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ABSTRACT 

Model free control methodologies are popular in industry due to their easy implemen-

tation. Minor tuning of controller gains yields satisfactory performance from a dy-

namical system. The main drawback of the techniques is their lack of robustness. On 

the other hand, robust control techniques e.g. sliding mode control require mathemati-

cal model of the system and their aggressive control effort is the main barrier in their 

implementation for mechanical systems. The proposed robust smooth control tech-

niques with robust state-disturbance observer in the closed loop are the solution to the 

problem. The proposed state-disturbance observer is model free and relies on input 

and output of the system only; consequently it estimates states as well as drift term of 

the system. The estimated drift term is used to cancel out internal and external distur-

bances of the system and this cancellation transforms the system into an nth order in-

tegrator system. The observed states are used to design any modern or classical state-

space control technique e.g. pole placement, Linear Quadratic Regulator (LQR) or 

Linear Matrix Inequality (LMI) methods etc. The finite time stability analysis of ro-

bust state-disturbance observer is given in noisy and noise free environments. In this 

thesis, two novel control methodologies i.e. robust smooth real twisting second order 

sliding mode and robust feedback linearization are also proposed. The finite time sta-

bility analysis of the robust smooth real twisting control is proven using Lyapunov 

method along with homogeneity concepts. The stability analyses of overall closed 

loop systems are given using separation principle. Simulations as well as experimental 

results with academic bench mark DC motor validate the ideas. The proposed tech-

niques are also compared with robust LMI based polytopic controller on an industrial 

stabilized platform to verify their usage for industry.  
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Chapter 1 

INTRODUCTION 

It is a long standing aspiration of the control engineer to achieve a specified level of 

closed-loop performance and robustness from a system in finite span of time. The 

problem becomes more crucial when only outputs are available, the system do not 

have specific mathematical model and it also contains substantial internal uncertain-

ties and significant external disturbances. 

PID (Proportional-Integral-Derivative) control (Ogata, 2009; Franklin et al, 2010) is 

popular due to its simplicity and facility to tune its parameters without any detailed 

knowledge of the plant. However it is not a robust scheme. In nonlinear systems, 

feedback linearization (Isidori, 1995; Slotine and Li, 1991) can provide desired per-

formance, but it requires all parameters of the system to be well known; and again it is 

not robust. Sliding Mode Control (SMC) (Utkin, 1992; Edwards and Spurgeon, 1998) 

can provide desired performance and robustness in presence of internal uncertainties 

and external disturbances, but the associated chattering effects resulting from the use 

of discontinuous terms in the control law are an obstacle to its implementation - espe-

cially for mechanical systems.   

In the last decade, a number of methods have been proposed to avoid the chattering 

effects. Saturation approaches (Slotine and Li, 1991) and Sigmoid approximations 

(Burton and Zinober, 1986) have been used to smooth the transition near switching 

surface by changing the dynamics in small vicinity of the surface. Such approaches 

risk possible reductions in accuracy. Another well known approach for the purpose is 

equivalent control (Utkin, 1992), that involves convex combination of control effort 

on both sides of the sliding surface. This method maintains system trajectories on the 

constraint manifold, if the system dynamics are exactly known that is not always 

possible.  

Other approaches that do not compromise performance have recently been proposed. 

The terminal sliding mode method (Man et al, 1994) is built on a nonlinear switching 

manifold and can significantly improve the transient performance of the closed loop 
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system. The technique does not satisfy Lipschitz conditions (Yu and Man, 2002) and 

has an unbounded right-hand side (Levant, 2003). In dynamical sliding modes (Sira-

Ramirez, 1993) the surface is not only dependent upon the states but also on the in-

puts of the system. This method adds additional dynamics to the compensated system 

and hence increases the overall complexity. Higher Order Sliding Modes (HOSM) 

(Emel'yanov et al, 1996; Levant, 1993; Fridman and Levant, 1996; Bartolini, Ferrara 

and Usai, 1998) is the most prominent and effective technique to remove chattering 

effects whilst preserving the important properties of traditional first order SMC. The 

main shortcoming of this method is its sensitivity to unmodeled fast dynamics (Shtes-

sel, Shkolnikov and Levant, 2007).     

1.1 Motivation 

The motivation of this thesis is to develop novel control methodologies for industrial 

systems. The techniques should be model-free, robust and smooth, moreover desired 

performance from the system can be achieved within finite time in the presence of 

uncertainties and disturbances. 

The industrial systems are very complex and no ready to use mathematical model of 

the system is available.  If the model is available then its parameters are unknown or 

highly time varying. Unmodeled and ignored dynamics are also big issues. Model free 

control environment, e.g. PID (Ogata, 2009; Franklin et al, 2010), Fuzzy Control 

(Lee, 90) and Neural Network (Hunt et al, 92) may be good options, but these ap-

proaches are not robust in nature or time consuming.  

The environmental disturbances and uncertainties are also big issues. Robust control 

e.g. sliding mode control (Utkin, 1992; Edwards and Spurgeon, 1998) is a solution of 

the problem for rejection of the disturbances and copes with the uncertainties. The 

states of the plant are required to implement the robust control techniques. States ob-

servers (Kalman, 1960; Luenberger, 1964; Utkin, 1999; Khalil, 2002; Davila Fridman 

and Levant, 2005) can be used to estimate the states, but it require mathematical mod-

el of the system. 

Generally robust control produces aggressive control actions to cope with the distur-

bance effects. The controller gain should be greater than upper bounds of the internal 

and external (matched) uncertainties. This aggressive control causes chattering effects 
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in the system input channel.  Some industrial systems are too sensitive and cannot al-

low the chattering effects in their control law. The robust smooth control (Shtessel, 

Shkolnikov and Levant, 2007) may be an option for handling of such kind of prob-

lems.  

The smooth controllers alone are not robust and give degraded performance in per-

turbed and uncertain circumstances. The robustness can be incorporated if the distur-

bances are cancelled out after its estimations. It requires disturbance observer (Radke 

and Gao, 2006) in closed loop of the system to estimate drift terms effects in the sys-

tem.  

For design of robust smooth control methodology, system states and disturbance ob-

servations are required. A robust state-disturbance observer can estimate simulta-

neously both the things. Such observer can ensure model-free, robust and smooth cha-

racteristics in closed loop systems.   

To establish the results of methodology based on robust state-disturbance observer, 

the feedback linearization control techniques can yield a linear closed loop dynamics. 

The control gain matrix can be designed using any modern or classical state-space 

technique e.g. pole placement, LQR or LMI methods etc, such that the coefficients of 

the system are Hurwitz and meet the desired performance and robustness objectives in 

the closed loop system. 

To achieve above goals, first of all an observer is required that can estimate states as 

well as drift terms of the system in the absence of detailed mathematical model of the 

system. The observer can help control techniques to reject the disturbance effects in 

the closed loop. In this way robust smooth control and robust feedback linearization 

techniques are feasible to implement in industrial environment.  

1.2 Contributions 

This thesis comprises four novel contributions as follows: 

First of all a robust exact observer is proposed that is derived from robust exact diffe-

rentiator (Levant, 1998; Levant, 2003; Shtessel, Shkolnikov and Levant, 2007). The 

observer can estimate the states as well as drift terms i.e. combined effect of internal 

and external disturbances of the system, without detailed knowledge of the mathemat-
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ics of the system. Finite time convergence of the proposed observer for relative degree 

less than or equal to the system order is also proven in noisy and noise free environ-

ments.  

Secondly, a novel robust smooth real twisting second order sliding mode control is 

proposed in combination with disturbance observer to provide robustness as well as 

accuracy. A Lyapunov method combined with homogeneity concept is used to prove 

exponential stability of the nominal system. The overall stability of the closed loop 

system is established with the help of separation principle.  

Thirdly, a robust feedback linearization with stable zero dynamics is introduced for 

nonlinear systems. The robust state-disturbance observer is incorporated in closed 

loop system to estimate states as well as drift terms. The drift term estimates are used 

to compensate the nonlinear dynamics of the system and observed states are used to 

design a linear control law. The complete closed loop stability of the system is proven 

using separation principle.  

Fourthly, a novel technique is proposed to formulate the polytopic system for highly 

uncertain system. System identification is used to extract distinct model of the system 

at different operating conditions. The different identified models are vertices of a 

convex hull and used to build the polytopic systems.  

1.3 Disseminations 

Following are the outcome of the PhD research published in journals and proceeding 

of international conferences.   

1.3.1 Journal Publications 

i. S. Iqbal, C. Edwards, A. I. Bhatti, (2011), Output-Feedback Smooth Second-

Order Sliding Mode Controller for Relative Degree Two Systems, Submitted 

to Asian Journal of Control on invitation of the chief Editor (ISI Thomson 

IF: 0.84)  

ii. S. Iqbal, A. I. Bhatti, (2011), Load Varying Polytopic Based Robust Control-

ler Design in LMI Framework for a 2DOF Stabilized Platform, Arabian 

Journal for Science and Engineering, Vol. 36 (2), pp. 311 – 327. (ISI Thom-

son IF: 0.224). 
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iii. M. Iqbal, A. I. Bhatti, S. Iqbal, Q. Khan, (2011), Robust Parameter Estima-

tion of Nonlinear Systems using Sliding Mode Differentiator Observer, IEEE 

Transactions on Industrial Electronics, Vol. 58(2), pp. 680 – 689. (ISI 

Thomson IF: 5.468). 

iv. Q. Khan, A. I. Bhatti, S. Iqbal, M. Iqbal, (2011), Dynamic Integral Sliding 

Mode for MIMO Uncertain Nonlinear Systems, International Journal of 

Control, Automation and Systems. Vol. 9(1), pp.151 – 160. (ISI Thomson 

IF: 0.770). 

1.3.2 International Conferences Publications 

v. S. Iqbal, C. Edwards, A. I. Bhatti, (2011), Robust Feedback Linearization us-

ing Higher Order Sliding Mode Observer, in proceeding of 50th IEEE Confe-

rence on Decision and Control and European Control Conference (CDC-

ECC’11), December 12– 15, Orlando, Florida, USA. 

vi. S. Iqbal, C. Edwards, A. I. Bhatti, (2011), Robust Output Feedback Lineariza-

tion for Minimum Phase Systems, in proceeding of 18th IFAC World Congress 

(IFAC WC’11), August 28 – September 2, Milano, Italy. 

vii. S. Iqbal, C. Edwards, A. I. Bhatti, (2010), A Smooth Second-Order Sliding 

Mode Controller for Relative Degree Two Systems, Proceeding of 36th Annual 

Conference of the IEEE Industrial Electronics Society (IECON’10), Glen-

dale, AZ, USA, Nov 07-10, 2010. 

viii. Q. Ahmed, A. I. Bhatti, S. Iqbal, I. H. Kazmi, (2010), 2-Sliding Mode Based 

Robust Control for 2-DOF Helicopter, Proceeding of 11th International 

Workshop on Variable Structure Systems (VSS’10), Mexico City, June 26-

28, 2010.  

ix. M. Iqbal, A. I. Bhatti, S. Iqbal, Q. Khan, I. H. Kazmi, (2009), Fault Diagnosis 

of Nonlinear Systems Using Higher Order Sliding Mode Technique, Proceed-

ings of the 7th Asian Control Conference (ASCC’09), Hong Kong, China, 

August 27-29, 2009, pp 875 - 880. 

x. M. Iqbal, A.I. Bhatti, S. Iqbal, Q. Khan, H.I. Kazmi, (2009), Parameter esti-

mation of uncertain nonlinear MIMO three tank systems using higher order 

sliding modes, Proceeding of IEEE International Conference Control and 

Automation, (ICCA’09) on 9-11 Dec. 2009, pp. 1931 – 1936. 
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xi. Q. Ahmed, A. I. Bhatti, S. Iqbal, (2009), Nonlinear Robust Decoupling Con-

trol Design for Twin Rotor System, Proceedings of the 7th Asian Control Con-

ference (ASCC’09), Hong Kong, China, August 27-29, 2009, pp 937 - 942. 

xii. Q. Ahmed, A. I. Bhatti, S. Iqbal, (2009), Robust Decoupling Control Design 

for Twin Rotor System using Hadamard Weights, Proceeding of 18th IEEE In-

ternational Conference on Control Applications 2009 IEEE Multi-

conference on Systems and Control (MSC’09), Saint Petersburg, Russia, July 

8-10, 2009, pp. 1009 – 1014 

xiii. M. Iqbal,  A. I. Bhatti, S. Iqbal and Q. Khan, (2009), Parameter Estimation 

based Fault Diagnosis of Uncertain Nonlinear Three Tank System using 

HOSM Differentiator Observer, Proceedings of the 13th IEEE International 

Multi-conference, (INMIC’09), Islamabad, Pakistan, 14-15 December 2009. 

xiv. H. Kazmi, A. I. Bhatti and S. Iqbal, (2009), A Nonlinear Observer for PEM 

Fuel Cell System, Proceedings of 13th IEEE International Multi-conference, 

(INMIC’09), Islamabad, Pakistan, 14-15 December 2009, pp 

xv. Iqbal, M., A. I. Bhatti, S. Iqbal, Q. R. Butt, (2009), LMI Based Controller Syn-

thesis of an Uncertain Three Tank System, 6th International Bhurban Confe-

rence on Applied Sciences and Technology (IBCAST’09), pp. 192 - 196 

xvi. S. Iqbal, A. I. Bhatti, Q. Ahmed, (2008), Determination of Realistic Uncertain-

ty Bounds for the Stewart Platform with Payload Dynamics, Proceeding of 17th 

IEEE International Conference on Control Applications, IEEE Multi-

conference on Systems and Control, (MSC’09), San Antonio, Texas (USA), 

September 3-5, 2008 

xvii. S. Iqbal, A. I. Bhatti, Q. Ahmed, (2008), Dynamic Analysis and Robust Con-

trol Design for Stewart Platform with Moving Payloads, Proceedings of 17th 

IFAC World Congress (IFAC WC ’08), 5 – 11 July 2008, Seoul, Korea. 

xviii. S. Iqbal, A. I. Bhatti, M. Akhtar, S. Ullah, (2007) Design and Robustness 

Evaluation of an H Loop Shaping Controller for a 2DOF Stabilized Platform, 

Proceedings of European Control Conference (ECC’07), Kos, Greece 2 – 5 

July 2007, ISBN: 978-960-89028-5-5, pp 2098-2104. 

xix. S. Iqbal, A. I. Bhatti, (2007), Robust Sliding-Mode Control for Stewart Plat-

form, Proceeding of 5th International Bhurban Conference on Applied 
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Sciences and Technology (IBCAST’07), 8 – 11 Jan 2007, Islamabad, Pakis-

tan. 

xx. S. Iqbal, A. I. Bhatti, (2006), Direct Sliding-Mode Control for Stewart Mani-

pulator, Proceeding of 10th IEEE International Multitopic Conference (IN-

MIC’06), 23 – 24 Dec 2006, Islamabad, Pakistan, ISBN 1-4244-0794-x, pp 

421-426. 

xxi. S. Iqbal, M. Akhtar, N. Mehdi, (2005), System Identification and H Loop-

Shaping Design for a 3DOF Stabilized Platform, proceeding of the 4th Interna-

tional Bhurban Conference on Applied Sciences and Technology (IB-

CAST’05), 13 – 18 Jun 2005, Bhurban`, Pakistan. 

1.4 Thesis Structure 

The thesis consists of six chapters. First chapter explains introduction of thesis con-

taining motivation, dissemination and structure.  

In the second chapter, necessary theoretical background is given for better under-

standing of rest of the thesis. Firstly an introduction of feedback linearization is sum-

marized and its pros and cons are given.  After that, standard sliding mode and higher 

order sliding mode are discussed in detail. Afterwards general idea of smooth sliding 

mode control is presented. In the last, robust exact differentiator is discussed.  

In the third chapter, a robust smooth second order sliding mode controller for relative 

degree two systems is proposed. Due to the smooth nature of the controller, a robust 

disturbance observer is also introduced as part of the closed loop system. The observ-

er estimates the drift terms of the system to compensate its effects. A Lyapunov func-

tion is used along with homogeneity-based approach to prove finite time stability of 

the proposed smooth controller. The stability of the complete closed loop system is 

given by using separation principle. The proposed scheme is verified through simula-

tions as well as experimentations on a benchmark DC motor. 

In the fourth chapter, synthesis of robust feedback linearization procedure for nonli-

near systems with stable zero dynamics is explored employing state-disturbance ob-

server for estimation of the states as well as drift terms simultaneously on the basis of 

just available output of the system. The detailed knowledge of the mathematical mod-

el of the system is no more crucial. Finite time convergence of the complete closed 
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loop system is proved and thus a form of separation principle is satisfied i.e., the con-

troller and observer can be designed separately. The simulation and experimental re-

sults verify robustness as well as performance of the proposed technique. 

Fifth chapter deals with robustness and performance evaluation of the proposed tech-

niques on an industrial application. Generally PID control is used as benchmark for 

such comparison, but due to lack of robustness its evaluation with the robust tech-

niques would not be reasonable. In this scenario robust ܪஶ control based on LMI op-

timization is chosen for the evaluation. A parallel robot stabilized platform is used as 

an experimental rig.  In the chapter a novel idea to construct polytopic model of the 

system is proposed. Different models of the system are extracted using system identi-

fication method at distinct load conditions. These models are then used to construct 

vertices of a polytopic system for the parallel manipulator. Experimental results show 

that controller based on LMI optimization is inferior to the proposed techniques re-

sults. 

In the last chapter, drawn conclusions are listed and future work is proposed for re-

searchers working in this area. 

1.5 Summary 

This chapter provides the overview of the thesis. In the next chapter basic foundations 

of the contributions are discussed. 
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Chapter 2 

MATHEMATICAL BACKGROUND 

Mostly physical engineering systems in industry have approximate mathematical 

models and only inputs and outputs of the system could be available. Sensors and 

their installations for measurement of the internal states come with expensive and 

very difficult scenarios. The industrial systems are affected by significant internal and 

external disturbances due to heavy uncertainties in the environment. In these circums-

tances, it is a great challenge for a control engineer to achieve desired closed-loop 

performance and robustness from the systems. 

This thesis presents two novel robust smooth control techniques for solution of the 

industrial systems. First technique proposes a smooth second order real twisting con-

troller using the robust state-disturbance observer. In the second technique, robust 

feedback linearization control is suggested using robust exact state and disturbance 

observer. 

In this chapter, important and necessary definitions are given in detail for ready refer-

ence to understand the research work, which also provide a theoretical foundation for 

the thesis. 

2.1 Input-Output Linearization 

Input-output linearization fully or partially transforms a nonlinear system into equiva-

lent linear form by cancelling out the nonlinearities through feedback (Slotine and Li, 

1991). In this technique, the derivatives of output ݕሺ௜ሻ are not proportional to control 

input for all ݅ ൌ 1, … , ݇ െ 1 and ݕሺ௞ሻ is directly proportional to the input with non-

zero coefficient of proportionality in reasonable domain. The procedure comprises of 

following steps (Slotine and Li, 1991): 

 Output y of the system is differentiated until input u appears in dynamical equa-

tion of the system. 

 Choose input u such that it cancels out the nonlinear dynamics and ensure tracking 

error convergence. 
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 Analyze unobservable dynamics of the system. 

Consider a single input single output dynamical system (Sastry, 1999) 

ሶݔ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻݑ                         (2.1.1a) 

ݕ ൌ ݄ሺݔሻ                         (2.1.1b) 

with well defined relative degree r i.e. control appears at rth derivative of the system. 

In the equation ݔ ߳ ࣬௡ is state vector, ݑ ߳ ࣬ is control effort, ݕ ߳ ࣬ is output, the vec-

tor functions ݂ሺ. ሻ and ݃ሺ. ሻ are smooth vector fields, locally defined over the tangent 

space of  ࣬௡, and ݄ሺݔሻ is the smooth scalar function of  ࣬௡. Note that ݂ሺ. ሻ and ݃ሺ. ሻ 

are referred as drift term and control input fields respectively. 

Let the Lie derivative (directional derivative) of ݄ሺݔሻ in the direction of ݂ሺݔሻ is a sca-

lar function defined by ܮ௙݄ሺݔሻ ൌ
డ௛

డ௫೅
݂ሺݔሻ, similarly the scalar function ܮ௚ܮ௙݄ሺݔሻ is 

the Lie derivative of ܮ௙݄ሺݔሻ in the direction of ݃ሺݔሻ (Sastry, 1999). In the following 

calculation, it is assumed that states ݔ of system (2.1.1) are defined in open set ܷ of 

࣬௡ and the relative degree of the system about specific equilibrium point ݔ଴ ߳ ܷ is 

equal to the system’s order. In other words, the system does not have any internal dy-

namics. Differentiating output ݕ n-times in (2.1.1b) (Sastry, 1999), we get 

ሺ௞ሻݕ ൌ ቊ
௙ܮ
௞݄ሺݔሻ                                                ׊ ݇ ൌ 1,… , ݊ െ 1

௙ܮ
௞݄ሺݔሻ ൅ ௙ܮ௚ܮ

௞ିଵ݄ሺݔሻݑሺݐሻ                                ݇ ൌ ݊ 
                              (2.1.2) 

If  ܮ௚ܮ௙
௡ିଵ݄ሺݔሻ is bounded away from zeros for all ݔ ߳ ܷ, the control law can be cho-

sen as 

ݑ ൌ ଵ

௅೒௅೑
೙షభ௛ሺ௫ሻ

൫െܮ௙
௡݄ሺݔሻ ൅  ൯                            (2.1.3)ߥ

where ߥ is the new input. The control (2.1.3) cancels out the nonlinearities of the sys-

tem (2.1.1) and yields it into a simple nth order integrator relationship between new 

input variable ߭ to output y, i.e. 

ሺ௡ሻݕ ൌ  (2.1.4)                ߥ

The convergence of this nth order integrator is simple due to linear control techniques 

such as pole placement or others. Let the tracking error of the system is ߦ ൌ ݕ െ  ௗݕ

and choosing the new control input such that  
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ߥ ൌ ௗݕ
ሺ௡ሻ െ ߦଵߣ െ ሶߦଶߣ െ െڮ ߦ௡ߣ

ሺ௡ିଵሻ  

here all ߣ௜ are positive constants. The new control yields the error dynamics of the 

system (Slotine and Li, 1991)  

ሺ௡ሻߦ ൅ ߦ௡ߣ
ሺ௡ିଵሻ ൅ ൅ڮ ሶߦଶߣ ൅ ߦଵߣ ൌ 0                                                                 (2.1.5) 

exponentially stable and its convergence is dependent upon the ߣ௜, coefficients of the 

Hurwitz polynomial.  

