SMO is a nonlinear 

technique that is equally applicable to linear as well as nonlinear systems directly 

without requiring the linearization of system around the operating point. The major 

part of the literature regarding application of sliding mode technique is for the 

continuous time linear or nonlinear models. However this trend is now also shifting 

towards hybrid systems and many recent works containing application of SMO to 

hybrid systems can be found in the literature [26], [27], [28], [29], [30], [31]. In case 

of hybrid systems, the FDI algorithm should be robust enough to cope with model 

uncertainties and the discontinuities at the switching instants. Sliding mode technique 

is a suitable candidate for these requirements due to its aforementioned properties. 

Sliding mode approach has been adopted by many authors for the estimation of 
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continuous and discrete states for various classes of hybrid systems [26], [27], [28], 

[29], [30], [31], [32], [33], [34]. These robust state estimates can be further used for 

fault diagnosis of hybrid systems. 

Two active communities working in hybrid systems are control system community 

and computer science community. They both approximate these systems according to 

their relevant disciplines, in continuous and discrete systems respectively [3], [35]. 

The computer science community focuses on the discrete behavior of the system and 

puts less emphasis on the continuous dynamics. On the other hand, the control system 

researchers emphasize on the continuous dynamics and take hybrid systems as 

continuous systems with switching. Both of these communities use different tools 

from corresponding disciplines according to their domains of applications. These both 

approaches have their own advantages and disadvantages e.g. system model used in 

model-based approach is just an approximation of the actual system and has 

uncertainties. This can be tackled by using more accurate and detailed model of the 

system but it will increase the complexity of the algorithm. Similarly data-based 

methods lack the details of physical link of the algorithm. Integration of methods from 

these two communities empowers us to use the advantages of both disciplines 

depending upon the applications. In the literature many authors adopted this 

integrated approach and claimed more accuracy and better performance in their 

proposed methods [36], [37], [38]. 

1.2 Objectives 

The aim of this thesis is designing a simple, easy-to-implement, efficient, and robust 

FDI scheme for an important class of hybrid systems, namely, Switched Linear 

Systems (SLS). These are the systems in which each subsystem is represented by the 

Linear Time Invariant (LTI) system [39]. The study of SLS has its importance in that 

they can be used to model many complex engineering systems. This enables us to 

handle these complex engineering systems with ease since many powerful tools can 

be used for the analysis of SLS from the well established theory of the linear systems. 

This approach of analyzing these systems bridges the gap between linear and complex 

systems. Due to these important features of SLS they are becoming more popular in 

the control community. 
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1.3 Contributions 

The proposed scheme utilizes system model and therefore, it can be categorized under 

model-based fault detection schemes. Model-based FDI techniques are easy to 

implement and need no extra hardware and space as required by the hardware 

redundancy based schemes. The system states analyzed for the FDI purpose are 

estimated by the SMO that provides robust estimate even in the presence of model 

uncertainties and discontinuities on the switching instants. Generally Kalman filter is 

adopted for the state estimation but it requires many online computations for its 

operation. SMO is a non recursive technique and thus is computationally economical 

than Kalman filter. The computational complexity of Extended Kalman Filter (EKF) 

is ( )3O N  while that of SMO is ( )O N  for a system of order N [40]. For this reason 

SMO is a better choice for the online implementation and is adopted in this work for 

state estimation.  

The main contributions of the thesis are summarized as: 

Mode identification scheme for the FDI of SLS 

A mode identification scheme is proposed for the FDI of an important class of hybrid 

systems known as Switched Linear Systems (SLS). System states are estimated using 

a stack of SMO and are analyzed to identify modes that are monitored for the FDI 

purpose. Detection and isolation of new faults can be easily made by introducing 

corresponding mode sequences in a set, called as fault set. 

Mode identification scheme for the FDI of SLS with identical subsystems 

A mode identification scheme is proposed for the FDI of SLS having identical 

subsystems. The previously used SMO stack cannot be adopted for such systems, so it 

is enhanced for these systems by utilizing additional stacks of SMO. The proposed 

scheme is successfully applied to the Spark Ignition (SI) engine having identical 

subsystems. The application of the proposed FDI scheme on the SI engine provides an 

easy to implement technique involving simpler computations and still provides 

physical insight about the detected fault. 
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Deterministic Finite Automaton (DFA) design for the FDI of SLS 

A Deterministic Finite Automaton (DFA) design is proposed to be used in the FDI of 

the SLS. The proposed DFA takes the identified modes, represented as the symbol of 

a language acceptable to the DFA, as the input. In the hybrid systems, two types of 

fault can be considered. The use of the proposed DFA in the FDI of hybrid systems 

enables us to diagnose these both types of fault simultaneously and using the same 

DFA structure.  

Mode identification scheme for the misfire detection in the SI engine 

The use of the mode sequence monitoring in the FDI process is demonstrated through 

misfire fault detection in the SI engine. A mode identification scheme is proposed for 

the detection of misfire fault in the SI engine. The engine setup used to acquire 

experimental data is a 1.3L spark ignition engine with four cylinders. A hybrid 

observer is defined based on the hybrid model of the SI engine, where discrete event 

is identified to select the continuous model of a subsystem for the design of observer 

using sliding mode technique. The observer output is finally utilized in mode 

identification and fault diagnosis. 

1.4 Thesis Overview 

The remainder of the thesis is organized as follows: 

Chapter 2 provides the necessary background for the forthcoming chapters. It 

basically consists of two main parts: the first one is about the hybrid systems and its 

relevant terminology and the second part is about the sliding mode technique. 

This first part of this chapter covers some key concepts related to the hybrid systems. 

An important class of hybrid systems, known as switched systems, is discussed. After 

this, different types of switching are explained. The stability of hybrid systems is an 

important issue as it depends on the system dynamics as well as on the switching 

sequence. Two important tools regarding stability of hybrid systems are also 

described. 

The second part of the Chapter 2 covers the basic concepts and terminology related to 

the Sliding Mode Control (SMC). This mainly includes the design process of the 

SMC, properties of SMC and SMOs. 



 

9 
 

Chapter 3 gives the basic FDI terminologies and covers different approaches used in 

the literature for this purpose. This chapter covers the state of the art FDI techniques 

for the linear, nonlinear and hybrid systems along with their advantages and 

disadvantages. This chapter also highlights the key features and benefits of the 

technique proposed in this dissertation in comparison with the existing techniques.  

Chapter 4 presents a mode identification scheme for an important class of hybrid 

systems known as Switched Linear Systems. This chapter introduces the DFA design 

and its use in the FDI of the SLS. The proposed algorithm is illustrated through a 

simulation example by applying it to a switched linear model. 

Chapter 5 enhances the mode identification scheme of Chapter 4 to the SLSs with 

identical systems as well. This chapter also presents the experimental setup used in 

this thesis for data acquisition. The proposed algorithm is applied to a switched linear 

model of the SI engine and the results for simulations and experimental data are 

presented. 

Chapter 6 presents the use of mode sequence monitoring in the FDI by the detection 

of the misfire fault in the SI engine. This chapter starts with an introduction to the 

misfire fault. After this hybrid model of SI engine is presented and the details of the 

proposed scheme is described. The proposed misfire detection and isolation scheme is 

validated through simulations and experimental data and the results are presented in 

this chapter. Finally a comparison of the existing misfire detection approaches and the 

proposed approach is presented. 

Chapter 7 concludes the dissertation and also provides some tasks related to the 

presented work that can be performed in future. 
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CHAPTER 2 

PRELIMINARIES  

As the work presented in this dissertation is related to the FDI of the hybrid systems, 

so this chapter is written to provide the essential background for the rest of the 

material. The FDI concepts and related work, in general as well as for the hybrid 

systems, are given in the next chapter. 

This chapter mainly consists of two parts. The first three Sections discuss hybrid 

systems. Hybrid systems have recently gained a lot of attention of the research 

community as they can be used to model the interaction between the continuous and 

the discrete dynamics in the modern engineering systems. We introduce hybrid 

systems and its related terminology in Section 2.1. In Section 2.2, we discuss an 

important class of hybrid systems, known as switched systems. It also contains 

discussion on the various types of switching. In Section 2.3, we discuss the stability of 

such systems, which has an important role in the study of hybrid systems as the 

stability of these systems depends on the individual subsystems as well as on the 

switching signals. 

As described in Chapter 1, we are using sliding mode technique for the state 

estimation of hybrid systems so the last two Sections are added to provide a flavor of 

this technique. In Section 2.4, we introduce the concepts of SMC. Subsequently, we 

discuss SMO in Section 2.5. We’ll mainly cover topics related to the design process 

of SMC as well as SMO and their benefits and drawbacks. Finally, we conclude this 

chapter in Section 2.6. 

2.1 Introduction to hybrid systems 

Hybrid systems have both continuous and discrete dynamics. The discrete states 

correspond to system modes and in each mode system dynamics are represented by 

corresponding dynamics usually described by differential or difference equations. The 

states of the hybrid system evolve by switching between various operating modes that 

occur based on system states, time or some external event. Many real-world systems 

can be represented by hybrid models. Few examples of hybrid systems include 
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automotives, air traffic control, robot manipulators, diode, analog to digital 

converters, copier, automated highways, gear transmission, bouncing ball etc [3], 

[41]. 

Mathematically, hybrid systems can be represented by using set tuple notation 

0, , , , ,X X u Y H< → >  [42] 

where 

X represents the states  

X0 is the set of initial states  

u represents the inputs 

→ represent transition relations  

Y represents the output 

H represents the transfer function of the system.  

In [41], different modeling techniques for the hybrid systems are described. The 

diverse nature of modeling techniques available for the hybrid systems is due to 

contributions from different communities working in these systems. As discussed in 

Chapter 1, the computer science community focuses on the discrete behavior of the 

system and puts less stress on the continuous dynamics. The main issues considered 

by the computer science community are well-posedness, simulation and verification. 

On the other hand, the control systems researchers emphasize on the continuous 

dynamics and take hybrid systems as the continuous systems with switching, 

generally known as switched systems [43]. The main issues studied by the control 

system researchers are stability analysis and control synthesis.  

2.2 Switched systems 

The switched systems can be viewed as an abstraction of the hybrid systems; they can 

be obtained by taking into account all possible switching patterns, and neglecting the 

details of discrete dynamics. Mathematically we can represent switched systems as 

follows [39]: 
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0 0( ) ( ( ), ( ), ( )) ( )

( ) ( ( ), ( ))

x t f x t u t d t x t x

y t g x t w t
σ

σ

= =
=

ɺ

    (2.1)  

 

where 

( )x t  is the state vector 

( )u t is the controlled input vector 

( )y t is the measured output vector 

( ), ( )d t w t are the external signals like perturbations 

and ,k kf g k M∈ are vector functions 

σ is the piecewise constant signal, denoting switching signal, taking value from an 

index set { }1,2,...,
def

M m= . Switching signal can be a function of time, state, output, its 

own past value and external signal. 

The individual constituent model, given as follows, is known as mode of the switched 

system. 

 

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( )) ,
k

k

x t f x t u t d t

y t g x t w t k M

=
= ∈

ɺ

     (2.2)  

 

A switching device usually known as supervisor produces the switching signal σ  to 

control the switching between modes.  

2.2.1 Types of switching 

In switched systems, switching mechanism has a crucial role. Its importance can be 

seen as the stability of these systems is also affected by the switching pattern. There 

are several types of switching that can exist in a switched system. In [43], the 

switching events are classified as follows: 
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• State dependent switching 

• Time dependent switching 

• Autonomous switching 

• Controlled switching 

 

 

Figure-2.1 State dependent switching 

 

2.2.1.1 State dependent switching 

In this type of switching, system switches from one mode to another depending upon 

the continuous state of the system. This can be understood by considering a 

continuous state space that is partitioned into several operating regions (finite or 

infinite in number) by the switching surfaces. Each operating region is assigned a 

continuous time system. When system trajectory strikes a switching surface it jumps 

to a new state value given by a reset map, as depicted in Figure-2.1. In this figure, the 

dotted lines indicate the switching surfaces and the lines with arrow heads indicate the 

continuous part of the trajectory. 
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2.2.1.2 Time dependent switching 

Consider a family of systems given as 

 

( ),ix f x i M= ∈ɺ        (2.3)  

 

The function if  is assumed to be Lipschitz. 

We use the notion of switching signal : [0, ) Mσ ∞ →  to define a switched system by 

family of systems represented by (2.3). The function : [0, ) Mσ ∞ →  has finite 

number of discontinuities called switching times and has a constant value between 

two consecutive switching times. Therefore, we define a time dependent switched 

system as: 

 

( ) ( )( ( ))x t f t x tσ=ɺ        (2.4)  

 

2.2.1.3 Autonomous switching 

In autonomous switching, we have no control on the switching mechanism. The state 

dependent switching described above belongs to this type of switching. Time 

dependent switching is said to belong to this category when the rule defining the 

switching signal is not known. 

2.2.1.4 Controlled switching 

In this case, the switching can be controlled by the designer to obtain the desired task 

from the system. Controlled switching can also be state or time dependent e.g. in case 

of automotives, manual transmission corresponds to the controlled state dependent 

switching.  

To understand these switching types, we can take the example from automotive 

industry in which manual gear transmission corresponds to the controlled state 

dependent switching whereas automatic transmission corresponds to the autonomous 
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state dependent switching. Manual transmission can also be time dependent in case of 

parallel parking [43]. 

2.2.2 Switched Linear Systems  

Switched Linear Systems are an important class of the hybrid systems consisting of 

several LTI systems and a rule for coordinating switching between these LTI systems. 

They can be represented as follows [39]: 

 

( ) ( ( ))x t A x tσ=ɺ        (2.5)  

 

where σ  is the piecewise constant signal defined earlier. 

The study of SLS is important as they can be used to model many complex 

engineering systems. This enables us to handle these complex systems with ease since 

many powerful tools can be used for the analysis of switched linear systems from the 

well established theory of linear systems. This approach of analyzing the complex 

engineering systems bridges the gap between the linear systems and these complex 

systems. Due to these important features of switched linear systems they are 

becoming more popular in the control community. 

As an example, we take the switched linear model of four cylinder engine in which 

each cylinder is taken as a linear subsystem of the overall system. At a particular time 

instant, ignition occurs in only one cylinder. The said model uses only the power 

stroke of the cylinders. After completion of the power stroke of active cylinder, it 

switches to the next subsystem. The switching between subsystems occurs based on 

system states and is a deterministic process. The detailed description of model is 

given in Chapter 5. 

2.3 Stability of the hybrid systems 

The stability of the hybrid systems has been studied by many authors and various 

approaches for the stability analysis of switched systems can be found in the literature 

[41], [43], [44], [45], [46], [47], [48]. Unlike the conventional dynamic systems, the 

stability of the switched systems depends on the switching signal as well. It is 



 

 

possible to have all the stable subsystems in a switched system but still the overall 

system becomes unstable 

be witnessed in the following example 

 

1 1 2

2 1 2

1 2

( )

with

1 10 1 100

100 1 10 1

A x x x
x t

A x x x

A A


= 


− −   
= =   − − − −   
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possible to have all the stable subsystems in a switched system but still the overall 

system becomes unstable depending upon the switching signal. Such a scenario can 

be witnessed in the following example taken from [45]. 

