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Abstract

Restoration of images degraded by unknown blur is a difficult problem. It is called
blind image restoration. The unknown blur can be of linear or nonlinear nature. It can aiso
be space invariant or space variant making the blind image restoration problem all the
more challenging. Sometimes it is necessary to simultaneously identify the blur and
restore the image, a problem that we have addressed in this thesis. The assumption is that
coefficients of image model arc controlled by autoregressive(AR) process whilc that of
blurring model are controllcd by moving average (MA) process. Moreover, a natural
assumption about most of the images in practical applications is that they are smooth in
nature.

We have used three layered artificial neural networks (ANN) to embed naturally
the AR process betwecn its first two layers and MA process between iis last two layers.
The genetic algorithms (GA) have been used to avoid getting stuck in local minima. The
first major work has been the extension of the network to handle nonlincar space-invanant
degradations in the images by incorporating nonlinear ARMA model using the concept of
Volterra filters. This approach can cater for the sharp contrasts which may come in the
degraded imagcs as well. The sccond major work has been the adaptation of the ANN to
handie the space variant blur. The image and hence forth, the laycrs of ANN are divided
into blocks and each block is categorized according to the level of activity. Thus the
weights between the layers are no more universal and space invariant but they can vary
from block to block according to the activity. This kind of freedom results in better results
in case of space variant blurs and even space invariant blurs. The third major work has
been the extension of the cost function. The two cxtra terms in cost function take into
account the human visual pereeption system. They match the second order statistics (local
variances) of the images at different layers and givc improvement in the visual quality of
the 1magcs.

Gradient based learning algorithms have been developed for the fast convergence
to the solution. Several degraded images have been restored. The results have been
compared with some of the important current techniques in the literature using
improvement in signal fo noisc ratio (ISNR) of restorcd images and normalized mean

squarc error (NMSE) of estimated blur as figures of merit.
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Chapter 1

Introduction

1.1 Statement of Problem

Images are produced in order to record or display useful information. They are
acquired in order to obtain two-dimensional (2-D) representation of a thrce-dimensional
scene. Unfortunately, many images represent scenes in an unsatisfactory manner due to
imperfcctions in the electronic or photographic medium because the conditions under which
images are obtained arc frequently less than ideal. Therefore, the recorded images often
represent a degraded version of the original scenc [1]. The imaging process, the atmosphere,
and the recording medium all introduce dcgradations into the captured image so that the
image that ts actually recorded may fail to rcpresent the scene adequately. The goal of
image restoration is to manipulatc an image in such a way that it will, in some sense, depict

the scene more closely that it purports to represent [2].

The image restoration problem appears in many fields. Virtually all disciplincs in
which images are acquired under less than ideal conditions find restoration tcchniques
useful — astronomy [3], medicine [4], military reconnaissance [5], to name a few. Photo-

processing labs may also find restoration techniques a valuable tool in “touching up” special



photographs [6]. These fields have diverse aims for imagc restoration, but certain

fundamentals are common to all imagc restoration problems.

The dcgradations may have many causes, but two types of degradations are often
dominant: noise and blurring, each of which introduces pcculiar problems for image
restoration. The most basic of these is observation noise which can be caused by film-grain
noise, quantization noise, or other random disturbances. For each of these causes, however,
the process by which the degradation is introduced cannot bec described detcrministically,

and information in the image may be lost [7].

The second source of image degradation is blurring. Blurring is a form of bandwidth
reduction of the image due to the imperfect image formation process [8]. It can be caused by
relative motion between the camera and the original scene, or by an optical system, which
generates out of focus images. When acrial photographs are produced for remote scnsing
purposes, blurs are introduced by atmospheric turbulences, aberrations in the optical system,
and relative motion between the camera and the ground [9]. Attempting to reverse or invert
this blurring process introduces a number of problems. First, the inversion of this process
often amplifies the noise in the image. Second, the process may be non-invertible, so that
multiple solutions are possible. Third, the blurred image is typically a windowed version of
the blurred scene, so that some of the boundary information necessary for reversing the blur
1s lost. Finally, the blur itself may be unknown or incompletely specificd, as it is the case in
most of the real situations. In each case, the image restoration process must deal with the

fact that the information has been lost or cbscured.

From the previous discussion, one can sce that the fundamental hurdlc in image

restoration 1s lack of knowledge. If all the degradations suffered by an image were known,



then they could in gencral be removed. In some cases, the degradation actually destroys
information in the image, and the knowledge of the degradation proccss is insufficient to
counteract the degradation. In every case, however, the information no longer exists, or it is
not easily accessible, or it is known only in a probabilistic sense. On the other hand, most
image restoration algorithms gcnerally requirc some a priori information in order to obtain
a restored image. This information can be supplied in several ways. The most trustworthy
source of information is knowledge about the image formation process itsclf. For example,
light intensity is represented by a bounded range of numbers, and the restored image can be
restricted to lie within these physically realistic boundaries. Another assumption often made
is that the original scenc is smooth, i.e. there is a degree of correlation (smoothness) among
neighboring points in the original image [8]. This holds true for virtually every realistic
image; however, the degree and type of smoothness may vary considerably from one image
to another. Thus, the smoothness assumption requires further information in order to be

applied accurately in restoration process.

Closely related to the smoothness assumption is the use of an autoregressive (AR)
model for the image [10]. An AR process assumes a certain parametric model of the
smoothness in the data. Images are typically formed by regions of near-constant intensity or
texture with sharp transitions. This type of behavior makes AR models more suitable for
images than moving-average (MA) models which are not appropriate as image models.
Image blur can generally be modcled as an MA process. MA processes are ideal for
modeling the intensity-averaging effect of blur. Oncc again, however, the choicc of model
does not supply all the needed information, The model, structure and parameters can be

obtained by inspection of the degraded image. However, this is not true in general. The



image restoration process requires further assumptions to deal with the lack of accessible

information.

Noise in the observed image presents a unique and difficult problem for image
restoration. Typically, there is no way to reverse completely the effects of noise - the
information is lost. It is possible, however, to make some assumptions that allow thc image
restoration. The noise may be considered as additive white Gaussian noise (AWGN); the
restoration can then be designed to compensate for noise under this assumption [11]. Even
this assumption requircs knowledge that is not always immediately available. The variance

of the noise must be supplied as well as the types of noise distribution.

Various constraints may be imposed in order to specify more accurately the path to a
restored image. Often these constraints arc nothing more than the educated guesses made to
facilitate the rcstoration process. The image processing may supply a constraint which is
actually a poor representation of reality. How can one know whether the constraint
improves ur deteriorates the restoration? Visual inspection is possible, but it is ofien slow,
inaccurate, and otherwise undesirable. Therefore, it can not be included in image restoration
algorithms. Lack of easily accessible knowledge of constraint validity presents a hurdlc for

image restoration algorithms.

The more severc problem of image restoration is blind image deconvolution which
is thc process of estimating both the truc image and blur from the degraded image
charactenstics, using the partial information about the imaging system. There are several
motivating factors bchind the use of blind image dcconvolution for image restoration
applications [8]. In practice, it is ofien costly, dangcrous, or physically impossible to obtain

a priori iInformation about dcgradation process and original scene.



The blind image deconvolution ficld clearly needs a method for testing the
assumptions imposed on the simultaneous restoration of degraded image and identification
of blurring process. If such a test were availablc, then assumptions could be validated. The
neural networks arc useful techniques in statistical data analysis. It has widely been used for
different image processing applications. It has been used for image rcstoration, pattern
classification, etc. The self-organization like structure of neural networks makes it possible
to be used for blind image dcconvolution. In this disscrtation, a neural network based on
ARMA models is extended to nonlincar ARMA imodels. The approach has also been
extended to space-variant neural nctworks basc on ARMA models. These models will

provide a powerful tool for blind image deconvolution.

1.2 Contributions of the Dissertation

The first contribution of this research work is designing and implementation of blind
image deconvolution of nonlinearly degraded images using ARMA based ncural networks.
The nonlincarity of the imaging systems is the one that compresses or enhances a certain
range of intensities. Therefore, nonlinear MA process is assumed for degradation processes
which are based on Volterra filters. However, the autoregressive processes may be assumed
to be linear or nonlinear. The nonlinear AR processes have same form as that of Volterra

filters.

The second and important contribution of this dissertation offers a new space-variant
neural network approach to blind image deconvolution. This approach is based on the
activities of the sub-regions of the image known as blocks. The blind deconvolution of these

blocks is based upon the fact that blurring affects more the textured regions than smooth



regions, while noise is prominent and affects more the smoother regions. Therefore, activity
based network is proposed to handle this problem along with the image restoration and

space-variant blur identification.

The last and final contribution of this dissertation is the introduction of extended
cost function based on human perception system. This extended cost function contains two
new terms in order to match the second order statistics of the images. Therefore, the new

cost function can improve the visual quality of the images in a better way.
1.3 Organization of the Dissertation

Chapter 2 provides an overvicw of thc image restoration probiem. The image
formation process is described along with appropriate mathcmatical models. Several
common PSF’s are presented. The chapter reviews the most common restoration techniques

for dcaling with blurred and noisy images.

Chapter 3 dcscribes the fundamental tool used in this dissertation - the necural
networks and genctic algorithms. An overview of the fecedforward neural network with
back-propagation algorithin is presented. Finally the genctic algorithms are introducecd

along with their application arecas.

Chapter 4 deals with the blind image deconvolution of the linearly degraded images
by using artificial neural nctworks based on linear and space-invariant ARMA processes.
This technique is dcveloped for the specific integration of genetic algorithms for weight

initialization of the neural nctwork.

Chapter 5 contributes to the blind image deconvolution of nonlinearly dcgraded

images by using artificial neural networks based on nonlinear degraded process or MA



process. This technique is particularly important to handle nonlinearity of the sensors along

with sharp contrasts enhancement which may occur in natural scencs.

Chapter 6 develops a space-variant neural network model based on human visual
perception systemn. This method first divides thc image into small blocks and then it is
assumed that the degradation is space-invariant within the block. Each block is then treated
according to the activity inside the block. An extended cost function based on human visual

system 1s developed for the ncural network for better restoration of the degraded images.

Finally, Chapter 7 summarizes the material presented in this dissertation and draws
conclusions from thc advances made to the neural network approach aided by genetic
algorithm to blind image restoration and blur identification. Some future research directions

in this field are also suggested.