Now suppose that the system has relative degree ݎ ൑ ݊, then internal dynamics are 

not directly related to the output of the system. A diffeomorphic transformation 

ሺߦ, ሻߟ ൌ  ,ሻ can transform the system (2.1.1) into so called normal form (Sastryݔሺߒ

1999) as follows:  

ሶଵߦ ൌ  ଶߦ

 ڭ     

ሶ௥ିଵߦ ൌ  ௥ߦ

ሶ௥ߦ ൌ ܾሺߦ, ሻߟ ൅ ܽሺߦ,  ሻݐሺݑሻߟ

ሶߟ ൌ ,ߦሺݍ  ሻߟ

ݕ ൌ  (2.1.6)                 ݔ

here ܾሺߦ, ሻߟ ൌ ௙ܮ
௥݄ሺݔሻ, ܽሺߦ, ሻߟ ൌ ௙ܮ௚ܮ

௥ିଵ݄ሺݔሻ, ,ߦሺݍ ሻߟ ൌ ,ߦሺߟ௙ܮ ,ߦሻ in ሺߟ -ሻ coordiߟ

nates, ߟ ߳ ࣬௡ି௥ are the internal dynamics and it is not directly decoupled with input u 

or in other words have not a direct dependence on the input u, i.e. ܮ௚ߟ ൌ 0 (Sastry, 

1999). Note that in (2.1.6), first r equations are in controllable canonical form and last 

n-r equations are unobservable. The input-output linearization procedure can be 

represented with structure as shown in Figure 2.1. 

 

Figure 2.1: Input-Output Linearization Structure 

ܾሺߦ, ሻߟ ൅ ܽሺߦ,  ݑሻߟ
ሶߟ ൌ ,ߦሺݍ ሻߟ

 ଵߦ
- 

ref ݕ 

ሺߦ, ሻߟ ൌ  ሻݔሺߒ

ܽሺߦ, ߥሻିଵ൫ߟ െ ܾሺߦ, ሻ൯ߟ
 ݑ

׬  
ሶݔ  
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Problems in Feedback Linearization 

Input-output linearization is very powerful tool for analyzing and controlling nonli-

near dynamical systems. But at the same time this method has some limitations (Slo-

tine and Li, 1991): 

i. Exact mathematical model of the system, correct measurement of states and accu-

rate knowledge of system parameters are required to formulate the control law so 

it can cancel out the nonlinearities in the system and introduce linear dynamics. 

ii. If the observer is embedded in the closed loop for measurement of states, its sta-

bility analysis is also required. 

iii. It is not applicable to all nonlinear systems, e.g., relative degree should be certain, 

zero dynamics should be stable, etc. 

iv. It is not robust against disturbances and parametric variations of the system. 

To overcome the robustness issues, sliding mode control is suggested. sliding mode 

control and its variants are discussed in the following lines in detail. 

2.2 Sliding Mode Control 

Sliding mode control (Utkin, 1977; Utkin, 1992; Edwards and Spurgeon, 1998) is a 

variant of Variable Structure System (VSS). Traditionally, VSS is comprised of a va-

riety of structures in different portions of state-space of closed loop system. The de-

tached structures may be unstable alone. The certain rules are defined to switch con-

trol efforts online between the structures to achieve desire performance. The closed 

loop system contains new features that were not at hand in any base structure. 

In sliding mode control, a “custom-designed” linear or nonlinear function ݏሺݔሻ, 

named as sliding variable is defined. When a constraint ݏሺݔሻ ൌ 0 is imposed on slid-

ing variable, it becomes sliding manifold (or sliding surface in the linear case). The 

approach contains two phases namely reaching and sliding phases. In the reaching 

phase, system trajectories are directed towards the sliding manifold with the help of 

appropriate control law. In the sliding phase, the trajectories motion is kept on the 

sliding manifold with the help of the control law and the trajectories are steered to-

wards the equilibrium points automatically due to inherent design of the sliding mani-

fold. In this technique, a reduced order dynamics are achieved for the compensated 

system and the system dynamics is independent from unknown system parameters. 
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The features of sliding mode control are ultimate accuracy, robustness against exter-

nal disturbances, model reduction and finite-time stability. The main drawback is 

dangerous chattering effect that can be unacceptable for mechanical systems, e.g. air-

craft, missile and robotic manipulators. Other shortcomings are: it can only be appli-

cable if the system has relative degree one with respect to sliding variable and all 

states used in the construction of the sliding variable must be known. 

In the sliding phase, the control that helps the trajectories to stay on the surface is 

called equivalent control that will be dealt with in the following lines. 

2.2.1 Equivalent Control 

The equivalent control (Utkin, 1992) is an average of the high frequency switching 

that applies after reaching the system trajectories on sliding manifold so that it stays 

the trajectories on the manifold afterwards. A low pass filter is used for averaging the 

high frequency control law. Let a dynamical system be  

݂ሺݔሻ ൌ ݔܣ ൅  (2.3.1)               ,ݑܤ

where ݔ ߳ ࣬௡ is state vector, ݑ ߳ ࣬ is control effort and A, B are matrices of appropri-

ate  dimensions. Let a constraint manifold ݏሺݔሻ ൌ 0 be followed by the system (Slo-

tine and Li, 1991). Then  

ା݂ሺݔሻ ൌ ݔܣ ൅ ݏ ݂݅             ାݑܤ ൏ 0,   

݂ି ሺݔሻ ൌ ݔܣ ൅ ݏ ݂݅             ିݑܤ ൐ 0,             (2.3.2) 

and trajectory ௘݂௤ on the surface can be possible by applying the average control effort 

 .௘௤, (Slotine and Li, 1991), i.eݑ

௘݂௤ሺݔሻ ൌ ݔܣ ൅  ௘௤               (2.3.3)ݑܤ

 

Figure 2.2: The Equivalent Control (Slotine and Li, 1991) 
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Geometrically, equivalent control can be written as the convex combination of control 

efforts on both sides of the sliding surface (see Fig. 2.2), i.e. 

௘௤ݑ ൌ ାݑߙ ൅ ሺ1 െ 0        ,ିݑሻߙ ൏ ߙ ൏ 1,                                                 (2.3.4) 

where  can be found by equating ݏሶ ൌ 0 i.e. the resultant trajectories are tangential to 

the sliding manifold (Slotine and Li, 1991). The equivalent control cannot be imple-

mented practically because system model is always approximate and disturbances are 

unknown. 

A design example of a simple pendulum is considered to illustrate the details of slid-

ing mode control. 

2.2.2 Design Example  

Consider nonlinear model of a simple pendulum (Edwards and Spurgeon, 1998) 

݈݉ଶߠሷ ൅ ߠ݊݅ݏ݈݃݉ ൌ  (2.3.5)                          ݑ

where m is the mass, l is the length, g is the force of gravity,   is the pendulum posi-

tion and u is the control input. Let ݔଵ ൌ ଶݔ and ߠ ൌ ሶߠ , the state-space model of the 

system can be written as 

ሶଵݔ ൌ  ଶݔ

ሶଶݔ ൌ െ ௚

௟
ଵݔ݊݅ݏ ൅

ଵ

௠௟మ
 (2.3.6)              ݑ

In sliding mode control first step is to design sliding variable i.e. 

ݏ ൌ  ݔଵ ൅ ݔଶ 

By taking the first derivative of the sliding variable, we get 

ሶݏ ൌ  ݔሶଵ ൅ ݔሶଶ 

by putting the value of ݔሶଵ ܽ݊݀ ݔሶଶ from (2.3.6), we get, 

ሶݏ ൌ  ݔଶ െ
௚

௟
ଵݔ݊݅ݏ ൅

ଵ

௠௟మ
 (2.3.7)               ݑ

For equivalent control put ݏሶ ൌ 0 in equation (2.3.7) we get, 

௘௤ݑ ൌ ݈݉ଶ ቀെ ݔଶ ൅
݃
݈
 ଵቁݔ݊݅ݏ

and the sliding mode control can be given as 
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ݑ ൌ ௘௤ݑ െ  ሻ                              (2.3.8)ߪሺ݊݃݅ݏܭ

The control law in (2.3.8) is robust and accurate along with harmful chattering effects 

for mechanical systems. In the last decade, a numbers of methods have been proposed 

to avoid these chattering effects e.g. saturation approximation (Slotine and Li, 1991), 

equivalent control (Utkin, 1992), terminal sliding mode (Man et al, 1994), dynamical 

sliding mode (Sira-Ramirez, 1993), sliding-sector method (Furuta and Pan, 2000) and 

high-order sliding mode (Levant, 1993; Levant, 2003; Levant, 2005). To overcome 

the shortcoming of conventional sliding mode control, higher order sliding modes are 

introduced in 1980s by Russian scientists Emel'yanov and Levant. In the next Section, 

we will discuss the approach and its popular algorithms. 

2.3 Higher Order Sliding Mode 

The Higher Order Sliding Mode (HOSM) (Emel'yanov et al, 1996; Levant, 1993; 

Fridman and Levant, 1996; Bartolini, Ferrara and Usai, 1998) is an extension of tradi-

tional sliding mode control theory. Let sliding order of the dynamical system is de-

noted by variable r. The rth order sliding mode is said to be taking place, if a control 

law with nonlinear sliding variable steers not only the sliding variable but also its 

ݎ െ 1 successive derivatives towards zero manifold in finite time and stay there after-

wards in the presence of bounded disturbance (Levant, 1993) i.e. 

ߪ ൌ ሶߪ ൌ ڮ ൌ ሺ௥ିଵሻߪ ൌ 0 

As the sliding order increases, the chattering effect reduces in vicinity of the sliding 

manifold and the control effort becomes more and more continuous. The fact can be 

understood by the following arguments. In sliding mode, a system starts chattering 

when its trajectories are in the vicinity of sliding manifold. When the sliding order of 

a system is increased, its sliding manifold dimension is reduced e.g. in third order 

sliding mode, the sliding manifold is only a point as shown in Figure 2.3. In this way 

the harmful chattering effects vanished in the higher derivatives of the sliding varia-

ble. 

In other words, the sliding accuracy provided by HOSM is proportional to the rth 

power of the time interval, i.e. 

|ߪ|݌ݑݏ  ൑  ࣩሺ߬௥ሻ,  
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proaching of the system trajectory towards sliding manifold in second order sliding 

mode. 

            

      (a) First Order Sliding Mode                       (b) Second Order Sliding Mode 

          (Emel’yanov et al, 1996)                                          (Levant, 2003) 

Figure 2.5: Trajectory Motion in First and Second Order Sliding Modes 

Unlike standard sliding mode, higher order can handle any relative degree with re-

spect to sliding variable. HOSM also reduces the total dynamic order of a system in 

finite time, in other words, the system dynamics turn to algebraic equations. Moreover 

it also deals well with matched uncertainty and the disturbance of a system. 

In HOSM, sliding order of the system can artificially be increased up to rth degree, 

but Second Order Sliding Mode (SOSM) is most popular due to ease of its implemen-

tation. In the next Section, SOSM and its algorithms are discussed. 

2.4 Second Order Sliding Mode  

The algorithm that steers the system trajectories in the vicinity of sliding manifold 

such that ߪ ՜ 0 and ߪሶ ՜ 0 in finite time and keeping them there afterwards in the 

presence of bounded disturbance is called second order sliding mode, mathematically 

it can be written as 

ߪ ൌ ሶߪ ൌ 0 

The SOSM has been successfully implemented on many practical problems, e, g. 

(Bartolini, Ferrara, Punta, 2000), (Levant et al., 2000), (Khan, Spurgeon and Puleston, 

2001), (Spurgeon et al., 2002), (Bartolini et al., 2003), (Khan, Goh and Spurgeon, 

ߪ ൌ 0 
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2003), (Massey and Shtessel, 2005), (Khan and Spurgeon 2006), (Ferrara and Lom-

bardi, 2007), (Baev, Shtessel and Shkolnikov, 2008), (Butt and Bhatti, 2008), (Qaiser 

et al., 2009a; Qaiser et al., 2009b), (Iqbal, Edwards and Bhatti, 2010), (Iqbal, Ed-

wards and Bhatti, 2011), (Iqbal et al, 2011), (Khan et al, 2011a), (Khan et al, 2011b), 

(Khan et al, 2011c), (Qadeer et al., 2011a) and (Qadeer et al., 2011b); 

There are a number of SOSM algorithms; practically real twisting and super twisting 

algorithms are most popular. In the forth coming subsections, both algorithms are dis-

cussed in detail.  

2.4.1 Real Twisting Algorithm 

Real twisting is historically a first second-order sliding mode controller. It is used to 

avoid chattering and provides good robustness properties. This algorithm requires the 

measurement of ߪሶ  for the implementations. It is also sensitive to sampling interval τ. 

The controller twists the state trajectories about the origin and converge them to the 

origin in finite time. This algorithm can be applied for relative degree one as well as 

for relative degree two systems. For relative degree 1, control law can be applied as 

(Levant, 1993) 

ሶݑ ൌ ቐ
െݑ| ݂݅                                         ,ݑ| ൐ 1 

െߙ௠ߪߪ ݂݅                          ,ߪ݊݃݅ݏሶ ൑ |ݑ| ;0 ൑ 1
െߙெߪߪ ݂݅                          ,ߪ݊݃݅ݏሶ ൐ |ݑ| ;0 ൑ 1

           (2.4.1) 

where   ߙெ ൐ ௠ߙ ൐ ௠,          and               0ܭ/ܥ ൏ ߩ ൑ 0.5, 

The ݑሶ  value commutes at each axis crossing which requires availability of  ߪሶ . The 

above equation (2.5.1) can also be written as 

ሶݑ ൌ ൜
െݑ| ݂݅                                                                ,ݑ| ൐ 1
െݎଵߪ ݊݃݅ݏ െ ሶߪ ݊݃݅ݏଶݎ ൑ |ݑ| ݂݅                    ,0 ൑ 1

 

where ݎଵ ൐ ଶݎ ൐ ெߙ ,0 ൌ ଵݎ ൅ ௠ߙ ଶ andݎ ൌ ଵݎ െ  ଶ. The problem with this method isݎ

that ߪሶ  is not available all the times. To solve the problem, ݊݃݅ݏሺߪሶሻ can be replaced 

with ݊݃݅ݏሺ∆ߪሻ, where ∆ߪ ൌ ሻݐሺߪ െ ௜ݐሺߪ െ ,௜ݐሾ ߳ ݐ ௜ିଵሻ andݐ  .௜ିଵሻ (Levant, 1993)ݐ

For relative degree 2, the control law can be applied as (Levant, 1993) 

ሶݑ ൌ ൜
െܭ௠ݑ| ݂݅       ,ߪ ݊݃݅ݏ| ൐ 1
െܭெݑ| ݂݅        ,ߪ ݊݃݅ݏ| ൑ 1

 

Graphically, the convergence of real twisting control can be seen in Figure 2.6. 
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Figure 2.6: Real Twisting Algorithm convergence (Levant, 1993) 

The stability analysis of real twisting algorithm is given in Appendix A. 

2.4.2 Super Twisting Algorithm 

The super twisting is the only algorithm that derives both sliding variable and its de-

rivative to zero manifolds in finite time without measurement of ߪሶ . The algorithm can 

be used instead of standard sliding mode to avoid chattering. Another advantage of 

the algorithm is that it is not sensitive to sampling time interval τ. The control can be 

written as (Levant, 1993)  

ݑ ൌ െߪ|ߣ|ఘߪ݊݃݅ݏ ൅  ଵݑ

ሶଵݑ ൌ–  ߪ݊݃݅ݏ ߙ

If the controller gains satisfy the conditions ߣ, ,ߙ ଴ߪ ൐ 0 and 0 ൏ ߩ ൑ 0.5 then sliding 

variable converges to zero manifolds in finite time. The algorithm can also be written 

as  

࢛ ൌ െࢻ–࣌࢔ࢍ࢏࢙࣋|࣌|ࣅ  ׬                         ࢚ࢊ ሻ࣌ሺ࢔ࢍ࢏࢙

(2.4.2) 

Here control is continuous, because the chattering effects are smoothed out due to the 

power of sliding variable and integral in the second terms of (2.4.2) respectively. The 

drift term of the compensated system can be cancelled out with the help of 

 ߙ ׬  after finite time. Graphically, the convergence of the algorithm can be ݐሻ݀ߪሺ݊݃݅ݏ

shown in Figure 2.7. 

ሶߪ  

 ߪ
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Figure 2.7: Super Twisting Algorithm convergence (Levant, 1993) 

The stability analysis of super twisting algorithm is discussed in Appendix B. 

2.5 Smooth Sliding Mode Control 

Higher order sliding mode provides reduction in chattering effects, but it is sensitive 

to unmodeled fast dynamics (Shtessel, Shkolnikov and Brown, 2003). The chattering 

can appear sooner or later in the systems using HOSM control. Some sensitive sys-

tems require completely chatter free control. In cascaded systems, a control in outer 

loop needs to be smooth where the profile generated by it must be followed by inner 

loop e.g. in missile and autopilot systems; guidance loop generated accelerations 

command must be followed by the inner loop to track line-of-sight. Following are the 

examples of some smooth sliding mode control. 

The modified sliding mode control proposed by (Utkin, 95) is 

ݑ ൌ െ݇|ߪ|ଵ ଶ⁄  ሻ                                                                                           (2.5.1)ߪሺ݊݃݅ݏ

where ݇ ൐ 0 and ߪ is sliding surface, is smooth due to its time varying gain.  

The Smooth Second Order Sliding Mode (SSOSM) control is recently proposed by 

(Shtessel, Shkolnikov and Levant, 2007),  

ݑ ൌ െߪ|ߣ|ଶ ଷ⁄ ߪ݊݃݅ݏ ൅  ଵݑ

ሶଵݑ ൌ– ଵ|ߪ| ߙ ଷ⁄  (2.5.2)                                                                                             ߪ݊݃݅ݏ

where ߣ, ߙ ൐ 0 and ߪ is sliding surface. The control is smooth due to variable gain in 

(2.5.2). 

ሶߪ  

 ߪ
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The gain in smooth control decreases as the trajectories approaches to sliding mani-

fold and control effort remains smooth. The smooth control can achieve accuracy as 

well as performance only in the absence of uncertainties and disturbances.  

The smooth controllers can provide desire objectives if the disturbance can be esti-

mated with the help of disturbance observers (Radke and Gao, 2006) and canceled out 

within close-loop systems. The robust exact differentiator (Levant, 1998; Levant, 

2003) can act as a disturbance observer as used by (Shtessel, Shkolnikov and Levant, 

2007).  

Robust exact differentiator proposed by Levant is discussed in the next Section. The 

concepts of the differentiator can help to understand robust state-disturbance observer, 

a contribution of the thesis. 

2.6 Robust Exact Differentiator 

A differentiation for a signal may be achieved through a simple first order closed loop 

integrator system. The achieved differentiation is not robust and the disturbances can 

degrade its performance. If we use sliding mode control in the feedback that is robust 

in nature, it gives chattering effects in the differentiation and requires a low pass filter 

to smoothen out the results at the cost of robustness. A robust and continuous control-

ler in the feedback loop can solve the problem of robust exact differentiation. The su-

per twisting algorithm is continuous as well as robust so that it is the best candidate 

for the differentiator loopback. The closed loop differentiator with super twisting al-

gorithm can be illustrated with the help of Figure 2.8. Consider a signal ݂ሺݐሻ, defined 

on ሾ0,∞ሻ is assumed to be unknown but differentiable with bounds ห ሶ݂ሺݐሻ ห ൏  ,ܮ

where ܮ ൐ 0 is a ‘Lipschitz constant’. 

 
 
 
 
 
 
 
 

Figure 2.8: Basic Idea of Robust Exact Differentiator 

Now the super twisting algorithm will drive the sliding surface and its first derivative 

towards zero manifolds in finite time i.e. 

 ݖ ݂
ߥ ൌ െߣଵ|ߪ|ଵ ଶ⁄ ߪ݊݃݅ݏ െ ߪ݊݃݅ݏනߙ - ∫ ݐ݀

ߪ ߥ ൌ ݖ െ ݂ 
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ߪ ൌ ሶߪ ൌ 0 

This fact ensures the availability of the first derivative of function ݂ in finite time i.e. 

ݖ െ ݂ ൌ ሶݖ െ ݂ሶ ൌ 0  

ݖ ൌ ݂  and  ݖሶ ൌ ߥ ൌ ݂ሶ 

In the same way, exact higher derivatives of the function ݂ can be estimated using 

higher order sliding mode in presence of bounded noise.   

The structure of robust exact differentiator (Levant, 1998, 2003) can be given as: 

ሶ଴ݖ ൌ  ଴ݒ

଴ݒ ൌ െߣ଴|ݖ଴ െ ݂ሺݐሻ|௡ ሺ௡ାଵሻ⁄ ଴ݖ൫݊݃݅ݏ  െ ݂ሺݐሻ൯ ൅  ଵݖ

ሶଵݖ ൌ  ଵݒ

ଵݒ ൌ െߣଵ|ݖଵ െ |଴ݒ
ሺ௡ିଵሻ ௡⁄ ଵݖሺ݊݃݅ݏ  െ ଴ሻݒ ൅  ଶݖ

 ڭ      

ሶ௡ିଵݖ ൌ  ௡ିଵݒ

௡ିଵݒ ൌ െߣ௡ିଵ|ݖ௡ିଵ െ ௡ିଶ|ଵݒ ଶ⁄ ௡ିଵݖሺ݊݃݅ݏ െ ௡ିଶሻݒ ൅  ௡ݖ

ሶ௡ݖ ൌ െߣ௡݊݃݅ݏሺݖ௡ െ  ௡ିଵሻ                           (2.6.1)ݒ

where  ߣ௜ ൐ 0. 

2.7 Summary 

This chapter provides the basic foundation of the thesis. The main concepts of feed-

back linearization, sliding mode control, higher order sliding mode control are given. 

Moreover the idea of smooth second order sliding mode control and its prerequisite 

robust exact differentiator is given. 

In the next chapter, robust smooth real twisting second order sliding mode along with 

robust disturbance observer is discussed and its simulations and experimental results 

are given. 