1 1 2

2 1 2

1 2

if 0

if 0

1 10 1 100
,

100 1 10 1

A x x x

A x x x

A A

<
>

− −   
= =   − − − −   

    

Figure-2.2 Phase portrait of A1 [45]  

possible to have all the stable subsystems in a switched system but still the overall 

depending upon the switching signal. Such a scenario can 

 (2.6)  

 



 

 

Eigen values of both A

which means that both the subsystems are individually stable. This is depicted by the 

phase portraits of individual subsystems in Figure

 

Figure
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Figure-2.3 Phase portrait A2 [45] 

 

1A  and 2A  are found to be -1.0000+31.6228i, 

which means that both the subsystems are individually stable. This is depicted by the 

phase portraits of individual subsystems in Figure-2.2 and Figure-2.3 respectively

Figure-2.4 Phase portrait of switched system [45

 

 

1.0000+31.6228i, -1.0000 -31.6228i, 

which means that both the subsystems are individually stable. This is depicted by the 

2.3 respectively. 

 

5] 
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For switching conditions given in (2.6), we find that the given switched system 

becomes unstable even though the individual subsystems are stable. The phase 

portrait of overall switched system confirming this result is given in the Figure-2.4. 

Contrarily, there can be a situation where all the unstable constituent systems combine 

to form an overall stable system by using appropriate switching signal. So, for the 

stability properties of the switched system, it is not sufficient to just consider the 

stability properties of subsystems only but we must also take into account the 

switching strategy as well. 

The following two main issues regarding the stability of switched systems are pointed 

out in [43]: 

• Find out the conditions to guarantee the stability of the switched systems 

under arbitrary switching. 

• If the switched system is not stable for arbitrary switching then identify those 

signals for which it is stable. 

The solution to the first issue has been found in terms of finding a Common 

Lyapunov Function (CLF). If we have a positive definite continuously differentiable 

function : nV →ℝ ℝ  then it is said to be a CLF if there exists a positive definite 

function : nW →ℝ ℝ  such that we have the following: 

 

( ) ( ) ,i

V
f x W x x i M

x

∂ ≤ − ∀ ∀ ∈
∂      (2.7)  

 

Based on the above we have the following theorem. 

Theorem 2.1: If all systems in the family (2.3) share a radially unbounded CLF then 

the switched system (2.4) is Global Uniform Asymptotic Stable (GUAS). [43] 

In many situations, a system is not stable for arbitrary switching, and it is only stable 

for few switching signals. There are other situations, when the switching strategy is 

already defined, thus the arbitrary switching is not available apart from a class of 

switching signals. In such situations where CLF does not exist we can analyze the 
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stability of switched systems using Multiple Lyapunov Functions (MLF) [43], [44], 

[45].  

Theorem 2.2: Let (2.3) be a family of globally asymptotically stable systems and let 

,iV i M∈  be a family of corresponding radially unbounded Lyapunov functions. 

Suppose that there exists a family of positive definite continuous functions ,iW i M∈  

with the property that for every pair of switching times 

( ), , such that ( ) ( ) and ( ) forj k j k l j l kt t j k t t i M t i t t tσ σ σ< = = ∈ ≠ < < , we have 

( ( )) ( ( )) ( ( ))i k i j i jV x t V x t W x t− ≤      (2.8) 

Then the switched system (2.4) is globally asymptotically stable. [43] 

Proof: Let { }1,2,...,M m=  with m  number of elements. Consider a ball of an 

arbitrary radius 0ε >  around the origin. Let us consider a set mR  contained in this 

ball and is of the form { }: ( ) , 0m m mx V x c c≤ > . For 
1 2

( ( )), ( ( )),...q j q jV x t V x t  , let jR  be 

a set of the form { }: ( ) , 0j j jx V x c c≤ >  contained in the set 1jR + . Let us consider a 

ball of radius δ  that lies in the intersection of all nested sequences of sets constructed 

for all possible permutations of {1,2,... }m . Let (0)x δ≤ . If the first l  values of σ  are 

distinct with l m≤  then by construction we have ( )lx t ε≤ . The values of σ  will 

start repeating then and the condition (2.8) guarantees that the state will always 

belong to the one of the above sets (see Figure-2.5 for 2m = ) 

For the asymptotic stability, the finiteness of M  implies that we have an index 

q M∈  with an infinite sequence if switching times 
1 2
, ,...j jt t  , such that 

jt qσ = . The 

sequence 
1 2

( ( )), ( ( )),....q j q jV x t V x t  is decreasing and positive and thus has a limit 0c ≥ . 

We have 

1

1

0 lim ( ( )) lim ( ( ))

lim[ ( ( )) ( ( ))]

lim[ ( ( ))] 0

k k

k k

k

q j q j
k k

q j q j
k

q j
k

c c V x t V x t

V x t V x t

W x t

+

+

→∞ →∞

→∞

→∞

= − = −

= −

≤ ≤
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thus ( ( )) 0as
kq jW x t x→ → ∞ . Also qW  is positive definite. Therefore ( )

kj
x t  must 

converge to zero as k → ∞ . It then follows from the Lyapunov stability property that

0asx t→ → ∞  [43]. ■ 

 

 

Figure-2.5 Lyapunov stability in theorem 2.2 [43] 

 

In MLF, multiple Lyapunov functions corresponding to a certain subsystem are 

concatenated to produce an overall Lyapunov function of the system that might not be 

monotonically decreasing along the system trajectories. The switching signal can be 

restricted such that every time on switching from (i.e. exiting) a certain subsystem, its 

corresponding Lyapunov function is less than its value at previous existing time. 

Similarly the energy decreasing trend is captured by monitoring the Lyapunov 

functions values at entering instants [47], [48]. 

Note that each iV  decreases when the ith  subsystem is active but it may increase 

when the ith  system is inactive. This is shown in Figure-2.6 which is showing 

, 1,2iV i =  in which solid lines indicate the Lyanupov function for that mode when it is 

active and dotted lines indicate its value when the mode is inactive. 
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Figure-2.6 Multiple Lyapunov functions [43] 

 

As discussed in the start of this Chapter that sliding mode technique is adopted in this 

dissertation for the state estimation of hybrid systems so second part of this chapter, 

starting from the next Section, is dedicated to introduce the relevant terminology in 

this regard. 

2.4 Sliding mode control 

Sliding Mode Control (SMC) is a form of Variable Structure Control (VSC) which 

was firstly explored in 1950 by Emelyanov and his co-researchers in Russia [49], 

[50]. In VSC, the controller is switched among various structures on the basis of 

certain rules to get the desired results. SMC is a variant of VSC and is basically a 

nonlinear design technique. Owing to its simple and robust design properties, this 

technique is equally applicable for linear as well as nonlinear systems with ease. SMC 

design consists of two phases; reaching and sliding [25]. In the first phase, a sliding 

surface ( ) 0s x =  is designed and trajectories are forced towards this surface using the 

designed control law. Generally, sliding surface is constructed as a hypersurface or 

interaction of hypersurfaces in state space and is known as switching surface. In the 

second phase, the trajectories are kept on the sliding surface by the control law and 

steered towards the equilibrium point. The system in this state is said to be in sliding 

mode. Once the system is in the sliding mode it becomes invariant to parametric 
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variations and model uncertainties/disturbances. The motion of the system in sliding 

mode is governed by reduced order dynamics. For a system with state vector of 

dimension n  and input vector of dimension m, the dimension of state vector in 

sliding mode is n m− . This is described in the following example. 

Consider a linear system of the form: 

 

1 2

2 3 1 4 2

x x

x a x a x bu

=
= + +
ɺ

ɺ        (2.9)  

 

where 

2

3 4and aresystemparameters

iscontrol input

x

a a

u

∈ℝ
 

 

Let us take a line of the form 1 2 0, 0cx x c+ = >  passing through the origin. This line is 

called sliding surface or hyperplane. 

Let 

1 2s cx x= +         (2.10)  

 

The task of SMC is to enforce the system trajectories to be on this sliding surface i.e. 

to make 

 

0s =          (2.11)  

 

The reachiblity condition for ensuring convergence of system trajectories to the 

sliding surface is given below: (see Figure-2.7) 
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for 0

0

and

for 0

0

0

s

s

s

s

ss

>
<

<
>

⇒ <

ɺ

ɺ

ɺ         

(2.12)  

 

From (2.10) and (2.11), we can find system dynamics on sliding surface as 

 

1 2

2 1

1 1

0cx x

x cx

x cx

+ =
⇒ = −
⇒ = −ɺ

        (2.13)  

 

We can see from (2.13) that during sliding mode, system dynamics are governed by a 

reduced order system. These dynamics are free of system’s actual parameters. This 

property is called parameter invariance. 

 

 

Figure-2.7 Sliding surface and reachibility condition 

 

Along with its robustness and order reduction properties, the sliding mode technique 

also exhibits the finite time convergence property. With all these attractive features, 

sliding mode technique has some disadvantages as well, one of which is the chattering 

phenomenon. Chattering is the high frequency motion caused by imperfections of the 
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switching devices, system inertia, delays and other factors. In the hybrid system 

literature the same phenomenon of infinite discrete transitions in finite time is studied 

under the heading of Zeno behaviors. Chattering can be harmful for the system and 

can damage the actuators etc. For this reason a lot of research work is conducted to 

solve this issue and several approaches can be found in the literature in this regard 

[51], [52], [53], [54], [55], [56]. 

2.5 Sliding mode observer 

Many applications in control systems assume a prior availability of the state vector. 

This assumption is not valid in every situation, and sometimes, an estimate of system 

states is required. For this purpose, a dynamic system, known as observer, is used. 

The observer was first proposed and developed by Luenberger [57]. Sliding Mode 

Observer (SMO) uses concepts of the sliding mode technique to estimate system 

states and parameters in a robust and accurate way. SMC produces a control signal 

while SMO is used to produce an error residue. In the estimation process, the SMO 

tracks the actual measurement and generates an error signal by finding the difference 

between estimated and actual value [58]. Model uncertainty is accommodated by the 

SMO injection term that is designed to ensure the convergence of estimated states to 

the actual states of the plant. In contrast to the traditional Luenberger observer, SMO 

provides robust estimation of system states even in an uncertain environment. 

Moreover, traditional estimation approaches are mostly for linear systems and thus are 

accurate only in a specific operating region. SMO is a nonlinear technique that is 

equally applicable to linear as well as nonlinear systems. Therefore, we can directly 

apply it to nonlinear systems without linearizing the system around an operating point 

and thus can get accurate results for a broad region of operation. Furthermore, finite 

time convergence (being a special feature of sliding mode technique) of SMO is 

guaranteed. Below we describe SMO design procedure for a linear system to explain 

the above terminologies.  

Consider a linear system represented as: 

 

( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +
=

ɺ

       (2.14)  
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where 

and is assumed to be a stable matrix

n

n n

n m

p n

p

x
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y

×

×

×

∈
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∈

ℝ

ℝ

ℝ

ℝ

ℝ

 

The SMO for this system can be designed as follows: 

 

 ˆ ˆ( ) ( ) ( ) sign( ( ))x t Ax t Bu t K e t= + +ɺ
     (2.15)  

 

where 

ˆ( ) representsstateestimate

isobserver gain

ˆ( ) representserror given as ( ) ( ) ( )

sign(.) isdefined as

1 if 0

sign( ) 0 if 0

1 if 0

x t

K

e t e t x t x t

e

e e

e

= −

− <
= =
 >

 

The error dynamics can be obtained by using (2.14) and (2.15) as: 

 

( ) ( ) sign( ( ))e t Ae t K e t= −ɺ       (2.16)  

 

For sufficiently large value of K, the estimated states converge to the actual values 

and we get 

( ) 0e t →  

To illustrate the above procedure, a simulation example is presented below. 

Consider a linear system representing simple harmonic oscillator given as: [59] 



 

26 
 

 

( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +
=

ɺ

       (2.17)  

 

where  

 

[ ]0 1 0
, , 1 1

2 0 1
A B C

   
= = =   −   

 

 

For simplicity, take ( ) 0u t =  

SMO designed for (2.17) is given as 

 

ˆ ˆ( ) ( ) ( ) sign( ( ))x t Ax t Bu t K e t= + +ɺ
     (2.18)  

 

where terms used are already defined. For this example K=5. 

Error dynamics is obtained from (2.17) and (2.18) as: 

 

1 2 1

2 1 2

sign( )

2 sign( )

e e K e

e e K e

= −
= − −
ɺ

ɺ        (2.19)  

 

The simulation results are presented in the following figures.  
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Figure-2.8 1x  and its estimate 

 

 

 

 

Figure-2.9 2x  and its estimate 
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Figure-2.10 Observer tracking error 1e   

 

 

 

Figure-2.11 Observer tracking error 2e  

 

Figure-2.8 shows the actual 1x  and its estimate. Similarly Figure-2.9 gives the 

estimation of 2x  along with 2x . The solid lines in these figures represent the actual 

states and dotted lines indicate their estimates. The initial states for model are taken as 

1 1x =  and 2 1x = − . The observer tracking error is shown in Figure-2.10 and Figure-

2.11. 
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2.6 Summary 

This chapter provided important background required for the upcoming chapters. The 

chapter mainly consists of two parts: first part is about the hybrid systems and the 

second part discusses the sliding mode technique. 

The first part of this chapter gives an introduction to the hybrid systems and the 

related terminology. An important class of the hybrid systems, known as switched 

systems, is discussed. Moreover, this part also contains discussion about different 

types of the switching. Another important factor discussed is the stability of the 

hybrid system that not only depends on the individual subsystems but also on the 

switching signal.  

The second part of this chapter gives the introduction to the sliding mode technique 

and the related terminology. The main topics covered are the design process of SMC 

and SMO along with their benefits and drawbacks. A simulation example is also 

presented to illustrate the SMO design process. 

In the next chapter, the FDI terminology and related work for the hybrid systems is 

described.  
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CHAPTER 3 

FDI OF HYBRID SYSTEMS  

This chapter introduces terminologies relevant to the FDI and previously devised 

approaches for this purpose. This chapter starts with the description of the FDI 

standard terminology given in Section 3.1, adopted from the International Federation 

of Automatic Control (IFAC) workshop on SAFEPROCESS in 1996. Section 3.2 

gives the fault classification. In Section 3.3, we discuss different fault diagnosis 

schemes for the linear and the nonlinear systems and Section 3.4 discusses different 

fault diagnosis schemes for hybrid systems with their pros and cons. Mode 

identification in hybrid systems is an important topic that is covered in Section 3.5. 

Finally Section 3.6 concludes this chapter. 

3.1 FDI terminology 

The work in the FDI had been initialized in 1970s, however, the FDI terminology was 

not consistent during those times. With the advancement of technology, the systems 

become more efficient, yet more complex. Hence, the significance of the FDI has 

been enhanced due to the requirement of the reliable and safe operation of these 

systems and a standard terminology for FDI has been formulated. For this purpose a 

steering committee called SAFEPROCESS was formed within IFAC in 1991. In the 

following we start with the basic FDI terminologies given in [59]. 

3.1.1 Fault 

Fault is defined as an un-permitted deviation of at least one characteristic property of 

a variable from an acceptable behavior. It should be noted that the fault occurrence 

does not necessarily mean that the system has stopped working. The system can be 

still working but with the degraded performance. 

3.1.2 Failure 

Another related concept is the failure which is defined as the permanent inability of a 

system to perform a desired task under given operating conditions. For instance, a 

small leakage in the cooling system of an automobile can be termed as a fault, 
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whereas, if the coolant amount in the system drops beyond a certain threshold value, it 

can result in the system failure. 

3.1.3 FDI 

Fault Detection and Isolation (FDI) is related to the monitoring of the systems in order 

to identify the faults and pinpoint their locations. A more advanced term is known as 

Fault Detection, Isolation and Identification (FDII). Fault detection means to detect 

the occurrence of a fault in the system. Fault isolation is the process of identifying the 

faulty component. Fault identification provides an indication of the severity of the 

fault. 