Chapter 2

Digital Image Restoration

This chapter describes a number of fundamentals relating to the image restoration
problem. First, the image formation process is described for both continuous and discrete
systems. Certain assumptions must be made to simplify thc mathematical description of the
image formation process, and thesc assumptions are stated explicitly. Second, a number of
common PSF’s are defined and mathematical models are presented to approximate various
common physical causes of blur. Finally, this chapter provides a brief overview of the most

popular restoration techniques.

2.1 Image Formation

The image formation process represents a 2-D mapping of a 3-D scene. The system
that forms the image may introduce distortions into the mapping process. Furthermore, the
process of recording the 2-D mapping may introduce the distortion as well. A general

degraded image formation model is represented by the following equation [1]:

o

y(r,.s)=U[ | jh(r,s;f,g;x(f,g))dfdgil@v(r,s) 2.1.1)

- —0

where y(r,s) is the degraded image, x(f,g) is the true image and v(r,s) is the noise

process that affects the image formation at the time of recording. The point spread function



PSF that characterizcs the entirc blurring process is represented by the symbol

(r s;f.gx ( f, g)) The symbol @ corresponds (o a point-by-point operation. The image

formation process may be linear or nonlinear process, which is represented by U [] .

Some assumptions are made aboutl the degradation process to simplify the above
cquation. One of the important assumptions is that the degradation process is caused by a
lingar shift invariant PSF that acts on the true image. It will reduce the computational
complexity of many image restoration algorithms. Another assumption is about the noise
which is assumed to be purcly additive in nature. These assumptions, duc to their low
computational complexity, are commonly used in practice for a variety of applications [7].
Therefore, these assumptions simplify the model to a convolution summation of the true

image with the PSF as given below
W{(r,s)= j [n(r—f.s-g)x(f,g)dfdg +v(r.s) (2.1.2)

Both the original imuagex(/,g) and the observed image y(r,s) represent real-

valued intensity distributions and take nonnegative values only. As a result h(r,s) is real

valued and nonnegative as wcll. With uniform sampling, the degradation modcl can be

reduced to the following superposition summation,

$(0.7) = 2(6.1) (0. ) + (0. )
Z m n)h i—m,j— n)+v(z J) (2.1.3)

(m.a)

where * denotes the two dimensional lincar convolution operator, (:’, j) represents the

discrete pixcl coordinates, x(i,j) and y(i,j) are the sampled values of the true image
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Figure 2.1 Linear Degradation Model

x{r.s) and observed image y(r.x}. and #A(/. /}is a linear shift-invariant blur of the

sampled system. also known as the point-spread function (PSF). The purpose of image
restoration can now be specified as the computation of an estimate x(i, /} of the original
image x{i./} when y(i. )} is observed. Figure 2.1 gives an overview of the discrete linear
degradation model. Many image restoration methods make the use of a priori information
about the characteristics of the degrading system and the noise. In practical situations,
however, it is quite ditfficult to obtain this information directly from the image formation
process. Therefore. in such image restoration mcthods, the properties of the imperfect
Imaging system are estimated directly from the ohserved degraded image itself, prior to the

restoration process [8).

Another convenient shorthand notation of eq (2.1.3) is lexicographic representation

in which image is scanned row-wise and storing the data in vector trom.

v =Hx+v (2.1.4)



where y and X arc the lexicographically ordercd vectors of size MNx1. If a circular

convolution is assumed in the eq (2.1.4), thc blurring matrix A becomes block circulant
structure. The advantage of having the circular convolution in the above equation is that the

eigenvalues and vectors of A can be computed easily and are, in fact, given by the

coefficients of the discretc Fourier transform of h(i,j) and the discrete Fourier basis

functions, respectively. Therefore, the frequency domain model of degradation process is:
Y(w,w,)=H(w,w.) X (w,w,)+V (w,w,) (2.1.5)

where w, and w, are the discrete vertical and horizontal frequency variables.

2.2 Blur Models

The blurring of images is modeled as the convolution of an ideal image with point-
spread function (PSF), h(i,j), as given in eq (2.1.3). It is worth noting that point-spread

functions arc assumed to be space-invariant which mcans that the image is blurred in
exactly the same way at every spatial location. Point-spread functions, that do not follow
this assumption are known as space-variant blurs, like rotational blurs (turning wheels) and
local blurs (a person out of focus while thc background is in focus). The modeling,
restoration and identification of images degraded by spatially varying blurs is actually still a

largely unsolved problem {12].

As the identification and restoration algorithms arc always based on spatially
discrete images, therefore, we present the blur models in their continuous forms, followed

by their discrete (sampled) counterparts. It is also assumed that the sampling rate of the
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images has been chosen high enough to minimize the (aliasing) errors involved in going
from the continuous to discrete models.
The spatially continuous PSF h(i, j) of any blur satisfies thrce constraints, namely

non-negativilty of PSF, real valued property of thc PSF and conservation of energy of the
degraded image. Therefore, A(r,s) takes on non-negative values only because of the
physics of the underlying image formation process. As we are dealing with real-valued
images thereforc the point-sprcad function A(, j) also should be a real-valued function.

The imperfections in the image formation process should not absorb or generatc "energy".

Consequently, for spatially continuous blurs, the PSF is constrained to satisfy

o

| [h(r,s)drds =1, (2.2.1)
and for spatially discrete blurs:
N-142-1
3% (i, =1 (2.2.2)
im0}

-
=}

In the following, we will present five common potint-spread {unctions (PSF), which

arc encountered regularly in practical situations of interest,

2.2.1 No Blur

In case the recorded image is imaged perfectly, no blur will be apparent in the

discrete image. The spatially continuous PSF can then be modcled as a Dirac delta function:

h(r,s)=0(r,s) (2.2.3)

12



and the spatially discrete PSF as a unit pulse:

I if(i=j=0)

(2.2.4)
0 elsewhere

h(i, ))=8(i, /) ={

The cq (2.2.4) shows that the image will have no blur as long as the amount of
“spreading” in the continuous image is smaller than the sampling grid applied to obtain the

discrete image.

2.2.2 Linear Motion Blur

Linear motion blur is a commonly observed blur which is found in the images
having relative motion between the recording device and the scene. This can be in the form
of a translation, a rotation, a sudden change of scale, or some combinations of these. The
most important case of a motion blur is global translation, in which the scene to be recorded
translates relative to thc camera at a constant velocity, Vv, and an angle of ¢ radians with
the horizontal axis during the exposure interval [0,texposure]- The blurring effect, caused by
such distortion, will be in one-dimension and trcated as linear motion blurring. Since the

"length of motion" can bc defined as L= vieiive lexpasures therefore, PSF may be given by

[13]):

yJ#+fs§am5:—mmm
5

i
h(r,s,L,$)=4L (2.2.5)
0

elsewhere

The discrete version of the eq (2.2.5), can only be obtained in a close form

expression, if linear motion blur is assumed along the horizontal axis i.e., $=0. Therefore,

13
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Figure 2.2 PSF of motion blur in the Fourier domain }Pl(m,11-2) for L=23 and ¢=1).
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Figure 2.2, shows the modulus of the Fourier transform of the PSF of motion blur
with L=25 and ¢=0. This figure illustrates that the blur ts effectively a horizontal low-pass

filtering operation and that the blur has spectral zeros along characteristic lines.

2.2.3 Uniform OQut-of-Focus Blur

A 3-D scene 1s imaged by a camera onto a 2-D imaging plane. Some parts of the
scene are in focus while other parts are not. If the aperlure of the camera is circular. the

image of any point source is a small disk. known as the circle of confusion. The degree of



defocus depends on the focal length £ and the aperture number of the lens 1, and the

distance betwcen camera and object is 5. Howecver, if the degree of defocusing is large
relative to the wavelengths considered, a geometrical approach can be followed resulting in
a uniform intensity distribution within the circle of confusion [14). The spatially continuous

PSF of this uniform out-of-focus blur with radius R is given by:

l : 2 2 2
if Nri+s® <R 2.2.7)

h(r,s,R)=<{n R*
0 elsewhere

Also for this PSF the discrete version Iz(:’, j) is not easily amved at. A coarse

approximation is the following spatially discrete PSF [14]:

i . 2 .2 2
Wi =lc AR (2.2.8)
0 elsewhere

where C is a constant that must be chosen so that the above equation is satisfied. Again a
low pass behavior can be observed (in this casc both horizontally and vertically), as well as

a characteristic pattern of spectral zeros as shown in Figure 2.3.

2.2.4  Atmospheric Turbulence Blur

Atmospheric turbulence is a severe limitation in remote sensing. Although the blur
introduced by atmospheric turbulence depends on a variety of factors (such as temperature,
wind speed, exposure time), for long-term exposures the point-spread function can be

described reasonably well by 4 Gaussian function [15]:

rZ 32
h(r,s,oa)=Cexp(— . J (2.2.9)
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Figure 2.3 PST of out of focus blur in the Fourier domain ‘1[ (w.w,)

where ¢, determines the amount of spread of the blur, and " is a constant. The PSF given
in eq (2.2.9) is separable in horizontal and vertical components., Therefore, its discrete
version is obtained by first computing a 1-D discrete Gaussian PSE f;(i). which is found by
a numerical discretization of the continuous PSF. For each PSF ¢lement (i), the 1-D

continuous PSF is integrated over the area covered by the 1-D sampling grid. namely

1
i——i+—=
2]

h(io, )=C [exp[— * }ix (2.2.10)
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Figure 2.4 Graussian PSF in the Fourier domain {o¢=5.2).

Since the spatially continuous PSE does nol have a finite support, it has to be truncated

properly. The spatially discrete approximation is then given by:
h(i.j.crh):!;(f,cr{,)f;'(j,cr“) (2.2.11)

Figure 2.4 shows this PSF in the spectral domain (o=5.2). It has been observed that

Gaussian blurs did not have exact spectral zcros.

2.2.5 Scatter Blur

The X-ray images show detail of ditferent parts due to the varving amount of
radiation, which is absorbed by the ditferent parts. being radiated. Unfortunately, the X-ray
quanta are scattered from their incident paths. resulting in a distribution of radiation about a

point. Although there are many factors which influcnce the PSF resulting {rom this scatter.
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Figure 2.5 X-ray Scatter PSI in the Fourier domain (p=0.02).

but within diagnostic energy ranges the PSF may be described sufficiently accurately by the

following radially symmetric PSF [16]:

h(r.s: )= C , (2.2.12)

3

(ﬂl+(r3 +.5':))3

Here f determines the severity of the blur. and 1s a function of the distance between the

radiated object and the detector. Figure 2.5 shows the PSF of scatter blur in Fourier

transform.