Chapter 3 

ROBUST SMOOTH REAL TWISTING SECOND ORDER 

SLIDING MODE 

Many physical systems require robustness as well as performance in finite interval of 

time against unknown internal and external disturbances. These systems may also be 

sensitive to any chattering effect and require smooth control efforts, hence conven-

tional sliding mode control cannot be a good option. Examples are multi-loop cas-

caded systems, in which the command generated by outer-loop is followed by inner-

loop. A simple PID control cannot afford discontinuity in the outer-loop commands 

and may become unstable. The problem becomes severe when only outputs are avail-

able and mathematical model of the system is not exactly known. 

Higher Order Sliding Modes (HOSM) (Emel'yanov, Korovin, and Levantovsky, 1996; 

Levant, 1993; Fridman and Levant, 1996; Bartolini, Ferrara and Usai, 1998) is an ef-

fective technique to remove chattering effects whilst preserving the important proper-

ties of traditional first order SMC. It also eliminates relative degree restrictions of the 

conventional SMC. But the main shortcoming of this method is its sensitivity to un-

modeled fast dynamics (Shtessel, Shkolnikov and Brown, 2003). 

Recently proposed Smooth Second Order Sliding Mode (SSOSM) controller (Shtes-

sel, Shkolnikov and Levant, 2007) based on super twisting algorithm for relative de-

gree one systems is a good choice to cope with the problem. In work (Shtessel, 

Shkolnikov and Levant, 2007) a modified robust exact differentiator (Levant, 1998 

and 2003) is introduced in the closed loop to compensate internal dynamics and ex-

ternal disturbances or more generically “drift terms” of the system. In this way chat-

tering free control is achieved with robustness. The problem with this approach is that 

the system should have relative degree one with respect to sliding manifold, whereas 

many mechanical systems have relative degree two for example robotic manipulators. 

In this chapter, a smooth second order sliding mode controller is suggested for relative 

degree two systems. The robust disturbance observer is proposed to compensate for 
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the drift term. Stability analysis of the observer is given in detail. The finite time con-

vergence of overall closed loop system is also proven. Furthermore simulation studies 

of the proposed technique on a DC motor are presented. In the last, experiments vali-

date the theoretical contribution of the chapter. 

3.1 Problem Statement 

The chapter builds on the SSOMC framework for relative degree two systems with 

respect to the sliding manifold by using the “twisting” algorithm (Levant, 1993; Or-

lov, 2005). Whilst this control law is smooth, it may be sensitive to external and inter-

nal disturbances. To overcome this problem, a robust disturbance observer is em-

ployed in the closed loop system to compensate for the drift term precisely.  

The proposed controller can provide robust performance even mathematical model of 

the system is not exactly known. Another advantage of the proposed technique is that 

it does not require aggressive control and employs the nominal control effort required 

to compensate the disturbances. Finite time convergence of the controller is estab-

lished using Lyapunov method combined with homogeneity-based approach (Levant, 

2008; Orlov, 2005). The stability of the closed loop system is proven using separation 

principle. The resulting overall system is finite time stable and robust against (suffi-

ciently) smooth uncertain disturbances. 

3.2 Smooth Real Twisting Control 

Consider a SISO system, whose sliding variable dynamics with respect to the input 

are of relative degree two:   

ሷߪ ൌ ݂ሺߪ, ሶߪ , ሻݐ ൅  (3.2.1)                  ݑ

In (3.2.1) the switching surface ߪ ߳ ࣬, and ݂ሺߪ, ሶߪ ,  ሻ is a bounded and sufficientlyݐ

smooth uncertain function. The control signal  ݑ ߳ ࣬ is required to provide smooth 

control action. 

In this case only states of the system are available. The system dynamics are not com-

pletely known. A disturbance observer is required to estimate the drift term ݂ሺߪ, ሶߪ ,  .ሻݐ

The control action u is then developed on the basis of the estimated information and 

under the assumption that ݂ሺߪ, ሶߪ , -ሻ is exactly canceled out by its estimate. The noݐ

minal system is then represented by a double integrator system: 
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ሷߪ ൌ   ݑ

In the system above, let the variables ߪ଴ ൌ ଵߪ and ߪ ൌ ሶߪ . The proposed smooth con-

trol law is given as 

ݑ ൌ െ݇ଵ|ߪ଴|
ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏ െ ݇ଶ|ߪଵ|

ሺ௣ିଶሻ ሺ௣ିଵሻ⁄  ଵሻ          (3.2.2)ߪሺ݊݃݅ݏ

where ݇ଵ, ݇ଶ ൐  0 and ݌ ൒ 2 is employed. Then the closed loop system can be writ-

ten in state space form as follows, 

଴ሶߪ ൌ  ଵߪ

ଵሶߪ ൌ െ݇ଵ|ߪ଴|
ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏ െ ݇ଶ|ߪଵ|

ሺ௣ିଶሻ ሺ௣ିଵሻ⁄  ଵሻ         (3.2.3)ߪሺ݊݃݅ݏ

Theorem 3.1: The system in (3.2.3) is globally uniformly finite time stable. Moreover 

the system generates a smooth second order sliding motion only at the origin. 

Proof: The only possible equilibrium point for system (3.2.3) is the origin, i.e. σ0 = σ1 

= 0. Consider a candidate Lyapunov function  

ܸሺߪ଴, ଵሻߪ ൌ
݌

2ሺ݌ െ 1ሻ
݇ଵ|ߪ଴|ଶ

ሺ௣ିଵሻ ௣⁄ ൅
1
2
ଵߪ
ଶ 

that is differentiable, radially unbounded and positive definite. Its derivative with re-

spect to time is  

ሶܸ ൌ ݇ଵ|ߪ଴|
ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏሶ଴ߪ  ൅  ሶଵߪଵߪ

It can be written as  

     ሶܸ  ൌ ݇ଵ|ߪ଴|
ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏଵߪ െ ݇ଵ|ߪ଴|

ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏଵߪ

െ ݇ଶ|ߪଵ|
ሺ௣ିଶሻ ሺ௣ିଵሻ⁄  ଵሻߪሺ݊݃݅ݏଵߪ

and therefore 

ሶܸ ሺݐ, ሻߪ ൌ െ݇ଶ|ߪଵ|
ሺଶ௣ିଷሻ ሺ௣ିଵሻ⁄                         (3.2.4) 

Since (0, 0) is the only possible equilibrium point for the system in (3.2.3), applying 

LaSalle’s invariance principle (Slotine and Li, 1991) for smooth systems, the only 

possible trajectory of (3.2.3) on the invariant manifold ሶܸ ൌ 0 is Σ  ؠ  0, where 

Σ  ൌ ሾߪ଴ -ଵሿ். This shows that the system is globally uniformly asymptotically staߪ

ble with respect to the origin. 
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Moreover, it can be easily verified that system (3.2.3) is homogeneous, and its homo-

geneity degree is equal to –1 by using the transformation  

ሺݐ,Σሻ հ ሺݐߢ, ݀఑Σሻ          ߢ׊ ൐ 0 

The dilation ݀఑ is defined as 

݀఑: ሺߪ଴, ଵሻߪ հ ሺߢ௣ߪ଴,  ଵሻߪ௣ିଵߢ

Then according to (Bhatt and Bernstein, 2000; Bacciotti and Rosier, 2001) the system 

(3.2.3) is globally uniformly finite time stable at the origin. This means that the trajec-

tories of the system with smooth control belong to the surface ߪ ൌ ሶߪ ൌ 0 after a finite 

time interval. This proves the theorem. 

Remark 3.1: The motion in the system (3.2.3) can be reasonably called a Second-

Order Sliding Mode. 

Theorem 3.1 relates to the control of a double integrator system ߪሷ ൌ  whereas the ,ݑ

real problem to be tackled is the control of system (3.2.1). This will be addressed in 

the next Section by the use of a robust disturbance observer to estimate drift terms of 

the system. 

3.3 Robust Disturbance Observer 

Since the proposed control law in (3.2.2) is smooth; the closed loop dynamics (3.2.1) 

can be sensitive to ݂ሺߪ଴, ,ଵߪ  ሻ. The overall closed system therefore requires a goodݐ

estimate of the drift term to compensate robustness. Assume that the outputs ߪ଴, ߪଵ 

and input ݑ are available and the control ݑ is Lebesgue-measurable. The 

tion ݂ሺߪ଴, ,ଵߪ ሻ is assumed to be unknown but ሺ݊ݐ െ 1ሻ times differentiable with 

bounds ห݂ሺ௡ିଵሻሺߪ଴, ,ଵߪ ሻ หݐ ൏ ܮ where ,ܮ ൐ 0 is a ‘Lipschitz constant’. Then the mod-

ified robust exact differentiator (Levant, 1998, 2003) can be introduced into the closed 

loop to estimate the drift term, and the drift term is used to design equivalent control 

for the system.  

For notational convenience, define  መ݂ ؠ መ݂
ଵ. The proposed observer structure can be 

written as follows 

ොሶ଴ߪ ൌ  ොଵߪ

ොሶଵߪ ൌ መ݂
ଵ ൅  ݑ
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መ݂
ଵ ൌ െߣ௡ܮଵ ௡⁄ ොଵߪ| െ |ଵߪ

ሺ௡ିଵሻ ௡⁄ ොଵߪሺ݊݃݅ݏ  െ ଵሻߪ ൅  ොଶߪ

ොሶଶߪ ൌ መ݂
ଶ 

መ݂
ଶ ൌ െߣ௡ܮଵ

ሺ௡ିଵሻ⁄ หߪොଶ െ መ݂
ଵห
௡ ሺ௡ିଵሻ⁄

ොଶߪ൫݊݃݅ݏ  െ መ݂
ଵ൯ ൅  ොଷߪ

 ڭ      

ොሶ௡ିଵߪ ൌ መ݂
௡ିଵ 

መ݂
௡ିଵ ൌ െߣଶܮଵ ଶ⁄ หߪ௡ିଵ െ መ݂

௡ିଶห
ଵ ଶ⁄

௡ିଵߪ൫݊݃݅ݏ െ መ݂
௡ିଶ൯ ൅  ො௡ߪ

ොሶ௡ߪ ൌ െߣଵ݊݃݅ݏ ܮ൫ߪො௡ െ መ݂
௡ିଵ൯                          (3.3.1)       

The parameters ߣ௜ can be chosen recursively as suggested in (Levant, 2003). The ob-

server (3.3.1) has a different structure to the one in (Shtessel, Shkolnikov and Levant, 

2007) because a relative degree 2 system is considered in (3.2.1). 

Theorem 3.2: Suppose the parameters of the observer ߣଵ,… , -௡ାଵ are properly choߣ

sen and the output of the system ߪ଴, -ଵ and the input signal u are bounded and Lebesߪ

gue-measurable. Then in the absence of noise the following equalities are established 

in finite time: ߪො଴ ൌ …,଴ߪ , ො௡ିଵߪ ൌ ௡ߪ ௡ିଵ andߪ ൌ ݂ሺ௡ିଶሻሺߪ, ሶߪ ,  .ሻݐ

Proof: Define 

߮଴ ൌ ො଴ߪ െ  ଴ߪ

߮ଵ ൌ ොଵߪ െ  ଵߪ

߮ଶ ൌ ොଶߪ െ ݂ሺߪ଴, ,ଵߪ   ሻݐ

 ڭ       

߮௡ ൌ ො௡ߪ െ ݂ሺ௡ିଶሻሺߪ, ሶߪ ,  ሻ                                            (3.3.2)ݐ

From system (3.2.1) and the observer described in (3.3.1),  

ොଶߪ െ መ݂
ଵ ൌ ොଶߪ െ ොሶଵߪ ൅ ݑ ൌ ොଶߪ െ ሶ߮ଵ െ ሶଵߪ ൅  ݑ

               ൌ ߮ଶ ൅ ݂ሺߪ, ሶߪ , ሻݐ  െ ሶ߮ ଵ െ ݂ሺߪ, ሶߪ , ሻݐ െ ݑ ൅ ݑ ൌ ߮ଶ െ ሶ߮ଵ 

 ڭ       

ො௡ߪ െ መ݂
௡ିଵ ൌ ො௡ߪ െ ොሶ௡ିଵߪ ൌ ො௡ߪ െ ሶ߮ ௡ିଵ െ ݂ሺ௡ିଶሻሺߪ, ሶߪ ,  ሻݐ

                    ൌ ߮௡ െ ሶ߮ ௡ିଵ 
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By using these definitions, the observer in (3.3.1) can be written as 

ሶ߮ ଵ ൌ  ଵݒ

ଵݒ ൌ െߣ௡ାଵܮଵ
ሺ௡ାଵሻ⁄ |߮ଵ|௡

ሺ௡ାଵሻ⁄ ሺ߮ଵሻ݊݃݅ݏ  ൅ ߮ଶ 

 ڭ       

ሶ߮ ௡ିଵ ൌ  ௡ିଵݒ

௡ିଵݒ ൌ െߣଶܮଵ ଶ⁄ |߮௡ିଵ െ ௡ିଶ|ଵݒ ଶ⁄ ሺ߮௡ିଵ݊݃݅ݏ  െ ௡ିଶሻݒ ൅ ߮௡ 

ሶ߮ ௡ ߳ െ ሺ߮௡݊݃݅ݏ ܮଵߣ െ ௡ିଵሻݒ ൅ ሾെܮ,൅ܮሿ                   (3.3.3) 

The structure in (3.3.3) above is similar to the robust exact differentiator (Levant 

1998; Levant 2003). The resulting differential inclusion can be understood in the 

Flippov sense (Flippov, 1988). It is easy to see that the differential inclusion in (3.3.3) 

is invariant with respect to the dilation 

ݐ հ and  ߮௜ ݐߢ հ ߢ׊        ௡ି௜ାଵ߮௜ߢ ൐ 0, ݅ ൌ 1, … , ݊ 

and therefore the system is homogenous: furthermore its homogeneity degree is equal 

to –1. Therefore ߮௜ ՜ 0 in finite time and the following exact equalities are obtained 

(in finite time): 

߮଴ ൌ ො଴ߪ െ ଴ߪ ൌ 0  ฺ ො଴ߪ ൌ  ଴ߪ

߮ଵ ൌ ොଵߪ െ ଵߪ ൌ 0 ฺ ොଵߪ ൌ  ଵߪ

߮ଶ െ ሶ߮ଵ ൌ 0 ฺ ොଶߪ െ ݂ሺߪ଴, ,ଵߪ ሻݐ െ ොሶଵߪ ൅ ሶଵߪ ൌ 0 

           ฺ ොଶߪ െ ݂ሺߪ଴, ,ଵߪ ሻݐ ൌ 0 ฺ ොଶߪ ൌ ݂ሺߪ଴, ,ଵߪ  ሻݐ

߮ଶ െ መ݂ ൌ 0  ฺ መ݂ ൌ ݂ሺߪ଴, ,ଵߪ  ሻݐ

 ڭ       

߮௡ െ ሶ߮ ௡ିଵ ൌ 0 ฺ ො௡ߪ ൌ ݂ሺ௡ିଶሻሺߪ଴, ,ଵߪ  ሻݐ

This proves the theorem. 

Theorem 3.2 assumes the inputs and outputs of the system in (3.2.1) are noise free. 

The next theorem explores the impact of noise on input and output. 
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Theorem 3.3: Suppose the input signal u is bounded and Lebesgue-measurable and 

the output noise are bounded then, the following inequalities can be established in 

finite time for some positive constants ߤ௜.  

ො଴ߪ| െ |଴ߪ ൑  ߝ଴ߤ

ොଵߪ| െ |ଵߪ ൑ ߝଵߤ
ሺ௡ିଵሻ ௡⁄  

 ڭ       

หߪො௡ െ ݂ሺ௡ିଶሻሺߪ଴, ,ଵߪ ሻหݐ ൑ ଵߝ௡ߤ ௡⁄                                                                      (3.3.4) 

where the noise on input is ݑ ߳ൣെ݇ߝሺ௡ିଵሻ ௡⁄ , ሺ௡ିଵሻߝ݇ ௡⁄ ൧ and output is  ߪ ߳ ሾെߝ,  .ሿߝ

Proof: By using definitions (3.3.2), the observer (3.3.1) can be rewritten as (3.3.3). 

The structure in (3.3.3) is similar to the robust exact differentiator (Levant 1998; Le-

vant 2003). If noise is present i.e. ߝ ് 0, the output ߮ א ሾെߝ, ݑ ሿ and the inputߝ א

ൣെ݇ߝሺ௡ିଵሻ ௡⁄ , ሺ௡ିଵሻߝ݇ ௡⁄ ൧, then the bounds in (3.3.4) can be obtained using arguments 

similar to (Levant, 2003). The system (3.3.3) is homogenous and its homogeneity de-

gree is equal to –1 with respect to transformation:  

,ݐ఑: ሺܩ ߮௜, ሻߝ հ ൫ݐߢ, ,௡ି௜ାଵ߮௜ߢ  ߢ׊                 ൯ߝ௡ߢ  ൐ 0, ݅ ൌ 1, . . , ݊ 

Again by using the definitions (3.3.2) and suppose that the noise 

߮଴ ൌ ଴ߤsin൫ሺ ߝ଴ߤ ⁄ߝ ሻଵ ௡⁄ ൯. It is easy to prove the inequalities given in (3.3.4). This 

proves the theorem. 

3.3.1 Control Law 

For the system in (3.2.1) consider the control law 

ݑ ൌ െ መ݂ െ ݇ଵ|ߪ଴|
ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏ െ ݇ଶ|ߪොଵ|

ሺ௣ିଶሻ ሺ௣ିଵሻ⁄   ොଵሻ                         (3.3.5)ߪሺ݊݃݅ݏ

with ݌ ൌ ݊ ൅ 1, ݊ ൒ 2 and where መ݂ will be obtained by using the robust disturbance 

observer (3.3.1). The closed loop system is given by 

଴ሶߪ ൌ  ଵߪ

ଵሶߪ ൌ ݂ሺߪ଴, ,ଵߪ ሻݐ െ መ݂ െ ݇ଵ|ߪ଴|
ሺ௣ିଶሻ ௣⁄ ଴ሻߪሺ݊݃݅ݏ െ ݇ଶ|ߪොଵ|

ሺ௣ିଶሻ ሺ௣ିଵሻ⁄  ොଵሻߪሺ݊݃݅ݏ

The idea is that in finite time, the term መ݂ can cancel the drift signal ݂ሺߪ଴, ,ଵߪ  ሻ, andݐ

the dynamics above will become (3.2.3). 
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The result of this Section will now be formally stated: 

Theorem 3.4: Suppose the drift term ݂ሺߪ଴, ,ଵߪ  ሻ in (3.2.1) is differentiableݐ

and  ห݂ሺ௡ିଵሻሺߪ଴, ,ଵߪ ሻ หݐ ൏  where L is the ‘Lipschitz constant’. Then the closed loop ,ܮ

system arising from (3.2.1), (3.3.1) and control law (3.3.5), is finite time stable. 

Proof: The proof of this theorem is a consequence of Theorems 3.1 – 3.3, by intro-

ducing the following definitions (3.3.2). As shown in Theorem 3.2, the system (3.3.1) 

can easily be transformed into (3.3.3) by using above definitions. The resulting sys-

tem is homogenous and its homogeneity degree is equal to –1 by using the dilation:  

ݐ հ and  ߮௜ ݐߢ հ ߢ׊        ௡ି௜ାଵ߮௜ߢ ൐ 0, ݅ ൌ 1, . . , ݊ 

Consider the σ-dynamics in (3.2.1) with control law (3.3.5) and the observer in 

(3.3.1). When exact measurements of መ݂ is available, the term መ݂ can be cancelled by 

݂ሺߪ଴, ,ଵߪ -ሻ in finite time. Subsequently the dynamics (3.2.3) can be established. Folݐ

lowing Theorem 3.1 and the separation principle, the overall closed loop system is 

finite time stable. This proves the theorem. 

In the next Section, simulations of the proposed control law on a mathematical model 

of a DC motor are given.  

3.4 Simulation Example 

In this Section, the control technique is demonstrated on a benchmark DC motor 

(Utkin et al, 1999) with the following dynamics 

଴ܮ
݀݅
ݐ݀

ൌ ݑ െ ܴ݅ െ ݇௘߱ 

ܬ ௗఠ
ௗ௧
ൌ ݇௧݅ െ ߬௟                    (3.4.1)  

In system (3.4.1), ݑ is the input terminal voltage, ߱ and ݅ are the states of the system 

and represent shaft speed and armature current respectively. The motor load torque is 

defined as ߬௟ ൌ  All the parameters of the DC motor and their nominal values are .߱ܤ

listed in Table 3.1. 

Let ߱௥ be the reference shaft speed, and ݁ ൌ ߱௥ െ ߱ be the tracking error. Define 

ଵݔ ൌ ݁ and ݔଶ ൌ ሶ݁, then the error dynamical system using equation (3.4.1) can be 

represented as: 
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ሶଵݔ ൌ  `ଶݔ

ሶଶݔ ൌ ݂ሺݔଵ, ,ଶݔ ሻݐ  ൅  (3.4.2)              ݑܾ

where the function ݂ሺݔଵ, ,ଶݔ  ሻ  isݐ

݂ሺݔଵ, ,ଶݔ ሻݐ ൌ െܽଵݔଵ െ ܽଶݔଶ ൅ ሷ߱ ௥ ൅ ܽଶ ሶ߱ ௥ ൅ ܽଵ߱௥ ൅
ோ

௃௅బ
߬௟ ൅

ଵ

௃
ሶ߬௟                     (3.4.3) 

Name Symbol Values/Units 

Inertia of the Motor Rotor and Load 0.001 ܬ Kg. m2 

Armature Resistance ܴ 0.5 ߗ 

Armature Inductance ܮ଴ 1.0 mH 

Back-EMF Constant ܭ௘ 0.001 V/rad 

Torque Constant ܭ௧ 0.008 Nm/A 

Coefficient of Viscous Friction 0.01 ܤ Nm s /rad 

Table 3.1: The DC Motor Parameters 

Now the drift term depends upon the reference speed and load torque. The constants 

are defined as  ܽଵ ൌ ௘ܭ௧ܭ ሺܮܬ଴ሻ⁄ , ܽଶ ൌ ܴ ⁄଴ܮ , ܾ ൌ െܭ௧ ሺܮܬ଴ሻ⁄ . To ensure the exis-

tence of an inequality of the form ห ሶ݂ሺݔଵ, ,ଶݔ ሻ หݐ ൏ -where L is the ‘Lipschitz con ,ܮ

stant’, a second order low-pass pre-filter for reference signal is introduced. 