3.2 Fault classification 

Faults are normally classified on the basis of time, location, and modeling. In the 

following we briefly describe these classifications. 

3.2.1 Fault classification based on time  

The fault can be classified in the following three categories based on time [60] 

• Abrupt Faults 

• Intermittent Faults 

• Incipient Faults 

3.2.1.1 Abrupt faults 

In this type of the fault, the time between the fault occurrence and its appearance is 

very small. These faults are relatively easier to detect because of abrupt change in the 

system parameters coupled with the fault. Few examples of the abrupt fault include 

sudden fall of the actuator gain to some extent of the desired value, actuator jamming 

etc. 

3.2.1.2 Intermittent faults 

This type of fault appears and disappears at the discrete intervals. Few examples of 

the intermittent faults are loose electrical connection, misfiring in engine cylinder at 

different intervals etc. 
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3.2.1.3 Incipient faults 

These faults are usually caused due to wear and tear of the components. Faults of this 

type grow slowly and regularly with time. Their impact on a system becomes 

noteworthy only when their magnitude increases beyond a certain level. For this 

reason, these faults are difficult to detect at their initial level. A slow drift in sensor is 

an example of an incipient fault.  

Figure-3.1 shows the time behavior of these three fault types. 

 

 

Figure-3.1 Time-based classification of faults. 

 

3.2.2 Fault classification based on location 

Based on the location the faults are categorized in the following three types. 

• Actuator faults 

• Component faults 

• Sensor faults 

3.2.2.1 Actuator faults 

Actuators are responsible for converting the control commands into the actuation 

signals. Actuator faults can result in the failure of the commands execution by the 
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controller. The most common actuator faults include lock-in-place, hardening and loss 

of effectiveness of the actuator. 

3.2.2.2 Component faults 

Faulty components result in the performance degradation or failure of the system. 

This can be viewed by monitoring the system behavior using system states or 

parameters because these faults appear as the change in system parameters. In general, 

the component faults occur due to the wear and tear and aging of the system 

components. Common examples of the component faults include breakage, cracks, 

leakage, filter clogging etc. 

3.2.2.3 Sensor faults 

The system information is normally collected by the controller through sensors. 

Therefore, a fault in the sensors can directly impact the controller performance. The 

common faults that occur in the sensor are bias, drift, freezing and loss of accuracy. 

Bias indicates an offset in the sensor reading from that of the actual value. Drift 

represents the change in sensor output from that of the actual value with time. In case 

of freezing fault, the sensor shows a constant value throughout the process. In case of 

loss of accuracy, the sensor gives the output value that is quite different from the 

actual value. 

3.2.3 Fault classification based on modeling 

Faults can also be classified in the following two classes based on the way they are 

modeled [60] 

• Additive faults 

• Multiplicative faults 

3.2.3.1 Additive faults 

This type of the fault affects the system output by an offset and can be expressed in 

terms of addition in model. These faults are normally due to the disturbances and 

noise. The actuator and the sensor faults can be conveniently represented in terms of 

additive faults. 
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3.2.3.2 Multiplicative faults 

Multiplicative faults occur due to the change in the system parameters and they are 

expressed in terms of multiplication with system parameters or states. Component 

faults can be easily modeled as multiplicative faults. 

Figure-3.2 gives the description of these faults, where Y(t) represents system output, 

U(t) represents the input of the system, f represents the system fault and G represents 

the system model. 

 

Y(t)
+

f

Y(t)+f

Additive Fault

U(t)

f

(G+f)U(t)

Multiplicative Fault

G

 

Figure-3.2 Modeling based classification of fault 

 

3.3 Fault diagnosis schemes 

Fault diagnosis schemes can be broadly categorized in two types [61]: 

1) Model-free approaches 

2) Model-based approaches 

3.3.1 Model-free approaches 

In many cases—for instance, in chemical plants or process industries—the system 

model is either unavailable or too complex to be suitable for FDI purpose. In these 

situations, model-free approaches are suitable choices that do not use the system 

model in the FDI process. Model-free approaches can be broadly classified as: 

• Signal-based approach 

• Plausibility check 

• Hardware redundancy 

The description of each one of these is given as follows: 
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3.3.1.1 Signal-based approach 

In signal-based approach, the process signal properties are used for the FDI purpose. 

These signal properties include magnitude, trend, limit check, statistical properties 

etc. 

Figure-3.3 gives a description of this scheme. A fault in the actuator, sensor or system 

varies the signal properties that are analyzed using signal processing techniques for 

the FDI. In [62], the authors adopted this approach for the engine fault diagnosis. 

However, signal-based fault diagnosis is mostly used in steady state conditions and its 

efficiency is limited in the processes with wide operating range [63]. 

 

 

 

Figure-3.3 Signal-based fault detection 

 

3.3.1.2 Plausibility check 

Plausibility check is performed by testing the plausibility (i.e. apparently valid) of the 

sensor measurements. Such checks are normally conducted by validating the 

measurements against their expected behavior like the measurement sign etc. 

However, plausibility check is not efficient in the complex systems and is suitable 

only for simple applications. Figure-3.4 gives a schematic description of the 

plausibility check approach. 
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Figure-3.4 Plausibility check approach 

 

3.3.1.3 Hardware redundancy 

In hardware redundancy, additional redundant components are installed for the FDI 

purpose. Process output is compared with the output of redundant component for the 

fault detection purpose.  

 

 

Figure-3.5 Hardware redundancy approach 

 

The main advantage of this approach is reliability and direct isolation of fault. 

However, due to the additional hardware the major disadvantages associated with this 

approach are extra hardware along with increase in the cost, weight and size. Figure 

3.5 gives a schematic depiction of this approach. 

3.3.2 Model-based approaches 

Model-based FDI approach replaces the hardware redundancy by using the process 

model in parallel to the system under observation. The model used for the analytic 

redundancy can vary but the structure of the model-based FDI scheme mainly consists 

of the following parts as shown in Figure-3.6: 
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• Residual generation 

• Residual evaluation 

• Threshold definition 

One of the most popular model-based FDI methods, for continuous dynamical 

systems, is observer-based FDI approach. Observer-based FDI generates a residual 

signal by comparing the estimated values of measurement with the actual 

measurements. Residual gives indication of any mismatch between observed 

behaviors of system from that of desired. Under ideal conditions, this residual value is 

zero in case of fault-free system. However, due to the presence of disturbances and 

model uncertainties this residual is not exactly zero even in the fault-free case. 

Therefore a threshold is selected such that the residual crosses the threshold in case of 

occurrence of a fault [63]. The selection of this threshold is crucial in the FDI process 

as too low a threshold results in false alarm and too high a threshold results in missing 

some faults detection. To solve this problem, the concept of variable threshold was 

introduced in the literature [63], [64]. 

 

 

Figure-3.6 Model-based fault diagnosis 

 

Based on the model used for the FDI purpose, we can further divide model-based FDI 

approaches as follows: 

• Analytical models  

• Knowledge-based models  
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3.3.2.1 Analytical models 

Analytical models are usually represented by the differential equations. The three 

famous approaches under this category are: 

• Parity space approach 

• Observer-based approach 

• Parameter estimation approach 

Each one of these is discussed below: 

3.3.2.1.1 Parity space approach 

This approach is based on the consistency check of the parity equations. In this 

approach, the measurements obtained from the system are used to derive a set of 

properly modified equations (known as parity relations) that decouple the states from 

the residuals. The parity equations can be obtained either from the state space model 

[65] or from the transfer function of the system [66]. In the parity space approach, 

same input is applied to the system as well as parity space equation and residual is 

generated by finding the difference in the actual measurement and the model output. 

The authors of [67] used parity relations for the FDI of the SI engine. [68] used parity 

relation for the fault diagnosis of a class of nonlinear systems. Parity space approach, 

however, is sensitive to the noise effects.  

3.3.2.1.2 Observer-based approach 

This is one of the most widely used model-based fault diagnosis approach. In the 

observer-based FDI approach, an observer is used to generate the estimate of the 

actual measurement. This estimate is used along with the actual measurement from 

the system to generate the residual signal. One should note that there is a difference 

between observers used for control purposes and for the fault diagnosis purpose. The 

former are state observers used to estimate the unknown states while the later are the 

output observers used to estimate the measurements. The idea of using observers for 

the FDI started in early 70’s and later research in this field focused on the robustness 

of the residual signal against disturbances and measurement noise [69], [70], [71], 

[72]. 
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3.3.2.1.3 Parameter estimation approach 

Estimation of critical parameters of the system can be a useful way of the fault 

detection [73]. The parameters of a system reflecting system health can be estimated 

and analyzed for the fault diagnosis purpose. These estimated parameters can be 

compared against their normal operating values for the detection of fault. The 

commonly used approaches under this category are 

• Least square method 

• Kalman filter 

• Sliding mode technique 

Each of these is described below. 

The least square and its variants have been successfully used for the fault diagnosis 

purpose [74], [75]. In this method, model of the system is predicted using the input 

data by minimizing the squared sum of the residuals. The relevant parameters, critical 

to system health, are then analyzed for the fault detection. This method, however, 

provides offline estimates of the linear systems.  

Kalman filter is most widely used for the state and parameter estimation of systems in 

stochastic settings. In case of parameter estimation using Kalman filter, the required 

parameters need to be represented as additional state variables i.e. the original state 

vector is augmented with these state variables and is known as augmented state 

vector. The Kalman filter approach is applicable to the linear systems and uses system 

linear model along with a prior information of the process noise distribution. For the 

nonlinear systems, we have to use a variant of Kalman filter known as Extended 

Kalman Filter (EKF). The estimation algorithm in Kalman filter uses system a prior 

information to generate initial estimates and then improve them recursively using its 

gain. The approach of Kalman filter for state and parameter estimation, however, 

requires a prior information about the process and needs to linearize the nonlinear 

system on the operating point.  

Sliding mode technique is vastly used by control community for the state and 

parameter estimation due to its finite time convergence, simple design and robustness 

against uncertainties [14], [17], [19], [20], [21], [22], [23], [24]. SMO is used to 

estimate system states and parameters by tracking actual measurements. In contrast to 
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the Kalman filter, it does not need to linearize the system on the operating point and is 

equally applicable to linear as well as nonlinear system. Moreover, it is simple in 

design and easy to implement online. However, First Order Sliding Mode Observer 

(FOSMO) suffers from chattering that can be taken care of by High Order Sliding 

Mode Observer (HOSMO). 

3.3.2.2 Knowledge-based models 

This approach is useful in situations in which the system model is too complex or 

hard to find. Knowledge-based models can be represented by fuzzy logic, neural 

networks etc. The residual is generated using the knowledge-based model along with 

a symptom table. 

 

 

 

Figure-3.7 Fault diagnosis approaches 
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3.3.2.2.1 Neural networks 

In this approach, the model used to provide analytic redundancy is composed of 

neurons, input and output layers. Neural networks require training data for each class. 

Once the training phase is completed, the model can be used for fault diagnosis. This 

approach, however, suffers from the lack of availability of large number of training 

samples required for efficient fault diagnosis. 

3.3.2.2.2 Fuzzy logic 

In this approach, the model used to provide analytic redundancy is formed from the 

fuzzy rules. These rules provide the symptoms for faulty and healthy operation as 

defined in fuzzy reference sets. Using this approach, fault detection is performed by 

comparing the rules of reference models with the rules of partial fuzzy model 

obtained from the actual fault-free measurements of plant. This approach, however, 

requires expert knowledge and offline training data before it can be applied for the 

fault detection. 

Figure-3.7 gives a summary of different fault diagnosis schemes discussed so far. This 

Section provided a review of the fault diagnosis approaches generally used for the 

dynamical systems. In the next Section, we review fault diagnosis techniques used for 

the hybrid systems monitoring. 

3.4 Fault diagnosis schemes for hybrid systems 

As mentioned in Chapter 1, hybrid systems involve both the discrete and the 

continuous dynamics that have to be monitored for the reliable operation of the 

system. Due to the simultaneous presence of the both dynamics, chances of fault in 

these systems become higher and thus for the same reason they become more difficult 

to diagnose than the conventional systems. To ensure their safe and reliable operation 

an efficient FDI scheme is required. A general approach to study these systems was to 

approximate them either as purely continuous or discrete systems, suppressing the 

effect of one dynamics and concentrating on the other. This approach has few 

advantages e.g. a system model designed for specific application area needs not to 

cover all the details of the system thus liberating from the avoidable complexity. 
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Moreover, in using this approach, standards algorithms and well established 

techniques are readily available from the corresponding domain for use on the system 

under study. However, in more sophisticated applications like the nuclear power 

plants, space shuttles and aerial vehicles etc, ignoring/suppressing a dynamics can 

result in significant loss. Moreover, the use of the FDI scheme from the corresponding 

single domain can result in the overlooking of the important fatal faults. Purely 

discrete event approaches for the FDI of the hybrid systems might not be able to 

detect faults reflecting in the system continuous behavior. Similarly, purely 

continuous approaches might not always be suitable for the FDI of these systems as 

they can result in complicated nonlinear behavior and thus become difficult to 

implement in the real world.  

Another important factor that should be taken care of in the FDI of the hybrid systems 

is the identification of the active mode among various modes of the hybrid system. 

This is so because in these systems, the threshold crossing by the generated residual in 

the model-based FDI may not necessarily be an indication of a fault but it can be due 

to the mismatched modes and thus can result in the false alarm. Also in the observer 

based FDI approaches, the active mode of the hybrid system is required for the 

estimation of the states used in the process of the residual generation. Besides these 

factors, the identification of the active mode can also be used for the FDI of the 

hybrid systems as the deviation of the mode occurrence sequence from that of 

expected sequence can be used for the fault detection in the hybrid systems. The mode 

identification, therefore, is a key step and natural way in the identification and 

monitoring of the hybrid systems. 

Due to its inherently multidisciplinary nature, researchers from various back grounds 

became interested in these systems. Two communities actively working in these 

systems are the control system community and the computer science community. The 

emphasis of the computer science community is mainly on the discrete behavior of 

these systems and they give little attention to the continuous dynamics. The control 

system researchers, on the other hand, mainly focus on the continuous dynamics and 

approximate the hybrid systems as continuous systems with switching. These both 

approaches come up with some pros and cons e.g. the system model that is adopted in 

the model-based FDI approach is just an approximation of the actual system and have 
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modeling uncertainties in it. A more accurate and detailed model of the system can 

take care of this issue but this will increase the complexity of the algorithm and the 

resulting solution might not be suitable for the online implementation. Similarly, the 

data based FDI methods lack the details of the physical link of the algorithm. A useful 

FDI approach can be to integrate the methods from these two communities to utilize 

the positive features of both and avoid the negative ones that should result in better 

and improved performance.  

Several existing approaches that can be found in the literature for the FDI of the 

hybrid systems are [7], [76], [77], [78], [79], [80], [81], [82]. A petri-net approach is 

used in [7] to form a timed abstraction of the hybrid systems. For this purpose, a fault 

symptom table is produced, which is used to form a decision tree offline. This 

method, however, requires experience and the domain specific knowledge for 

constituting the fault symptom table. Moreover the use of the decision tree confines 

the approach to the assumption of only one fault at a time. In [76], the structured 

parity residuals have been used for the FDI of the hybrid systems. Two fault types 

have been considered in this case: the ones related to the current mode behavior, and 

the ones affecting the discrete evolution trajectory. However this approach cannot be 

easily extended for the nonlinear systems. In [77], a Hybrid Bond Graph (HBG) is 

used in the FDI of the hybrid systems that uses a hybrid observer consisting of the 

Kalman filter and a mode change detector. However, Kalman filter requires prior 

system and noise information. Moreover, it is computationally heavier than the SMO 

since the former requires several matrix calculations. Furthermore, the Kalman filter 

cannot be used for the nonlinear systems directly and we have to use the EKF for this 

purpose which involves further calculations like calculating Jacobian based 

linearization etc. In [78], the state estimation is used for the FDI of the hybrid 

systems. The authors of [78] proposed a mode observer and a continuous observer 

using bank of the Unknown Input Extended Kalman Filter (UIEKF). This suffers 

from the same issues of Kalman filter mentioned above. Moreover, the dedicated 

mode observer can be replaced by adopting the approach of [30] that provides 

simultaneous estimation of the discrete and the continuous states using the SMOs. 