2.3 Types of Noises in Images

Noise is defined as the unwanted component of the image and may be additive or

multiplicative in nature [17]. The noise which is assumed to be additive can be modeled as
y(i7)=x(i,j)+v(i.J) (23.1)

where x(i, j) is a desired image component and v(i, /) is the additive noise component of

the image. Similarly, the multiplicative noises are represented as
y(i.j)y=x(i, /) (i, )) (2.3.2)

The different types of noises in an image are Gaussian noise, heavy-tailed noise, salt

and pepper noise, quantization and uniform noise and photographic noise.

2.3.1 Gaussian Noise

Probably the most frequently occurring noise is additive Gaussian noise. It is widely
used to model thermal noise and, under some reasonable conditions, is the limiting behavior

of other noises, e.g., photon counting noise and f{ilm grain noise. The density function of

univariate Gaussian noise, v, with mean p and variance ¢’ is

1 7 :
p.(r)=(2zc* )2 et (2.3.3)

for —c <r <w. Notice that r is infinite in both thc positive and negative directions,

therefore p, (r) also is nonzero for negative valucs of r.

The most significant property of the Gaussian distribution is called the Central Limit

Theorem, which states that the distribution of a sum of a large number of independent, small
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random variables has a Gaussian distribution. Note the individual random vanablcs do not
have to have a Gaussian distribution themselves, nor do they even have to have the similar

distribution, [18 ][19].

2.3.2  Heavy-Tailed Noises

In many situations, the conditions of the Central Limit Theorem are not quite true as defined
in Gaussian noisc because of the lack of enough number of terms in the sum or it may also
be due to insufficiently indcpendent terms [20]. However, the noise may have the

approximatcly Gaussian center of thc density but not the tails. Therefore, such typcs of

noiscs arc treated as heavy tailed. "Heavy tails" means that the density Pv(") approaches to

zero more slowly than the Gausstan for large values of r.

2.3.3  Salt and Pepper Noise

Salt and pepper noise is due to the occurrence of wide variety of processes that result
in somc basic image degradation in which only a few pixels are noisy, but they are very
noisy. The effect is similar to sprinkling white and black dots (like - salt and pepper -) on an
image [21]. Such noise may be removed by using simple mean or median filtering

techniques.

2.3.4  Quantization and Uniform Noise

Quantization noise results when a continuous random variable is converted to a
discrcte one or when a discretc random variable is converted to one with fewer levels. In
images, quantization noise often occurs in the acquisition proccss. When a continuous

image is acquainted through a sensor and then converted into a digital representation. This
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conversion requires two steps sampling and quantization. The quantization tries to quantize
colors inside the imagc and assign each quantized level a binary number. The process

introduces noisc in the image, which is usually modeled as uniform.

2.3.5 Photographic Grain Noise

Photographic grain noisc is a characteristic of photographic films. It limits the
effective magnification if one can obtain a digital image from a photograph. A photographic
film is made up from millions of tiny grains. Two important rcasons of such a noise are that
the grains arc uniform in size, and that the probability that a grain changes, is proportional

to the number of photons incident upon it.

2.4 Image Restoration Methods

There are two main approaches to the image restoration:

1. The PSF function is assumed to be known, and image restoration methods have been
developed to restorc the image. Such methods arc known as Classical Methods for
image restoration. Although thesc methods are simple but in practical situations such
PSI”s are cither not available or practically impossible to estimate at the time of

capturing the images.

2. In the second approach, PSF and true image is estimated from the degraded imagc
characteristics and partial information available about the imaging system. Such types of
image restorations are known as blind image restoration. There are two main types of

the techniques used for blind image restoration.
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a. Identifying the PSF separately from the true image, in order to use it later with one
of the classical image restoration methods, which require a priori knowledge of PSF
beforc attempting to resiore the image. Therefore, estimation of PSF and the true
image are disjoint procedurcs. This approach leads to computationally simple

algorithms.

b. Incorporating the identification procedure with the restoration methods. This merger
involves simultaneously estimating the PSF and the truc image, using the statistics
of the blurred image only. Such a problem is more difficult than the prcvious one
and requires computationally complex algorithms, which are recently emcrging in
the literature. Therefore, such methods arc known as Emergent Methods. Therc are
emergent blind image restoration methods in which perception motivated cost
functions are used in order to have better image restoration, and are known as

perception based methods.

2.4.1  Classical Techniques

In classical image resioration techniques, it is assumed that the PSF of the blur is

satisfactorily known and a number of methods arc introduced, for removing the blur from

the recorded image x(i, J) using a linear filter. If the point-spread function of the linear

restoration filter, denoted by d(i,j) , has been designed, the restored image is given by

(5,7)=d (i, j)*y (i, ))

=N'wz_ld(k,:)y(i-k,j—f) (24.1)
k-0 /-

or in the spectral domain by

22



A

X(w,,wz)=D(w,,w2)Y(w,,w2) (2.4.2)

The objective of this section is to explore appropriate restoration filters d(i, j) or

D(w,,w;) for usc in above two equations. Therefore, there are two types of classical

techniques - one that usc Fourier transform and the second one that use algebraic equations.

2.4.1.1 Transform Related Techniques

In transform related techniques, the image is restored in the frequency domain where the
problem of image restoration bccomes simple because the convolution in time domain is

converted into multiplication in the frequency domain,

a) Inverse Filter

An inverse filter is a linear filter whose point-spread function #,, (i, j) is the inverse
of the blurring function h(:‘,j) in the sense that:

M-l M-

By (6 V¥R (7Y = D0 2 i (KoL) B(i =k, j = 1) =8 (i) (2.4.3)

k=0 [rQ

The inverse filters seem difficult to design according to eq (2.4.3). Howcver, the

spectral counterpart of eq (2.4.3) immediately shows the solution to this design problem [1]:

1

Hoy () H () =1 =0 Hy, () = S
1 772

(2.4.4)

The inverse filter requires PSF of blur as a priori knowledge, and it allows for
perfect restoration if noise is abscnt. However, il noise is present then restoration process

becomes:
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{H(w,,wz)X(w,,w2)+V(w|,w2)}

H (5 w,) (2.4.5)

If the noise is absent, the second term in cq (2.4.5) disappears so that the restored

image is identical to the ideal image. Unfortunately, several problems exist with eq (2.4.5).
One of the major problem is that / (w;,w,) is zero at certain selected frequencies(w;,w, ),
in case of lincar motion blur and the out-of-focus blur. Second major problem is that even if
the blurring function’s spectral representation H {w;,w,) docs not actually bccome zero but
becomes small, thc second term in eq (2.4.5), known as the inversc filtered noisc will

become very large. Therefore, inverse filtered images are often dominated by excessively

amplified noise.

b) Least-Squares Filters

To overcome the noise scnsitivity of the inverse filter, a number of restoration filters
have been developed that arc collectively called least-squares filters. We describe the two
most commonly used filters, namely the Wiener filter and the constraincd least-squarcs

filter.

i) Wiener Filter

The Wiener filter is a linear spatially invariant filter of the form given in eq (2.4.1),

in which the point spread function d(i,j) is chosen such that it minimizes the mean-

squared error (MSE) between the ideal and the restored image. This criterion attcmpts to

minimize the difference between the ideal image and the restored:
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M-

MSE = E[ (x(1,)-5(0)))’ | = X X (x(.1)=%(0.))) (2.4.6)

frs -0

L

D
‘-.

The solution of this minimization problem is known as the Wiener filters, and is

defined easily in the spectral domain:

D

W w,) = H (wym) ST 2.4.7)
H (w, )H(w,,wz)+ -

S, (w,w;)

wicner (

where H™(w,w,) is the complex conjugate of H (w;,w,). S, (w,w,) and S, (w,w,) are
the power spectrum of the ideal image and the noise, respectively, The power spectrum is a
measure of the average signal power per spatial frequency (w,, wz) carried by the image. In

the noiseless cases, the Wiener filter approximates to inverse filter given in cq (2.4.4).

When the recorded image is noisy, the Wiener filter trades-off restoration by inverse

filtering and suppression of noise for those frequencies where H(w,, )—) 0. However, if
we assume that the noise is uncorrelated, i.c. white noise, then S,(w,w,)=c. Small
values of o} will yield a result close to the inverse filter, while large values will over-
smooth the restored image. The estimation of S, (w,,w,) is somewhat more problematic.
However, one can replace S, (w,,w,) by an estimate of the power spectrum of the blurred

image S, (w,w,) and compensate for the variance of the noise ¢ ? [1]:

Sc(wom) =S, (w.wm)-oc} (2.4.8)
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In this approach, little a priori knowledge is required. Typical artifacts of the Wiener
restoration are the residual blur in the image and the “ringing” or *“halo” artifacts present

near edges in the restored image.

ii) Constrained Least-Squares filter

The constrained least-squares filter [23] is another approach, for overcoming some
of the difficulties of the inversc filter and of the Wiener filter, while still retaining the
simplicity of a spatially invariant linear filter. If the rcstoration is a good one, the blurred

version of the restored image should be approximately equal to the recorded distorted
image, i.e. k(i j})*%(i,j}= y(i,j). Therefore, a more reasonable expectation for the
restored image is that it has to satisfy the following cquation:

N-1.M-

() =k 2 = 35 (kD) - (kD 5 (KDY ~o? (249

-0 [

=

There are potentially many solutions that satisfy the above relation. Therefore, a

commonly used sccond criterion is to select the solution that is as “smooth” as possible.
This is due to the fact that the inversc filter tends to amplify the noise v(z’, j), The solution
to thc above minimization problem is the constrained least-squares filter D,, (w,,w, } which

can easily formulated in the discrete Fourier domain as:

D, (w,w,)=— H.(W"wz.) (2.4.10)
~ H (w,w,) H (w, w,)+aC" (w,w,)C(w;, w,)

Here o is a tuning or regularization parameter and C is frequency domain
reprcsentation of second order derivative, also known as Laplacian operator. A 2-D discrete

approximation of the Laplacian operator in spatial domain is given as:
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It should be noted that although the motivations of Weincr filter and constrained
least squares filter are quite different but their formulations are quite similar. Indeed these
filters perform equally well, and they behave similarly in the case that the variance of the

noise o, approachcs zero. A vast amount of lilcrature exists on the usage of more

complicated image models, especially thc ones inspired by 2-D auto-regressive processes

[24] and the Markov random field theory [25].