A second order sliding surface ݔଵ ൌ ଶݔ ൌ 0 is chosen for the DC motor. Only the 

states of the system are available. Assume that ݂ሺݔଵ, ,ଶݔ  ሻ is unknown and also has toݐ

estimate. The robust disturbance observer in (3.3.1) is used to estimate the drift 

nal  መ݂, 

ොሶଵݔ ൌ  ොଶݔ

ොሶଶݔ ൌ መ݂ ൅  ݑܾ

መ݂ ൌ െߣଶ ܮଵ ଶ⁄ ොଶݔ| െ ଶ|ଵݔ ଶ⁄ ොଶݔሺ݊݃݅ݏ  െ ଶሻݔ ൅  ොଷݔ

ොሶଷݔ ൌ െߣଵ݊݃݅ݏ ܮ൫ݔොଷ െ መ݂൯              (3.4.4) 

The smooth second order sliding mode control law described earlier is used with pa-

rameters ݌ ൌ 3, ݉ ൌ 2, ݇ଵ ൌ 5 and ݇ଶ ൌ 6  is given as  

ݑ ൌ
ଵ

௕
൬െ መ݂ െ ݇ଵ|ݔଵ|

ଵ
ଷൗ ଵሻݔሺ݊݃݅ݏ  െ ݇ଶ|ݔොଶ|

ଵ
ଶൗ  ොଶሻ൰          (3.4.5)ݔሺ݊݃݅ݏ 
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where መ݂ is  the estimate of the drift term (3.4.3). The observer parameters used in the 

simulations are ߣଵ ൌ ଶߣ ,3.3 ൌ 2.2 and ߣଵ ൌ 1.1. 

Figure 3.1 shows the simulation results of the proposed smooth “twisting” controller 

for speed control of the DC motor. As illustrated, the speed signal efficiently follows 

the reference signal. 

 

Figure 3.1:  The Speed Response of DC Motor 

 

Figure 3.2 shows the resultant acceleration of the motor.  

 

Figure 3.2:  The Acceleration Response of DC Motor 
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Figure 3.3 demonstrates the tracking of the drift term by the proposed observer. As 

shown in the figure, the observer precisely tracks the drift signal exactly after a cer-

tain (finite) time.  

 

Figure 3.3:  The Actual and Observed Drift Terms 

Figure 3.4 shows the motor current. Note that the current is not explicitly controlled; 

its behavior is a result of acceleration control. The current is determined through the 

second term of (3.4.1) whilst assuming that the load torque is available, i.e.  

݅ ൌ
ܬ
݇௧

ሶ߱ ൅
1
݇௧
߬௟ 

 

Figure 3.4: The Current Response of the Speed Controller for DC Motor 
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As depicted in Figure 3.4 the results are very good compared to a more conventional 

SMC design (see for example Utkin, 1999; Figure 10.5 pp 177). 

Figure 3.5 shows the control effort generated by the smooth real twisting controller. 

 

Figure 3.5: The Controller Effort of DC Motor for Step Reference 

The validity of the proposed controller is discussed below when the motor output is 

required to track a continuous sinusoidal waveform as the reference speed. 

Figure 3.6 shows sinusoidal speed control of the DC motor with the smooth control-

ler. The plots show that the signal is tracked precisely. 

    

Figure 3.6:  The Sinusoidal Speed Reference Response 
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Figure 3.7 depicts the results from the proposed observer. The drift signal is followed 

in less than one second and well tracked thereafter. 

  

Figure 3.7:  The Actual and Observed Drift Term 

Figure 3.8 shows the current waveform generated by the DC motor for sinusoidal ref-

erence signal. 

 

Figure 3.8: The Current Response for the Sinusoidal Speed Reference 

Figure 3.9 shows the control effort generated by the controller to track the reference 

sinusoidal speed.  
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Figure 3.9: The Controller Effort of DC Motor for Sinusoidal Speed Reference 

To verify the robustness of the proposed controller, certain parameters of the DC mo-

tor have been varied with time – specifically the viscous friction coefficient and the 

armature resistance are increased by 100% (unknown to the controller) during the si-

mulation. These changes do not affect the performance of the controller significantly. 

Figure 3.10 demonstrates the speed response of the DC motor with purturbations in 

the parmeters. The two subplots at the bottom of the figure show the variation in the 

friction and resistance respectively. 

 

Figure 3.10: The Speed Response of DC Motor with Parameters Perturbation 
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3.5 Experimental Results 

For stringent performance and robustness analysis of the proposed controller an aca-

demic benchmark DC-motor (MS150) manufactured by Feedback Instrumentation has 

been used at Control Teaching Lab, Department of Engineering, University of Leice-

ster. Figure 3.11 shows the experimental setup. 

 

Figure 3.11: The DC Motor and dSPACE Setup 

The input of the motor is voltage (in Volts) and the angular speed output (in radians 

per second) can be measured through a taco-generator. An aluminum disk is mounted 

on the motor shaft to increase the inertia of the motor. The disk rotates between the 

two poles of a magnet, to reproduce the effect of frictional load. The key parameters 

of the DC-servomotor are given in Table 3.2 as listed by the manufacturer. 

Name Symbol Values/Units 

Inertia of the Motor Rotor and Load 4.42 ܬx 10-4Kg. m2 

Armature Resistance ܴ 3.2 ߗ 

Armature Inductance ܮ଴ 8.6 x 10-3 H 

Back-EMF Constant ܭ௘ 60 x 10-3 V/rad 

Torque Constant ܭ௧ 17 x 10-3 Nm/A 

Table 3.2: The MS-150 DC Motor Parameters 

A dSPACE® card (DS1102) was chosen as the interface for real time implementation 

of the controller from the Matlab/Simulink® environment. The card provides four 

channels of 16-bit A/D conversion and two channels of 16-bit D/A data conversion. 

The setup uses a TMS320C31 floating-point DSP processor with 128 K x 32-bit 

RAM.  
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For the experiment, the observer structure from (3.4.4) and the control law from 

(3.4.5) have been used. The values of ܾ଴, ߣଵ,  ଷ need to be tuned. The initialߣ ଶ andߣ

guesses for the observer and controller gains were obtained through simulations. 

Figure 3.12 shows the experimental results of the proposed control scheme for a 

square reference signal. The two plots in the figure show the speed response of the 

DC motor and its corresponding control effort. As illustrated below, the measured 

speed tracks the reference precisely. 

 

Figure 3.12:  The Experimental Result of Square Wave Signal for DC Motor. 

The Figure 3.12 shows that chattering effects in the control effort, but its amplitude is 

very small i.e. 0.05 Volts.  

The performance of the proposed controller has also been examined with respect to a 

continuous sinusoidal waveform as a reference speed. The speed response of the DC 

motor with the sine wave reference signal is shown in Figure 3.13. The plots demon-

strate that the trajectory is followed accurately with low control effort. 

To verify the robustness of the proposed controller, the friction load, with the help of 

a magnetic brake, has been increased by 300% during the experiment. Figure 3.14 

demonstrates the speed response of the DC motor subject to this perturbation. In the 

experiment the brake has been applied at 13 seconds and released after 33 seconds. 

The graph shows that these changes do not affect the performance of the controller 

significantly. 
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Figure 3.13:  The Experimental Result of Sine Wave Signal for DC Motor. 

 

Figure 3.14: The Speed Response with Perturbation in Friction Load 

The experimental results associated with the proposed scheme offers an opportunity 

for achieving desired and robust performance without detailed knowledge of the plant 

system model. 

3.6 Summary 

In this chapter, a new smooth second order sliding mode control law for relative de-
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turbance observer is used to compensate for the drift term in the closed-loop dynam-

ics. Finite time stability of the overall system is proven using a homogeneity-based 

approach.  

In the next chapter, a new version of the disturbance observer is presented i.e. states 

as well as drift term is observed using modified robust state-disturbance differentiator. 

Moreover with the help of the observer, a control using feedback linearization tech-

nique is proposed. 
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Chapter 4 

ROBUST FEEDBACK LINEARIZATION 

It is a great challenge to achieve desired output performance from a nonlinear system 

in the presence of significant uncertainties. The problem becomes more difficult when 

only output information is available and the system model is not exactly known. 

Usually observers e.g. Kalman filters (Kalman, 1960), Luenberger observers (Luen-

berger, 1964), sliding mode observers (Edwards and Spurgeon, 1998), high gain ob-

servers (Khalil, 2002) and second order sliding mode observers (Davila et al, 2005) 

are used to reconstruct the state information on the basis of a nominal model of the 

system. The estimated state information is then used in robust or adaptive control 

schemes to achieve the desired results.  

A different approach to address the same problem is to estimate the disturbance or 

drift terms which constitute the combined effects of model uncertainties, unknown 

parameters, the influence of internal dynamics, etc; and cancel them via feedback ac-

tion (Radke and Gao, 2006). For this approach the model is transformed into the Ge-

neralized Controllable Canonical Form (GCCF) (Isidori, 1995; Slotine and Li, 1991) 

and the state vector and drift terms are estimated via a High Gain Observer (HGO) 

(Khalil, 2002) or a “modified” robust exact differentiator (Levant, 1998 and Levant, 

2003). On the basis of this information, a feedback linearization control (Isidori, 

1995; Slotine and Li, 1991) is used to convert the system into an equivalent linear 

system. Examples based on HGO schemes can be seen in (Esfandiari and Khalil, 

1992; Khalil, 1999; Freidovich and Khalil, 2006) and case studies with robust exact 

differentiator can be reviewed in (Massey and Shtessel, 2005; Hall and Shtessel, 

2006; Besnard, Shtessel, and Landrum, 2007; Shtessel, Shkolnikov and Levant, 2007; 

Iqbal, Edwards and Bhatti, 2010; Iqbal, Edwards and Bhatti, 2011). 

In this decade, robust feedback linearization has been successfully demonstrated by 

various authors. In (Esfandiari and Khalil, 1992; Khalil, 1999), an output feedback 

controller for nonlinear systems using a HGO is proposed which robustly estimates an 

appropriate number of derivatives of the output together with the drift terms. An out-
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put feedback controller for nonlinear systems has been proposed in (Bartolini et al, 

2002) that estimates the derivatives of the outputs with the help of the robust exact 

differentiator (Levant, 1998). These derivatives are then used to create a sliding sur-

face for a second order sliding mode controller. Feedback linearization based on a 

nominal model recently presented by (Freidovich and Khalil, 2006). In the design of 

(Freidovich and Khalil, 2006) the extended HGO is used to estimate the unmeasured 

derivatives of the output “plus” one. This extra derivative facilitates estimation of the 

uncertainties in the system. In (Benallegue, Mokhtari and Fridman, 2008), robust 

feedback linearization was also undertaken by using a higher order sliding mode ob-

server (Davila, Fridman and Levant, 2005). However in the work of (Benallegue, 

Mokhtari and Fridman, 2008) the states and external disturbance effects were esti-

mated based on nominal model of the plant. 

In this chapter first of all, the problem is formulated for the proposed robust feedback 

linearization. Secondly the structure of the robust state-disturbance observer and its 

finite time stability is proven. After that, a case study involving DC motor to validate 

the proposed technique through simulation is considered. In the last, implementation 

of the idea on a DC motor rig is discussed. 

4.1 Problem Statement 

In this chapter the authors proposed a technique for feedback linearization of nonli-

near systems with internal (“unobserved”) dynamics on the basis of modified robust 

exact differentiator (Levant 1998; Levant 2003). This observer can estimates the 

states as well as the drift terms based only on the available input and output of the 

system, and without detail knowledge of the mathematics of the system. The metho-

dology is similar to the work of (Freidovich and Khalil, 2006) however in our case, a 

HOSM observer rather than a HGO is employed to estimate the required derivatives 

and uncertainties.  

The idea here is first transform the error dynamics of the system into GCCF, and then 

use modified robust exact differentiator to estimate the states as well as the combined 

effect of the drift terms. The controller then nullifies the effects of the drift terms, and 

imposes specific linear closed loop dynamics. The states and the drift term estimates 

are all obtained in finite time using the observer. Consequently, a type of separation 
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principle holds and the controller and observer can be designed independently. One 

key benefit of this scheme over robust control (sliding mode or higher order sliding 

mode) approaches is that it does not require conservative upper bounds on the nonli-

near terms and does not result in aggressive control action. The overall closed loop 

structure arising from using the proposed technique can be depicted as shown in Fig-

ure 4.1.  

 

Figure 4.1:  The Proposed Controller-Observer Structure 

4.2 Robust Feedback Linearization 

Consider a Single Input Single Output (SISO) dynamical system with well defined 

relative degree ݎ ൑ ݊ which can be written in Generalized Controllable Canonical 

Form (GCCF) (Isidori, 1995; Slotine and Li, 1991) as follow 

ሶଵߦ ൌ  ଶߦ

ሶଶߦ ൌ  ଷߦ

 ڭ       

ሶ௥ߦ ൌ ݂ሺݐ, ,ߦ ሻݖ ൅ ݃ሺݐ,  ݑሻߦ

ሶݖ ൌ ߰ሺݐ, ,ߦ  ሻݖ

ݕ ൌ  ଵ                                                              (4.2.1)ߦ

where ߦ ߳ ࣬௥ is observable state vector, ݖ ߳ ࣬௡ି௥ is the zero dynamics, ݑ ߳ ࣬ is the 

control input and ݂ሺ. ሻ and ݃ሺ. ሻ  are smooth vector fields.   

Assumption 4.1: The zero-dynamics ݖሶ ൌ ߰ሺݐ, ,ߦ -ሻ is input-to-state stable, so the sysݖ

tem (4.2.1) is minimum phase (Isidori, 1995; Khalil, 2002). 

Controller 
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Plant 
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 ଵߦ

መ݂ 
 ݑ

଴ݑ
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The system in (4.2.1) can be written in the form 

ሶߦ ൌ ߦܣ ൅ ,ݐሾ݂ሺܤ ,ߦ ሻݖ ൅ ݃ሺݐ,  ሿݑሻߦ

ሶݖ ൌ ߰ሺݐ, ,ߦ  ሻݖ

ݕ ൌ  (4.2.2)                      ߦܥ

where       ܣ ൌ

ۏ
ێ
ێ
ێ
ۍ
0 1 0
0 0 1
0 0 0

ڮ
ڮ
ڮ

0
0
ڭ

ڭ ڭ ڭ ڰ 1
0 0 0 0 ے0

ۑ
ۑ
ۑ
ې

ܤ      , ൌ

ۏ
ێ
ێ
ێ
ۍ
0
0
ڭ
0
ے1
ۑ
ۑ
ۑ
ې

ܥ      , ൌ

ۏ
ێ
ێ
ێ
ۍ
1
0
ڭ
0
ے0
ۑ
ۑ
ۑ
ې
்

. 

Suppose ߦመ is the estimate of the state vector ߦሺݐሻ and ݃൫ݐ,  መ൯ is the input gain of theߦ

system, reconstructed using the observed states. Then system (4.2.2) can be written in 

the form 

ሶߦ ൌ ߦܣ ൅ ,ݐሺ݂ൣܤ ,ߦ ,ݖ ∆௨ሻ ൅ ݃൫ݐ,  ൧ݑመ൯ߦ

ሶݖ ൌ ߰ሺݐ, ,ߦ  ሻݖ

ݕ ൌ  (4.2.3)                                   ߦܥ

where ∆௨ൌ ݃ሺݐ, ሻߦ െ ݃൫ݐ,   .መ൯ is uncertainty in the input channelߦ

If all the states (including zero dynamics) are available and the function ݂ሺ. ሻ is pre-

cisely known in (4.2.3) and ݃൫ݐ, መ൯ߦ ് 0, then a feedback linearization control law for 

the system is given by   

ݑ ൌ ଵ

௚൫௧,క෠൯
ሺെ݂ሺݐ, ,ߦ ,ݖ ∆௨ሻ െ  ሻ                             (4.2.4)ߦܭ

where ்ܭ ߳ ࣬௡ is a design gain vector. Using this control law in (4.2.3) yields linear 

closed loop dynamics 

ሶߦ ൌ ሺܣ െ  (4.2.5)                              ߦሻܭܤ

The gain matrix ܭ can be designed using any modern or classical state-space tech-

nique e.g. pole placement, LQR or LMI methods etc, such that ܣ െ  is Hurwitz ܭܤ

and the states ߦ meet the desired performance objectives of the closed loop system.  

However, in reality, in most engineering systems only the output of the system is 

available and the function ݂ሺ. ሻ is unknown (or not known perfectly). As a result the 

ideal control law in (4.2.4) is not realizable. Instead the control law 
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ݑ ൌ ଵ

௚൫௧,క෠൯
൫െ መ݂ െ  መ൯                                     (4.2.6)ߦܭ

is employed where መ݂ and ߦመ are estimates of ݂ሺ. ሻ and ߦሺݐሻ respectively. If the states 

and the drift term are correctly estimated so that መ݂ ՜ ݂ሺ. ሻ and ߦመ ՜  ,ሻ in finite timeݐሺߦ

the effect of control (4.2.4) can be achieved, and the desired performance indicated in 

(4.2.5) can be obtained in finite time.  

Assumption 4.2: it is assumed that ݃ሺݐ,   .௥࣬ ߳ ߦ ሻ is bounded away from zero for allߦ

The following Section proposes an observer structure to generate the estimates ߦመ and 

መ݂ in (4.2.6) which converge to the true values in finite time. 

4.3 Robust State-Disturbance Observer 

Since only the output of the system (4.2.3) is available and the closed loop dynamics 

(4.2.5) is also sensitive to unknown drift term ݂ሺ. ሻ, so the control law (4.2.4) is not 

realistic. The overall closed system therefore requires a good estimate of the states 

and the drift signals to cancel out its effects.  

Assume the control ݑሺݐሻ is Lebesgue-measurable and the unknown drift 

tion ݂ሺ. ሻ  is ݊ െ .times differentiable and satisfies ห݂ሺ௡ି௥ሻሺ ݎ ሻ ห ൏ ܮ where ,ܮ ൐ 0 is 

the Lipshitz constant.  Then the ‘robust state-disturbance observer’ can be introduced 

as a part of the closed loop to compensate undesired disturbances and estimate pre-

cisely the unmeasured but observable states in finite time. The approach of (Freido-

vich and Khalil, 2006) is similar in terms of methodology, but instead HGO is used to 

obtain the estimates. 

For notational convenience define  መ݂ ؠ መ݂
ଵ. The proposed observer structure can be 

written as follows 

መሶଵߦ ൌ  ଵݒ

ଵݒ ൌ െߣ௡ାଵܮଵ
ሺ௡ାଵሻ⁄ หߦመଵ െ ଵหߦ

௡ ሺ௡ାଵሻ⁄
መଵߦ൫݊݃݅ݏ  െ ଵ൯ߦ ൅  መଶߦ

መሶଶߦ ൌ  ଶݒ

ଶݒ ൌ െߣ௡ܮଵ ௡⁄ หߦመଶ െ ଵหݒ
ሺ௡ିଵሻ ௡⁄

መଶߦ൫݊݃݅ݏ  െ ଵ൯ݒ ൅  መଷߦ

 ڭ      

መሶ௥ߦ ൌ መ݂
ଵ ൅ ݃൫ݐ,  ,ݑመ൯ߦ
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መ݂
ଵ ൌ െߣ௡ି௥ାଶܮଵ

ሺ௡ି௥ାଶሻ⁄ หߦመ௥ െ ௥ିଵหݒ
ሺ௡ି௥ାଵ ሻ ሺ௡ି௥ାଶሻ⁄

መ௥ߦ൫݊݃݅ݏ െ ௥ିଵ൯ݒ ൅  መ௥ାଵߦ

 ڭ      

መሶ௡ߦ ൌ መ݂
௡ି௥ାଵ 

መ݂
௡ି௥ାଵ ൌ െߣଶܮଵ ଶ⁄ หߦመ௡ െ መ݂

௡ି௥ห
ଵ ଶ⁄

መ௡ߦ൫݊݃݅ݏ െ መ݂
௡ି௥൯ ൅  መ௡ାଵߦ

መሶ௡ାଵߦ ൌ െߣଵ݊݃݅ݏ ܮ൫ߦመ௡ାଵ െ መ݂
௡ି௥ାଵ൯                   (4.3.1) 

The parameters ߣ௜ can be chosen recursively as suggested in (Levant, 2003). The ob-

server (4.3.1) has a different structure to the one in (Shtessel, Shkolnikov and Levant, 

2007; Iqbal, Edwards and Bhatti, 2010) because a relative degree ݎ ൑ ݊ system is 

considered in (4.2.3). Note that the estimates of the higher derivatives of the drift term 

have no direct relevance to the internal dynamics of the system.  

Theorem 4.1: Suppose the parameters of the observer ߣଵ, ,ଶߣ … ,  ௡ାଵ are properlyߣ

chosen and the output of the system ߦଵሺݐሻ and the input signal uሺݐሻ are bounded and 

Lebesgue-measurable. Then in the absence of noise the following equalities are estab-

lished in finite time :  ߦመ௜ ൌ ݅ ׊   ,௜ߦ ൌ 1,… , መ௥ାଵߦ ;ݎ ൌ ݂ሺݐ, ,ߦ ,ݖ ∆௨ሻ; 
 
መ௝ାଵߦ ൌ

݂௝ି௥ሺݐ, ,ߦ ,ݖ ∆௨ሻ, ݆ ׊ ൌ ݎ ൅ 1,… , ݊. 