The approach used in [80] requires an excitation signal for the fault diagnosis 

purpose. Another approach used for the fault diagnosis of the hybrid systems is the 

particle filter approach [81], [82]. The issue with this approach is that of the sample 
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impoverishment (reduction of particle diversity, which in the extreme cases results in 

“collapsing” of all the particles into a signal particle [83]) that decreases the 

probability of the transition to the faulty state.  

The major issues in the existing FDI approaches for hybrid systems are summarized 

below:  

• A general approach to study these systems was to approximate them either as 

purely discrete or continuous system. This approach is useful in the sense, that 

depending upon the application, if some details can be ignored then we get a 

simplified version of the system for the control and analysis purposes. 

However, in more sophisticated applications, ignoring such details can result 

in significant loss. Moreover such simplified representations can also skip the 

details that can be useful for the FDI purpose. 

• Some existing FDI techniques for hybrid systems consider only either the 

discrete fault or continuous fault and not both at the same time. Most of the 

techniques that consider both types of fault simultaneously are not able to 

distinguish the fault type since the residual used in the FDI process can be 

affected in the same way by both faults. Our proposed scheme differentiates 

between these residuals and is not only able to detect and isolate the fault 

simultaneously but also identifies the fault type using the same scheme. 

• Conventional model-based FDI approaches cannot be directly applied to the 

hybrid systems as the inconsistency indicated by the residual in the FDI 

process can also be due to the mode mismatch. So we have to identify the 

operating mode before the application of the estimation technique in the FDI 

process. Moreover these identified modes can be used to develop novel FDI 

approaches to capture both types of faults simultaneously. 

• The class of approaches that use observer in the FDI process suffers from the 

following issues. 

� Use of bank of Luenberger observer or Kalman filter in the FDI 

process as compared to our proposed approach the uses bank of SMO 

for the FDI purpose. Luenberger observer can be directly applied to the 

linear systems only and is not a robust approach. In hybrid systems 
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where switching is involved we need a robust approach for the 

accurate of the state estimation. Similarly Kalman filter is directly 

applicable to the linear systems only and is computationally heavier 

than the SMO. Moreover it requires prior information about the system 

noise. Furthermore if we extend it for the nonlinear systems then it 

involves more computations. 

� The existing approaches for the FDI of hybrid systems use a dedicated 

mode observer for the identification of the active mode and a dedicated 

scheme for the estimation of continuous states, while we are adopting 

an approach involving SMOs that simultaneously estimates both states 

through single scheme.  

• Class of the probabilistic FDI approaches for hybrid systems is unable to 

handle the unknown faults (un-modeled behaviors of system) as they use the 

observations history to develop a probability distribution over system states to 

find the information of the present possible states [84]. In the FDI approach 

we are using, new modes are added to handle these unknown faults.  

3.5 Mode identification in hybrid systems 

Mode identification refers to the estimation of active mode from various modes of 

hybrid systems. It is a key step in the identification and monitoring of the hybrid 

systems. The problem of mode identification in the hybrid systems is actively 

explored by the researchers in the last decade or so [6], [7], [8], [30], [31]. The 

authors in [6] used the consistency of Analytical Redundancy Relations (ARR) for the 

mode identification purpose. They adopted HBG model for generating the ARR. HBG 

models the discrete mode changes by using switching junctions. In [7], a discrete 

model based approach is adopted for mode identification and the authors used a timed 

Petri net to focus only the discrete dynamics. This model is used to generate event 

predictions by focusing the signal processing algorithms. In [8] the authors applied 

the model based diagnosis for active mode recognition before state estimation. The 

method was however applied on academic problem only. The identifications of faults 

and its effects on state estimation are also not discussed. [30] used the injection signal 

of SMO for the estimation of active mode of the SLS. The advantage of using SMO is 
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the simultaneous estimation of both the active mode and the continuous state of the 

SLS. Another approach using SMO for mode estimation is presented in [31]. This 

approach features a finite time converging estimate and recovers both the active mode 

and continuous state. Sliding mode technique has been widely used by the control 

industry in different applications. Owing to its simple and robust design properties, 

this technique is equally applicable for linear as well as nonlinear systems with ease. 

This trend is now shifting towards hybrid systems as well to get the benefits of this 

technique for these systems.  

In the present work, we are using mode identification for the FDI of hybrid systems 

by defining healthy and faulty modes. In the hybrid systems represented through 

hybrid automaton model, the interaction between discrete dynamics and continuous 

dynamics is defined through invariants and transition relations. Each mode has an 

associated invariant that contains the conditions the continuous state has to fulfill at 

this mode. Similarly each transition between modes has an associated transition 

relation that describes the conditions on the continuous state under which that 

transition can occur [41]. On the event of fault occurrence, the continuous state of the 

system does not satisfy the invariant related to that particular mode and transition 

occurs from healthy mode to, what we call as faulty mode, under a transition relation. 

So we can estimate and analyze the continuous states of the system to identify the 

healthy or faulty mode. However, in case of hybrid systems, two types of faults can be 

considered: the ones related to the current mode behavior and the others affecting the 

discrete evolution trajectory. To detect this second type of fault, we have to identify 

and monitor modes sequence as well. Instead of using two different schemes for 

detecting these both types of fault, we devise a single scheme for this purpose. This is 

the topic discussed in the next chapters. 

3.6 Summary 

In this chapter, we discussed various terminologies used in the FDI process. We have 

also discussed different types of fault depending upon location, time and modeling. 

Then we discussed various fault diagnosis techniques used for the linear and nonlinear 

systems and later on the state of the art techniques used by the researchers for the FDI 

of hybrid systems are discussed. Process of mode identification and its use in fault 

diagnosis is also described in this chapter.  
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The terminology and concepts presented in this chapter will be useful for the 

upcoming chapters that present the proposed mode identification scheme for the FDI 

of the SLS. 
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CHAPTER 4 

MODE IDENTIFICATION SCHEME FOR THE FDI OF SLS – 
PART I  

In this chapter, we present a mode identification scheme for the FDI of an important 

class of the hybrid systems known as Switched Linear Systems. The presented 

scheme estimates the system states using SMO and analyzes these states in the mode 

identification for the FDI purpose. These modes appear at the input of a Deterministic 

Finite Automata (DFA) as symbols of a language acceptable to it. The DFA process 

this stream of symbols in search of a fault. New faults can be detected and isolated by 

introducing new strings. The proposed algorithm is illustrated through a simulation 

example by applying it to a switched linear model.  

This chapter starts with an introduction to the proposed scheme. Section 4.2 describes 

the proposed FDI scheme. Section 4.3 demonstrates the application of the proposed 

scheme through a simulation example. Section 4.4 concludes the whole work. 

4.1 Introduction 

As described in Chapter 1, any deviation in the expected mode sequence of a hybrid 

system can be used for the fault indication. The standard FDI literature provides 

several approaches for the fault detection and isolation of the dynamical systems, one 

of which is based on the state estimation. For the FDI of the hybrid systems, testing of 

the mode sequence along with the analysis of the continuous states can be used to 

evolve simpler methods. This corresponds to the state estimation based fault detection 

of dynamical systems with some additional work load to develop a generalized fault 

detection scheme for the hybrid systems. The existing FDI techniques for the hybrid 

systems utilize dedicated mode observer for the active mode identification and the 

continuous observer for continuous state estimation that are analyzed for the FDI 

purpose (see Section 3.4). Generally, bank of Kalman filters is used for the estimation 

of the continuous states of the hybrid systems. However, Kalman filter is directly 

applicable only on the linear systems and also requires a prior information about 

process noise. For the nonlinear systems, one has to use EKF that requires further 

calculations in linearizing the system on the operating point. On the other hand, SMO 
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is a nonlinear robust estimation technique that is directly applicable to the nonlinear 

systems without the need of linearization on the operating points. Sliding mode 

technique alters the dynamics of the system by forcing it to a manifold and can be 

used for the robust estimation of states even in the uncertain conditions. Moreover, 

Kalman filter is computationally heavier than SMO as the former requires 

calculations of several matrices during its operation. Due to these features, we 

adopted SMO for the state estimation that will be analyzed for the fault diagnosis 

purposes. Another advantage of the SMO is the vanishing of the requirement of the 

dedicated mode observer by the simultaneous estimation of discrete and continuous 

states as presented in [30]. 

As mentioned in the previous chapter, two types of faults can be considered in the 

hybrid systems. These faults can be diagnosed by monitoring the continuous and 

discrete states separately. However, if these states can be translated in terms of each 

other, then a single technique can be developed for the diagnosis of these both types 

of fault in the hybrid systems. If we assume the mode (whether healthy or faulty) of a 

hybrid system as a symbol of a language, then any possible combination of modes can 

be considered as the string of that language. Therefore, a set F of system faults can be 

defined that contains all those combinations which correspond to the various faults in 

the system. The detection and identification of new faults can be easily 

accommodated by introducing new strings in the fault set F. The set F can be formed 

by identifying signal features [85], defining functions to fulfill specific needs [86] or 

integrating qualitative knowledge of systems in the form of rules or constraints [87]. 

The process of the FDI is thus reduced to the detection of strings and to check 

whether they belong to the set F. The fault detection process can therefore be divided 

into three major steps: 

• Symbol generation 

• Generation of a valid string 

• Analysis of string to identify that it belongs to set F 

The proposed FDI technique exploits the fact that deviation of the mode sequence 

from that of expected can be used for the fault diagnosis. For the analysis of mode 

sequence, a Deterministic Finite Automaton (DFA) design is proposed to be used in 

the FDI of the SLS. The proposed DFA takes the identified modes, represented as the 
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symbol of a language, as the input. The use of the proposed DFA in the FDI of hybrid 

systems enables us to diagnose these both types of fault simultaneously and using the 

same DFA structure. Our proposed algorithm starts with the state estimation of the 

active mode using the SMO. In the later part of the algorithm these estimated states 

are translated into string of symbols and finally the DFA analyze this string to identify 

the fault.  

4.2 The proposed scheme 

Consider a switched linear system with m  subsystems represented as: 
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where nX R∈  represents the state vector, ( ) py t R∈  represents the output vector and 

{ }( ) 1,2,...,j t M m∈ =  determines the active system dynamics among the m  possible 

subsystems. 

It can be observed that for a fault event in the active subsystem of the hybrid system, 

it switches from “healthy mode” to a new mode, named as “faulty mode”. Thus we 

have 
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where { }( ) 1, 2,...,2p t M m m m∈ = + +  determines the faulty system dynamics among 

the m possible faulty subsystems i.e. for each healthy subsystem, a corresponding 

faulty subsystem exists that will be active on the corresponding fault event. Now the 

complete mode set is given as:  

 

cM M M= ∪         (4.3)  
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We assume that each subsystem has only a single fault related to it. Moreover, only 

one subsystem can be faulty at a time and no fault is assumed to occur at switching 

times.  

 

Definition 4.1 

A non-empty set aS  is said to be admissible set if it contains only those mode 

switching sequences that result in the non-faulty behavior of (4.1). 

It is clear from the above definition that 

 

( ) , ( )a a ap t s p t M s S∉ ∀ ∈ ∀ ∈ .     (4.4)  

 

This set can be obtained using system model by generating the expected behavior of 

the system and/or using knowledge about the system operation. 

For the symbol generation, we analyze the states of the system. These states might not 

always be available and so we have to estimate them. Therefore we first describe the 

state estimation process as under. 

States of the SLS given in (4.1) are estimated by adopting the approach of [30]. 

Following assumptions are made for this. 

Assumption 1: The minimum dwell time between any two mode switching is known 

i.e. 1 0k kt t −− ≥ ∆ >  where ∆  is known constant greater than zero and ( 1,2,...)kt k =  

are the switching time instants with 0 0t = . 

Assumption 2: The matrix pairs ( , )iA C , are observable for all 1, 2,...,i m= . 

Consider the state transformation given in [58] such that output appears as part of the 

state vector i.e. 

 

cT x
y

ψ 
=  
 

n p

p

−վ

վ        (4.5)  
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with 

 

( ), and columns span the null space of 
T

n n pC
c c

N
T N C

C
× − 

= ∈ 
 

ℝ  (4.6)  

 

This is a nonsingular transformation and the transformed matrices are defined as: 

 

11 12 11 1

21 22 2

, , [0 ]c c c c p

A A B
T AT T B CT I

A A B
− −   

= = =   
       (4.7)  

 

Using the above transformation on system (4.1), we get: 

 

11, ( ) 12, ( )

21, ( ) 22, ( )

( ) ( ) ( )

( ) ( ) ( )
j t j t

j t j t

t A t A y t

y t A t A y t

ψ ψ
ψ

= +

= +

ɺ

ɺ       (4.8)  

 

where  

 

11, ( ) 12, ( )1
( )

21, ( ) 22, ( )

j t j t

c j t c
j t j t

A A
T A T

A A
−  

=  
  

     (4.9)  

 

The observer stack for (4.8) is defined as: 

 

{ }11,i 12,

21, 22,

ˆ ˆ ˆ( ) ( ) ( ) ( ), 1,2,...,

ˆˆ ˆ( ) ( ) ( ) ( )

i i i i i i

i i i i i i

t A t A y t L t i m

y t A t A y t t

ψ ψ ν

ψ ν

= + + =

= + −

ɺ

ɺ    (4.10)  
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where 

( )n p p
iL − ×∈ℝ are the observer gain matrices and 

p
iν ∈ℝ is the discontinuous injection term that ensures the sliding motion and 

is designed as: 

 

{ }
{ }{ } { }

,

11, 21,

sign( ( )), 1,2,...,

Re , 1,2,..., , 0, 1,2,....,

i y i

j i i i

K e t i m

A L A j n p i m

ν

σ γ γ

= =

+ ≤ − ∀ = − > =
(4.11)  

 

where 

 

{ },
ˆ , 1,2,...,y i i

K

e y y i m

+∈
= −
ℝ

      (4.12)  

 

and 

( ), 1, 2,...,j N j nσ =  for a square matrix N of order n denotes the set of 

corresponding real eigenvalues. 

Assumption 3: The sub-matrices 
21,iA  are not full row rank 1, 2,....,i m∀ = . 

A slightly modified form of Theorem 3 of [30] for identifying the discrete modes is 

given below. 

Theorem 4.1: Let us consider the switched linear system (4.1), fulfilling Assumptions 

1, 2 and 3, and the observer stack (4.10). Let an estimate ,ˆ ( )eq i tν  be available then the 

discrete state estimation 

 

,
ˆ ˆ( ) argmin ( ), ( ) ( ) , 1,2,...,

t

i i i eq i

t

j t R t R t d i m
τ

ν τ τ
−

= = =∫   (4.13)  
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will be such that 

 

 

*

1
ˆ( ) ( ), , k 1,2,...k kj t j t t T t t−= + ≤ ≤ =     (4.14)  

 

where 

, , 21,ˆ ˆ( ) ( ), is the basis matrix of the left null space of for {1,2,..., }T
eq i i eq i i it U t U A i mν ν= =

          ( ), ,
ˆ ˆand ( ) ( ) ( )eq i i eq it K t tν ν ν= −ɺ

 

 

The proof of the observer convergence and above theorem can be seen in [30]. 