) Homomorphic Filter Restoration

Homomorphic image restoration is based on the illumination-reflectance image
model. This model represcnts an image in terms of its illumination and reflectance

components by means of relation

(i, j) =i, (i, ))r, (i, j) (2.4.11)
where i {i,j) and r,(i,j) in eq (24.11) rcpresents illumination and rcflectance

components, respectively. The iliumination component is gencrally characterized by slow
spatial variations, while the reflectancc component tends to vary abruptly, particularly at the
Junctions of dissimilar objects [2]. Therefore, low frequencies of the Fourier transform of
the logarithm of an image can be associated with illumination and the high frequencies with
reflectance. A good deal of control can be gained over the illumination and rcflectance

components with harmonic filter. This control requires specifications of a filter function
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H(w,,wz) that affects the low and high frequency components of the Fourier transform in
different ways [26].

There are three major drawbacks of homomorphic filters [2]; firstly the associations
between image components and frequencies arc rough approximations. Secondly, the
method can only be uscd where non-uniform illumination of the source and blurring are the
major issues like in X-ray images. Thirdly, the implementation of homomorphic filters

becomes unwieldy when dealing with large images.

2.4.1.2 Spatial Domain Techniques

Spatial domain techniques involve attempting to find a direct solution to the image
degradations, without going to the frequency domain.
a) Iterative Filters

Iterativc restoration filters arc spatial domain filters. They are used, when the
dimensions of thc image to be restored are very large or additional knowledge is available
about the restored image [27], [28], [29]. The basic form of itcrative restoration filtcrs is the

one that iteratively approaches the solution of the inverse filter, and is given by:
oo (67)= 2,6 )+B (v (i, /) - R0, j)*£,(i, /) (2.4.12)
wherc X, (7, ) is the restoration result after » iterations. Usually in the first iteration

X,{i,J) is chosen to be identical to zero or identical to y{i, j). The iterations in 2.4.12
0 €q

are independently run many times, and are referred to as the van Cittert, Bially, or

Landweber iterations. Now, during these iterations the blurred vcrsion of the current
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restoration result ¥, (7,j) is compared to the recorded image y(i,j). The difference

between the two is scaled and added to the current rcstoration result to give the next

restoration result.

The iterative scheme has several advantages like it does not require the convolution
of images with 2-D PSF’s, containing many coeflicients, no Fourier transforms are required,
the iterations can be continued indefinitely, and the scheme can be cxtended to include all

types of a priori knowledge. On the negative side, the iterative scheme has many

disadvantages, like the condition H (w,,w,)> 0 is not satislied by many blurs, schcme docs

not include any knowledge about the spectral bchavior of the noise and the ideal image, and

its convergence is slow [29].

b) Boundary Value Problem

The blurred images always have finite spatial extent and are obtained by the
convolution of the ideal image with the PSF of the blur which may be extended bevond the
borders of the observed degraded image. Therefore, a part of the information that is
necessary to restore the border pixels is not available to the restoration process. This
problem is known as the boundary value problem, and poses a severe problem to restoration
filters. Although at first glance, the boundary value problem seems to have a negligible

effect because it affects only border pixels, but this is not at all true [30].

The point-spread function of the restoration filter has a very large support, typically
as large as the image itself. Consequently, the effect of missing information at the borders of
the image propagates throughout the image deteriorating the entire image. Two types of

solutions to the boundary value problem are used based on spatial domain and Fourier
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domain. In a spatial domain filter, missing image information outside the observed image

can be estimated by extrapolating the available image data [30].

2.4.2 Blind Image Restoration

There are two main approaches to blind image deconvolution. In the first approach,
the blur is estimated from the degraded image using the available partial information about
the image and degrading system. Such methods are known as a prieri blur identification
methods. Then a classical imagc restoration algorithm is applied on the degraded image to
restorc the original image. In the second approach blur identification procedure is embedded
in the restoration process, in order to identify blur and restore original image

simultaneously. These techniques are categorized as Emergent techniques.

2.4.2.1 A Priori Blur identification Methods

A priori blur identification methods perform blind deconvolution by identifying the
PSF prior to restoration. This gcneral class of techniques makes assumptions on the
characteristics of the PSF such as symmetry and availability of a known parametric form of
the blur. Based on these assumptions, an attempt is made to complctely characterize the PSF

using special features of the true/blurred image [31].

Popular parametric models include PSF's resulting from lincar camera motion or an
out-of-focus lens system which are explained earlier. Once the PSF has been completely
identified, one of the classical restoration techniques is used to estimate the true image. A
priori blur identification techniques are the simplest class of blind deconvolution methods

to implement and have low computational requirements. They are applicable to situations in
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which the true image is known to possess special features, and/or when the PSF is known to

be of a special parametric form.

2.4.2.2 Emergent Techniques

A number of new image restoration methodologies have been developed in recent
years to address the problem of blind image restoration. These techniques can estimate the
PSF and restore the degraded image, simultaneously, using the statistics of the degraded
image only. The emergent techniques are based on different computing tools like neural

networks, genetic algorithms and wavelets.

a) Image Restoration using Neural Networks

Motivated by the biological neural network in which the processing lies in a large
number of neurons linked with synaplic weights, artificial neural nctwork models attempt to
achieve good performance via dense interconnections of simple computational elements.
Neural net models have greal potential in arecas where many hypothcsis are pursued in
parallel, high computation rates are required, and the current best systems arc far from

equaling human performance.

Image restoration was first implemented using the Hopfield neural networks for
binary images in late 80’s. This neural network contained the huge amount of redundant
neurons making it computationally heavy for gray scale imagcs [32]. Later, a joint blur
identification and image restoration using multilaycred neural network based on ARMA
model was studied for binary level images [33]. The advantage of the method was low
computations and less a priori information required for the image restoration and blur

identification process. The method has problems of convergence. The method was later
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modified for gray level images, as well. Although the technique was fault tolerant but it was
computationally complex. It was also difficult to remove the ringing effects and noise in
smooth background [34]. The method was then restudied to improve its performance by
modifying the upper and lower bounds in the cost function of the neural network [35]. Later
a new approach was investigated to consider the effects of the edges in the image by

improving the cost function of the neural network [36].

Model based neural networks are also reported for image restoration, in which the
weights of a conventional neural network were coupled with small number of parameters
[37]. These parameters which include a regularization parameter as well, serve as a basis to
make the solution stablc and to remove ill-poscd nature of the problem. The model based
neural network treated the edge and texture regions as equivalent but the noise masking
capabilities of these two types of regions are diffcrent. Later, new methods were developed
to make the regularization parameters adaptive according to the local statistics of the region

using fuzzy model-based neural networks and hierarchical neural networks [38][39].

Recently a recursive sofl decision approach to blind image deconvolution is reported
which contains a modified cost function which consists of data fidelity measure, image and
blur domain regularization terms and soft blur estimation error. This cost function is
implemented for hierarchical neural nctworks which contains regularization parameters as

well in order to convert the ill posed restoration problem into well posed problem [40].

b) Image Restoration using Wavelets
All the previous adaptive techniques examined the problem in spatial domain, using

various local measures to describe the type of activity near a pixel. The use of wavelets for
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the task of image enhancement and restoration has been thoroughly studied in recent years
from the multiresolution/subband perspective [41][42]. A matrix formulation was studied
for wavelet based subband decomposition which allows for thc compulation of the
decomposition of both the signal and the convolution operator in the wavelet domain.
Therefore, this approach can be used to restore single channel image with some

multichanne!l image restoration routine [43].

The wavelet concept has also becn used with Kalman filtering technique which uses
a multiscale Kalman smoothing. The filter is directly applied to the wavelet coefficients of
noisy image ordered onto a quadtree structurc in order to obtain noisy wavelet coefficients
[44]. The wavelet domain approaches provide a uscful method for image rcstoration with
preservation of edges in thc scene. It is achieved due to thc local adaptivity of the wavelet
coefficients having details. Although this approach is efficient to implement but still

requires reasonable computational complexity [45].

) Image Restoration using Genetic Algorithms

Genelic algorithms are stochastic scarch techniques based on natural selection and
genctics. GA's differ from conventional optimization techniques in that they are parallel,
probabilistic, and use only the objective function. They are superior to gradient descent
techniques, which are biased toward local optima. Although no formal proof exists for the
convergence of GA’s, they are usually able to locate the neighborhood of the optimum
quickly. However, they are not well suited for fine tuning of solutions. Furthermore, GA’s
are difficult to apply to large scalc optimization problems becausc of the large memory

requircments [46].
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In order to work with GA’s a population of individuals is created in which each
individual has certain fitness. The particular traits of an individual are encoded in the
chromosome, which consists of a string of parameters or genes. All GA’s perform threc
basic operations- selection, crossover, and mutation. From the parent generation, individuals
with high fitness are selected for reproduction of next generation. Recombination occurs
through crossover and mutation. This process continucs till you reach a certain optimization

criteria.

Differcnt types of blind dcconvolution algorithms are proposed in literature
depending upon thc usc and location of use of GA’s. GA’s are used in combination with
ncural networks to find optimized weight of the neural network implemented for image
deconvolution. In neural networks the cost function usually has local minima problem. This

problem is resolved by the use of GA’s that go straight for global minimum [46].

In blind deconvolution of linearly degraded images simulated annealing technique
was first proposed by McMallum [47]. If a system 1s in thermal cquilibrium at temperature

T, then the probability that the system is in particular configuration is

P{E)=exp(—-E/kT), where E is energy of the system and % is Boltzmann’s constant.

Simulated annealing attempts to reach the minimum energy state through a series of atomic

reconfigurations (local perturbations) which are accepted if energy is decreased with

probability P(AE)=exp(-AE/kT)[48][49]. Thereforc, such a method is named as

simulated annealing genetic algorithms (SAGA). Blind deconvolution of nonlinearly

degraded images, using SAGA, has been reported in literature [50].
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d) Multichannel Blind Image Restoration

There arc many applications of image restoration which are proccssed as a
multichannel nature problem i.e., there are several image planes available called channels
with redundant, as well as, completc information. The different channcls may correspond to
different frequencies, different sensors, or different time frames. Specific applications of
multichannel image restoration are carried out where multiple blurred and noisy copies of
the same scene are available. Multichannel blind deconvolution of images is much more
complicatcd problem than single channel images, due to the higher dimensionality of the
problem along with other problems [51][52]. However, rclevant information present in a
given channel can be taken into account when processing the others, providing therefore,
more accurate restoration results. In order to effectively deconvolve the observed image,
this joint processing of the differcnt channels is particularly essential when cross-chamnnel
blurring is present. However, even in the absence of cross-channel blurring, more precisc

restorations can be obtained by combining information from the various channels [53] [54].