Proof: Define 

߮ଵ ൌ መଵߦ െ  ଵߦ

߮ଶ ൌ መଶߦ െ ଵሶߦ  

 ڭ       

߮௥ ൌ መ௥ߦ െ ଵߦ
ሺ௥ିଵሻ 

߮௥ାଵ ൌ መ௥ାଵߦ െ ݂ሺݐ, ,ߦ ,ݖ ∆௨ሻ 

 ڭ       

߮௡ ൌ መ௡ߦ െ ݂ሺ௡ି௥ିଵሻሺݐ, ,ߦ ,ݖ ∆௨ሻ 

߮௡ାଵ ൌ መ௡ାଵߦ െ ݂ሺ௡ି௥ሻሺݐ, ,ߦ ,ݖ ∆௨ሻ                  (4.3.2) 

From system (4.2.1) and the observer described in (4.3.1),  

መଶߦ െ ଵݒ ൌ መଶߦ െ መሶଵߦ ൌ መଶߦ െ ሶଵߦ െ ሶ߮ଵ 

               ൌ ߮ଶ െ ሶ߮ଵ 

 ڭ       
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መ௥ାଵߦ െ መ݂
ଵ ൌ መ௥ାଵߦ െ መሶ௥ߦ ൅ ݃ሺ. ሻݑ 

               ൌ መ௥ାଵߦ െ ሶ߮௥ െ ଵߦ
ሺ௥ሻ ൅ ݃ሺ. ሻݑ 

               ൌ መ௥ାଵߦ െ ሶ߮௥ െ ݂ሺ. ሻ െ ݃ሺ. ሻݑ ൅ ݃ሺ. ሻݑ 

               ൌ መ௥ାଵߦ െ ݂ሺ. ሻ െ ሶ߮௥ 

               ൌ ߮௥ାଵ െ ሶ߮௥ 

 ڭ       

መ௡ାଵߦ െ መ݂
௡ି௥ାଵ ൌ መ௡ାଵߦ െ  መሶ௡ߦ

               ൌ መ௡ାଵߦ െ ሶ߮௡ െ ݂ሺ௡ି௥ሻሺ. ሻ 

               ൌ ߮௡ାଵ െ ሶ߮௡ 

By using these definitions, the observer in (4.3.1) can be written as 

ሶ߮ ଵ ൌ  ଵݒ

ଵݒ ൌ െߣ௡ାଵܮଵ
ሺ௡ାଵሻ⁄ |߮ଵ|௡

ሺ௡ାଵሻ⁄ ሺ߮ଵሻ݊݃݅ݏ  ൅ ߮ଶ 

ሶ߮ ଶ ൌ  ଶݒ

ଶݒ ൌ െߣଶܮଵ ௡⁄ |߮ଶ െ |ଵݒ
ሺ௡ିଵሻ ௡⁄ ሺ߮ଶ݊݃݅ݏ  െ ଵሻݒ ൅ ߮ଷ 

 ڭ       

ሶ߮ ௡ ൌ  ௡ݒ

௡ݒ ൌ െߣଶܮଵ ଶ⁄ |߮௡ െ ௡ିଵ|ଵݒ ଶ⁄ ሺ߮௡݊݃݅ݏ  െ ௡ିଵሻݒ ൅ ߮௡ାଵ 

ሶ߮ ௡ାଵ ߳ െ ሺ߮௡ାଵ݊݃݅ݏ ܮଵߣ െ ௡ሻݒ ൅ ሾെܮ,൅ܮሿ                   (4.3.3) 

The structure in (4.3.3) is similar to the exact differentiator from (Levant 1998; Le-

vant 2003). The resulting differential inclusion can be understood in the Flippov sense 

(Flippov, 1988). It is easy to see that the differential inclusion in (4.3.3) is invariant 

with respect to the dilation 

ݐ հ ߮  and ݐߢ հ ߢ׊        ௡ି௜ାଵ߮௜ߢ ൐ 0, ݅ ൌ 0,… , ݊ 

and therefore the system is homogenous: furthermore its homogeneity degree is equal 

to –1. Therefore in the absence of noise, the quantities ߮௜ ՜ 0 in finite time and the 

following exact equalities are obtained (in finite time): 

߮ଵ ൌ መଵߦ െ ଵߦ ൌ 0  ฺ መଵߦ ൌ  ଵߦ

߮ଶ െ ଵݒ ൌ ߮ଶ െ ሶ߮ଵ ൌ 0  ฺ መଶߦ െ ሶଵߦ െ መሶଵߦ ൅ ሶଵߦ ൌ 0 
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ฺ መଶߦ െ ሶଵߦ ൌ 0 

ฺ መଶߦ ൌ ሶଵߦ ൌ  ଶߦ

 ڭ       

߮௥ െ ௥ିଵݒ ൌ ߮௥ െ ሶ߮ ௥ିଵ ൌ 0  ฺ መ௥ߦ ൌ ଵߦ
ሺ௥ିଵሻ ൌ  ௥ߦ

߮௥ାଵ െ ௥ݒ ൌ ߮௥ାଵ െ ሶ߮௥ ൌ 0 

  ฺ መ௥ାଵߦ െ ݂ሺ. ሻ െ መ௥ߦ
ሶ ൅ ଵߦ

ሺ௥ሻ 

  ฺ መ௥ାଵߦ െ ݂ሺ. ሻ 

  ฺ መ௥ାଵߦ ൌ ݂ሺ. ሻ 

߮௥ାଶ െ ௥ାଵݒ ൌ ߮௥ାଶ െ ሶ߮ ௥ାଵ ൌ 0 

ฺ መ௥ାଶߦ െ ሶ݂ሺ. ሻ െ መሶ௥ାଵߦ ൅ ሶ݂ሺ. ሻ ൌ 0 

ฺ መ௥ାଶߦ െ ሶ݂ሺ. ሻ ൌ 0 

ฺ መ௥ାଶߦ ൌ ݂ሶሺ. ሻ 

 ڭ       

߮௡ െ ௡ିଵݒ ൌ ߮௡ െ ሶ߮ ௡ିଵ ൌ 0 ฺ መ௡ߦ ൌ ݂ሺ௡ି௥ିଵሻሺ. ሻ  

߮௡ାଵ െ ௡ݒ ൌ ߮௡ାଵ െ ሶ߮௡ ൌ 0  ฺ መ௡ାଵߦ ൌ ݂ሺ௡ି௥ሻሺ. ሻ 

This proves the theorem. 

Theorem 4.1 assumes the inputs and outputs of the system in (4.2.3) are noise free. 

The next theorem explores the impact of noise on the estimates ߦ. 

Theorem 4.2: Suppose in presence of noise, the output noise is bounded, i.e. ߦଵ א

ሾെߝ, ݑ .ሿ and the input signal is also bounded and Lebesgue-measurable, i.eߝ א

ൣെ݇ߝሺ௡ିଵሻ ௡⁄ , ሺ௡ିଵሻߝ݇ ௡⁄ ൧. Then the following inequalities can be established in finite 

time for some positive constants ߤ௜ and ߟ௜.  

หߦመଵ െ ଵหߦ ൑  ߝଵߤ

หߦመଶ െ ଵሶߦ ห ൑ ߝଶߤ
ሺ௡ିଵሻ ௡⁄  

  ڭ       

ቚߦመ௥ െ ଵߦ
ሺ௥ିଵሻቚ ൑ ߝ௥ߤ

ሺ௡ି௥ିଵሻ ௡⁄  

หߦመ௥ାଵ െ ݂ሺ. ሻห ൑ ߝ௥ାଵߤ
ሺ௡ି௥ିଶሻ ௡⁄   

 ڭ       

หߦመ௜ െ ݂௜ି௥ିଵሺ. ሻห ൑ ߝ௜ߤ
ሺ௡ି௜ିଵሻ ௡⁄ ݅ ׊   , ൌ ݎ ൅ 1,… , ݊                             (4.3.4) 
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Proof: By using definitions (4.3.2), the observer in (4.3.1) can be rewritten as (4.3.3). 

The structure in (4.3.3) is similar to the robust exact differentiator (Levant 1998; Le-

vant 2003). The system in (4.3.3) is homogenous and its homogeneity degree is equal 

to –1 with respect to the transformation:  

,ݐ఑: ሺܩ ߮, ሻߝ հ ൫ݐߢ, ,௡ି௜ାଵ߮௜ߢ  ߢ׊      ൯ߝ௡ାଵߢ  ൐ 0, ݅ ൌ 0, . . , ݊ 

Furthermore, assuming that the noise can be represent by ߮ଵ ൌ ଵߤsin൫ሺ ߝଵߤ ⁄ߝ ሻଵ ௡⁄ ൯, it 

is easy to prove the inequalities given in (4.3.4). This proves the theorem. 

Theorem 4.1 and 4.2 demonstrate the finite time convergence of the observer given in 

(4.3.1). In the next theorem, the stability analysis for the complete closed-loop system 

is given. 

Theorem 4.3: Assume that the zero dynamics of the system are stable, the drift term 

݂ሺݐ, ,ߦ  መ௡ and መ݂ areߦ ,Δ୳ሻ in (4.2.3) is a smooth vector field on ࣬௡, and moreover,ݖ

exactly estimated. Then the closed loop system (4.2.3) with control law in (4.2.6) and 

the observer in (4.3.1) is stable.  

Proof: When exact measurements of ߦመ௡ and መ݂ are available from the observer (4.3.1), 

the term መ݂ can cancel the drift term ݂ሺݐ, ,ߦ  Δ୳ሻ and the dynamics in (4.2.5) could be,ݖ

established in finite time. Designing K by using any modern or classical state-space 

methods ensures that ܣ  െ  is Hurwitz and the closed loop system associated with ܭܤ 

(4.2.3) is stable. 

As shown in Theorem 4.1, the observer in (4.3.1) can easily be transformed into struc-

ture (4.3.3) by using the definitions (4.3.2). The resulting system is homogenous and 

its homogeneity degree is equal to –1 by using following dilation:  

ݐ հ and  ߮௜ ݐߢ հ ߢ׊        ௡ି௜ାଵ߮௜ߢ ൐ 0, ݅ ൌ 1, . . , ݊ ൅ 1 

Here the zero dynamics of the system are assumed to be stable, the observer in (4.3.1) 

is finite time stable and the control law (4.2.6) is bounded and convergent. Utilizing 

the separation principle, the overall closed loop system is stable. This proves the theo-

rem. 
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4.4 Simulation Studies 

The results are verified through simulations using the proposed control law on 

mathematical models of DC motor. Two cases are considered here, one is for relative 

degree ‘r’ being equal to system order ‘n’ and in the second case, relative degree is 

taken to be less than order of system.  

4.4.1 Relative degree ࢘ ൌ  ࢔

For relative degree equal to system order, the proposed control scheme is demonstrat-

ed on the same DC motor that used in previous chapter. Details of dynamical model 

and DC motor parameters are given in Section 3.4 of chapter 3. 

A pole placement technique is chosen for the choice of the feedback gain K. For these 

simulations, two poles are placed at -3 and -3. The controller parameters to achieve 

this are ݇ଵ ൌ 9 and ݇ଶ ൌ 6. Thus the proposed controller is given by  

ݑ ൌ ଵ

௕బ
൫െ መ݂ െ ݇ଵݔଵ െ ݇ଶݔොଶ൯                                                       (4.4.4) 

where መ݂ is  the estimate of the drift term (4.4.3) and ݔොଶ is the estimate of the state ݔଶ.  

The proposed observer structure for the system is as follows:  

ොሶଵݔ ൌ  ଵݒ

ଵݒ ൌ െߣଷܮଵ ଷ⁄ ොଵݔ| െ ଵ|ଶݔ ଷ⁄ ොଵݔሺ݊݃݅ݏ  െ ଵሻݔ ൅  ොଶݔ

ොሶଶݔ ൌ መ݂ ൅ ܾ଴ݑ 

መ݂ ൌ െߣଶ ܮଵ ଶ⁄ ොଶݔ| െ ଵ|ଵݒ ଶ⁄ ොଶݔሺ݊݃݅ݏ  െ ଵሻݒ ൅  ොଷݔ

ොሶଷݔ ൌ െߣଵ݊݃݅ݏ ܮ൫ݔොଷ െ መ݂൯                                                            (4.4.5) 

where ߣଵ ൌ 2.1, ଶߣ ൌ 4.2 and ߣଷ ൌ 8.4. 

Figure 4.2 shows the simulation results of the proposed speed controller for the DC 

motor. The first subplot demonstrates the speed response and the second subplot dis-

plays the control effort. As illustrated, the speed tracks the reference signal very effec-

tively. Moreover, the control input does not exhibit any chattering effects.   
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Figure 4.2:  The Speed Response of DC Motor 

Figure 4.3 shows the tracking of the drift term by the proposed observer. As shown in 

the figure, the observer precisely tracks the drift signal after a certain (finite) time. 

 

Figure 4.3:  The Actual and Observed Drift Term 
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Figure 4.4 shows a comparison between the actual and observed state. It is clear from 

the figure that the observed state follows the actual state component ݔଶ accurately. 

 

Figure 4.4:  The Actual and Observed State ࢞૛ 

4.4.2 Relative degree ࢘ ൏ ݊ 

In this section, the proposed control scheme is demonstrated for a DC motor with a 

rigid arm (Freidovich and Khalil, 2006). The dynamics are given by 

ሷߠܬ ൌ ݇௖ݑ െ   (4.4.6)                                                                              ܨ

where in system (4.4.6), J represents the total moment of inertia of the rotor and the 

arm, ݇௖ is the motor input constant, ݑ is the applied terminal voltage and ߠ represents 

shaft position. The term F is the unknown frictional torque and can be represent by 

the dynamical LuGre model as given in (Canudas de Wit et al, 1995)  

ܨ ൌ ݖ ൅ ሶሻݖ଴ߝଵሺߪ ൅ ሶߠଶߪ    

ሶݖ଴ߝ ൌ ሶߠ െ
หఏሶ ห

௦൫ఏሶ ൯
 (4.4.7)                                             ݖ

where ߝ଴ is the reciprocal of the average stiffness of the bristles, ߪଵ is the damping 

coefficient of the bristles, ߪଶis the viscous friction, and the Stribeck curve can be de-

fined as, 
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ሶ൯ߠ൫ݏ ൌ ൞
௖ାܨ ൅ ሺܨ௦ା െ ௖ାሻ݁ି൫ఏܨ

ሶ ௩ೞ⁄ ൯
మ
ሶߠ          ൐  0   

௖ିܨ ൅ ሺܨ௦ି െ ௖ିሻ݁ି൫ఏܨ
ሶ ௩ೞ⁄ ൯

మ
ሶߠ          ൏  0   

൫ݏሺ0ାሻ ൅ ሺ0ିሻ൯ݏ 2⁄ ሶߠ               ൌ  0   

             (4.4.8) 

where ݒ௦ is the Stribeck velocity of the motor and ܨ௖േ and ܨ௦േ are the coulomb and 

static frictions respectively. 

Let ߠ௥ be the reference shaft position, and ߦଵ ൌ ௥ߠ െ  be the tracking error, then ߠ

ሶଵߦ ൌ ଶߦ ൌ ሶ௥ߠ െ ሶߠ  and ߦሶଶ ൌ ሷ௥ߠ െ ሷߠ . It is easy to verify, as discussed in (Canudas de 

Wit et al, 1995), that the zero dynamics are input-to-state stable. 

The system (4.4.6) can be represented as 

ሶଵߦ ൌ  ଶߦ

ሶଶߦ ൌ ݂ሺݐ, ,ߦ Δ୳ሻ,ݖ  ൅ ݃൫ݐ,                                             ݑመ൯ߦ

ሶݖ ൌ ߰ሺݐ, ,ߦ  ሻ                                                (4.4.9)ݖ

where݂ሺ. ሻ ൌ ሷ௥ߠ െ ܨ ൅ Δ୳, ݃ሺ. ሻ ൌ
௞೎
௃
, ߰ሺ. ሻ ൌ ଵ

ఌబ
൬ߠሶ െ

หఏሶ ห

௦൫ఏሶ ൯
 ൰ and Δ୳ is the differenceݖ

between the actual and nominal value of the input constant. 

All the parameters of the DC motor and their nominal values are listed in Table 4.1. 

Name Value Name Value 

 ௖ା 0.023. ݇௖ Nܨ Kg. m2 0.095 ܬ

݇௖ 2.5 ܨ௖ି 0.021. ݇௖ N 

 ௦ା 0.058. ݇௖ Nܨ ଵ 1.5 Ns/mߪ

 ௦ି 0.052. ݇௖ Nܨ ଶ 0.004 Ns/mߪ

 ௦ 0.01 m/sݒ ଴ 0.01ߝ

Table 4.1: The DC Motor (with Rigid Arm) Parameters 

A pole placement technique has been chosen for synthesizing the choice of the feed-

back gain K. For this simulation, two poles are placed at -1 and -1. The controller pa-

rameters to achieve this are ݇ଵ ൌ 1 and ݇ଶ ൌ 2. Thus the proposed controller is given 

as  

ݑ ൌ ଵ

௕బ
൫െ መ݂

ଵ െ ݇ଵߦଵ െ ݇ଶߦመଶ൯                                                    (4.4.10) 
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where መ݂ଵ is  the estimate of the drift term ݂ሺ. ሻ and ߦመଶ is the estimate of the state ߦଶ. 

The proposed observer structure for the system is as follows:  

መሶଵߦ ൌ  ଵݒ

ଵݒ ൌ െߣଷܮଵ ଷ⁄ หߦመଵ െ ଵหߦ
ଶ ଷ⁄

መଵߦ൫݊݃݅ݏ  െ ଵ൯ߦ ൅  መଶߦ

መሶଶߦ ൌ መ݂
ଵ ൅ ܾ଴ݑ 

መ݂
ଵ ൌ െߣଶ ܮଵ ଶ⁄ หߦመଶ െ ଵหݒ

ଵ ଶ⁄
መଶߦ൫݊݃݅ݏ  െ ଵ൯ݒ ൅  መଷߦ

መሶଷߦ ൌ െߣଵ݊݃݅ݏ ܮ൫ߦመଷ െ መ݂
ଵ൯                                                        (4.4.11) 

where ߣଵ ൌ 5, ଶߣ ൌ 10 and ߣଷ ൌ 5. 

Figure 4.5 shows the simulation results of the proposed controller with a sinusoidal 

reference signal. The first subplot demonstrates the speed response and the second 

subplot displays the control effort. As illustrated, the speed tracks the reference signal 

very effectively. Moreover the control force does not exhibit any chattering effects.   

Figure 4.6 demonstrates the tracking of the drift term by the proposed observer. As 

shown in the figure, the observer accurately tracks the drift signal after a certain (fi-

nite) time.  

Figure 4.7 shows a comparison between actual and observed state. It is obvious from 

the figure that the observed state follows the actual state component ߦଶ accurately. 

The validity of the proposed controller for a square waveform as the reference speed 

for the DC motor is discussed in the following lines. 

Figure 4.8 shows the simulation results of the proposed controller for speed control of 

the DC motor with a square wave reference signal. The first subplot shows the track-

ing of reference signal and second subplot demonstrates the controller effort. As illu-

strated, the speed follows the reference signal precisely.   

Figure 4.9 exhibits the tracking of the drift term by the proposed observer. As shown 

in the figure, the observer precisely tracks the drift signal after a certain (finite) time.  

Figure 4.10 shows the actual and observed state ߦଶ of the system. The graph reveals 

that the state is estimated exactly.  
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Figure 4.5:   The Speed Response and Control Effort of Sinusoidal Reference 

 
 
 

 

Figure 4.6:  The Actual and Observed Drift Term 
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Figure 4.7:  The Actual and Observed State ࣈ૛ 

 

 

Figure 4.8:  The Speed Response and Control Effort 
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Figure 4.9:  The Actual and Observed Drift Terms 

 

Figure 4.10:  The Actual and Observed State ࣈ૛ 
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0 10 20 30 40 50 60
-40

-30

-20

-10

0

10

20

30

40

Time (sec)

D
rif

t 
T

er
m

 

 

Actual Drift Term

Observed Drift Term

0 10 20 30 40 50 60
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (sec)

 

 

Observed State

Actual State



 

58 
 

4.5 Experimentation Results 

To perform performance and robustness analysis of the proposed controller, an aca-

demic benchmark DC-motor (MS150) manufactured by Feedback Instrumentation has 

been used. The detail of experimental setup is given in the chapter 3.  

For the experiment, the observer structure from (4.4.5) and the control law from 

(4.4.4) have been used. The values of  ܾ଴, ߣଵ,  ଷ need to be tuned. Initialߣ ଶ andߣ

guesses for these parameters were the values used in the simulations. The controller 

gains  ݇ଵ and ݇ଶ, are the ones described earlier to place the linear closed-loop poles at 

-3 and -3. 

Figure 4.11 shows the experimental results of the proposed control scheme for a 

square reference signal. The two plots in the figure show the speed response of the 

DC motor and its corresponding control effort. As illustrated below, the measured 

speed tracks the reference precisely. 

The performance of the proposed controller has also been examined with respect to a 

continuous sinusoidal waveform as a reference speed. The sinusoidal speed response 

of the DC motor with the sine reference signal is shown in Figure 4.12. The plots 

demonstrate that the trajectory is followed accurately with low control effort. 

To verify the robustness of the proposed controller, the friction load, with the help of 

a magnetic brake, has been increased by 300% during the experiment. Figure 4.13 

demonstrates the speed response of the DC motor subject to this perturbation. In the 

experiment the brake has been applied at 16.5 seconds and released after 31 seconds. 

The graph shows that these changes do not affect the performance of the controller 

significantly.  

The experimental results from the proposed scheme for feedback linearization based 

on the robust state-disturbance observer validate the theory given in the earlier sec-

tions. The suggested strategy also offers an opportunity for achieving desired and ro-

bust performance, without the detailed knowledge of the plant system model. 
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Figure 4.11:  The Experimental Result of Square Wave Reference 

 

Figure 4.12:  The Experimental Result of Sinusoidal Wave Reference 
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Figure 4.13: The Speed Response with Perturbation in Friction Load 

4.6 Summary 

In the chapter, a new technique for robust feedback linearization based only on output 

information is proposed. A robust state-disturbance observer is used to estimate the 

states and drift terms of the system. Finite time stability of the observer is proved, so 

that the separation principle can be applied. Simulation and experimental results veri-

fy the robustness and performance levels of the proposed technique.  

In the next chapter, a comparative study for both controllers proposed in this chapter 

and previous chapter is given with a Robust LMI control design on a stabilized plat-

form.   
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Chapter 5 

EVALUATION OF THE PROPOSED TECHNIQUES ON  

INDUSTRIAL APPLICATION 

Previously proposed robust control techniques, smooth second order sliding mode and 

robust feedback linearization control using robust state-disturbance observer, were 

tested only on academic bench mark DC motor. For industrial usage these methodol-

ogies need to be evaluated on industrial applications. The purpose of this chapter is 

robustness and performance analysis of the proposed techniques with industrial appli-

cations.  

Mostly PID control is used as a point of reference for the evaluations of novel control 

techniques. The problem with PID control is that it is not robust, so its comparison 

with the robust techniques will be unjustified. ܪஶ control with LMI optimization is a 

well established robust technique and can be used as a bench mark. Moreover the 

proposed techniques provide model-free control, therefore the comparison should be 

performed on an industrial application whose mathematical model is not well estab-

lished.   