The estimated continuous states of the SLS are then discretized by using a discretizer 

function defined as: 

Definition 4.2 

When jth  mode is active, discretizer function f  maps the continuous state of the 

system to a discrete state s belonging to cM  i.e. 

 

( )js f x= .where , n
cs M x∈ ∈ℝ       (4.15)  

 

A simplest function can be considered to be a comparison of the value of x  with 

some pre-defined threshold value. 

 

( ) ,
( )

( ) ,j

j m x t h j M
s f x

j x t h j M

ε
ε

+ − ≥ ∈
= =  − < ∈

.    (4.16)  

 

where h  is a set point and ε  is a small number. 
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In the next step, these symbols are converted in the string to be used at the input of the 

proposed DFA. A DFA is a Finite State Machine (FSM) that accepts or rejects finite 

strings of symbols [88]. FSM is a way of modeling system behavior with finite 

number of states [87]. In addition to its vast applications in the computer technology, 

it was applied for modeling, analysis and fault diagnosis of the hybrid systems by 

both computer science and control community [89], [90], [91], [92]. In the design 

process of the proposed DFA, the states of the DFA are assigned to ensure the validity 

of the input string sequence. A separate state sequence is kept in the DFA to identify 

each possible valid string. In the proposed FDI scheme for the SLS, the string 

acceptance or rejection property of the DFA is exploited for the processing of the 

identified modes in developing a systematic way of monitoring mode sequence for the 

fault detection and isolation. This systematic monitoring of mode sequence enables us 

not only in the immediate detection and isolation of faults but also facilitates in 

finding the involved dynamics (whether continuous or discrete) of the hybrid systems. 

This is achieved by designing a DFA in such a way as its states immediately detect 

and isolate the faulty component in the SLS and at the same time indicates the cause 

of the fault whether it occurred due to the continuous behavior or is reflected in the 

discrete evolution trajectory.  

The proposed DFA is formally defined as a 5-tuple [88], [93]. 

 

( )0, , , , sD Q q Fδ= ∑ .       (4.17)  

 

where 

 

0

Set of states

Set of symbols called alphabet

: Transition function

Initial state

Final states

Q

Q Q

q

F

δ

=
∑ =

×∑ → =
=
=
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We define a regular language F recognized by the DFA. This language consists of the 

strings formed through symbols generated by using (4.16). For a SLS with m 

subsystems we define 2m symbols (m symbols corresponding to the healthy 

subsystems and m symbols corresponding to their faulty behavior). Thus the alphabet 

in this case becomes as: 

 

{ }1,2,...,2 cm M∑ = = .      (4.18)  

 

and 

 

Set of strings over /each string
F=

corresponds to specific fault

∑ 
 
 

.    (4.19)  

 

 

Figure-4.1 General structure of the proposed DFA 

 

Figure-4.1 gives a general representation of the proposed DFA. This figure shows that 

this DFA has three states; 0q  is the start state, 1q  is the state indicating healthy system 

and 2q  is the desired or accepted state indicated by double circle. The transition 

between states occurs depending upon the input string. For a string containing 

symbols corresponding to the healthy system the transition occurs to the state 1q . 

Similarly the presence of any symbol corresponding to the faulty system forces the 
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system to transition to 2q . It should be noted that the real applications can involve 

more states of the DFA than presented in the Figure-4.1 i.e. for each subsystem we 

can have two states; one indicating its healthy behavior and the other is for faulty 

behavior. Also note that the DFA of Figure-4.1 can be useful only in the applications 

involving the detection of faults reflected in the continuous states. However it 

provides the advantage of simplicity and easy implementation.  

 

(all sym
bols upto 2m

 

except 1 and m
+1)

(all sym
bols upto 2m

 

except 2 and m
+2)

(all sym
bols 

upto 2m
 except 

m
 and 2m

)

(all symbols upto 2m 

except 1 and m+1)

(all sym
bols upto 2m

 

except 3 and m
+3)

 

Figure-4.2 General structure of the proposed DFA for the fault detection and isolation 

 

For the detection as well isolation of faults and to find about the nature of the 

dynamics involved in the fault occurrence, we have to add more states in the DFA. 

This is shown in the Figure-4.2 that assumes the healthy mode sequence as 1, 2, …, 

m. Moreover, new faults can be diagnosed by using additional states in the designed 

DFA. The number of states in the DFA of Figure-4.2 is equal to 3 1m+  i.e. 

0 1 3{ , ,..., }mQ q q q= , where 0q  is the start state, 1 2{ , ,..., }mq q q  correspond to the 

healthy modes, 1 2 2{ , ,..., }m m mq q q+ +  correspond to the faulty modes of the hybrid 

system corresponding to the continuous states and 2 1 2 2 3{ , ,..., }m m mq q q+ +  represents the 

faulty modes corresponding to the discrete states. The transition between the DFA 

states is governed by (4.19) and (4.20) given below. 
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Set of strings over /each string represnts a sequence

corresponding to healthy system
H

∑ 
=  
   (4.20)  

 

Stack of 

SMO 

System 

measurements

Continuous states 

estimate

Discretizer 

function

Generated 

symbols

DFA

Faulty 

component

∈String F

∉String F

 

Figure-4.3 Proposed methodology for the FDI of SLS 

 

For healthy operation of the system, the transition occurs only between the DFA states 

corresponding to the healthy modes and is based upon (4.20). This path is represented 

by the dotted arrows in the Figure-4.2. The transition among healthy and faulty states 

is governed by (4.19). The occurrence of any symbol in a sequence corresponding to 

the faulty mode results in the corresponding “accepted state” of the DFA represented 
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by the double circle in the Figure-4.2, thus detecting and isolating this fault. The 

switching from healthy modes to the faulty modes representing faults reflecting in 

discrete states can be described in the similar way. This transition, however, can also 

occur in the presence of a symbol representing the healthy mode of the system 

depending upon its sequence. 

The complete FDI scheme is summarized in the Figure-4.3. In the next Section, a 

simulation example is presented to explain the above presented FDI scheme. 

4.3 Simulation example 

This Section gives the simulation example to illustrate the effectiveness of our 

proposed scheme. For this purpose, the switched linear system given in [30] is taken 

as a benchmark system and is described as below: 

 

( )( ) ( )

( ) ( )
j tx t A x t

y t Cx t

=

=

ɺ

       (4.21)  

 

This system has two modes i.e. 2m =  , thus ( ) {1, 2}j t ∈ with ( )j tA  as given below 

 

1 2

0 0.6 1 0 0.3 0.8

0.5 0.8 1 , 1 0.4 0.8

0.1 0.4 0.7 1 0.6 0.3

A A

− −   
   = − − = − −   
   − −   

  (4.22)  

 

so (4.3) becomes as: 

 

{1,2}, {3,4}and {1,2,3,4}cM M M= = =     (4.23)  

 

Output matrix C is given as: 
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1 0 0

0 1 0
C

 
=  
         (4.24)  

 

The initial conditions are taken as [ ]0 3 1 6
T

x = − − . The system starts with mode 
1A  

and the switching times are defined as { }8,14,20,24kt = . To transform the system in 

new coordinates, (4.6) becomes as 

 

0 0 1

1 0 0

0 1 0
cT

 
 =  
  

        (4.25)  

 

So the system in new coordinates becomes as 

 

11, ( ) 12, ( )

21, ( ) 22, ( )

( ) ( )

( ) ( )
j t j t

j t j t

A At t

y t A A y t

ψ ψ    
=     
     

ɺ

ɺ      (4.26)  

 

with 

11,1 12,1 21,1 22,1

0 0.6
0.7, [0.1 0.4], [ 1 1] ,

0.5 0.8
TA A A A

 
= − = = − =  − −   (4.27)  

 

and 

 

11,2 12,2 21,2 22,2

0 0.3
0.3, [1 0.6], [ 0.8 0.8] ,

1 0.4
TA A A A

 
= − = = − =  − −   (4.28)  

 

Figure-4.4 presents the simulation results of the nominal system described by (4.27) 

and (4.28). The observer stack is defined according to (4.10) and 
iL  and K  are 
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chosen as defined in (4.11) and (4.12). The sliding surface is designed in terms of 

tracking error and corresponds to the subspace where output error is zero: 

 

{ }, ˆ 0, 1, 2,...,y i ie y y i m= − = =      (4.29)  

 

The residuals for the mode identification are generated according to the (4.13) and are 

shown in this figure. The estimated active modes are also plotted in this figure that 

provides the information of the active mode on the corresponding switching times. 

The estimated state 3x  is shown in the Figure-4.5. 

 

 

Figure-4.4 Residuals for mode identification and estimated modes 
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Figure-4.5 Actual vs estimated state 

 

Introducing a fault in the first subsystem of (4.21), at time 4 to 7t =  seconds as 

12,1 12,1(1 ) , 0.5a aδ δ= − = , we get the following 

 

11, ( ) 12, ( )

21, ( ) 22, ( )

( ) ( )

( ) ( )
f p t p t f

f fp t p t

t A A t

y t y tA A

ψ ψ    
=     

        

ɺ

ɺ      (4.30)  

 

with 

 

11,1 12,1 21,1 22,1

0 0.3
0.7, [0.1 0.4], [ 1 1] ,

0.5 0.8
TA A A A

 
= − = = − =  − −   (4.31)  

 

The faulty system is simulated and the residuals for the mode identification and the 

estimated modes are shown in the Figure-4.6. The error between desired state for the 
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nominal system and the same state for the faulty system is shown in the Figure-4.7, 

from which we find using (4.16) that the system switches into new mode (faulty 

mode) m=3. Using Figure-4.2, the DFA for this example can be designed as presented 

in the Figure-4.8. This DFA has 3 1 7m+ =  states. The alphabet ∑  becomes in this 

case as: 

 

{ }1,2,3,4cM∑ = =        (4.32)  

 

The DFA states 1 2,q q  represent the healthy operation of the system, the states 3 4,q q  

represent the fault in the continuous states of the system and the states 5 6,q q  

correspond to the modes representing the faults reflected in the discrete states of the 

system. In the fault case mentioned above, the DFA of the Figure-4.8 switches to the 

state 3q  thus detecting and isolating the fault. 

 

Figure-4.6 Residuals for mode identification and estimated modes for faulty system 
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Figure-4.7 Error between desired state and faulty system state 
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Figure-4.8 DFA for simulation example 
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Next consider that the fault in the system (4.21) that are modelled by an incorrect 

order of discrete modes. In this case the system does not follow the desired switching 

sequence mentioned in the start of this Section. This fault is introduced by vanishing 

the switching at t=8 sec. In real world systems such faults can occur when the system 

stuck in a particular mode e.g. due to the jamming of a valve etc. The residuals for the 

mode identification and the estimated modes for the presented case are shown in the 

Figure-4.9 from which it can be seen that the switching at time instant t=8 sec is 

missing. Note that this type of fault too can cause the (4.16) to generate a symbol that 

can be used to indicate the fault due to the continuous dynamics of the hybrid system, 

but our designed DFA recognizes this case also and switches to the correct state even 

in these cases (see Figure-4.8). For the present case, the DFA of Figure-4.8 switches 

from 1q  to 6q  , thus detecting and isolating the fault.  

 

 

Figure-4.9 Residuals for mode identification and estimated modes for faulty system 
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A similar robust state estimation based fault diagnosis technique is presented in [78] 

for the uncertain hybrid systems where faults are modelled in terms of discrete modes. 

As compared to our proposed technique, the approach presented in [78] requires a 

dedicated observer scheme for mode estimation and a separate observer scheme for 

continuous estimation. These observers consist of bank of Unknown Input Extended 

Kalman Filter (UIEKF). As mentioned earlier Kalman filter is a recursive technique 

and requires more computations in the estimation process as compared to the SMO 

that is a computationally economical for online implementations. Moreover in [78] 

robustness to the disturbances and model uncertainties is achieved through decoupling 

technique thus further increasing the computational complexity. In contrast to this, 

SMO used in our proposed scheme is inherently a robust technique and does not 

require additional computations for achieving robustness to disturbances and model 

uncertainties. Furthermore the time taken in the mode estimation process by the 

approach of [78] is quite high as compared to the SMO approach adopted by us that 

provides the mode estimate almost instantly (see Figure-4.4, Figure-4.5 and Figure-

4.6). Another issue is that, in [78] fault detection is performed only for the continuous 

faults of the hybrid system and discrete faults are not addressed while in our proposed 

FDI technique we used the estimated modes in diagnosing both the discrete and 

continuous faults of the system using the same scheme.  

4.4 Summary 

This chapter presented a FDI scheme for an important class of the hybrid systems 

known as Switched Linear Systems. The presented scheme estimates the system states 

using SMO and performs the mode identification for FDI based on the analysis of 

these states. A DFA is designed that analyze the mode sequence for the FDI purpose. 

These identified modes, represented as symbols of a language acceptable to the 

proposed DFA, acts as the DFA input. The proposed FDI scheme directly detects and 

identifies the faults in the SLS and also indicates the involved dynamics in the fault 

process. New faults can be easily diagnosed by adding the new strings to a fault set F 

and using additional states in the DFA.  

The proposed technique is successfully validated through simulations and the results 

are presented. Being a model-based FDI technique the proposed scheme is simple and 
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easy to implement for the practical purposes. Moreover the use of SMO ensures the 

robustness in the state estimation process. 
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CHAPTER 5 

MODE IDENTIFICATION SCHEME FOR THE FDI OF SLS – 
PART II  

In this chapter, we enhance the mode identification scheme for the FDI of the SLS 

presented in the previous chapter. The presented scheme removes the need for state 

estimation and analysis used in the symbol generation process but at the cost of 

additional SMO stacks. These symbols representing system modes appear at the input 

of a DFA that processes them in search of a fault. New faults can be detected and 

isolated by introducing new strings. The proposed algorithm is applied to a switched 

linear model of the SI engine for the misfire fault detection and the results for 

simulations and experimental data are presented.  

This chapter starts with an introduction to the proposed scheme. Section 5.2 describes 

the proposed FDI scheme. Section 5.3 demonstrates the application of the proposed 

scheme on the SI engine and Section 5.4 concludes the whole work. 

5.1 Introduction 

The FDI approach presented in the previous chapter estimates the system states and 

use them in the mode identification process that are analyzed by the DFA for the fault 

detection and isolation. The use of the SMO in the state estimation process provides 

several advantages over the approaches using Kalman filter, as mentioned in the 

previous chapter. However, the proposed approach has a limitation in the FDI process 

for the switched systems having identical subsystems. An example of such systems is 

the SI engine that consists of four identical cylinders that actuate sequentially on the 

corresponding events. From the FDI perspective, in this chapter a new mode 

identification scheme is proposed for such systems. The proposed scheme uses 

additional SMO stacks, each one of which represents a mode and captures a specific 

fault reflected in the continuous dynamics. This approach also simplifies the symbol 

generation process of the previous chapter by removing the need for state estimation 

and analysis process. Moreover, the number of the DFA states is also reduced as 

compared to the approach presented in the previous chapter. 
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The proposed FDI technique monitors the mode sequence in the FDI process. A DFA 

is designed for the analysis of mode sequences used in the detection and isolation of 

fault. The DFA takes the identified modes as the input, represented as the symbol of a 

language acceptable to that DFA. The proposed algorithm starts with the formation of 

the SMO stacks and used these to generate the symbols for the DFA.  