Various approaches for the restoration of noisy and blurred multichanncl images are
reported using Wiener filtering [55][56], set theorelic and constrained least squares

[57][58], Bayesian methods [59][60][61] and Total Variation methods [62].

e) ARMA Parameter Estimation Methods

Blind deconvolution using ARMA parameter estimation is a technique which
involves modeling the true image as a two-dimensional autoregressive (AR) process and the
PSF as a two-dimensional moving average (MA) process. Therefore, the resulting blurred

image is represented as an autoregressive moving average (ARMA) process.
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The truc image is modeled as a two-dimensional autoregressive (AR) process

represented by:

x(i,j)= Z ayx(i—k, j=1)+v (i, ) (2.4.13)

kJes,

where a, are the image model coefficients ,x(i, j) is the true image, and v, (i, ) is the
zero-mean homogeneous noise procecss with covariance matrix which is statistically

independent of x(i,j). The AR modecl coefficients a, of support, S,, are chosen to

minimize the variance of v (i, /) denoted by o, ?[63]. The model of the true image is valid

in applications such as photography where the truc images are generally smooth and
homogeneous [64]. The model is also appropriate for texture images, but model order
selection is required to estimatc the number of AR coefTicients. The AR model is not valid
for situations in which the truc image has abrupt changes in local image characteristics, such

as for edges.

In most practical situations, the PSF is of finite extent and its effcct on the true

image can be modeled as that of a two-dimensional FIR filter. From the linear degradation

model of eq (2.1.3), the degraded image y(/, j) can be expressed as:

y(6,5)= 2. Byax(i—m, j—n)+v,(i, /) (2.4.14)

m.neS,

where S, is the finite support of the PSF #_,, and v, (i, ) is the additive noise of the

imaging system assumed to be zero-mean Gaussian noise. The identification of ARMA
parameters allows us to identify the truc image and PSF. The cxisting methods of this class

are generalized cross-validation (GCV) [65], and neural networks [33].
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i) The Generalized Cross-Validation Approach

General cross-validation (GCV) is a widely recognized tcchnique in the ficld of data
analysis. It is sometimes known as "lcavc-one-out” or predictive sample reuse. Histonieally,
it has been used as a criterion for estimating the optimal regularization parameter in
smoothing problems. The principle behind GCV is straightforward. The data is divided into
two sets - an estimation sct and a validation set. The estimation set i1s used to obtain a model
or estimate based on a particular parametcr value or assumption. The validation set is then
used to validate the performance of the modcl or estimate and thus the assumption.
Therefore, many compcting parameter values may be tcsted to find the most appropriate
parameter values. The difficulty with dividing the data into two sets is that it is necessary to
use as much of the data as possible to obtain a reliable cstimate. At the same time it is also
desirable to test the estimate on as much of the data that was excluded from the estimation
process as possible. The data is divided into M sets. The assumption being tested is imposed
on all the scts but one, and a validation error measure is computed for the omitted set. The
process is repcated, sclecting a different set cach time, until all the sets have been
exhausted. The validation error measured for each set is averaged to produce the validation
error for the particular parameter value or assumption. Thus, all the data is used for both

estimation and validation [66].

Differcnt methods have been proposed to solve the problem of blind image
restoration and even computationally simpler algorithm has also been introduced with a

slight loss in the quality of restoration [67].
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if) Neural Networks

A joint blur identification and image restoration using multilayered neural network
based on ARMA model was studied, where auto-regressive (AR) part determines the image
model coefficients and the moving average (MA) part determines the blur function of the
system as shown in eqs (2.4.13) and (2.4.14), respectively. The structured neural nctwork
was dccomposed into two adaptive associative nctworks. The operation between the first
and second layer was auto-associative excited by random Gaussian noise while between
second and third layer is hetero-associative. The oulput of third layer is the estimate of the
observed image [33]. The wcights can be updated using different methods like gradients
method and genetic algorithms or any combination of the two. The cost function or fitness
criteria may be taken as the square of the error between the observed and the estimate of the
blurred image [64][68]. The output of the second layer was the estimated true image while

the weights between second and third layer were the estimate of the blurring function.
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Chapter 3

Hybrid Computing Tools — Artificial Neural Networks
and Genetic Algorithms

In this chapter we will study two basic computing tools i.e. Artificial Ncural
Networks and Genetic Algorithms. The combination of these two tools is treated as hybrid
computing. The Artificial Neural Networks are physical cellular systems which can acquire,
store and utilized expcrimental knowledge like human brain. The most popular

representation of Artificial Neural Networks is Feedforward multilayer perceptron.

3.1 Feedforward Multilayer Perceptron

Standard multilayer fecdforward networks contain neurons arranged in layers. The
neurons arc generally connected to all the neurons in the adjacent layers through uni-
directional links called synaptic weights. The first layer in such networks is called input
layer and the last layer is called output layer. The intermcdiate layers are called hidden
layers. There is no Iimit on the number of hidden layers. However, one or two hidden laycrs

are sufficient to solve any problem [70]. Generally, the multilayer perceptron has different
number of neurons and different synaptic weights for diffcrent layers. Let uﬂ.’]denote the

value of internal potential (signal) of the / neuron located in the s* layer (s=1,2,3). The

weighted sum of the inputs is computed by the neuron according to the formula:

n -l

ui-l _ Z Wil ghet] 3.1.1)

Ji 7
im0
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s=1,2,3j=12,...n

X

where ! are the synaptic weights of /* neuron of s layer. o/ is the input vector of the s

(31 _

. ! 5 o
layer. These inputs can also be represented as x* =0,"", 0" = x,,0"! = y,. The number of

neurons, in the s” layer, are represented by symbol n_. The neuron output is computcd by
passing the weighted sum of its input (i.e. the internal potential «'”) by a nonlinear bounded

activation function y ') as shown in Figure 3.1. This opcration can be described as:

a -1
ofm Z‘ij(uj[j]) =ij [Z wj,[jlofls_”] (.1.2)

i=0

There are two major classes of optimization algorithms in order to {ind optimum
weights of this network called learning of the neural networks. The first one is Calculus
based technique that employs gradicnt-directed searching mechanism to solve the error
surface or differential surface of the objective function. The back-propagation algorithm is
based on this technique. The second onc is evolutionary computing technique that employs

the concept of natural selection i.e., genetic algorithms.

3.1.1 Back-propagation Algorithm

Let us consider a multilayer perceptron of three layers, i.e. input layer, hidden layer

and output layer, havingn,, n, and n, neurons, respectively, The standard back-propagation
algorithm uses the steepest descent gradient approach to minimize the mean square error

function [71]. Such a local error function for any p" learning example can be written as
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Figure 3.1 Neural network architecture of a three layer perceptron with standard back-

propagation algorithm.
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E, :E;(a’jp -y, ==, (3.1.3)

-1
Now the global error function may be written as

E= ZE —% >A(d,-y,) (3.1.4)

Where d,,and y, are the desired and actual output signals of the j™ output neuron

for the p" pattern. There are two basic approaches to find the minimum of global error
function E. The first techniquc is the on-line or per example learning in which the training
patterns are presented sequentially, usually in random order. The second approach is batch
learning in which total error function £ is minimized in such a way that the weight changcs

are accumulated over all leaming examples before the weights arc actually changed.

Now here we will discuss the on-line learning approach in which the gradient search

in the synaptic weight space is carried out on the basis of a local error function £, which

can be written as:

[s] aEP
Aw " = PT (3.1.5)

Kl

First determinc an updating formula for the synaptic weights wﬂ.[’] for (s =3) of the output

layer. Using the chain rule for eq (3.1.5), we can writc

OE, O, ou
ow, = 2™ o,

Aw M = (3.1.6)

!

where u ;7 can bc written as
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and local error, callcd delta § /¥ is defined as

- - Ay 1Y
S [3] _ aEP _ OEP aef'ﬂ _ i (3 1 8)
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We obtained a general formula for updating the weights in the output layer as
Awﬁ'” ='q8j[”xl.”' ='q8j[3'o,.'2] (3.1.9)
where

3
awj[ ]

ij — ejp(Wj[”)'z (djp _yjp)m (3.1.10)
i

Updating the synaptic weights in the hidden laycrs is a little morc complicated. For the

second hidden layer we can still write

OF O _
Aw,!D = Pl Pt =18 ,x/ =n3 Do (.1.11)
J i

where this local error cannot be directly evaluated as is done for the local errors in the

output layer. Using the chain rule we can write

-

oEp ]
e (/=12,3..,n,) (3.1.12)

[
j

2y _ _
3, =

However, this local error cannot be directly cvaluated as is done for the local errors in the

output layer. Using the chain rule we can write

43



- ~ o [2)
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8,7 = aujm = ao}” 6uj[2' (3.1.13)
As we know that
(21 _,,, (2] 1
§ =y 1w,y (3.1.14)
we have
6 = OV G.115)
aoj auj
oF
The factor ———~—- can be evaluated as
do 1P
J
aE ul a nl L]
—E =Yg = w, o 1 [=) 5 Bl 1 3.1.16
(301.[2] ; i aoj[z] [:M ke Yk ] ; j if ( )
The local error in the second layer can be evaluated as
"‘\_IJ[Z] al
§ 21 =0T _ g, 0 3.1.17
i aujlz] pa i if ( )
Analogously,
ijr_[ll =T]5,-[”I,-[” =n5,-“‘0,-‘°‘ =T15,-[”-r,- (3.1.18)

The basic back-propagation algorithm can be performed by realizing the following steps:

I. Initialize all synaptic weights w,*! to small random values.

2. Present input for the class of lcarning examples and calculate the actual

output of all neurons using the present values of wf.j'” and the pattern.
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3. Specify the desired output and evaluate the local errorsd /! for all layers.

4. Adjust the synaptic weights according to the iterative formula given in eq

(3.1.18), i.e,
Aw Pl =ng Fixl (3.1.19)

5. Present another input pattern corresponding to the next learning examplc and

go back to step 2.