5.1 Evaluation Strategy  

The previously proposed techniques are compared with ܪஶ control method with LMI 

optimization on an industrial parallel robot named stabilized platform. The stabilized 

platform is locally assembled and has no predefined mathematical model. A state 

space model of the system is required to implement any modern or robust control 

technique. System identification is used to extract the model of the system. Polytopic 

system based Linear Matrix Inequalities (LMI) is used to synthesize the ܪஶ robust 

controller. In this work, a novel approach is used to construct the polytopic model of 

the system.  

The polytopic system is formulated by different uncertain LTI systems as its vertices. 

Such system in LMI framework covers a long range of uncertainties through convex 
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hull. The convex hull contains LTI models which are developed traditionally via two 

techniques. Firstly, linearization of nonlinear model about different operating points 

gives distinct LTI models. Secondly nonlinear model gives LTI systems by consider-

ing a range value of uncertain affine parameters. The two methods depend evidently 

upon static operating points and numeric values of uncertain parameters respectively.  

These two techniques do not cover dynamic uncertain scenario such as moving payl-

oad on the platform. In this work to account for such situation, a novel approach is 

proposed to formulate a polytopic system. In the proposed technique, system identifi-

cation is employed to develop LTI models under dynamic operating conditions to 

construct vertices of differential inclusion. Subsequently this polytopic system is used 

to design controller with mixed H2 / H synthesis with pole placement constraints in 

LMI framework (Khargonekar and Rotea, 1991). 

The stabilized platform is used as a case study to validate proposed technique. Mainly 

these platforms serve as a basis for different payloads at different times. These payl-

oads could be satellite antenna, camera, billiard tables, etc with symmetric or asym-

metric structures in nature, so the mass and Moment of Inertia (MOI's) of payloads 

would always be uncertain. The uncertainties in payload affect the dynamical beha-

vior of the overall system.  

In the rest of the chapter, an introduction of industrial application i.e. stabilized plat-

form and its characteristics are given to familiarize the reader with the experimental 

rig. After that, the detail of novel approach is given to formulate the polytopic model 

with the help of system identification at distinct payloads conditions. Afterward sys-

tem analysis of distinct identified model is preceded. Next, control design is given in 

LMI framework with mixed H2/H∞ synthesis and pole placement constraints. In the 

last, performance and robustness evaluation of the proposed techniques on an indus-

trial application is done with the LMI control.  

5.2 Industrial Application: Stabilized Platform 

The management of ocean-going luxury cruises goes to great lengths to isolate its crit-

ical systems from the slow persistent vibrations caused by sea waves. Systems like 

satellite tracking antennas or critical items such as surgery tables or even billiard 

tables need to be isolated from the sea waves related pitching and rolling of the ocean-
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liners. Stabilized platforms are used as mounts for systems which are meant to be de-

coupled from sea waves.  

A two Degree Of Freedom (2DOF) parallel manipulator stabilized platform is con-

structed to reject such torque disturbances and kept its top plate leveled with respect 

to horizontal axis. The schematic diagram of the stabilized platform is shown in Fig-

ure 5.1. The stabilized platform has a top-plate and a base-plate linked by two varia-

ble-length electro-mechanical actuators with the help of spherical joints. Angular mo-

tion of the top plate with respect to the base plate is produced by reducing or extend-

ing the actuators’ length. The proper coordination of the actuators enables the top 

plate to reject the disturbances produced at the base plate with high accuracy. 

 

Figure 5.1: The Schematic Diagram of Stabilized Platform 

The input range of power amplifier through Data Acquisition Card (DAC) is േ10 

Volts which corresponds with the whole range of the actuator position to correct er-

rors in roll and pitch. The maximum voltage commands produced by the controller 

should lie in these limits. The outputs of the stabilized platform are the top-plate an-

gular positions sensed by highly precise sensors. These outputs are again fedback to 

the controller for errors adjustment. A control system stabilizes the platform based on 

this information. The controller produces two separate voltages commands for each 

actuator. The reduction or extension of the actuators enables the top plate (payload) to 

reject the disturbances effectively. This sensor-controller-actuator package allows the 

stabilized platform to be self-correcting. The detailed block-diagram of the plant is 

given in Figure 5.2.  
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Figure 5.2: Block Diagram of the Stabilized Platform 

The mechanical limits of stabilized platform both in roll and pitch are ±10 degrees. 

The stabilized platform cannot compensate disturbances beyond these limits and be-

come saturated. The key characteristics of the stabilized platform are provided in Ta-

ble 5.1. 

Parameter Value 

Platform Weight 550 Kg 

Platform Max Roll Range ±10 

Platform Max Pitch Range ±10 

Platform Dimensions (length x width x height) 1.7 m x 1.4 m x 1 m 

Top plate Radius 0.7 m 

Payload Weight Capacity 650 Kg 

Table 5.1:  The Stabilized Platform and Payload Characteristics 

In practical situations, the stabilized platform may be used with different load condi-

tions.  The structure of these payloads can either be symmetric or asymmetric. The 

mass and Moment Of Inertia (MOIs) of these payloads will always be indeterminate. 

The controller design problem for these platforms is really a great challenge. One may 

model the platform using nonlinear differential equations and considering variation in 

mass and MOIs of payloads as uncertainties. However as the authors have shown in 

(Iqbal and Bhatti, 2008), these uncertainties are adequately large and can degrade the 

performance of the system. The various linear models of stabilized platform are ob-

tained by using system identification with distinct symmetric and asymmetric payl-

oads. System identification detailed procedures for the stabilized platform can be seen 
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in Appendix C. In the next Section, analyses of the identified models of the stabilized 

platform are given.  

5.3 System Analysis 

The system identification method is used to extract the state space models for the sta-

bilized platform under three different payload conditions. First model is identified 

without any load. Second model is identified with symmetric load of volume 1.7x1.4 

x1 m3 and 550 Kg weight. Third model is identified with 500 Kg asymmetric satellite 

antenna.  

The continuous-time counterparts for the three models are obtained by TUSTIN ap-

proximation. A pole-zero plots for these systems are shown in Figure 5.3. These plots 

illustrate that the identified models have very slow dynamics and also have non-

minimum phase behavior. The damping ratios of these systems are 0.961, 0.686 and 

0.0714 respectively. Moreover for asymmetric payload; poles are shifted towards ori-

gin. This shows a slow response and more oscillatory behavior is expected with these 

types of loads.  

      

          (a) Without Payload                        (b) Symmetric Payload 

 

(c) Asymmetric Payload 

Figure 5.3: Pole-Zero Plots of Three Identified Models 
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It is obvious from the identification process that the system model is sensitive to size 

and shape of the payload being used. These models i.e. without payload, symmetric 

payload and asymmetric payload have signification parameter variations due to the 

different load conditions. The characteristics of three identified models of stabilized 

platform are given in Table 5.2.  

Stabilized Platform Models Bandwidth (Hz) Damping Ratio 

Without payload 0.105 0.961 

Symmetric payload 0.09 0.686 

Asymmetric payload 0.0445 0.0714 

Table 5.2:  Characteristics of the System with Different Payload 

The Bode plots for three models are shown in Figure 5.4. The output signal is at 90 

lead with respect to input signal thus the actual phase difference is 270 degrees. The 

Bode diagram shows that the gain decreases and phase lag increases with increase in 

load. Moreover it is interesting to note that the phase margin drastically increases 

when asymmetric payload was used. The Bode plots reveal that tracking turns out to 

be poorer for loaded system while noise sensitivity is decreased, whereas the band-

width of the system with symmetric and asymmetric loads also decreases.  

 

Figure 5.4: Bode Plot of Three Identified Models 

The Root locus plots of three identified models are shown in Figure 5.5. It can easily 

be seen from these plots that asymmetric load model has lowest natural frequency and 

it is closer to instability.  
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Figure 5.5: Root Locus of Three Identified Models 

The rank of the controllability and observability matrices are full, so the systems are 

fully controllable and observable. The state-space matrices of three identified model 

are given in Appendix C. These identified models are used to formulate a polytopic 

model. The polytope is employed to design robust controller using Mixed ܪଶ/ܪ syn-

thesis with pole-placement constraints (Chilali and Gahinet, 1996; Khargonekar and 

Rotea, 1991). In the next section polytopic formulation is given. 

5.4 Polytopic System Formulation 

The resulting identified state-space models of stabilized platform i.e. without payload, 

symmetric payload and asymmetric payload can be written as  

ሶݔ ൌ ݔ௜ܣ ൅ ݑ௜ܤ
ݕ ൌ ݔ௜ܥ ൅ ݑ௜ܦ

ൠ                ׊ ݅ ൌ 1, 2, 3                (5.4.1) 

The system matrices of the above dynamical system can be written as a combination 

of system matrices as follows; 

ሻݐ௜ሺߎ ൌ ൤
ሻݐ௜ሺܣ ሻݐ௜ሺܤ
ሻݐ௜ሺܥ ሻݐ௜ሺܦ

൨      ׊ ݅ ൌ 1, 2, 3                (5.4.2) 

The combination (5.4.2) can be constructed into convex set of polytopic system model 

as given below;  

,ଵߎሺ݋ܥ ߳ ሻݐሺߎ ,ଶߎ ଷሻߎ ؔ ൛∑ ௜ߎ௜ߙ ׷   ௜ߙ ൒ 0,௞
௜ୀଵ  ∑ ௜ߙ ൌ 1௞

௜ୀଵ ൟ         (5.4.3) 

where ݋ܥሺ. ሻ is the convex hull and nonnegative numbers ߙ௜ are called the polytopic 

system coordinate of ߎ.  
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5.5 LMI Control Design 

The LMI theory offers a multi-objective mixed ܪଶ/ܪ∞ synthesis with pole-placement 

constraints to solve practical problems (Chilali and Gahinet, 1996; Khargonekar and 

Rotea, 1991). The ܪଶ achieves greater noise rejection against random disturbance. ܪஶ 

mostly deals with robust stability and does not allow to place the poles in desired re-

gions of interest. In contrast pole-placement helps to achieve satisfactory time re-

sponse and closed-loop damping.  

In ࡴ૛/ࡴ∞with pole-placement constraints synthesis, the output ࢠஶ is associated with 

-૛are reࢠ࢝ࢀ ಮandࢠ࢝ࢀ ૛ performance. Theࡴ ૛ is related withࢠ ஶ performance. Theࡴ

lated with the closed loop transfer function from ࢝ to ࢠ∞ and from ࢝ to ࢠ૛ respective-

ly. Let d denotes disturbance in the system and white noise n are the elements of un-

certainty vector ࢝, the ࢠஶ is the regulation error of the system and the ࢠ૛ is the com-

bination of states and control effort. Both ࢠ૛ and ࢠஶ should be minimized in order to 

achieve LMI optimization. Therefore the LMI constraints can be written as  

ݓ ൌ ሾ݀ ݊ሿ்

ஶݖ ൌ ݁
ଶݖ ൌ ሾݔ ሿ்ݑ

ቑ                                             (5.5.1) 

The new ࡭෡, ࡮෡ ෡ࡰ ෡ and࡯ ,  of the augmented system can be composed as follows: 

෡࡭ ൌ  ࡭

෡࡮ ൌ ሾ࡮૚  ૛ሿ࡮

መܥ ൌ

ۏ
ێ
ێ
ێ
ۍ
ଵܥ ଶܥ ଷܥ
1 0 0
0 1 0
0 0 1
0 0 0 ے

ۑ
ۑ
ۑ
ې

 

11 12
0 0

ˆ 0 0
0 0
0 1

D D

D

 
 
 
 
             

where    22 0 0 0 1
T

D   

                

(5.5.2) 

The equation (5.4.1) can be extended to polytopic system formulation with definitions 

given in (5.5.1) and (5.5.2): 

ሶݔ ൌ ݔܣ ൅ ݓଵܤ ൅ ݑଶܤ
ஶݖ ൌ ݔଵܥ ൅ ݓଵଵܦ ൅ ݑଵଶܦ

ଶݖ ൌ ݔଶܥ ൅ ݑଶଶܦ
ൡ                             (5.5.3) 

The state-feedback control law ݑ ൌ  guarantees (Chilali and Gahinet, 1996) ݔܭ

 to place the closed loop pole in some prescribed LMI stability regions. 

 H performance such that ฮ ఠܶ௭ಮฮ ൏ ߛ where ߛ ൐ 0. 

 H2 performance such that  ฮ ఠܶ௭మฮ ൏ ߥ where ߥ ൐ 0. 
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The equation (5.5.3) can be further simplified as   

ሶݔ ൌ ሺܣ ൅ ݔሻܭଶܤ ൅ ݓଵܤ
ஶݖ ൌ ሺܥଵ ൅ ݔሻܭଵଶܦ ൅ ݓଵଵܦ

ଶݖ ൌ ሺܥଶ ൅ ݔሻܭଶଶܦ
ቑ                        (5.5.4) 

The final closed-loop polytopic design principle for the system can be represented as 

shown in Fig 5.6.  

 

  

 

 

 

 

Figure 5.6: The Polytopic State Feedback Control 

5.6 Pole Placement Region 

The required pole-placement region can be designed using half-plane, disk and conic 

sector regions characterized by ࡿ ൌ ሺࢻ, ,࢘  ሻ. A minimum delay rate , a minimumࣂ

damping ratio ࣈ ൌ ࣓ and a maximum undamped natural frequency ,ࣂ࢙࢕ࢉ ൌ  is ࣂ࢔࢏࢙࢘

ensured when such a region is used. The value used for LMI region are as follow, the 

left haft-plane  = -10, the disk center at zero and radius r=200, and the conic sector 

origin at 0 and half inner angle =3/2, as shown in Figure 5.7.  

 

Figure 5.7: The Pole Placement Region 
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The poles are chosen such that the settling time is less than one sec. The rationale for 

this settling time specification comes from the observed quasi-frequency of ocean 

waves (taken as disturbance). A wide variation in this disturbance is expected with 

seasonal and geographic changes and also due to tracking orientation of asymmetric 

payload. A safety factor of ten is assumed for this purpose. For the mentioned rise 

time, the desired natural frequency comes out to be 2 rad/sec. If the lower limit of the 

desired Eigenvalue region is kept at -2 rad/sec then the closed loop dynamics at the 

rig are observed to be too slow, so this is set at -10 rad/sec. Similarly the angle theta 

for the chosen conic sector is kept at 3ߨ 4⁄  which corresponds to damping ratio of 

0.707 which is realistic for the mechanical structure being considered. The upper 

bound on the Eigenvalues comes from the need for keeping the actuators in linear re-

gion, away from saturation. Confining the closed-loop poles between these constraints 

ensures the desired performance. This pole-placement minimizes the overshoot and 

oscillation in the system response and also decreases its rise time and settling time. 

5.7 Robustness and Performance Evaluations 

This Section contains the details of experimentations furnished for the comparative 

studies. First a brief overview of experimental rig is given and in the next subsection 

control law and state-disturbance observer structure for the stabilized platform using 

robust feedback linearization technique is proposed. In the last subsection results are 

compared with previously designed robust ܪஶ controller with LMI optimization.  

5.7.1 Experimental Setup 

For controller validation, a state of the art test platform is setup with a variety of actu-

ators and sensors. Two ball-screw actuators (Duff-Norton Ball Skew) are deputed for 

roll and pitch movement of payload. These actuators used AC servo motors (Mitsubi-

shi HC-SFS152B) driven by 50Hz PWM generator amplifier (Mitsubishi MR-J2S-

200A). The optical and magnetic sensors (Motion Sensor OCTANS and AHRS 

400CA respectively) utilized to sense the outputs of the system. The closed-loop con-

trol algorithm is implemented in DSP board (Trio motion MC206x). The actual rou-

tines have been written in Trio Basic language. The details of hardware configuration 

are outlined in Table 5.3. The stabilized platform of 550 Kilogram weight is used to 

stabilize 500 Kilogram payload in deep turbulent sea.    
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Actuator (Duff-Norton Ball Skew) 

Force 4595 N 

Capacity 5 Tons 

Max Speed 27.2 inch/min 

Servo Motor (Mitsubishi HC-SFS152B) 

Max PRM 3000 RPM 

Max Torque 21.6 Nm 

Servo Amplifier (Mitsubishi MR-J2S-200A) 

Voltage 3 Phase 200-230 V AC 

Frequency 50/60 Hz 

Controller (Trio motion MC206x) 

Technology 32-bit DSP 

Software Language Motion Perfect 

Sensor (AHRS400 CA) 

Range  roll, pitch and heading ± 180°, ± 90° and ± 180° 

Update Rate 100 Hz 

Resolution < 0.05 degrees/sec 

Table 5.3:  Hardware Configurations of Stabilized Platform 

5.7.2 Robust Feedback Linearization Design 

From the previous system analyses, it is clear that three states dynamical model can 

represent the stabilized platform properly. In this scenario the robust smooth real 

twisting algorithm is not applicable, because it works only for relative degree two sys-

tems. The robust pole placement technique has been chosen for the comparison with 

LMI based polytopic controller. For this experiment, three poles are placed at -8, -10 

and -12. The controller parameters to achieve this are ݇ଵ ൌ 30, ݇ଶ ൌ 296 and ݇ଷ ൌ

960. Thus the proposed controller is given as  

ݑ ൌ ଵ

௕బ
൫െ መ݂

ଵ െ ݇ଵߦଵ െ ݇ଶߦመଶ െ ݇ଷߦመଷ൯                                                     (5.7.1) 

where መ݂ଵ is  the estimate of the drift term ݂ሺ. ሻ, ߦመଶ and ߦመଷ are the estimates of the states 

-ଷ respectively. The proposed state-disturbance observer structure for the sysߦ ଶ andߦ

tem is as follows:  
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መሶଵߦ ൌ  ଵݒ

ଵݒ ൌ െߣସܮଵ ସ⁄ หߦመଵ െ ଵหߦ
ଷ ସ⁄

መଵߦ൫݊݃݅ݏ  െ ଵ൯ߦ ൅  መଶߦ

መሶଶߦ ൌ  ଶݒ

ଶݒ ൌ െߣଷܮଵ ଷ⁄ หߦመଶ െ ଵหݒ
ଶ ଷ⁄

መଶߦ൫݊݃݅ݏ  െ ଵ൯ݒ ൅  መଷߦ

መሶଷߦ ൌ መ݂
ଵ ൅ ܾ଴ݑ 

መ݂
ଵ ൌ െߣଶ ܮଵ ଶ⁄ หߦመଷ െ ଶหݒ

ଵ ଶ⁄
መଷߦ൫݊݃݅ݏ  െ ଶ൯ݒ ൅  መସߦ

መሶସߦ ൌ െߣଵ݊݃݅ݏ ܮ൫ߦመସ െ መ݂
ଵ൯                                                          (5.7.2) 

where ߣଵ ൌ 10, ଶߣ ൌ 20, ଷߣ ൌ 40  and ߣସ ൌ 10. 

The stabilized platform is placed on a moving surface (termed as Test Table) which 

simulates a ship deck in a turbulent sea. For testing the controllers the stabilized plat-

form is mounted on the Test Table and the Test Table is given a pitching command 

which acts as an external disturbance to the stabilized platform. The experimental re-

sults of each controller are given in the next subsection. 

5.7.3 Experimental Results 

A step disturbance is applied in the first test. The rig test results of disturbance rejec-

tion of robust feedback linearization and LMI controller are shown in Figure 5.8. It 

can be observed that disturbance recovery time of LMI based controller is greater than 

other two controllers. Moreover error amplitude in LMI case is also large. 

 

Figure 5.8: Disturbance Rejection with Stabilized Platform 
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Parameter LMI Controller 
Robust Feedback  

Linearization Controller 

Disturbance Rejection Time 1.0 sec 0.8 sec 

Percentage overshoot 0% 0% 

Table 5.4:  Summary of Controllers characteristics by Experiments 

In the next test, a sine signal with amplitude of 5 degree and frequency equal to 0.055 

Hz is applied on the rig to predict continuous disturbance response. The results of si-

nusoidal disturbance with two controllers are shown in Figure 5.9 and summarized in 

Table 5.5. It is again observed that the proposed technique perform better perfor-

mance as compare to LMI based controller. 

 

Figure 5.9: Sine Wave Disturbance Rejection with Stabilized Platform 

Parameter LMI Controller 
Robust Feedback  

Linearization Controller 

Error Amplitude (in Degree) 0.5° 0.35° 

Table 5.5:  Summary of Controllers characteristics by Experiments 

5.8 Summary  

In this chapter, previously proposed robust feedback linearization techniques are 

compared with polytopic based LMI controller. The experimentation shows that the 

0 5 10 15 20 25 30
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (sec)

D
is

tu
rb

an
ce

 (
de

gr
ee

)

 

 

Disturbance

RFBL
LMI



 

74 
 

proposed robust control techniques perform well as compare to LMI based robust li-

near control technique.  

Next chapter conclude the thesis along with suggestions for further work. 
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Chapter 6 

CONCLUSIONS & FUTURE WORK 

In this chapter a brief summary of the thesis is given. Moreover some future research 

proposals are suggested for researchers working in the area of higher order sliding 

mode control.  

6.1 Thesis Summary 

In this thesis, first a disturbance observer is proposed for single input single output 

(SISO) systems that estimate drift terms or internal and external disturbances for rela-

tive degree two systems. The work is an extended version of (Shtessel, Shkolnikov 

and Levant, 2007) in which they proposed a disturbance observer for relative degree 

one systems. Next the work is further extended to a state-disturbance observer for sys-

tems with relative degree less than or equal to the system order. The structure of the 

observer is independent from system model and based on robust exact differentiator 

proposed by (Levant, 1998; Levant, 2003). The state-disturbance observer can esti-

mate states as well as the drift terms of the system. The drift term can be used to can-

cel out uncertainties and disturbances of the system online, in this way the system be-

haves like an nth order integrator. The states could be used to design any modern or 

state-space control. The finite time convergence analyses of both observers are given 

in noisy and noise free environment.  

Further, two novel control techniques are proposed using the state-disturbance ob-

server. Both techniques are robust and provide smooth control effort; moreover no 

particular model of the plant is required. Details of the proposed techniques are given 

within the following lines. 

First proposed technique is robust smooth real twisting second order sliding mode for 

relative degree two systems using modified “twisting” algorithm. The robust distur-

bance observer is used to estimate the drift terms of the system. This information is 

used to compensate for the undesired dynamics in the closed-loop system. Finite time 
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stability of the overall system is proven using a homogeneity-based approach. The 

simulation and experimental results validate the theory. 