5.2 The proposed scheme 

Consider a switched linear system with m  identical subsystems represented as: 

 

( )( ) ( )

( ) ( )
j tx t A x t

y t Cx t

=

=

ɺ

       (5.1)  

 

where ( ) nx t ∈ℝ  represents the state vector, ( ) py t ∈ℝ  represents the output vector, 

and { }( ) 1,2,...,j t M m∈ =  determines the active system dynamics among the m  

possible subsystems. 

In case of healthy system, all subsystems of the SLS (5.1) are working in the normal 

way and a system behavior can be obtained using nominal system model and/or 

knowledge about system operation. In case of fault, the system behavior deviates from 

that of the nominal one and can be generated for various faults using system model 

and knowledge in a similar way. The SMO stacks can be designed to track these 

behaviors of the SLS by taking each faulty situation as a new switched system. This 

approach also takes care of the SLS with identical, out of phase subsystems as will be 

shown in the Section 5.3. 

For the present case, we assume only a single fault is related to a subsystem. 

Moreover, only one subsystem can be faulty at a time and no fault is assumed to occur 

at switching times.  

The faulty systems are represented as: 
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{ }

{ }

{ }

( )

( )

( )

( ) ( )

( ) ( ), ( ) 1,2,3,...,

( ) ( )

( ) ( ), ( ) 1, 2,3,...,

( ) ( )

( ) ( ), ( ) 1,2,..., 1,2

f t f

f f

f t f

f f

f t f

f f

x t A x t

y t Cx t t m m

x t A x t

y t Cx t t m m

x t A x t

y t Cx t t m m

λ

λ

λ

λ

λ

λ

=

= ∈ +

=

= ∈ +

=

= ∈ −

ɺ

ɺ

⋮

⋮

ɺ

    (5.2)  

 

where { }1, 2,...,2M m m m= + +  is an index set for m possible faulty subsystems such 

that:  

 

cM M M= ∪         (5.3)  

 

For the symbol generation, we design stacks of SMOs for each of the system given in 

(5.2). The number of stacks used for the proposed scheme are 1m+ ; one stack for the 

nominal system (5.1) and m stacks for the systems given in (5.2). So transforming the 

(5.1) in the new coordinates as in (4.8) and designing first stack of SMOs, we get the 

following: 

 

11, ( ) 12, ( )

21, ( ) 22, ( )

( ) ( ) ( )

( ) ( ) ( )
t t

t t

t A t A y t

y t A t A y t

λ λ

λ λ

ψ ψ
ψ

= +

= +

ɺ

ɺ      (5.4) 

  

with  
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cT x
y

ψ 
= 

 
        (5.5)  

 

The observer stack for (5.4) is defined as: 

 

11, 12,

21, 22,

ˆ ˆ ˆ( ) ( ) ( ) ( ), {1,2,..., }

ˆˆ ˆ( ) ( ) ( ) ( )

i i i i i i i

i i i i i i

t A t A y t L t i m

y t A t A y t t

ψ ψ ν

ψ ν

= + + =

= + −

ɺ

ɺ    (5.6)  

 

where 

( ) andn p p p
i iL ν− ×∈ ∈ℝ ℝ  are defined as in Section 4.2.  

Similarly, the systems in (5.2) are transformed in the new coordinates and the 

observer stacks are defined as: 

 

{ }
{ }

{ }

11, 12,

21, 22,

11, 12,

ˆ ˆ ˆ( ) ( ) ( ) ( ), 1,2,..., , (based on system 5.2 with

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) 1,2,..., )

ˆ ˆ ˆ( ) ( ) ( ) ( ), 1,2,..., , (based on syste

i i i i i i i

i i i i i i

i i i i i i i

t A t A y t L t i m

y t A t A y t t t m m

t A t A y t L t i m

ψ ψ ν

ψ ν λ

ψ ψ ν

= + + =

= + − ∈ +

= + + =

ɺ

ɺ

⋮

⋮

ɺ

{ }21, 22,

m 5.2 with

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) 1,2,..., 1,2 )i i i i i iy t A t A y t t t m mψ ν λ= + − ∈ −ɺ

 

(5.7) 

 

These stacks are used to track the output of the system for generating the symbols 

representing the system modes, and are indexed using an index set as

{ }1 2 1( ) , ,..., ms t S s s s+∈ = . The process of symbol generation using these stacks is 

performed as:  

 

ˆ( ) , arg ( ) 0, ( ) ( ) ( ), {1,2,..., 1}p l l ls t s p e t e t y t y t l m= = → = − = +  (5.8)  
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For the cases when { }( ) 0 1,2,..., 1le t l m≠ ∀ = + , the p  is replaced with 2m+ . 

In the next step, a DFA similar to that of Chapter 4 is designed to develop a 

systematic way of monitoring mode sequence for the fault detection and isolation. 

This designed DFA, however, provides the advantage of simplicity for involving less 

number of states. 

A regular language F, recognized by the designed DFA, is defined. This language 

consists of the strings formed through symbols generated by u g (5.8). For a SLS with 

m subsystems we define 2m+  symbols (m symbols corresponding to (5.7), one 

symbol corresponding to the healthy operation and one corresponding to the faulty 

operation reflected as unknown fault). Thus the alphabet ∑  in this case becomes as: 

 

1 2 2{ , ,..., }ms s s +∑ = .       (5.9)  

and 

 

Set of strings over /each string
F=

corresponds to specific fault

∑ 
 
 

.    (5.10)  

 

Figure-5.1 gives a general representation of the proposed DFA. This figure shows that 

this DFA has 3m+  states; 0q  is the start state, 1q  is the state indicating healthy 

system, 2 1,..., ( states)mq q m+  represent desired or accepted states (indicated by double 

circle in the Figure-5.1) and corresponds to the faults reflected in the continuous states 

of the system and 2mq +  is the state indicating unknown faults. The transition between 

states occurs depending upon the input string. For a string containing symbols 

corresponding to the healthy system the transition occurs to the state 1q . Similarly the 

presence of any symbol corresponding to the faulty system forces the system to 

transfer to one of the 2 2,..., mq q + . The detailed interpretation of Figure-5.1 can be done 

as already given in Section 4.2. 
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Figure-5.2 gives the summary of the complete FDI technique. The proposed FDI 

scheme is validated both through simulations and the experimental results using 

switched linear model of a SI engine. The next Section presents the application of the 

proposed FDI scheme on the hybrid model of the SI engine and results are presented 

in the later Section. 

 

 

 

 

Figure-5.1 General structure of the proposed DFA 
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∈String F
∉String F

 

 

Figure-5.2 Proposed methodology for the FDI of SLS 

 

5.3 An application example 

This Section describes the application of the proposed FDI scheme on a real world 

system with identical subsystems. The proposed mode identification scheme for the 

FDI of the SLS is applied on a SI engine modeled as a switched linear system. The 

scheme is successfully applied to detect the misfire fault in the SI engine. This engine 

contains four cylinders coupled together through a single shaft to transmit engine 

power to the wheels. These cylinders are represented as subsystems of a switched 

linear engine model. Thus here 

 

{1,2,3,4}M =         (5.11)  
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and  

 

{5,6,7,8}M =        (5.12)  

 

so (5.3) becomes 

 

{1,2,...,8}cM =        (5.13)  

 

Under ideal conditions all subsystems are assumed to be identical and are working in 

fault-free mode. A predefined correct ignition sequence in cylinders ensures the 

healthy operation of the SI engine. The sequences other than this predefined sequence 

will indicate faulty engine operation. In the current demonstration, misfire fault is 

introduced in the engine to produce the faulty engine operation. This disturbs the 

correct ignition sequence as the ignition of misfiring cylinder is missing and no power 

is generated in the misfiring cylinder. 

The model of the SI engine used here for the observer design is the switched linear 

model proposed in [94] and is described in the following sub-section. 

5.3.1 Hybrid model of SI engine 

Before explaining the hybrid model of the SI engine, a brief description of the engine 

ignition cycle is presented to introduce the terminology used in the sequel. SI engines 

are based on the Otto cycle that takes four independent strokes of the piston for 

completion. These are given below: 

• Intake stroke 

• Compression Stroke 

• Power Stroke 

• Exhaust Stroke 

The intake stroke starts with the piston at Top Dead Center (TDC). The input port 

opens and the output port remains closed. Air from intake manifold is sucked in the 

cylinder by piston motion from TDC to Bottom Dead Center (BDC). 
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θ

 

Figure-5.3 Engine cylinder [95] 

 

 

Figure-5.4 SI engine ignition cycle [96] 

 

In the compression stroke the piston moves from BDC to TDC. Both the input and 

output ports are closed. This is an isentropic compression and the temperature inside 

cylinder rises due to the compressive heating. 

In the power stroke the heat is added to the system. The process is assumed to be 

constant volume process but in actual engine heat addition starts when the piston 

reaches just before the TDC and ends when it is just after TDC. The temperature of 
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the air inside cylinder rises to very high values. This also causes high pressure in the 

cylinder that result in piston motion from TDC to BDC. The energy added in this 

stroke is divided in three parts; one part is utilized in useful work in moving the piston 

from TDC to BDC, second part is transferred to the coolant and the third part resides 

in the cylinder in the form of hot gases. 

In the exhaust stroke the remaining gases in the cylinder after power stroke are 

exhausted to the environment through engine exhaust. The output port of the cylinder 

opens and piston moves from BDC to TDC resulting in the sweeping out of exhaust 

gases. 

Figure-5.3 gives the engine cylinder along with the relevant terms used in the ignition 

cycle and Figure-5.4 gives the four strokes described above with the corresponding 

piston position in these strokes. 

The SI engine hybrid model used in this work represents a four cylinder engine. It is a 

switched linear hybrid model in which each cylinder of the SI engine is considered as 

a subsystem. These cylinders activate one by one on their respective events i.e. only 

one of the cylinder will be in the power stroke at a particular time instant. The 

remaining cylinders will be in one of the intake, compression and exhaust stroke, 

depending upon the ignition cycle. In this model, just power stroke of the cylinders is 

considered. On completion of the power stroke of one cylinder, it switches to the next 

cylinder. This switching is state dependent switching and is a deterministic process.  

The hybrid model of the SI engine captures the steady state behavior of the engine in 

which only small fluctuations exists in the crankshaft speed. Moreover, due to the 

frequent switching between subsystems, the model validation time is very less and 

thus each subsystem can be assumed to be represented as linear time invariant model. 

For overall system, the output is the combined effect of all the subsystems. 

Mathematically, the hybrid model of the SI engine is defined as a 5-tuple model 

, , , ,eXµ φ< Γ ∑ >  in [94]. For our proposed FDI technique, we modify this model to 

include fault states as well. 

 

cM M Mµ= = ∪        (5.14)  
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where terms are already explained in (5.11) to (5.13)  

2X ∈ℝ  represents the states of the continuous subsystems. In the present case each 

subsystem contains two states, crankshaft velocity and crankshaft acceleration. 

{ }GΓ =  is a singleton for a maximally balanced engine, where G represents 

mathematical model of all subsystems as state space model. The state space models 

for the subsystems are derived on the first principle basis as in [94] that proposed a 

second order system for the subsystems of the hybrid model of an SI engine. The 

elements of the set Г contain the equivalent state space representation of the model 

defined as: 

 

lx A x Bu

y Cx

= +
=
ɺ

.        (5.15)  

 

where 

2 2 2 1 1 2, , , , {1,2,3,4}u A B C l× × ×∈ ∈ ∈ ∈ ∈ℝ ℝ ℝ ℝ  

:e µ µ∑ →  represents the generator function used to define the next transition model.  

: X u Xφ µΓ × × × →  defines the initial condition for the next subsystem after a 

switching event, where u represents input to the subsystem. The last condition that 

provides the initial condition to the next subsystem ensures the continuity of response. 

5.3.2 Application on SI engine 

Each subsystem in SI model described above is represented as second order system 

given below. 

 

1, 2

2, 2, 2, 1, 1, , {1,2,3,4}
j

j j j j j jk k aP j

ν ν
ν ν ν

=

= − − + ∈

ɺ

ɺ
.    (5.16) 
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For application of the SMO stack, the observability of the pair ( , ) for i 1,2,3,4iA C =  

can be seen as  

 

1

1 0
rank( ) 2,  where 

0 1
i

i i

n
i

C

CA
O O

CA −

 
 

  = = =     
 
  

⋮     (5.17)  

 

Using transformation (4.6), (5.16) is transformed in new coordinates as 

 

2, 1,( ) ( ) ( )

( ) ( )
j j jt k t k y t aP

y t t

ψ ψ
ψ

= − − +

=

ɺ

ɺ
.      (5.18)  

 

with 

 

0 1

1 0cT
 

=  
 

.         (5.19)  

 

1m+  observer stacks defined in (5.6) and (5.7) becomes as 

{ }

{ }

2, 1,

11, 12,

21, 22,

ˆ ˆ ˆ( ) ( ) ( ) ( ), 1,2,...,

ˆˆ ( ) ( ) (t)

ˆ ˆ ˆ( ) ( ) ( ) ( ), 1,2,...,

ˆˆ ˆ( ) ( ) ( ) (t), (based  on system with ( ) { 1,2

i i i i i i i i

i i i

i i i i i i i i

i i i i i i

t k t k y t aP L t i m

y t t

t A t A y t aP L t i m

y t A t A y t t m

ψ ψ ν

ψ ν

ψ ψ ν

ψ ν λ

= − − + + =

= −

= + + + =

= + − ∈ +

ɺ

ɺ

ɺ

ɺ

{ }11, 12,

21, 22,

,..., })

                                   

                                   

ˆ ˆ ˆ( ) ( ) ( ) ( ), 1,2,...,

ˆˆ ˆ( ) ( ) ( ) (t), (based  on system with ( )

i i i i i i i i

i i i i i i

m

t A t A y t aP L t i m

y t A t A y t t

ψ ψ ν

ψ ν λ

= + + + =

= + − ∈

⋮

⋮

ɺ

ɺ {1,2,..., 1,2 })m m−
.           (5.20)  
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Using (5.9), the alphabet for SI engine is defined as 

 

1 2 6{ , ,..., }s s s∑ = .        (5.21)  

 

The SMO stacks are then used for the mode identification (see Section 5.3.3 and 

5.3.4), which are represented as symbols of the language acceptable to the DFA. The 

DFA designed for this particular example is shown in Figure-5.5. The transition 

between the DFA states takes place based on the symbols present in the DFA input 

string and can be interpreted in the same way as in the previous chapter. We can see 

that this DFA has 7 states with 0q  as the start state. The presence of the system in any 

of states 2 3 4 5, , ,q q q q  indicates the fault reflected in the continuous states of the 

engine. The unknown faults can be given by the system presence in the states 6q .  

 

 

 

Figure-5.5 DFA for the application example 
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5.3.3 Simulation results  

In this Section, we describe the simulation results for both the healthy and faulty 

cases. The switched linear model of SI is parameterized as in [94] and then it is 

simulated in the first step for fault-free case. Later on, the process is repeated with the 

misfire introduced in the engine model. 

The crankshaft speed data for the healthy engine is shown in the Figure-5.6. In the 

first stage, this speed profile is provided to the SMO stacks as inputs. The resulting 

tracking errors are shown in the Figure-5.7. Using (5.8), it can be clearly seen from 

Figure-5.7 that the generated symbol is 1s  in this case that results in the 1q  state of the 

DFA of the Figure-5.5, thus indicating healthy behaviour of the system. 

 

 

Figure-5.6 Crankshaft speed for fault-free case 
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Figure-5.7 SMO stacks error plots for fault-free case 

 

Figure-5.8 presents the crankshaft speed data for the misfire fault in the SI engine. 