All the training examples are prescnted cyclically until the synaptic weights are
gtabilized, i.e. until the error of the entire sct is acceptably low and the network converges.
The behavior of the network is also explained in Figure, 3.1, After training a multilayer
perccptron usually has the feature of generalization, i.c. it has the ability for proper responsc

to input patterns not presented during the learning process.

3.1.2  Extended Back-Propagation Algorithm

This learning algorithm has some drawbacks. First leamning parameter n should be
chosen small to provide minimization of the total error [unction £. For a small n the
learning process becomes very slow. On the other hand, large values of 13 correspond to

rapid learning, but lead to parasitic oscillation which prevent the algorithm from converging
to desired solution. Moreover, if the error function contains many local minima, the network
might get trapped in some local minima, or get stuck on very flat plateau. A simple way to
improve the standard back-propagation lcamming algorithm is to smooth the weight changes

by adding the momentum term
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Aw (k) =18 Mol + aAw Ik - 1), (3.1.20)

where
n>0, 0<a<l, and 5=1,2,3

The type of the neural network presented in this dissertation is extended form of
feedforward neural network with back-propagation algorithm. The main difference is in the
connection weights. In standard multilayer feedforward network one neuron is connected to
all the input neurons but the neurons in neural network used for image restoration are

connected to the adjacent neurons. The second major difference lies in their cost functions.

3.2 Genetic Algorithms

Genetic algorithms provide a mechanism that mimics the process obscrved in natural
evolution and is known as the GA. This technique of optimization 1s similar to its associated
algorithms: simulated annealing, evolutionary strategies, and evolutionary programming,
which are classificd as guided random tcchniques [72][73]. The GA operates as an entirely
different optimization procedure and provides further flexibility and robustness that arc
unique for neural networks. Because of its simple implementation procedure, the GA can be
used as an optimization tool for designing neural network-hybrid systems for real-world
applications. Therefore, the potential use of the GA in neural networks is immcasurably
wide,

The GA is a scarching process based on the laws of natural selection and genetics.
Usually, a simple GA consists of three operations: selection, cross-over, mutation and

replacement. The population comprises a group of chromosomes from which candidates can
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be selected for the solution of a problem. Initially, a population is generated randomly. The
{itness values of the all chromosemcs are cvaluated by calculating the objective function in
a decoded form (phecnotype). A particular group of chromosomcs (parents) is sclected from
the population to gencrate the offspring by the defincd genctic operations. The fitness of the
offspring is evaluated in a similar fashion to their parents. The chromosomes in the current
population are then replaced by their offspring, bascd on a certain replacement strategy.
Such a GA cycle is repeated until a desired termination criterion is reached (for example, a
predefined number of generations is produced). If all goes well throughout this process of
simulated evolution, the best chromosome in the final population can become a highly

evolved solution to the problem.

3.2.1 Encoding Scheme

The encoding scheme is a key issue in any GA because it can severely limit the
window of information that is observed from the system. To enhance thc performance of the
algorithm, a chromosome representation that stores problem specific information is desired.
In general, the GA evolves a multiset of chromosomes. It should be noted that each
chromosome should represent a trial solution to the problem setting. The chromosomc is
usually expressed in a string of variables, each elcment of which is called a genc. The
variable can be represented by binary, rcal number, or other forms and its range is usually
defined by the probiem specified. Bit-string cncoding is the most classic approach used by
GA researchers due to its simplicity and traceability. However, a string-based representation
may pose difficulties for and sometimes unnatural obstacles to somc optimization problems,

€.g., the graph coloring problem.
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3.2.2  Fitness Techniques

The objective function (or cvaluation function) is a main source to providing the
mechanism for evaluating the status of each chromosome. This is an important link between
the GA and the system. It takes a chromosome (or phcnotype) as input and produces a
number or list of numbers (objective value) as a measure to the performance of the
chromosome. Howevcr, its range of values varics from problem to problem. To maintain
uniformity over various problem domains, a fitness function is needed to map the objcctive

value to a fitness value.

3.2.3 Parent Selection

Parcnt selection emulatcs the survival-of-the-fittest mechanism in nature. It is
expected that a fitler chromosome receives a higher number of offspring and thus has a
higher chance of surviving in the subsequent generation. There arc many ways to achicve
cffective selection, including ranking, tournament, and proportionate schemes but the key
assumption is to give preference to fitter individuals.

Thc most important types of sclection are roulettc wheel selection and tournament
selection. In roulette wheel selection, individuals are given a probability of being selected
that 1s directly proportionate to their fitness. Two individuals are then chosen randomly
from the populated based on these probabilities and are allowed to produce offspring. The
tournament sclection is a popular stralegy for the selection of parents. In this strategy, a
subpopulation of N individuals is chosen at random from population. The individuals of this
subpopulation then competc on thc basis of their fitness. The individual in the

subpopulation with highest fitness wins the toumament and becomes the selected
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individual. All of the subpopulation members arc then placed back into the general

population and the process is repeated.

3.24 Crossover

Crossover is a recombination operator that combines subparts of two parent
chromosomes to producc offspring that contain some parts of both parents’ genetic matenial.
A probability term, p., is set to determinc the operation rate. Many GA practitioners
consider the crossovcr operator to be the determining factor that distinguishes the GA from
all other optimization algorithms.

Different kinds of crossover have been reported. The most common type is single
point crossover and multipoint crossover. In singlc point crossover, a crossover point is
randomly selectcd and thc portions of the two chromosomes beyond this point are
exchanged to form the offspring. Multipoint crossover is similar to single-point crossover,
cxcept that m crossover positions arc chosen at random with no duplication.

Single- and multipoint crossover define cross points where the chromosome can be
split. Uniform crossover gencralizes the scheme to make every locus a potential crossover
point. A random binary string with the same length as the chromosomc indicates which
parent will supply the child with the associated bit. At each location, the corresponding bits
of the parents arc exchanged if the random string contains a '1" at that location. If the

random bit is "0', no exchange takes place.

3.2.5 Mutation

Mutation is an operator that introduces variations into the chromosome. This

variation can be global or local. The opcration occurs occasionally (usually with small
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probability) but randomly alters the valuc of a string position. Each bit of a bitstring is
replaced by a randomly genecrated bit if a probability test is passed. Some GA practitioners
use standard mutation to flip bits. Using this variant, "1" is replaced by a "0" or vice versa if
the probability test is passed. This approach results in an cffective rate of mutation that is

twice as high as the previous one.

3.2.6  Replacement Strategies

After generating the subpopulation (offspring), two representative strategics can be
proposed for old generation replacement:

Generational Replacement: Each population of size n generates an equal number
of new chromosomes to replace the cntire old population. This strategy may make the best
member of the population fail to reproduce offspring in the next generation. So the method
is usually combined with an elitist stratcgy wherc one chromosome or a few of the best
chromosames are copied into the succeeding generation. The elitist strategy may increasc
the speed of domination of a population by a super chromosome, but on balance it appears
lo improve the performance

Steady-State Replacement: This strategy means that only a few chromosomes are
replaced once in the population to produce the succeeding generation. Usually the worst
chromosomes arc replaced when new chromosomes are inserted into the population. The
number of new chromosomes is to be determined by this strategy. In practice, only one to
two new chromosomes are being used by steady-state reproduction.

Although the GA 1s a powerful optimization tool but it does have certain weaknesses

in comparison to other optimization techniques. A number of barriers have yet to be

50



overcome before it can bc applicd to some rcal-world implcmentations. Due o the
randomness of the GA operation, it is difficult to predict its performance, a factor that is
crucial for hard-deadline, real-time applications. The source of the problem lies in the
diversity of the chromosomes that cause the on-line system performance to be
unpredictable. However, there are large classes of problems that appear to be morc
amenablc to solution by GAs than by any other available optimization techniques. These
tasks often involve multiple objectives. Moreover, since the GA can jump out of local
optima becausc they are scarch techniques, it is more desirable for multimodal problems.
Perhaps the most encouraging areas of application are the impending neural network-hybnd
systems. The use of GAs with neural networks {(NN) and fuzzy logic is expected to receive

more attention in the future,
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Chapter 4

Blind Deconvolution of Linearly Degraded Images
using Artificial Neural Networks

The first step in image restoration is idcntification of a priori information about the
imaging system and the type of degradations that the image has suffercd. This information
is used to model the system. Thesc models depend upon the physical nature of the problem
and often describe the degradation process. However, in most real life situations a sufficient
a priori information about point spread function (PSF) of the blurming system is rarely
available. Therefore, we have to estimate both the true image and the blur from the
degraded image characteristics, using partial information about the imaging system. This
type of imagc restoration is referred to as blind image rcstoration or blind image

deconvolution.

4.1 Image and Degradation Models

The a priori information is used to design two types of imaging models, i.e. image

modecls and degradation models which are given below:
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4.1.1 Image Models

Image models express our prior knowledge about the structure of the original image.
The development of a suitable model for discrete images requires a trade-off between the
accuracy of rcpresentation and its utility in image identification and restoration. The
incorporation of a priori information into the restoration process is essential in order to

obtain acceptable solutions or regularizing the ill-posed image restoration.

The image models can be distinguished into two broad categones i.e., deterministic
and statistical (stochastic). In stochastic model, an image is considcred to be a sample
function of an array of random variables called random ficlds. A random field model can
provide complcte statistical characterization for a given class of images—all statistical
properties of the images can, in principle, be derived from this random field model.