Next, robust feedback linearization scheme is proposed in combination with robust 

state-disturbance observer in the closed loop system. The states and uncertainties are 

estimated with the help of state-disturbance observer. Finite time convergence of the 

overall closed-loop system is given using separation principle. The design is verified 

through simulations and experimentations on an academic benchmark example of DC 

motor. 

Further, the techniques are implemented on industrial application to verify their usage 

for industry. The stabilized platform is a parallel robot manufactured for ocean-going 

crafts to reject torque disturbances caused by sea waves and kept top of the platform 

leveled with horizontal axis. A well established ܪஶ robust control technique with 

LMI optimization is used as a benchmark to evaluate the performance of the proposed 

techniques. The system identification is used to extract models of the stabilized plat-

form with different payload conditions. The models construct the vertices of a poly-

tope system. This polytopic system is then used for the construction of the robust ܪஶ 

control based on LMI optimization. Experimental results of LMI control are com-

pared with the thesis contributions. It is concluded that the proposed techniques per-

form good as compare to robust LMI control design. 

In the next Section some future work recommendations are given for researchers 

working in the same area. 

6.2 Future Work 

i. The proposed disturbance observer is for SISO systems, but mostly system in the 

industry are Multi Input Multi Output (MIMO) systems. In future, the work can be 

extended for MIMO systems. The MIMO disturbance observer can estimate drift 

terms for MIMO system. 

ii. The proposed state-disturbance observer is again valid for SISO case. In future it 

can also be extended for MIMO systems so state and drift term of MIMO systems 

can be estimated. 
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iii. Robust feedback linearization technique and robust smooth real twisting second 

order sliding mode is also for SISO systems, it can also be extended to MIMO 

systems.  

iv. The limitation of robust smooth real twisting algorithm is that it is valid only for 

second order sliding mode. In future the smoothness control can be extended for 

higher order sliding mode control.     
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APPENDICES 

Appendix – A 

Stability Analysis for Real Twisting Algorithm 

In general, Lyapunov-based approach is used for the stability analysis of a dynamical 

system in control systems. However, the method is applicable only for relative degree 

one with respect to candidate Lyapunov function. For the relative degree two systems, 

Lyapunov method cannot be used directly. Some other techniques, e.g. geometric 

based methods are used in that case for stability proof.  

For the stability analysis of higher order sliding mode (HOSM), the geometric ap-

proach is used and convergence of the trajectories has been presented in literature 

(Levant, 2002). Two most popular algorithms of HOSM are commonly used in this 

thesis. Here for completeness the stability analysis of the algorithms are given.  

In this appendix, a detail analysis of real twisting algorithm using geometric approach 

is given.  

A.1 Stability Analysis 

Let an uncertain second order dynamical system can be represented as 

ሷݔ ൌ ܽሺݐሻ ൅ ܾሺݐሻݑ                                                                            (A.1) 

where    |ܽሺݐ, |ሻݔ ൑ 0              ,ܥ ൏ ௠ܭ ൑ ܾሺݐ, ሻݔ ൑  ெ,          (A.2)ܭ

Let the control law be 

ݑ ൌ െݎଵݔ݊݃݅ݏ െ ሶݔ݊݃݅ݏଶݎ ଵݎ                  , ൐ ଶݎ ൐ 0                                              (A.3) 

Lemma [Levant, 1993] 

Let r1 and r2 satisfy the conditions  

ଵݎ௠ሺܭ ൅ ଶሻݎ െ ܥ ൐ ଵݎெሺܭ െ ଶሻݎ ൅ ଵݎ௠ሺܭ  ,ܥ െ ଶሻݎ ൐  (A.4)                             ܥ

Then the controller (A.3) provides for the appearance of a 2-sliding mode ݔ ൌ ሶݔ ൌ 0 

attracting the trajectories in finite time. 
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Proof: 

From equation (A.1) and (A.3) we have 

ሷݔ ൌ ܽ െ ܾሺݎଵݔ݊݃݅ݏ ൅  ሶሻ                                    (A.5)ݔ݊݃݅ݏଶݎ

The equation (A.5) is replaced by an equivalent differential inclusion by using (A.2)  

ሷݔ  Ԗ ሾെܥ, ሿܥ െ ሾܭ௠, ݔ݊݃݅ݏଵݎெሿሺܭ ൅  ሶሻ                       (A.6)ݔ݊݃݅ݏଶݎ

In 1st quadrant, upper bounds of inclusion can give trajectory ݔሶ଴ݔெ of Figure A.1. 

ሷݔ ൑ ܥ െ ଵݎெሺܭ ൅  ଶሻݎ

by using constraints given in (A.4), we get 

ሷݔ ൏ 0 

In 3rd quadrant, taking lower bounds of inclusion can give outer trajectory, i.e.  

ሷݔ ൒ െܥ ൅ ଵݎ௠ሺܭ ൅  ଶሻݎ

by employing constraints given in (A.4), we get 

ሷݔ ൐ 0 

This implies that by using control law (A.3), we get ݊݃݅ݏሺݔሻ݊݃݅ݏሺݔሷሻ ൏ 0 in first and 

third quadrants. It means that the system trajectories in first and third quadrants must 

across line ݔሶ ൌ 0.  

In 2nd quadrant, taking lower bounds we get 

ሷݔ ൒ െܥ ൅ ଵݎ௠ሺܭ ൅  ଶሻݎ

by applying constraints given in (A.4), we get 

ሷݔ ൐ 0 

In 4th quadrant, taking upper bounds can give outer boundaries, i.e.  

ሷݔ ൑ ܥ െ ଵݎெሺܭ െ  ଶሻݎ

by introducing constraints given in (A.4), we get 

ሷݔ ൏ 0 

It means that by using control law (A.3) the system trajectories in second and fourth 

quadrant go away from the line ݔሶ ൌ 0, but due to its parabolic nature and 

ሷݔሺ݊݃݅ݏሻݔሺ݊݃݅ݏ ሻ ൏ 0 and ݊݃݅ݏሺݔሻ݊݃݅ݏሺݔሶሻ ൏ 0, the system trajectories must con-

verge to the origin and cross line ݔ ൌ 0. 
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The upper and lower bounds of trajectories in each quadrant can be found by taking 

(A.6) and multiplying both sides by ݊݃݅ݏሺݔሻ function 

,ܥԖ ሾെ ݔ݊݃݅ݏሷݔ ሿܥ െ ሾܭ௠,ܭெሿሺݎଵݔ݊݃݅ݏ ൅  ݔ݊݃݅ݏሶሻݔ݊݃݅ݏଶݎ

For ݔ ൐ 0, ሶݔ ൐ 0 and ݔ ൏ 0, ሶݔ ൏ 0, lower bounds of (A.2) in first and third quadrant 

is  

ݔ݊݃݅ݏሷݔ ൒ െܥ െ ଵݎெሺܭ ൅ ଶሻݎ ൏ 0,                        (A.7) 

Upper bounds of (A.2) in first and third quadrant are 

ݔ݊݃݅ݏሷݔ ൑ ܥ െ ଵݎ௠ሺܭ ൅ ଶሻݎ ൏ 0,                                   (A.8) 

For ݔ ൏ 0, ሶݔ ൐ 0 and ݔ ൐ 0, ሶݔ ൏ 0, lower bounds of (A.2) in second and fourth qu-

adrant is  

ݔ݊݃݅ݏሷݔ ൒ െܥ െ ଵݎெሺܭ െ ଶሻݎ ൏ 0,                                   (A.9) 

Upper bounds of (A.2) in second and fourth quadrants are 

ݔ݊݃݅ݏሷݔ ൑ ܥ െ ଵݎ௠ሺܭ െ ଶሻݎ ൏ 0,                               (A.10) 

by (A.8) - (A.10) we can write  

െሾܭெሺݎଵ ൅ ଶሻݎ ൅ ሿܥ ൑ ݔ݊݃݅ݏሷݔ ൑ െሾܭ௠ሺݎଵ ൅ ଶሻݎ െ ሿܥ ൏ ሶݔݔ ݄ݐ݅ݓ      ,0 ൐ 0, 

െሾܭெሺݎଵ െ ଶሻݎ ൅ ሿܥ ൑ ݔ݊݃݅ݏሷݔ ൑ െሾܭ௠ሺݎଵ െ ଶሻݎ െ ሿܥ ൏ ሶݔݔ ݄ݐ݅ݓ      ,0 ൏ 0,   (A.11) 

 

 

Figure A.1: The convergence of the twisting controller 
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The graphical representation of the upper bounds of (A.11) i.e. ݔሶ଴ݔெݔሶெ can be seen 

in Figure A.1. The equation of the trajectory can be simplify as 

ሷݔ ൌ ൜
െሾܭ௠ሺݎଵ ൅ ଶሻݎ െ ሶݔݔ with      ,ݔ݊݃݅ݏሿܥ ൐ 0
െሾܭெሺݎଵ െ ଶሻݎ ൅ ሶݔݔ with       ݔ݊݃݅ݏሿܥ ൏ 0

,                            (A.12) 

The solution of (A.11) with initial conditions ݔ ൌ 0, ሶݔ ൌ  .ሶெ at t=0ݔ

Let the solution of the differential equation for ݔሶ ൐ 0, 

ሷݔ ൌ െሾܭ௠ሺݎଵ ൅ ଶሻݎ െ  ሿܥ

Integrate once with respect to time t, we get 

ሶݔ ൌ െሾܭ௠ሺݎଵ ൅ ଶሻݎ െ ݐሿܥ ൅  (A.13)                                       ܣ

Let the solution holds in the small vicinity of the origin i.e. ܣ ൌ 0, we get  

ݐ ൌ െ ௫ሶ

௄೘ሺ௥భା௥మሻି஼
                     (A.14) 

Again integrating (A.13) with respect to time t, we get 

ݔ ൌ െ
1
2
ሾܭ௠ሺݎଵ ൅ ଶሻݎ െ ଶݐሿܥ ൅  ܤ

Putting value of t from (A.14), we get 

ݔ ൌ െ
ሶݔ

2ሾܭ௠ሺݎଵ ൅ ଶሻݎ െ ሿܥ
൅  ܤ

Apply boundary value conditions ݔሶ ൌ 0, ݔ ൌ ܤ ெ,  we getݔ ൌ  ெݔ

ݔ ൌ ெݔ െ
ሶݔ ଶ

2ሾܭ௠ሺݎଵ ൅ ଶሻݎ െ ሿܥ
 

Similarly the solution of the differential equation for ݔሶ ൏ 0, is 

ݔ ൌ ெݔ െ
ሶݔ ଶ

2ሾܭெሺݎଵ െ ଶሻݎ ൅ ሿܥ
 

We can write the both results as 

ݔ ൌ ቐ
ெݔ െ ௫ሶమ

ଶሾ௄೘ሺ௥భା௥మሻି஼ሿ
         with ݔሶ ൐ 0

ெݔ െ ௫ሶమ

ଶሾ௄ಾሺ௥భି௥మሻା஼ሿ
         with ݔሶ ൏ 0

,                            (A.15) 

Solve (A.15) for  ݔሶ଴ by putting ݔ ൌ 0 we get 
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ሶ଴ݔ
ଶ ൌ 2ሾܭ௠ሺݎଵ ൅ ଶሻݎ െ  ெݔሿܥ

Let the trajectories cut axis ࢞ ൌ ૙ at ࢞ሶ ૚ and obviously |࢞ሶ ૚| ൏ ሶ࢞|  and again we ,|ࡹ

have 

ฬ
ሶ࢞ ૚
ሶ࢞ ૙
ฬ ൌ ඨ

ሾ࢓ࡷሺ࢘૚ െ ૛ሻ࢘ ൅ ሿ࡯
ሾ࢓ࡷሺ࢘૚ ൅ ૛ሻ࢘ െ ሿ࡯

 

By considering condition (A.4) we have 

ฬ
ሶ࢞ ૚
ሶ࢞ ૙
ฬ ൌ ࢗ ൏ 1 

Through same procedure, the trajectories for x < 0 can also provide the same results, 

i.e. 

ሶ࢞| ሶ࢞|/|ା૚࢏ |࢏ ൑ ࢗ ൏ 1. Therefore the real twisting algorithm converges to origin in fi-

nite time. 

A.2 Convergence Time  

The trajectory ࢞ሶ ૙࢞૚࢞ሶ ૚ can be written as 

ሾܭ௠ሺݎଵ െ ଶሻݎ െ ሿܥ ൑ ሷݔ| | ൑ ሾܭெሺݎଵ ൅ ଶሻݎ ൅  ሿ                 (A.16)ܥ

This solution holds within small vicinity of origin, so we can write 

ሷ࢞| | ൒ ሾ࢓ࡷሺ࢘૚ െ ૛ሻ࢘ െ  ሿ࡯

Integrating both sides, we get 

ሶ࢞| | ൒ ሾ࢓ࡷሺ࢘૚ െ ૛ሻ࢘ െ  ࢚ሿ࡯

Solution for all trajectories is therefore 

ሶ࢞| |࢏ ൒ ሾ࢓ࡷሺ࢘૚ െ ૛ሻ࢘ െ  ࢏࢚ሿ࡯

Where ti is time for successive interval between crossing the line ࢞ ൌ ૙. From above 

equation we can write   

௜ݐ ൌ
|௫ሶ೔|

ሾ௄೘ሺ௥భି௥మሻି஼ሿ
                               (A.17) 

Total time for convergence is the sum of all ti, 

ܶ ൑ ∑ |௫ሶ೔|

ሾ௄೘ሺ௥భି௥మሻି஼ሿ
                     (A.18) 
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ሶ࢞൫࢘ࢇࢂ ሺ. ሻ൯ ൌ෍|࢞ሶ |࢏ ൑ ሶ࢞| ૙| ൅ ሶ࢞| ૚| ൅ ሶ࢞| ૛| ൅  ڮ

൑ ሶ࢞| ૙| ൅ ሶ࢞|ࢗ ૙| ൅ ሶ࢞|૛ࢗ ૙| ൅  ڮ

൑ ሶ࢞| ૙|ሺ૚ ൅ ࢗ ൅ ૛ࢗ ൅ڮሻ 

ሶ࢞|∑ |࢏ ൑
ሶ࢞| ૙|

ሺ૚ିࢗሻ
                        (A.19) 

Put value from (A.19) in (A.18) we get 

ࢀ ൑
ሶ࢞| ૙|

ሺ૚ െ ૚࢘ሺ࢓ࡷሻሾࢗ െ ૛ሻ࢘ െ ሿ࡯
 

Therefore the total convergence time for real twisting algorithm is calculated by 

above equation. 

A.2 Analysis 

By control law (A.3) and constraints (A.2) the trajectories of system (A.1) will spiral 

around the origin. To prove the convergence, one have to show that the magnitude of 

ሶ࢞ ሶ࢞ remains always less than ࢏ -ା૚. For this purpose, the bounds of differential inclu࢏

sion have been calculated. After that worst trajectory differential equation was solved 

to calculate ࢞ሶ  Therefore real twisting algorithm converges to the equilibrium point in .࢏

finite time. 
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Appendix – B 

Stability Analysis for Super Twisting Algorithm 

Here we study in detail the stability analysis of most popular second order sliding 

mode algorithms e.g. super twisting algorithm. 

B.1 Stability Analysis  

Consider a dynamical system  

ሶ࢞ ൌ ࢇ ൅  (B.1)                                                   ࢛࢈

Let C, KM, Km, UM, q are some positive constants. 

ሶࢇ| | ൅ ሶ࢈หࡹࢁ ห ൑ ૙ ,࡯ ൏ ࢓ܭ ൑ ,࢚ሺ࢈ ሻ࢞ ൑ |࢈/ࢇ| ,ࡹࡷ ൐ ૙ ,ࡹࢁݍ ൏ ݍ ൏ 1                  

(B.2) 

and the control law  

࢛ ൌ െ࢞|ࣅ|૚/૛࢞࢔ࢍ࢏࢙ ൅ ሶ࢛ ૚࢛ ૚ ൌ ൜
െ࢛|                           ,࢛| ൐ ࡹࢁ

െ࢛|               ,࢞࢔ࢍ࢏࢙ࢻ| ൑ ࡹࢁ
                        (B.3) 

Lemma [Levant, 1993] 

With Km  > C and  sufficiently large i.e. 

ࣅ ൐ ට
૛

ሺ࡯ିࢻ࢓ࡷሻ

ሺࢻ࢓ࡷା࡯ሻࡹࡷሺ૚ାࢗሻ

࢓ࡷ
૛ ሺ૚ିࢗሻ

                                    (B.4) 

then the controller provides for the appearance of a 2-sliding mode ࢞ ൌ ሶ࢞ ൌ ૙ at-

tracting the trajectories in finite time. The control u enters in finite time the segment 

[-UM, UM] and stays there. It never leaves the segment if the initial value is inside at 

the beginning. 

Proof: 

First we calculate ࢛ሶ  with |࢛| ൐ ሶ࢛ and show that ࡹࢁ ࢛ ൏ 0, it means that |࢛| ൑

 will established in finite time, using (B.3) we haveࡹࢁ

ሶ࢛ ൌ
ࢊ
࢚ࢊ
ሺ࢛ሻ ൌ

ࢊ
࢚ࢊ
൫െ࢞|ࣅ|૚/૛࢞࢔ࢍ࢏࢙ ൅  ૚൯࢛

By using the property 
ࢊ

࢚ࢊ
|࢞| ൌ ሶ࢞  ࢞࢔ࢍ࢏࢙
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ሶ࢛ ൌ െ
૚
૛
ሶ࢞૚/૛ሺି|࢞|ࣅ ࢞࢔ࢍ࢏࢙ሻ࢞࢔ࢍ࢏࢙ െ ૚/૛|࢞|ࣅ

ࢊ
࢚ࢊ
ሺ࢞࢔ࢍ࢏࢙ሻ ൅ ሶ࢛ ૚ 

The sign in quadrant I and IV is constant so   ࢊ
࢞ࢊ
ሺ࢞࢔ࢍ࢏࢙ሻ ൌ ૙ and using (B.3), we get 

ሶ࢛ ൌ െ
૚

૛
ሶ࢞૚/૛ି|࢞|ࣅ െ  (B.5)                                                                        ࢛

Now we have to prove that ࢛ሶ ࢛ ൏ 0  

ሶ࢛ ࢛ ൌ ൬െ
૚
૛
ሶ࢞૚/૛ି|࢞|ࣅ െ  ࢛൰࢛

ሶ࢛ ࢛ ൌ െ
૚
૛
ሶ࢞૚/૛ି|࢞|ࣅ ࢛ െ  ૛࢛

In the above equation, if ࢞ሶ ࢛ ൐ 0, then ࢛ሶ ࢛ ൏ 0. Using (B.1) ࢞ሶ  will be equal to ࢛

ሶ࢞ ࢛ ൌ ሺࢇ ൅  ࢛ሻ࢛࢈

ሶ࢞ ࢛ ൌ ࢈/ࢇሺ࢈ ൅  ࢛ሻ࢛

Form (B.2) and (B.3), we have െࢇ ൗ࢈ ൏ ࡹࢁݍ ൏ ࢇ
ൗ࢈ ࢛ ,  ൐ and ૙ ࡹࢁ ൏ ݍ ൏ 1, by 

taking lower bounds we have 

ሶ࢞ ࢛ ൒ ࡹࢁࢗሺ࢓ࡷ ൅  ࡹࢁሻࡹࢁ

ሶ࢞ ࢛ ൒ ሺ૚࢓ࡷ ൅ ࡹࢁሻࢗ
૛ ൐ 0 

Hence prove that ࢛ሶ ࢛ ൏ 0. This guarantees that |࢛| ൑  can be established in finite ࡹࢁ

time. For analysis of |࢛| ൑  differentiate (B.1) with respect to time, we get ࡹࢁ

ሷ࢞ ൌ ሶࢇ ൅ ሶ࢈ ࢛ ൅ ሶ࢛࢈                                                                                                      

(B.6) 

From (B.3) we get 

ሷ࢞ ൌ ሶࢇ ൅ ሶ࢈ ࢛ ൅ ࢈
ࢊ
࢚ࢊ
ቀെ࢞|ࣅ|

૚
૛ൗ ࢞࢔ࢍ࢏࢙ െ  ૚ቁ࢛

In I and IV quadrants we have 

ሷ࢞ ൌ ሶࢇ ൅ ሶ࢈ ࢛ െ ࢈
૚
૛
ࣅ

ሶ࢞

|࢞|
૚
૛ൗ
െ ሶ࢛࢈ ૚ 

For |࢛| ൑  ࡹࢁ

ሷ࢞ ൌ ሶࢇ ൅ ሶ࢈ ࢛ െ ࢈ ૚

૛
ࣅ ሶ࢞

|࢞|
૚
૛ൗ
െ ࢞ ׊                     ሻ࢞ሺ࢔ࢍ࢏࢙ࢻ࢈ ് ૙ 

From (B.2) we get an equivalent differential inclusion of the above equation as 
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ሷ࢞  ࣕ ሾെ࡯, ሿ࡯ െ ሾࡹࡷ,࢓ࡷሿ ൬
૚

૛
ࣅ ሶ࢞

|࢞|
૚
૛ൗ
൅                                                          ൰࢞࢔ࢍ࢏࢙ࢻ

(B.7) 

For first quadrant, i.e. ࢞ ൐ ሶ࢞ ܌ܖ܉ 0 ൐ 0, (B.7) becomes 

ሷ࢞  ൑ ࡯  െ ࢓ࡷ ൬
૚

૛
ࣅ ሶ࢞

|࢞|
૚
૛ൗ
൅ ൰ࢻ ൏ 0                          (B.8) 

Now we can find the condition ࢻ࢓ࡷ ൐ ሷ࢞ for convergence which makes ܥ  negative 

definite. Hence trajectories in first quadrant will always approach to the axis ࢞ሶ ൌ ૙. 

Convergence of the algorithm in different quadrant can be seen in Figure B.1. 