This speed profile is provided to the SMO stacks as input and the resulting error plots 

are shown in the Figure-5.9, from which it can be seen that the generated symbol is 2s  

that results in the 2q  of the DFA of the Figure-5.5, thus detecting and isolating the 

fault.  

From these simulation results, the effectiveness of the proposed scheme is evident in 

detection and isolation of faults in the SLSs. The next Section gives the experimental 

validation of these results. 
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Figure-5.8 Crankshaft speed for misfire fault in cylinder 1 

 

 

Figure-5.9 SMO stacks error plots for misfire in first cylinder 
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5.3.4 Experimental results  

This Section gives the description of the experimental setup along with the results 

used to validate the proposed FDI scheme. First of all we describe the experimental 

set up used for the work presented in this dissertation. Data for the validation of the 

proposed scheme is acquired from an engine rig of 1.3L production vehicle compliant 

with the On-Board Diagnostic II (OBD-II). This is shown in Figure-5.10. This engine 

is equipped with the Electronic Control Unit (ECU) compliant to the OBD-II 

standards.  

We can acquire data from this experimental setup using either of the following: 

• Using the National Instrument (NI) data acquisition card connected directly to 

the vehicle sensors. LabVIEW is the software used in this process. (Figure-

5.11) 

• By using the OBD-II connector provided in the vehicle. In this method an 

OBD-II cable is used to connect an OBD-II scanner to the OBD-II connector 

to acquire the sensors data. (Figure-5.12) 

 

 

Figure-5.10 Engine rig of 1.3 L production vehicle 
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Figure-5.11 NI card used for data acquisition 

 

 

Figure-5.12 Data acquisition through OBD-II connector 

 

During the experiments, misfire fault is introduced by removing one spark circuit. 

(Figure-5.13) 
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Figure-5.13 Misfire fault production 

 

The experimental rig is also equipped with wheels and brakes. During the data 

acquisition process, the wheels of the rig were raised in the air to stop its movement 

and brakes were used to apply load on the engine. The crankshaft speed is kept close 

to 1000 rpm by the manual control of throttle and brakes. This manual control of the 

speed and load also added disturbances in the acquired data. Moreover, the working 

environment of the engine is always noisy due to the factors like EMI interference of 

igniter coil, combustion process in engine cylinders and engine vibrations etc. These 

all factors also effect the data acquisition from the engine. This noisy data was 

supplied to the proposed algorithm to ascertain its ruggedness for the practical noisy 

signals. 

Data from the crankshaft position sensor is acquired using data acquisition card from 

the National Instrument Inc. This data was processed to obtain the crankshaft speed 

signal that is applied to the observer after appropriate filtering using a low pass filter. 

In the next stage, misfire fault is introduced in the 3rd cylinder of the SI engine by 

inhibiting the igniter signal to the engine. The same process is repeated again and the 

speed data is acquired for the misfire case.  

Figure-5.14 shows the filtered signals of the speed obtained from the experimental 

measurements for the fault-free case. The resulting tracking errors are shown in the 
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Figure-5.15 indicating that the generated symbol is 1s  in this case, which results in the 

1q  state of the DFA of the Figure-5.5. 

 

 

Figure-5.14 Crankshaft speed measurement for fault-free case 

 

Figure-5.16 presents the speed signal with the misfire fault in the third cylinder. 

Figure-5.17 presents the resulting tracking errors of the SMO stacks. The analysis of 

these error plots using (5.8) implies that the generated symbol in this case is 4s , that 

results in the 4q  state of the DFA of the Figure-5.5, thus detecting and isolating the 

fault. 
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Figure-5.15 SMO stacks error plots for fault-free case 

 

  

Figure-5.16 Crankshaft speed measurement for misfire fault in cylinder 3 
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Figure-5.17 SMO stacks error plots for misfire in cylinder 3 
 

The representation of a highly nonlinear SI engine using a switched linear hybrid 

model provides quite simpler tracking technique using the SMO. The model also 

provides an easy way for the association of the modes with the complex non-linear 

system and the proposed technique demonstrates the application how the mode 

identification and the allowable mode sequence can be used for the fault diagnosis 

applications. 

5.4 Summary 

This chapter presented a mode identifications scheme for the FDI of the hybrid 

systems that can be equally applicable to the SLS with identical subsystems as well. 

The proposed scheme also eliminates the need of state estimation and analysis steps. 

Moreover, the designed DFA also contains fewer states as compared to the previous 

approach. 
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highly nonlinear SI engine as switched linear system allows the development of the 

simple FDI technique based on the definition and identification of the system modes. 
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CHAPTER 6 

MODE IDENTIFICATION SCHEME FOR THE MISFIRE 
DETECTION IN SI ENGINE  

This chapter demonstrates the use of the mode sequence monitoring in the FDI 

process by detecting and isolating the misfire fault in the SI engine. The work 

presented in this chapter is published in [26]. The engine setup available for the 

experimental purposes is a four cylinder 1.3L spark ignition engine. Using the hybrid 

model of the SI engine, a hybrid observer is defined where discrete event is identified 

and then the continuous model of the subsystem is selected for the design of observer 

using the sliding mode technique. The observer output is finally used for the mode 

identification and fault diagnosis. 

This chapter starts with the introduction of the misfire fault in the SI engine. Section 

6.2 gives the description of the hybrid model of the SI engine used in this work. 

Section 6.3 gives the detail of the proposed mode identification scheme for the FDI of 

the SI engine. Section 6.4 describes the simulation results and Section 6.5 is about the 

experimental results. Section 6.6 gives a comparison of the existing misfire detection 

approaches and the proposed approach. Section 6.7 gives a summary of this chapter. 

6.1 Introduction 

In the SI engine, the ignition of the air-fuel mixture in the engine cylinder produces 

energy used in generating torque. The combustion process involved in this process is 

initiated through a spark generated by a spark plug. In case of misfire fault, this 

combustion process is either missing or cannot be performed completely in the 

corresponding stroke of the engine ignition cycle. Engine misfire can be due to 

several reasons like missing spark, poor fuel injection, poor fuel quality, incorrect air-

fuel mixture etc. Misfire fault is formally defined as fault due to missing spark, air 

leakage from cylinder or fault in the fuel injection [97]. There are several 

disadvantages related to this fault, few of them are listed below.  

• Environmental pollution caused by exhausting unburned fuel 

• Unable to produce required torque 
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• Damage to the catalytic convertor 

• Bad fuel economy 

• Low millage 

• Uncomfortable travelling etc 

The misfire problem was given a lot of attention by the scientific community in the 

past but new techniques are still being developed for the solution of this issue [94], 

[98], [99], [100], [101], [102], [103], [104], [105], [106], [107]. Variety of methods 

was adopted for the detection of the misfire fault including model-based techniques, 

data based techniques and a combination of both model-based and data based methods 

[94]. Model-based methods utilize the SI engine model for developing the misfire 

detection algorithm and can be easily implemented online as discussed earlier. The 

most frequently used model of the SI engine for parameter and state estimation using 

observer design is the Mean Value Engine Model (MVEM), as indicated by the 

literature [20], [21], [22], [23], [24]. This model is simple and less complex due to its 

averaging nature and thus is suitable for many control applications. However, the 

details skipped by the MVEM contain information useful for the fault diagnosis [12], 

[94]. Recently, hybrid models capturing more details of the SI engine are evolving for 

the fault diagnosis applications [12], [94]. These models indicate the potential of the 

hybrid model for the fault diagnosis applications that lead to the significant 

simplification due to the replacement of highly nonlinear engine dynamics with linear 

model for the estimation of states in all different modes.  

In the proposed misfire detection scheme, we applied SMO on the engine hybrid 

model for the state estimation. These estimated state variables are analyzed for 

identifying the system modes for the FDI purpose. The identified modes are then 

monitored to detect the misfire fault in the SI engine. The presented misfire fault 

detection technique is simple and easy to implement online as it is computationally 

cheap involving only linear models, and being model-based technique it gives the 

physical insight of the origin of the misfire fault. Moreover the robust state estimates 

are provided by the SMO even in the presence of model uncertainties.  

The next Section gives the details of the hybrid model used for the development of the 

proposed FDI scheme. 
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6.2 Hybrid model of SI engine 

The hybrid model of the SI engine used in this thesis is adopted from [94] and is 

already discussed in Section 5.3.1. In this Section, this model is briefly discussed 

along with the modifications made in it for the present work.  

Mathematically, the hybrid model of SI engine is defined as a 5-tuple model 

, , , ,eXµ φ< Γ ∑ >  in [94]. For our proposed FDI technique, we modify this model to 

include fault states as well. 

 

H Fµ µ µΩ = = ∪ .        (6.1)  

 

where { }1 2 3 4, , ,Hµ µ µ µ µ=  represents the discrete modes corresponding to the four 

subsystems of the healthy engine and { }5 6 7 8, , ,Fµ µ µ µ µ=  represents the discrete 

modes corresponding to the four subsystems of the faulty engine and Ω  is the 

complete mode set. 

2X ∈ℝ  represents the states of the continuous subsystems. In the present case each 

subsystem contains two states, crankshaft velocity and crankshaft acceleration. 

{ }GΓ =  is a singleton for a maximally balanced engine, where G represents 

mathematical model of all subsystems as state space model. The state space models 

for the subsystems are derived on the first principle basis as in [94]. The referenced 

model proposed a second order system for the subsystems of the hybrid model of an 

SI engine. The elements of the set Г contain the equivalent state space representation 

of the model defined as: 

 

lx A x Bu

y Cx

= +
=
ɺ

.        (6.2)  

 

where 

2 2 2 1 1 2, , , , {1,2,3,4}u A B C l× × ×∈ ∈ ∈ ∈ ∈ℝ ℝ ℝ ℝ  
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:e µ µ∑ →  represents the generator function used to define the next transition model. 

In SI engine, during ignition cycle there is one to one correspondence between piston 

position and crankshaft position, so switching is defined in terms of the instantaneous 

shaft position 1θ  as: 

 

1 1

2 1

3 1

4 1

4 (4 1)

(4 1) (4 2)
 

(4 2) (4 3)

(4 3) (4 4)

H

n dt n

n dt n
For

n dt n

n dt n

µ π θ π

µ π θ π
µ

µ π θ π

µ π θ π
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where n=0,1,2,3….  

During each stroke of the SI engine ignition cycle the crankshaft rotates by 180˚. One 

whole ignition cycle of the SI engine completes by an angular movement of 720˚ i.e. 

by two complete revolutions of crankshaft (see Figure-5.4 of Chapter 5). At a given 

time instant, the nature of combustion stroke in each cylinder of the SI engine is 

different from others i.e. if one cylinder is in intake stoke at a particular time, no other 

cylinder can be in this stroke at that time and they might be in one of the compression, 

power or exhaust stroke at that time. 

: X u Xφ µΓ × × × →  defines the initial condition for the next subsystem after a 

switching event, where u represents input to the subsystem. The last condition that 

provides the initial condition to the next subsystem ensures the continuity of response. 

In the next Section, the proposed FDI scheme for the misfire detection is given.  

 



 

95 
 

6.3 The proposed scheme 

The proposed FDI technique exploits the fact that deviation of mode sequence from 

that of expected can be used for the fault diagnosis [12]. We start with some 

definitions that will be used in this chapter. 

Mode Sequence Estimation Function (MSEF) 

It uses the output of the discretizer function and information of active subsystem i  as 

its arguments and estimates the next mode appearing in the sequence. 

 

( , ),p g j i p= ∈ Ω .       (6.5)  

 

where the discretizer function is defined in (4.15) and for the SI engine it becomes as: 

 

( )kj f x= .where 2,j x∈Ω ∈ℝ       (6.6)  

 

Switching Sequence 

Switching sequence S  associated with switched systems is indexed by the initial state 

0x  and is given as [45]: 

 

0 0 0 1 1 2 2; ( , ), ( , ), , ( , ),...q qS x i t i t i t= … .      (6.7)  

 

6.3.1 Mode identification of SI engine 

In our present work, healthy/faulty modes correspond to the actual production/non-

production of the power in the cylinders due to the burning of air fuel mixture. The 

corresponding healthy and faulty modes are mutually disjoint at any instant. Therefore 
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0H Fµ µ∩ = .        (6.8)  

 

In other words, the system must be in only one mode, healthy or faulty, at a particular 

time instant.  

For the FDI purpose, the modes are identified by estimating and analyzing continuous 

states of the system. In SI engine misfire fault detection, the estimation of the 

continuous state is physically motivated as at the start of the power stroke of healthy 

engine the piston is accelerated inside a cylinder by the energy produced in the 

combustion process of the air-fuel mixture. The piston starts to decelerate in the later 

part of the power stroke. When a misfire fault event occurs in the engine, then no 

energy is produced in the cylinder to accelerate the piston and it continues to 

decelerate. As a result, large peak of deceleration are produced in this process [101], 

which corresponds to the faulty mode in this case. So acceleration can be analyzed for 

identifying healthy and faulty modes, which can be monitored for the FDI purpose. 

Unfortunately there is no acceleration sensor present in the production vehicle with SI 

engine. So to use it for the mode identification, we have to estimate it using an 

observer. For this purpose a FOSMO is designed. This observer is based on the hybrid 

model of the SI engine described in Section 6.2. It uses crankshaft speed as input and 

provides the estimate of the crankshaft acceleration. As discussed earlier, the use of 

SMO for state estimation comes with the benefit of robustness against model 

uncertainties and switching discontinuities. So we get robust and reliable estimates of 

states even under uncertain environment. Furthermore, it makes simple and easy 

online implementation of the designed scheme. The block diagram of the hybrid 

observer is shown in Figure 6.1. 

Each subsystem in Figure 6.1 is represented as a second order system given below 

[94]. 

 

1 2

2 2 2 1 1 , 1,2,3,4
i i

i i i i i

v v

v k v k v aP i

=
= − − + =

ɺ

ɺ
.     (6.9)  

 

where 
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1v  represents the crankshaft velocity 

2v represents the crankshaft acceleration 

a  is a constant 

P  is the power generated in the cylinder 

1k  is elasticity coefficient 

2k  is friction coefficient 

 

 

Figure-6.1 Structure of hybrid observer 

 

Under ideal conditions, it is assumed that all the subsystems are identical and working 

in the healthy mode. A FOSMO is designed for the estimation of the crankshaft 

acceleration. The index i is dropped in the observer design for notational simplicity. 
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K e
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ν ν

ν ν ν

= +

= − − + +

ɺ

ɺ
.      (6.10)  
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where 

1̂v represents the estimated velocity of crankshaft 

2v̂ represents the estimated acceleration of crankshaft 

1e represents the speed error 

The function sign(.) is defined as: 

 

1
1

1

1 when 0
sign( )

1 when 0

e
e

e

+ >
= − <

.       (6.11)  

 

The error dynamics are obtained from (6.9) and (6.10), and are given as follows:  

 

1 2 1 1

2 2 2 1 1 2 1

sign( )

sign( )

e e K e

e k e k e K e

= −
= − − −
ɺ

ɺ
.      (6.12)  

 

The convergence of the estimated state to the actual state is ensured by finding the 

stability of the error dynamics. Below we give the stability analysis of the error 

dynamics given in (6.12).  

 

Stability Analysis 

For the stability of the error dynamics, we consider a Lyapunov function of the form 

2
1

1

2
V e= . For convergence 0V <ɺ , so we have 

 

1 1

1 2 1 1

1
2

2
( sign( ))

V e e

e e K e

=

= −

ɺ ɺ
      (6.13)  
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As 1e  is taken as switching surface, so from (6.13) we can find 1 2K e>  for 0V <ɺ . 