Different random field have been proposed [74]. Firstly, the Gauss Markov random fields

(GMRF) in which {x(i,j)} is assumed Gaussian and the field is characterized explicitly in

terms of expectations rather than probability densitics. Secondly, the Gibbs random fields

(GRF) in which energy is associated with each possible ficld {x(z',j)} and probability

density is then constructed implicitly from E({x(i,j)}). Thirdly, the multiscale random

fields consist of Gauss Markov random fields (GMRF) extended in the form of trees, using
the concept of multiresolution. In this dissertation, the image is assumed to be a realization
of Gauss Markov random proccss. Then it can be modcled as a noncausal minimum
variance represcntation (NMVR) with nonsymmetric model support. The state space

representation of this model is given as:
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x(i,))= Y. a x(i-k, j=D)+v(, ) 4.1.1)

(k.0)cs,
where a,, are the image model coefficients and this model is also named as

autoregressive(AR) model because it represent an autoregressive process as well. This

modc} can have different models supports §, . Some common choices for the model support

are:
H(k,!) (k20,/20)N(k+I>0)}, quarter plane
s {(k,!) (k>0,/<0)N(k=20,/> 0)}, nonsymmectric halfplanc “12)
") {(k,0):(k >0, !<0)ﬂ(k 20,/ >0)}, semi-causal -
{(k,l) vk ,0)}, noncasual

The model supports arc also shown in the Figure 4.1
4.1.2 Degradation Model

Random fluctuations in the intensity, color, texture, object boundary or shapc can be
seen in most of the real world images. The causes for these fluctuations arc diverse and
complex, and they oflen due to factors such as non-uniform lightening, random fluctuations
in object surface orientation and tcxture, complex scene geometry and noisc. Consequently,
processing of such images becomes a problem of statistical inference which requires the
definition of statistical model corresponding to the image pixel. A morc general approach
which can be addressed in this problem is also random fields and the degraded image also
assumed to be the realization of Gauss Markov random process and the degradation suffered
during the image formation process modeled as a convolution summation having a
noncausal support and additive white noise. Thus, the noisy blurred image is described by

the following state-space model [33]:
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(i, jy= D By x(i=m,j—m)+v,,)) (4.1.3)

(m.n}:S,

where y(i, j) is the observed image distorted by a blurring function or point spread
function (PSF) 4, . v,(i, f) is additive white Gaussian noises with zero mean and variances

oi. This model is also named as moving average (MA) model because it represents the

moving average process.

This project identifics the blurring function 4, , and restores the degraded image,

simultaneously, using a multilayer neural nctwork structure which is based on image and
degradation models, i.¢. a combination of AR and MA proccsses. Therefore, the overall
operation of multilayer ncural network is based upon thc ARMA process. The self-
organization like structure of the ncural network is used to solve the ARMA parameter
estimation problem. The problem of blind image restoration is difficult in the sense that
there is no a priori information about the blur and image. Image degradation process may
be linear or nonlinear process. It may also be either space-invariant or a space-variant
process. The image degradation is normally nonlinear and spacc-variant process. However,
for algorithmic simplicity, we have assumed the degradation process to be lincar and space-
invariant. This model can identify the non-causal blur function and restores the original

image at the same time.

4.2 Blind Image Deconvolution of Linearly Degraded Images

The artificial neural network is based upon the image and degradation models
represented by the eqs. (4.1.1) and (4.1.3), respectively. Thesc equations represent the auto-

regressive moving average (ARMA) process for blur identification and restoration of
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linearly and space-invariant degraded images. The weights of the neural network, 1.c. image
model coefficients and blurring function, were updated through fecdbacks using gradient
method, whcere cost function was the square of the error between observed and the estimate
of the blurred imagc [33]. There are many local minima in the error performance surface,
and it is unavoidable for the algorithm to get stuck in a local minima and the flat plateau.
Although different methods like Brains method and adding momentum terms, have been
proposed in order to get out of local minima but still these methods have not produced
satisfactory results. As a result, one usually runs the algorithm several times with different
random initial configuration and chooses the configuration with lowest stress. Therefore, we
have proposed to use evolutionary computing methods like genetic algorithm to find the
global minima of the error performance surface. Then the gradient-based algorithms should

be applied to converge to the solution which is the main motivation of this chapter.

There are practical difficulties in estimating ax;, and A, due to high computational
complexity of PSF’s with large support, instability of the algorithm, and non-unique
solution. These problems can be overcome by using the following assumptions [8]:

l. The coefficients h,,,, are positive, symmetric and have zero phase. These constraints
are uscd for stability and uniqueness of the solution.

2. The PSF has known parametric form consisting of only few parametcrs. This lowers
the computational complexity.

3. The image formation system is assumed not to absorb or generate energy so that, the

total energy in the object is equal to that of the observed image i.e.,

> h,, =1 (4.2.1)

{m.nes,
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4.2.1 Neural Network for Image Restoration

A feed-forward three-laycr neural nctwork structure can be presented (o
simultaneously identify the blur function and restorc the degraded image. This structured

nctwork was decomposed into two adaptive associative networks [33].

1. The opcration betwecen the first layer L; and the second layer L; was assumed to be
equivalent to that of an auto-associative network, which is excited by a random

(Gaussian process.

2. The information then passes forward from the second layer L; to the third layer L;

by helero-associativc proccss.
3. The output of the third layer Z; is thc estimale of the observed blurred image.

The wcights of the two associative nctworks were initializcd using the genectic algorithm
and then updatcd using gradient bascd algorithm. When the nctworks have converged to
stable states, weights of the hetero-associative network equal to the cocfficients of unknown

blur function and sccond laycr L; rcprescnts the restored image.

4.2.1.1 Procedure for Neural Network

This artificial neural network consists of three 2-D structured layers 1;, L; and I;
with same number of neurons, i.e. MxN, as shown in Figure 4.2. Initially, the inputs to the
first layer L; arc assumed to be a random Gaussian process image with no information about
the original image. a;; arc wcights of connection between layers L; and L, which are

initiated using genetic algorithm and then updated to optimize thc solution. The operation
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Figure 4.2 The structure of the artificial neural network based on linear ARMA model.
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between the first and the second layer is given below:

G, )= D a,x(i—kj-D+v()) (4.2.2)

(kd)es,

The neuron values of the second layer L;, i.e. x(i, /), are then feedback to the corresponding
neurons of the first layer Ly, i.c. X(i,j), for the next iteration, according to the following

equation.
X(i,/)=x_(i,)) (4.2.3)

The operation betwcen second layer L; and third layer L; defines the hetero-associativc
operation or MA process. The output of the (i) neuron of the third layer will be calculated

according to eq (4.2.4).

G, jy= D hyi—m, j-n)+v,(i, f) (4.2.4)

(m.mr)ct,
where 4 is assumed to be a,, and H is assumed to be /4, ,. Once the convergencce of the

algorithm will be achicved, the layer L, will represent the restored image.

4.2.1.2 The Cost Function

The identification and restoration processes are implemented simultaneously by
using a dynamic iterative algorithm to minimize the error function of the ncural network.
The error [unction or cost function consists ol two tecrms the hetero-associative errors which
is fed from layer L; and an auto associative error which comes from L; and L. The hetero-

associativc error is given as

E,(w) = M—‘E; 3G ) - 5 )Y (42.5)
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and the auto-associative error 1s

1 —h o mgs 2
E (w)= M—XN(:.;R, x@, j)—x(@, )} (4.2.6)

4.2.1.3 Genetic Algorithm

One main desire is to find out optimized synaptic weights that will give better
restored image and exact or close point spread function. In order to avoid local minima
problem, G.A are used to search for global minimum. The G.A arc being used to find
weights of the feedforward neural nctwork, which are closc to the desired solution. Our
proposed neural network consists of two layers and cach layer contains a set of weights ay;
and A, .. Therefore, a set of these weights W was trcated as a chromosome which is given

as.

W=W.W,
W, =la,,] (4.2.7)
l’{," =[hﬂl.ﬂ]

where W, and W, arc scts of floating point numbers. The ordinary rule of thumb for

choosing the population size is to choose it five to six times the length of a chromosome.

a) Initialization

The genes representing weights were produced by using a pseudo-random generator.
The values of the genes were floating between 0 and 1 but the sum of all weights in a layer
must be equal to one according to the third assumption of image models otherwise layer

would generate energy [75].
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b) Fitness Criterion

The fitness criterion in genetic algorithm is always taken between zero and one. The
individual having fitness equal to one is assumed to be the fit while the one having zcro
fitness is treated as worst fit. Therefore, we have to chose a fitness function F in such a

way that when it equal to one the errors between different layers should be zcro, which is

taken as
F +F
F=-"2 (4.2.8)
2
where
3 1
1+ E,
L (4.2.9)
"TI4E,

c) Cross-over, Reproduction and Next Generation

The population in a generation is sorted out according to the fitness criterion in a
descending order. The top one third was given a chance to produce five children per pair.
The next one third was given a chance to produce 3 children per pair. They were similar to
child 1, child 2 and child 3 as given above. The last onc third was given a chance to produce

only one child per pair, which is similar to child 1.

For selection of a new generation, the rule for survival of the fittest is being used.
All the parents and children are sorted in a descending order of fitness after calculating the
fitness of the children. The oncs equal to the number of population were chosen for the next
generation. So the new population was a blending and overlap of the previous and the

present with no fixed percentage for either gencration [76].
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d) Mutation

Mutation is the process in which genes are randomly mutated (changed). Mutation

plays an important role when every new generation does not seem to improve the fitness.

e) Termination Criterion

When the fitness of the best chromosome in the new population was almost the same
as that of the best chromosome in the previous population, the program was terminated.

Quantitatively the cnterion for termination was;

F_ -F | <00l (4.2.10)

acw prev

If we chose a very low value it is possible that GA may not reach to it and
may become an infinit¢ loop. On the other hand, if we take a higher value the GA may

terminate beforc convergence.
4.2.1.4 Learning Algorithm
A gradient-based algorithm was used to train and optimize the network by

minimizing the squares of errors. Specifically the weights between L; and Lj, which only

depend on E,, were updated as

new old aEs (W)
By = by~ — 4.2.11)
P.q
The updating equation for linear part of the blur coefTicients
, ncw_h old 20«,' .. Ar. Ny Ase. .
" = 2, PG IR~ P -a) (42.12)

el
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The weights of thc auto-associative network are related to E; in L; and E,
propagated form L;. Therefore, the cocfficients of the linear part of the auto-associative

nctwork are iteratively updated by eq (4.2.13)

E,(w)+E (W)}

oa, .,

5
g i _p 2t (4.2.13)

a

uy

We find the following updating equation for a,,,,

Aew old 2 —_y A — .
a,, =a“.\‘f +f Z [6(nz,n)+ wa{x(t,_;)—-x(:,‘;)}]x(i—u,j—v) (4.2.14)

(i./)cRy 1

where
BN =— " T o (61500 ) (42.15)
{m.m)eR,
4.3 Simulation Studies

A threc layered neural network model was implemented for space-invariant blur
identification and restoration of linearly degraded images. The operation between first and
second layer of the neural network assumed to be linear space-invariant autoregressive (AR)
process, as given in eq {4.2.2). The operation between second and third layer was assumcd
to be linear space-invariant moving avcrage {(MA) process, which represents the degradation
process and was given in eq (4.2.4). A genetic algorithm based method was proposed 1o be
used for fast searching of optimum weights for thc neural network because genetic

algorithms have capability for searching for the global minimum of the error performance
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surface of the cost function which is represenied by eq (4.2.5) and (4.2.6). Once global
minimum is detected. a gradient based method was also used for fast convergence to the
global minima. Theretore, the weights of the neural network were updated using eq (4.2.12)

and (4.2.14),

The artificial neural network was applied 1o the image “Lena” and ‘Cameraman’. The
original images of “Lena” and ~Camecraman’ had the dimensions 256x256 with 256 grey
levels as shown in Figure 4.3(a) and 4.3(b). respectively. These pictures were particularly
relevant for testing the efficiency of the current schemes because they exhibit a combination
of smooth background together with a wide variety of textural patierns. The image “Lena’
contains smooth background and face with contrasts of relatively fine textures in the
feathers on the hat. We would be testing the ability of the algorithms to sharpen those [ine

features in the images while suppressing of ringing effects and noises in the smooth regions.