 

Figure B.1: Convergence of Super Twisting in Different Quadrant  

Second term in (B.7) has sign negative, in first quadrant addition of any positive term 

will decrease its quantity. Hence the upper bounds of trajectories in first quadrant are 

ሷ࢞ ൌ ሾെ࡯, ሿ࡯ െ  (B.9)                                      ࢞࢔ࢍ࢏࢙ሿࡹࡷ,࢓ࡷሾࢻ

Multiplying both sides of (B.9) with ࢔ࢍ࢏࢙ሺ࢞ሻ function, we get 

ሷ࢞ ࢞࢔ࢍ࢏࢙ ൌ ሺሾെ࡯, ሿ࡯ െ  ࢞࢔ࢍ࢏࢙ሻ࢞࢔ࢍ࢏࢙ሿࡹࡷ,࢓ࡷሾࢻ

By using upper bounds, we have 

ሷ࢞ ࢞࢔ࢍ࢏࢙ ൑ ࡯ െ ࢻ࢓ࡷ ൏ 0 

െሾࢻࡹࡷ ൅ ሿ࡯ ൑ ሷ࢞ ࢞࢔ࢍ࢏࢙ ൑ െሾࢻ࢓ࡷ െ ሿ࡯ ൏ 0                                                        

(B.10) 

The trajectories of ࢞ሶ ૙ࡹ࢞ (line a in Figure B.2) 
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ሷ࢞ ൌ െሾࢻ࢓ࡷ െ ሶ࢞ ܐܜܑܟ                 ሿ࡯ ൐ 0,                                                          (B.11) 

For solution of (B.11) with initial conditions ࢞ ൌ ૙, ሶ࢞ ൌ ሶ࢞ ࢚ at ࡹ ൌ ૙ integrate with 

respect to time t, we get 

ሶ࢞ ൌ െሾࢻ࢓ࡷ െ ࢚ሿ࡯ ൅  (B.12)                                   ࡭

Let the solution holds in the small vicinity of the origin i.e. ࡭ ൌ ૙, we get  

࢚ ൌ െ ሶ࢞

࡯ିࢻ࢓ࡷ
                           (B.13) 

Again integrating (B.12) with respect to time, we get 

࢞ ൌ െ
૚
૛
ሾࢻ࢓ࡷ െ ૛࢚ሿ࡯ ൅  ࡮

Putting value of t from (B.13), we get 

࢞ ൌ െ
ሶ࢞

૛ሾࢻ࢓ࡷ െ ሿ࡯
൅  ࡮

Apply boundary value conditions ࢞ሶ ൌ ૙, ࢞ ൌ ࡮ we get  ,ࡹ࢞ ൌ  ࡹ࢞

࢞ ൌ ࡹ࢞ െ ሶ࢞ ૛

૛ሾ࡯ିࢻ࢓ࡷሿ
                                                                                             (B.14) 

In (B.14), putting ࢞ ൌ ૙, we can find the values of ࢞ሶ ૙ 

ሶ࢞ ૙
૛ ൌ ૛ሾࢻ࢓ࡷ െ  (B.15)                                                                                             ࡹ࢞ሿ࡯

 

Figure B.2: The Super Twisting Controller convergence 

Again from (B.14), we can write 

ሶݔ ൌ ெݔߛ
ଵ/ଶ

c

b 

a 
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ሶ࢞ ૛ ൌ െ૛ሾࢻ࢓ࡷ െ ࢞ሿሺ࡯ െ                                                                       ሻࡹ࢞

(B.16) 

This is equation of parabola with vertex at ࡹ࢞. Hence trajectories in 4th quadrant will 

cut line ࢞ ൌ ૙ in finite time. The trajectories in fourth quadrant can be bounded in 

region called majorant (Levant, 1993). The region majorant is bounded by ࢞  ൌ  ૙ and 

the curve b and c (in Figure B.2). 

For fourth quadrant we have ࢞ ൐ ሶ࢞ ܌ܖ܉ 0 ൏ 0, so 

ሷ࢞  ൒  െ࡯ െ ࢓ࡷ ቆࢻ െ
૚
૛
ࣅ

ሶ࢞| |

|࢞|
૚
૛ൗ
ቇ 

In fourth quadrant ࢞ሷ ൐ 0  if  

૚

૛
ࣅ

ሶ࢞| |

|࢞|
૚
૛ൗ
൐

࡯

࢓ࡷ
൅  (B.17)                        ࢻ

From (B.17) we have 

ሶ࢞ ൒ െ
૛
ࣅ
൬
࡯
࢓ࡷ

൅ ࢞൰ࢻ
૚
૛ൗ  

The curve b is start from ሺࡹ࢞, ૙ሻ to ൬ࡹ࢞,െ
૛

ࣅ
ቀ
࡯

࢓ࡷ
൅ ࡹ࢞ቁࢻ

૚
૛ൗ ൰, and the curve c is from 

൬ࡹ࢞,െ
૛

ࣅ
ቀ
࡯

࢓ࡷ
൅ ࡹ࢞ቁࢻ

૚
૛ൗ ൰ to ሺ૙, ሶ࢞  .ሻࡹ

For |࢛| ൏ ሶ࢞| condition ,ࡹࢁ ࡹ ሶ࢞ ૙⁄ | ൏ 1 is sufficient for convergence, so we have 

૛ሺࢻ࢓ࡷା࡯ሻ૛

࢓ࡷ૛ࣅ
૛ ሺ࡯ିࢻ࢓ࡷሻ

൏ 1                                                                                  (B.18) 

This equality is not valid for ࢞ ൐ ሶ࢞ ܌ܖ܉ 0 ൐ 0, in this case ࢛ሶ  stay negative and does 

change sign. Again taking (B.1) and (B.2) for |࢛| ൑  ࡹࢁ

ሶ࢞| | ൌ ࢇሺ|࢈ ⁄࢈ ൅  |ሻ࢛

ሶ࢞| | ൑ ࢇ|ሺ࢈ ⁄࢈ | ൅  ሻ|࢛|

ሶ࢞| | ൑ ࡹࢁࢗ|ࡹࡷ ൅  |ࡹࢁ

ሶ࢞| | ൑ ሺ૚ࡹࡷ ൅  ࡹࢁሻࢗ

Similarly we have 

ሶ࢞| | ൌ ࢇሺ|࢈ ⁄࢈ ൅  |ሻ࢛
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ሶ࢞| | ൒ ࡹࢁࢗെ|࢓ࡷ ൅  |ࡹࢁ

It always remains positive, so that we can write 

ሶ࢞| | ൒ ሺ૚࢓ࡷ െ  ࡹࢁሻࢗ

ሶ࢞ ૙ ൑ ࢗሺࡹࡷ ൅ ૚ሻࡹࢁ 

ቚ࢞
ሶࡹ
ሶ࢞ ૙
ቚ ൌ ࡹࢁሻࢗሺ૚ି࢓ࡷ

ࡹࢁሻࢗሺ૚ାࡹࡷ
ൌ ሻࢗሺ૚ି࢓ࡷ

ሻࢗሺ૚ାࡹࡷ
൏ 1                                                                          (B.19) 

Comparing (B.18) and (B.19) we have 

࢓ࡷ
૛ ሺ૚ െ ሻ૛ࢗ

ࡹࡷ
૛ ሺ૚ ൅ ሻ૛ࢗ

൏
૛ሺࢻ࢓ࡷ ൅ ሻ૛࡯

࢓ࡷ૛ࣅ
૛ ሺࢻ࢓ࡷ െ ሻ࡯

 

From the above equation, we can find the bounds for  i.e., 

ࣅ ൐ ඨ
૛

ሺࢻ࢓ࡷ െ ሻ࡯
ሺࢻ࢓ࡷ ൅ ሺ૚ࡹࡷሻ࡯ ൅ ሻࢗ

࢓ࡷ
૛ ሺ૚ െ ሻࢗ

൏ 1 

B.2 Convergence Time 

The trajectory ࢞ሶ ૙࢞૚࢞ሶ ૚ can be written as  

ሾࢻ࢓ࡷ െ ሿ࡯ ൑ ሷ࢞| | ൑ ሾࢻࡹࡷ ൅  ሿ࡯

This solution holds within small vicinity of origin, so that we can write 

ሷ࢞| | ൒ ሾࢻ࢓ࡷ െ  ሿ࡯

Integrating both sides, we have 

ሶ࢞| |࢏ ൒ ሾࢻ࢓ࡷ െ  ࢏࢚ሿ࡯

Where ti is time for successive interval between crossing the line x=0. From the above 

equation we can write, 

࢏࢚ ൌ
ሶ࢞| |࢏

ሾࢻ࢓ࡷ െ ሿ࡯
 

And total time for convergence is the sum of all ti 

ࢀ ൑ ∑ ሶ࢞| |࢏

ሾ࡯ିࢻ࢓ࡷሿ
                                                                                                        (B.20) 

ሶ࢞൫࢘ࢇࢂ ሺ. ሻ൯ ൌ෍|࢞ሶ |࢏ ൑ ሶ࢞| ૙| ൅ ሶ࢞| ૚| ൅ ሶ࢞| ૛| ൅  ڮ

൑ ሶ࢞| ૙| ൅ ሶ࢞|ࢗ ૙| ൅ ሶ࢞|૛ࢗ ૙| ൅  ڮ
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൑ ሶ࢞| ૙|ሺ૚ ൅ ࢗ ൅ ૛ࢗ ൅ڮሻ 

ሶ࢞|∑ |࢏ ൑
ሶ࢞| ૙|

ሺ૚ିࢗሻ
                                                                                                          (B.21) 

Put value from (B.21) in (B.20), we get 

ࢀ ൑
ሶ࢞| ૙|

ሺ૚ െ ࢻ࢓ࡷሻሾࢗ െ ሿ࡯
 

Therefore the total convergence time for super twisting algorithm is calculated by 

above equation. 

B.3 Analysis 

First of all, it has been proved that the control law (B.3) using by system (B.1) con-

verges to bounds ሾെࡹࢁ,ࡹࢁሿ within finite time. Trajectories of the system (B.1) using 

super twisting algorithm (B.3) are parabola type. Hence again to prove convergence, 

one have to show that the magnitude of ࢞ሶ ሶ࢞ is always less than ࢏  ା૚. The differential࢏

equation is solved for worst trajectory in 1st quadrant to calculate ࢞ሶ ૙. After that mag-

nitude of ࢞ሶ  is calculated by the help of majorant. Therefore super twisting algorithm ࡹ

converges to equilibrium point within finite time. 
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Appendix – C 

System Identification of Stabilized Platform 

All engineering system need dynamical model for the analysis, design and implemen-

tation of a high-performance control for the system. System identification is the tool 

for constructing the model of the system by simply input/output measurements. It 

doesn’t require any apriori knowledge of system dynamics.  

A linear system can be described by a transfer function ܩሺݏሻ. If the system has finite 

input energy, the following Fourier Transform of input/output relationship will hold 

(Ljung and Glad, 1994): 

ܻሺ߱ሻ ൌ  ሺ߱ሻܷሺ߱ሻ                             (C.1)ܩ 

If input and output are known and output of system is invertible, the frequency func-

tion ܩሺ߱ሻ could be constructed by the following relation.  

ሺ߱ሻܩ ൌ ܻሺ߱ሻܷሺ߱ሻିଵ                            (C.2) 

In other words, system identification is an experimental approach for determining the 

dynamical model of the system, it includes following steps: (Landau, 1990)  

 Input/output data acquisition under an experimental protocol. 

 Choice of model structure like Auto Regressive with eXternal inputs (ARX), Auto 

Regressive with Moving Average (ARMAX), etc. 

 Estimation of model parameters and coefficients. 

 Validation of the identified model (structure and values of the parameters). 

The first step in system identification is data acquisition. The input signal  ݑሺݐሻ 

should contain enough frequencies, so it can cover the whole bandwidth of interest 

and excite the complete dynamics of the system. Common choices for input signal for 

the identification are Gaussian white noise signal, Chirp signal or Pseudo Random 

Binary Signal (PRBS) (Ljung, 1989; Ljung and Glad, 1994).  

The selected input is given to the system and input/output data is recorded. The rec-

orded data is used for model estimation.  
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Next step in the identification process is choice of model structure. Different methods 

like ARX, ARMAX etc. are common choices for model structure in identification 

process. The suitable choice of the model structure is perhaps the most difficult deci-

sion the user has to make (Ljung, 1989; Ljung and Glad, 1994). This choice is based 

on insight knowledge of the system and complete understanding of the identification 

procedure.  

Further a decision about the order of the model should be taken by the user. It is also a 

difficult task in model identification. An over parameterized model structure can lead 

to unnecessary computations and an under parameterized model may be very inaccu-

rate (Stoica, 1989).  

Last step in identification process is model validation. For this purposes, a dataset dif-

ferent than the data used in the identification process is recommended (Ljung, 1989). 

The validation signal frequency should be according to worst scenarios so the model 

will remain valid for other frequencies. 

C.1 Model Identification of the Stabilized Platform 

The stabilized platform has two inputs and two outputs axes i.e. roll and pitch. Both 

axes are orthogonal and have no coupling effect on each other. The Single Input Sin-

gle Output (SISO) case of system identification can be applicable on both axes sepa-

rately. Only pitch axis system identification process is explained here in detail.  

As stated above, first step in the system identification is data collection and common 

choices of input signal are White Noise, PRBS or Chirp signals. Due to discontinuous 

in nature, it is not recommended to apply white noise or PRBS on stabilized platform 

because of its sensitive and sluggish mechanical structure. Chirp signal is therefore 

selected as an input; it is a sinusoid with continuously varying frequency over a defi-

nite band Ω: ߱ଵ ൑ ߱ ൑ ߱ଶfor certain time period 0 ൑ ݐ ൑  .i.e (Ljung 1989) ܯ

ሻݐሺݑ ൌ ݐሺ߱ଵݏ݋ܿܣ ൅ ሺ߱ଶ െ ߱ଵሻݐଶ/2ܯሻ                                  (C.3) 

The Chirp signal should contain enough frequencies, so it covers the whole system’s 

bandwidth to exalt all the dynamics of the stabilized platform. As mentioned earlier 

that the voltages through DAC are inputs to the stabilized platform and top plate an-

gular positions, measured in degrees are the desired outputs. Input limit is  10V and 

output becomes saturate beyond  10 both in roll and pitch axes. The frequency range 
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for Chirp signal is swept between 0.04 Hz to 2 Hz. This range is selected after study-

ing the response of the system experimentally and the rough cut-off frequency range 

is founded. Therefore, the optimum value of input voltage for identification is set as 

3 Volts to keep the system in operating range. If these limits are crossed then the ac-

tuators of the system becomes saturated and it may lead to lose important dynamics of 

the plant. The selected input signal is given to the platform and corresponding output 

data is measured. Figure C.1 shows the input/output signals graph. 

  

Figure C.1: Input Output Signal of Stabilized Platform 

The data collected from this experiment is used for model estimation. Before model 

estimation, it is also necessary to treat the raw data so it becomes appropriate for iden-

tification process. In the first step, a treatment is done to remove mean and trends 

from the raw data. In the next step the processed data is fitted into ARX model. The 

ARX model relates the current output to finite number of past inputs and outputs for 

model estimation. The estimated models have three poles and two zeros. The delay 

observed is too small and neglected to avoid complication. This model structure is 

chosen on the basis of best fits between model’s and actual system’s outputs. If order 

of the system is increased then poles are canceled by zeros and system can lose con-
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trollability and observability properties. The resultant identified model has three states 

but these states don’t have any physical meaning.  

The equation of identified model can be represent as follow,  

ሺ݇ሻݕ ൌ െܽଵݕሺ݇ െ 1ሻ െ ܽଶݕሺ݇ െ 2ሻ െ ܽଷݕሺ݇ െ 3ሻ ൅ ܾଵݑሺ݇ሻ ൅ ܾଶݑሺ݇ െ 1ሻ       (C.2) 

The identified parameters of three different load conditions for the above equation are 

given in following Table C.1. 

Model a1 a2 a3 b1 b2 

Without Payload -1.6432 0.7629 -0.1197 -0.0152 0 

Symmetric Payload -1.4203 0.6370 -0.2166 -0.0246 0 

Asymmetric Payload -1.6364 1.5107 -0.8741 0 -0.0176 

Table C.1:  Parameters of the three identified models 

A cosine signal with 0.04Hz frequency is chosen for validation process. The valida-

tion frequency is set to be worst case scenario of sea dynamics, as the observed sea 

wave’s frequency was found to be less then specified frequency during experimenta-

tion.  The responses of the cosine signal were obtained from actual platform as well as 

from identified model. Figure C.2 shows the comparison results and Figure C.3 shows 

prediction errors. The errors are almost negligible and the identified model output 

signal is almost overlapped with the actual output of the system. 

  

Figure C.2: Model Validation on Test Data 
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Figure C.3: Prediction Error over Test Data 

The state space models’ ࢏࡭, ,࢏࡮ ,࢏࡯ ࢏ ׊     ࢏ࡰ ൌ ૚, ૛, ૜ of identified systems are 

given as: 

૚࡭ ൌ ൥
   ૚ૠ. ૜૚૙૙    ૛૛. ૟ૢ૙૙ െ૛૛. ૟ૢ૙૙
െ૛૙. ૙૛૟૚ െ૚ૢ. ૢૠ૜ૢ    ૞ૢ. ૢૠ૜ૢ
      ૛. ૠ૚૞૟   െ૛. ૠ૚૞૟ െ૜ૠ. ૛ૡ૝૝

൩ 

૛࡭ ൌ ൥
   ૚૞. ૞૟૝૟    ૛૝. ૝૜૞૝ െ૛૝. ૝૜૞૝
െ૛૙. ૡ૞ૢ૜ െ૚ૢ. ૚૝૙ૠ    ૞ૢ. ૚૝૙ૠ
     ૞. ૛ૢ૜૜   െ૞. ૛ૢ૜૜ െ૜૝. ૠ૙૟ૠ

൩ 

૜࡭ ൌ ൥
   ૛૝. ૙૟ૠ૛    ૚૞. ૢ૜૛ૡ െ૚૞. ૢ૜૛ૡ
െ૜ૠ. ૢૢ૞૚   െ૛. ૙૙૝ૢ    ૝૛. ૙૙૝ૢ
   ૚૜. ૢ૛૟૚ െ૚૜. ૢ૛૟૚ െ૛૟. ૙ૠ૜ૢ

൩ 

ଵܤ ൌ ൥
െ0.0086
െ0.0076
   0.0010

൩ ܤଶ ൌ ൥
   0.0151
െ0.0129
െ0.0033

൩ ܤଷ ൌ ൥
െ0.0070
   0.0184
െ0.0290

൩ 

ଵܥ ൌ ሾ11.3450 െ11.3450 11.3450ሿ 

ଶܥ ൌ ሾ12.2177 െ12.2177 12.2177ሿ 

ଷܥ ൌ ሾ7.9664 െ7.9664 7.9664ሿ 

ଵܦ ൌ ሾ0.0043ሿ     ܦଶ ൌ ሾെ0.0075ሿ      ܦଷ ൌ ሾ0.0035ሿ 
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Appendix – D 

LMI Control Design for the Stabilized Platform 

Many engineering optimization problems can easily be approximated with Linear Ma-

trix Inequalities (LMIs). The beauty in LMI is that it can accommodate a variety of 

design specification and constraints. Once a problem is formulated in terms of LMIs, 

it can be solved by efficient convex optimization methods. Moreover multiple LMIs 

can be expressed as a single LMI.  

LMI is an expression of the form: 

ሻݔሺܨ ൌ ଴ܨ ൅ ଵܨଵݔ ൅ڮ൅ ௠ܨ௡ݔ ط 0                                                            (D.1) 

where ݔ ൌ ሾݔଵ … ௜ܨ ,௠ሿ is the vector of m decision variablesݔ א  ࣬௡ൈ௡  ݅׊ ൌ

0,… ,݉ are real symmetric matrices. The special inequality symbol ط in (D.1) means 

the matrix ܨሺݔሻ is negative definite, i.e. all its eigenvalues ߣ൫ܨሺݔሻ൯ are negative. The 

main property of an LMI is that the inequality ܨሺݔሻ ط 0 defines a convex set ׋ on x, 

i.e. ׋ൌ ሼܨ|ݔሺݔሻ ط 0ሽ is convex. Let ݔଵ, ଶݔ א ߙ and ׋ א ሾ0 1ሿ, we can define a con-

vex set with: 

ଵݔߙሺܨ ൅ ሺ1 െ ଶሻݔሻߙ ൌ ଵሻݔሺܨߙ ൅ ሺ1 െ ଶሻݔሺܨሻߙ ط 0                                        (D.2) 

The closed loop Root Means Square (RMS) gain from  to z cannot exceed  if and 

only if there exists a symmetric matrix ࢄ:ൌ ൌ:ࢅ   andࢄ  ,such that ࢄࡷ

቎
ࢄ࡭ ൅ ࢀ࡭ࢄ ൅ ࢅ૛࡮ ൅ ૛࡮ࢀࢅ

ࢀ ૚࡮ ૚࡯ࢄ
ࢀ ൅ ૚૛ࡰࢀࢅ

ࢀ

૚࡮
ࢀ െࡵ ૚૚ࡰ

ࢀ

ࢄ૚࡯ ൅ ࢅ૚૛ࡰ ૚૚ࡰ െࡵࢽ
቏ ൏ 0                      (D.3) 

Moreover the closed loop H2 norm of ࢠ࢝ࢀ૛  cannot exceed  if there exists two sym-

metric matrices X and Q such that,  

൤
ࡽ ࢄ૛࡯ ൅ ࢅ૛૛ࡰ

૛࡯ࢄ
ࢀ ൅ ૛૛ࡰࢀࢅ

ࢀ ࢄ
൨ ൐ 0 ,                                          (D.4) 

ሻࡽሺ ࢋࢉࢇ࢘ࢀ ൏ ૙࢜ 
૛ ,                                   (D.5) 

where 
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૛ࢽ ൏ ૙ࢽ
૛.                                    (D.6) 

The closed-loop poles lie in the LMI region  

ࡰ ൌ ሼ࡯ ࣕ ࢠ: ࡸ ൅ࢠࡹ ൅ࢠࢀࡹത ൏ 0ሽ                                            (D.7) 

where ࡸ ൌ ࢀࡸ ൌ ൛࢐࢏ࣅൟ૚ஸ࢐,࢏ஸࡹ ,࢓ ൌ ࢀࡹ ൌ ൛࢐࢏ࣆൟ૚ஸ࢐,࢏ஸ࢓ and ‘M ’ and ‘L’ are fixed real 

matrices. These closed-loop poles lie in the region if and only if there exists a symme-

tric matrix Xpol and satisfying the following conditions: 

࢐࢏ࣅൣ ൅ ࢄ࡭ሺ࢐࢏ࣆ ൅ ࢒࢕࢖ࢄሻࢅ૛࡮ ൅ ࢀ࡭ࢄ൫࢏࢐ࣆ ൅ ૛࡮ࢀࢅ
൯൧ࢀ

૚ஸ࢐,࢏ஸ࢓
൏ ૙                         (D.8) 