Next we consider a result on the existence of the CLF from [43], [108] that show that 

the CLF exists for the switched system if all the subsystems commute pair-wise. So 

using the assumption of identical subsystems, the corresponding Lie bracket becomes 

as: 

 

{ }, 0, , 1,2,3,4i jf f i j  = ∀ ∈        (6.14)  

 

(6.13) and (6.14) imply that a CLF exists for this system. So using the work of [43], if 

a CLF exists for all the subsystems of a switched system then the switched dynamics 

is stable for an arbitrary switching sequence. The error dynamics of the hybrid 

observer are thus stable and convergence of the estimated states to the actual states is 

guaranteed.■ 

The modes are then identified by analyzing the estimated acceleration based on the 

following set of rules developed in accordance with (4.16). 

 

Cylinder ID=   Mode=  or 4

if

positive peak of acceleration occurs for the  subsystem

Mode

else

Mode 4

k k k

kth

k

k

⇒ +

⇒ =

= +

 

 

For a healthy SI engine the switching between subsystems occurs sequentially and is a 

deterministic process. Any deviation of mode sequence from that of expected is an 

indication of fault. So for kth mode kµ , the switching sequence of the modes for the 

healthy and faulty cases will be as follows: (see Figure-6.2). Also note that for the 

given application example of SI engine, the correct ignition sequence is assumed to be 

1234 for the simulation results. 
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Figure-6.2 SI engine modes with switching sequence 
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which implies that  

 

or
k H

k F

µ µ

µ µ

∈

∈
.         (6.17)  

 

where {1,2,...,8}k∈
 

Figure-6.3 describes the complete fault diagnosis methodology. 

6.4 Simulation results 

This Section gives the simulation results used to validate the above FDI scheme. This 

is performed by simulating the hybrid model of the SI engine given in Section 6.2, 

firstly for healthy case and then the process is repeated by introducing the misfire 

fault in it. The model is parameterized as in [94]. The modes are identified by 

analyzing the continuous state estimates and the fault is detected by monitoring the 

identified modes.  

For the simulation purposes, the engine model is simulated and data of the active 

cylinder identification and crankshaft speed is saved in an array. The cylinder 

identification is assigned when a pulse input is provided to the subsystem. Cylinder 

ID is assigned a value 1 for first subsystem, value 2 for second subsystem and so on. 

However, in all the figures given in this Section the Cylinder ID is plotted after 

suitable scaling for better visualization. The crankshaft speed is obtained from the 

engine hybrid model and is tracked by the observer for the estimation of crankshaft 

acceleration. Figure 6.4 shows the crankshaft speed of healthy engine used as the 

input to the SMO and Figure-6.5 gives the speed profile of the faulty engine used for 

tracking.  
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Figure-6.3 Proposed methodology for SI misfire detection and isolation 

Figure-6.6 shows the observer tracking for the healthy engine case and Figure-6.7 

gives the same result for faulty case. It is evident from these figures that the SMO is 

tracking quite well. However, as in the case of FOSM, the unwanted chattering effect 

can be seen in Figure-6.8 that presents the zoomed view of peak of observer tracking 

response to highlight this. In the present work, we will carry on with the FOSMO for 

simplicity. Figure-6.9 gives the plot of error obtained in observer tracking and Figure-

6.10 shows the estimated acceleration for the healthy engine while Figure-6.11 

presents the acceleration estimate for the faulty engine. 

Using the estimated acceleration, the modes are identified for the FDI purpose 

according to the set of rules mentioned in Section 6.3.1. This information along with 

(6.15) and (6.16) is utilized in the monitoring of the mode switching sequence. So 
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from Figure 6.10, we can clearly find that for healthy engine the analysis of mode 

switching sequence implies k Hµ µ∈ . Similarly for the misfire fault in cylinder 1 

shown in Figure 6.11, the mode switching sequence becomes as:  

2 3 4 5 2 3 4 5→ → → → → → →  

Instead of  

2 3 4 1 2 3 4 1→ → → → → → →  

That is, for the misfire case at-least one mode that belongs to the Fµ  appears in the 

mode switching sequence. The presence of mode 5 in the sequence gives the 

indication that the cylinder 1 of the SI engine is faulty. Appearance of more than one 

member of the Fµ  within one ignition cycle indicates multiple misfires. The 

simulation results described the use and effectiveness of the proposed scheme for the 

misfire fault detection and isolation in SI engine.  

 

Figure-6.4 Crankshaft speed for fault-free case 
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Figure-6.5 Crankshaft speed for misfire fault in cylinder 1 

 

 

Figure-6.6 Observer tracking for fault-free case 
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Figure-6.7 Observer tracking for faulty case 

 

Figure-6.8 Zoomed view of peak of observer tracking 
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Figure-6.9 Estimation error in observer tracking 

 

Figure-6.10 Estimated crankshaft acceleration for fault-free case 
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Figure-6.11 Estimated crankshaft acceleration for misfire fault in the first cylinder 

 

6.5 Experimental results 

This Section gives the description of the experimental results used to validate the 

proposed FDI scheme. The experimental set up used for the work presented in this 

dissertation has already been explained in Section 5.3.4. Data for the validation of the 

proposed scheme is acquired from an engine rig of 1.3L production vehicle compliant 

with the On-Board Diagnostic II (OBD-II).  

A crankshaft position sensor is always installed in front of a gear assembly in all the 

EFI vehicles. A missing or double tooth is provided in the gear to act a reference 

position and to keep track of the cylinder identification. In our experimental rig, the 

gear mounted for the crankshaft position monitoring contains 13 teeth. So even for 

very high data acquisition rate, only 13 data points can be acquired for each complete 

rotation of crankshaft. This low resolution data resulted in noisy signal as compared to 

the data used in simulations. This noisy data was supplied to the proposed algorithm 

to ascertain its ruggedness for the practical noisy signals. 
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For the validation of the proposed FDI scheme, the crankshaft acceleration is required 

but as mentioned earlier the acceleration sensor is not available in the production 

vehicle. So we use the FOSMO for the estimation of the crankshaft acceleration by 

using the crankshaft speed. Data from the crankshaft position sensor is acquired using 

data acquisition card from the National Instrument Inc. This data was processed to 

obtain the crankshaft speed signal that is applied to the observer after appropriate 

filtering.  

In the next stage, misfire fault is introduced in the 3rd cylinder of the SI engine by 

inhibiting the igniter signal to the engine. The same process is repeated again and the 

speed data is acquired for the misfire case. Figure-6.12 shows the filtered signals of 

the speed obtained from the experimental measurements for the fault-free case and 

Figure-6.13 presents the speed signal with the misfire fault in the third cylinder. 

Figure-6.14 gives the observer tracking error. 

For the healthy engine, the estimated acceleration is given in Figure-6.15 and for the 

misfire case the estimated acceleration is plotted in Figure-6.16. The basic trend of the 

experimental results shown in Figure-6.15 and Figure-6.16 are sufficiently similar to 

the simulation results of the estimated crankshaft acceleration shown in Figure-6.10 

and Figure-6.11. So adapting the same analysis procedure as in Section 6.4, we 

validate the proposed scheme experimentally. In case of the misfire fault, the absence 

of positive peak can be seen in Figure-6.16. The analysis of this data indicates the 

presence of one mode from the Fµ , thus detecting and identifying the faulty mode. 
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Figure-6.12 Crankshaft speed measurement for fault-free case 

 

  

Figure-6.13 Crankshaft speed measurement for misfire fault in cylinder 3 
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Figure-6.14 Observer tracking error 

 

 

Figure-6.15 Estimated crankshaft acceleration for fault-free case 
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Figure-6.16 Estimated crankshaft acceleration for misfire fault in cylinder 3 

 

Representation of a highly nonlinear SI engine using a switched linear hybrid model 

provides quite simpler state estimations technique using the SMO. The model also 

provides an easy way for the association of the modes with the complex non-linear 

system and the proposed technique demonstrates the application how the mode 

identification and the allowable mode sequence can be used for the fault diagnosis 

applications. 
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computationally heavier. However the procedure has the advantage of the physical 

reasoning. 

Our proposed scheme uses the linear models for the state estimation and is simpler 

and easier to analyze than the technique adopted in [105]. Moreover, as our proposed 

scheme is model-based so it shares the advantage of the physical reasoning with [105] 

method.  

In [104], the authors adopted the model-based approach for the misfire detection in 

the SI engine and used the FOSMO to estimate the unknown cylinder pressure that is 

further utilized in the misfire fault detection process. The authors acknowledged that 

the use of the nonlinear sliding mode observer based on the speed measurements 

provides the cheap, accurate and reliable solution to estimate the desired states. 

However, the model used in [104] was a nonlinear model in which observability is 

lost at the TDC. 

As we used SMO based on the speed measurement for the state estimation process, so 

our proposed method shares the simplicity and the reliability of the method given in 

[104]. Moreover our proposed scheme is simpler as it uses linear models instead of 

nonlinear one.  

In [101], Kalman filters are used for the estimation of acceleration using linear 

models. However Kalman filters are computationally heavier than SMO and also 

require the noise matrices Q and R which are difficult to estimate. 

Data-based approaches lack the physical insight of the problem while our proposed 

approach has the advantage of being supported by the physical reasoning. Moreover, 

most of the data-based techniques are sensitive to factors like engine speed [105]. 

This can be seen if the correlation analysis is used for the comparison of some 

recorded signal of faulty engine speed, then for reliable results engine must be 

operated at the same speed at which the fault signatures were taken. The identification 

of misfire fault in more than one cylinder, multiple signatures are required to be 

compared with the observed data. This kind of methodology is adopted in [106] for 

identification of misfiring cylinder. When the operating speed of engine was not the 

same at which fault signatures were captured then two signals will have different 

frequencies and will be difficult to compare. This can be taken care of if large number 
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of fault signatures is taken at various speeds, but this approach will increase the 

computational requirements.  

6.7 Summary  

In this chapter, a mode identification scheme is presented for the misfire fault 

diagnosis in SI engine. Modes are defined in terms of engine health. The modes are 

identified based on the analysis of the continuous states of the system. These 

estimated modes are monitored to detect and isolate the misfiring cylinder. For the 

state estimation, a FOSMO is designed based on the hybrid model of SI engine. This 

observer provided the robust state estimates even in the uncertain and noisy 

environment. The proposed technique, being model-based, has the advantages of 

physical reasoning, simplicity and easy implementation. 

The validation of the proposed scheme is performed through simulations and 

experimental data and the results obtained are presented with discussion. An engine 

rig of 1.3L production vehicle is used for the acquisition of the experimental data. The 

proposed technique correctly detected the misfire fault even in the presence of this 

noisy data, which gives a clear indication of the robustness of the presented misfire 

detection scheme. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK  

This chapter gives a summary of the whole work presented in this dissertation along 

with some future directions. The presented work is related to the FDI of hybrid 

systems, in which we focused on a special class of these systems known as SLS. 

Hybrid systems enable us to represent a complex engineering system in smaller, 

simpler interacting subsystems. Due to the increased complexity, chances of the fault 

occurrence in complex engineering systems are also high. Moreover, the design of the 

FDI schemes for these systems is also becoming complex. This dissertation proposed 

simple and easy to implement FDI schemes for these complex engineering systems by 

representing them as a set of simple interacting subsystems. This is achieved by using 

hybrid models of these complex engineering systems and designing FDI scheme using 

state estimation and specific methods of hybrid model. Furthermore, instead of using 

Kalman filter for state estimation in the FDI process, SMO is adopted that is 

computationally lighter and easy to implement.  

For identification and monitoring of hybrid systems, mode identification is a natural 

way and key step. Two types of fault can be considered in hybrid systems; ones 

related to the current mode behavior and the others affecting the discrete evolution 

trajectory. These both types of fault can be detected by defining and identifying 

healthy and faulty modes, and monitoring their sequence by designing a DFA that 

takes as inputs the modes of the hybrid systems represented as symbols of a language 

acceptable to the DFA. New faults can be detected and isolated by introducing new 

strings and using additional states in the DFA. 

The proposed FDI scheme was validated through simulations and experimental data. 

Data for the experimental validation of the proposed scheme is acquired from an 

engine rig of 1.3L production vehicle complaint with the OBD-II. This engine is 

equipped with the ECU complaint to the OBD-II standards. Using the acquired data, 

system states are estimated by the SMO based on the hybrid model of the SI engine 

and are analyzed for the mode identification from the FDI perspective. The identified 

modes are then monitored by the DFA for fault detection and isolation.  



 

115 
 

After a brief summary of the presented work, the description of the main contributions 

of this dissertation is given in the next Section. 

7.1 Contributions 

The main contributions of the thesis are summarized as: 

• A mode identification scheme is proposed for the FDI of an important class of 

the hybrid systems known as the Switched Linear Systems (SLS). The states 

of the SLS are estimated using SMO stack and are analyzed to identify modes 

to be used in the FDI process. Detection and isolation of new faults can be 

easily made by introducing new strings in a set, called as fault set in this 

dissertation. 

• A mode identification scheme is proposed for the FDI of SLS having identical 

subsystems. The presented scheme also covers the SLSs with identical 

subsystems that were not taken care of by the previous scheme. The proposed 

scheme is successfully validated through a Spark Ignition (SI) engine having 

identical subsystems.  

• To monitor the identified modes sequence for the FDI a SLS, a Deterministic 

Finite Automaton (DFA) is designed that provides the benefits of detecting 

and isolating the fault in SLS at the same time as well as identifying the 

corresponding dynamics of the SLS involved in the fault occurrence. The 

identified modes are used at the input of DFA as symbols of a language 

acceptable to it. In hybrid systems, two types of fault can be considered. The 

use of proposed DFA in the FDI of hybrid systems makes it possible to 

diagnose these both types of fault by using a single scheme. 

• Development of a mode identification scheme for the detection of the misfire 

fault in the SI engine. The experimental data is acquired from a four cylinder 

SI engine of 1.3L production vehicle. Using hybrid model of the SI engine, a 

hybrid observer is designed and based on the identified discrete event the 

continuous model of the corresponding subsystem is selected for the design of 

SMO. The observer output is finally analyzed in the mode identification and 

fault diagnosis process. 
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7.2 Future work 

The work presented in this dissertation can be extended for the following new 

directions of research. 

• In this dissertation, we used FOSMO for the estimation of states of the hybrid 

system. FOSM has inherent properties of finite time convergence, simple 

design and robustness. However it suffers from the unwanted chattering 

phenomena. This can be tackled by using the High Order Sliding Mode 

(HOSM) that retains these vital properties of the FOSMO and also minimizes 

the chattering effect. The existing work can be extended by using the HOSMO 

for the state estimation of the hybrid systems that can be further analyzed for 

the FDI purpose. 

• It can be explored to develop set of rules for defining the fault set F described 

in this thesis. 

• In this manuscript, we analyzed the states of the system for the FDI purpose. 

We can also exploit critical parameters of hybrid systems for the FDI purpose. 

However, these parameters, although vital for the FDI, might be un-

measureable. In such situations, we need to estimate them first. So this can be 

divided in two tasks given below.  

� Parameter estimation of the hybrid systems. 

� Development of a parameter estimation based FDI scheme for the 

hybrid systems. 

• SMO can be used to estimate discrete states as well. Similarly HOSMO can 

also be explored for the estimation of the discrete states. 

• Continuous states of the system are estimated for generating the input symbols 

for the DFA proposed in this work for the FDI purpose. Other techniques, like 

the one given in chapter 5 that avoid the process of the continuous state 

estimation, can be explored for symbol generation used by the DFA, thus 

resulting in the further simplification of the FDI process. 

• The proposed approach can be extended for the FDI of discrete faults in the 

switched systems having identical subsystems.  
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• The proposed FDI schemes can be explored for the multiple faults case.  
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