The image ‘Cameraman’ contains a variety of textural changes, e.g., Cameraman is in the
picture is quite close than the buildings. This feature would be intcresting in space-variant
image restoration where atmospheric turbulence may degrade images more to the distant

objects.

In order to check performance of the neural network for blind image deconvolution,
the best improvement measure of the quality of the restored images is the human inspection.
However, two meaningful measures called the improvement in the signal to noisc ratio
(ISNR) of the image and normalized mcan square-error (NMSE) of the identificd blur wcre
assumed. The improvement in the signal to noise ratio (ISNR) of the image is ratio of two
important quantities known as the percentage mean square crror of degraded image to the
percentage mean square error of the restored image [8]. Therefore, ISNR was defined as

follows:

MSE(v(i, J
ISNR = ({":(1_ J_)}) @3.1)
MSE({2(i. j)})
where MSE was given as:
> {eits,0)-x(s,0))
MSE(x(i, j))} =100 32
{MSE(: (i, )} S 6D (4.32)
5.
The value of ¢ can be calculated using the following relation:
Do x(6, HEG, )
= e 43,
PRI @32
i
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where y(i, j) is the given blurred image and x(i, ) is the restored image. The sccond

evolution criteria, i.e. normalized mecan squarc-crror (NMSE) of the identified blur i1s

defined as [77]:

JZ b
NMSE =122 (4.3.4)
Z h, .

where h__ and I;m are the true and estimated blur. These performance measures can only

n

be evaluated for controlled experiments where undistorted image x(i, /) and true blur 4,

are available.

The artificial ncural network was applied on images degraded by linear space-
invariant Gaussian blur with noise. The images given in Figurc 4.3, were degraded with two
different 5x5 Gaussian space-invariant masks in order to producc degraded images with
SNR of 30dB, termed as having high SNR, and SNR of 20dB, named as degradcd images
with low SNR. The quantization noise or Gaussian noise was also added in the images in
order lo study the performancc of neural network model in noisy environment. In the light

o[ assumption about the blurring function A,, ,, its form will be:

l’g 15 f4 Ij 16
15 ]_i 12 13 15
Iy I I Iy {4
15 13 [.“ [3 15
ls Is 7 Is ls

The computational complexity of the genetic algorithm was calculated and it was
found that one chromosome requires 51x256x 256 multiplication and additions in order to

complete one cycle. Similarly, the gradient descent algorithm requires 700x256x256
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multiplicaiion and 725x256x256 additions in order to complcte one iteration. The

algorithm was implemented and the results are given in the subsequent sections.

4.3.1 Blind Deconvolution of the Image Degraded by Space-

Invariant Gaussian Blur with Uniform Quantization Noise

The two blurred images were obtained by using two different 5x5 linear Gaussian
blurring functtons with SNR of 30db and 20db which represents the degraded images with
high SNR and low SNR, respectively. Then a small quantization noise was also added to

check the performance of the ncural network in the presence of this noise.

Figure 4.4 shows the degraded images with high SNR containing quantization nois¢ and
images restored with the linear space-invariant neural network model. Table 4.1 shows the
blurring functions used to degrade the images, estimated blurring function obtained from the
neural network and SNR in the restored images. It is observed that space-invariant
estimated blur is quite close to the blurring function and restored image has also better

quality than degraded image in terms of ISNR.

Figure 4.5 shows the dcgraded images with low SNR and imagcs restored with the
neural network model. Tabie 4.2 shows the blurring functions used to degrade the images,
estimated blurring function obtained form the neural nctwork and ISNR in the restored
images. The estimated blur is quite accurately estimated along with the restored image. The
quality of the degraded image has becn significantly improved for the degraded images with

low SNR.
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(d}
Figure 4.4 Blind image deconvolution degraded images with 30db SNR using neural
networks based on linear ARMA model. a) Degraded "Lena” image with quantization
noise. b) Degraded ‘Camcraman’ image with quantizaton noise. ¢} Restored ‘Lena’
image, and d) Restored "Cameraman’ image.

Table 4.1 Real and estimated blur parameters along with ISNR of restored images after
blind image deconvolution of degraded images with quantization noise having 30db SNR
using neural networks based on linear ARMA model.

‘Lena’ Image ‘Cameraman’ Image

Real A, Estimated /1, Real b, Estimated /1,
l, 0.2 02575170 l, 0.2 0.2675411
i 0.055 0.05402%7 / 0.035 0.0540457
I 0.05 0.0472861 ! 0.05 0.0472983
/s 0.035 0.0337941 /; 0.033 0.0357970
/s 0.035 0.0337897 ‘ /s 0.035 0.0337920
I (.03 0.0304147 I 0.03 0.0304168

[SNR 2.166638 ISNR 2.327335
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Figure 4.5 Blind image deconvolution degraded images with 20db SNR using neural
networks based on linear ARMA model. a) Degraded “Lena™ image with quantization
noise, b) Degraded ‘Cameraman’ image with quantization noise. ¢) Restored “Lena’
image. and d) Restored “Cameraman’ image.

Table 4.2 Real and estimated blur parameters along with ISNR of restored images atter
blind image deconvolution of degraded images with quantization noise having 20 db SNR
using neural networks based on lincar ARMA model.

‘Lena’ Iimage ‘ *Cameraman’ Image

Real /1, Estimated /1, , Real #1, Estimated /1, ,
/i 0.006 0.006755 l (.006 0.006758
i 0.01 0.015404 ) 0.01 0.015403
/s 0.0187 0.014729 J /i 0.0187 0.014728
{, 1005 0.033789 i lo 1005 0.033787
s 1 0.05 0.033782 | 4 1005 0.033779
ly 0.04 0.030406 i I 0.04 0.030397

ISNR 1.83984 - ISNR 1977105 |
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4.3.2 Blind Deconvolution of the Image Degraded by Space-
Invariant Gaussian Blur with AWGN

The two types of blurred images were obtained by using two different 5x35 linear
Gaussian blurring functions with SNR of 30db and 20db which represents the degraded
images with high SNR and low SNR, respectively. Then 30db AWGN noise was also added
to check the performance of the neural network in the presence of this noise.

Figure 4.6 shows the degraded images with high SNR and imiages restored with the neural
network model. Table 4.3 shows the blurring functions used to degradc the images,
estimated blurring function obtained form the neural network and ISNR in the restored
images.

Figurc 4.7 shows the degraded images with low SNR and images restored with the neural
network model. Table 4.4 shows the blurring functions used to degrade thc images,
estimated blurring function obtained form the neural network and ISNR in the restored
images. Results show that the AWGN causes more damage to the degraded image. The
degraded images with AWGN ncise produce less clear restored images as compared to the
results obtained with small quantization noise. However, thc restored images from degraded
inages with high SNR provided better results that the restored images obtained from the
degraded images with low SNR. It is obvious from the ISNR of the restored images as well.
However, the blurring functions are cstimated with the same accuracy which shows that that

the blurring {unction can be estimated with similar accuracy with or without AWGN.,

71



Figure 4.6 Blind image deconvolution of degraded images having 30db SNR using neural
networks based on linear ARMA model. a) "Lena’™ image degraded with AWGN, b)
"(Cameraman’ image degraded with AWGN. ¢) Restored ‘Lena’ image. and d) Restored

‘Cameraman’ image.

Table 4.3 Real and estimated blur parameters along with ISNR of restored images after
blind image deconvolution of degraded images with AWGN having 30 db SNR using

neural networks based on linear ARMA model.

‘Lena’ Image . _1
Real A, | Estimated /1,

L 0.2 0.2675235
4 0.055 0.0540259
/; 0.05 0.0472884
l; 0.035 0.0337958
/s 0.033 0.0337912

I 0.03 00304172 |

ISNR 2.06782 j

‘Cameraman’ Image

Real A, | Estimated £,
! 0.2 0.2675331
7, 0.053 0.0540340
/s 0.05 0.0472620
i, 0.055 0.0337976
I 0.035 .0337978
L 0.03 0.0304201
ISNR 2.269680




Figure 4.7 Blind image deconvolution ol degraded images having 20db SNR using neural
networks based on lincar ARMA modcel. a) "Lena” image degraded with AWGN, b)
‘Cameraman’ image degraded with AWGN. ¢) Restored "Lena’ image. and d) Restored
‘Cameraman’ image.

Table 4.4 Real and estimated blur parameters along with ISNR of restored images afler
blind image deconvolution of degraded images with AWGN having 20 db SNR using
neural networks based on lincar ARMA model.

‘Lena’ Image ! “Camcraman’ Image
1

Real A, Estimated /1, , : Real /1, . Estimated 71,
! 0.006 0.006755 /i 0.006 0.006758
i 0.01 0.015403 /s 0.01 0.015405
{3 0.0187 0.147286 {y 0.0187 0014728
! 0.05 0.055337 { 0.05 0.053779
{5 0.05 0.043784 £ 0.05 0.044776
l, _|0.04 0.030410 [, 004 0.030401

ISNR 1.898794 ) ISNR 2.0391431] |




Chapter 5

Blind Deconvolution of Nonlinearly Degraded Images
using Artificial Neural Networks

Degradations, which are usually caused by relative motion betwecn object and
camera, or wrong focus or defects of optical lens, may be a linear or nonlinear process [73].
For linear dcgradation process, cnough work has already been done. However, blind
dcconvolution of nonlinearly degraded image is difficult, having more computational
complexity. It includes the nonlinearity in the imaging processes which normally occurs in
images of interest introducing nonlinear degradation in the images. This is the main
motivation of this chapter. A structured necural network was proposed which resembles the
network explained in the previous chapter. It is decomposed into two adaptive associative
networks. The operation between the first and second layer is also assumed to bc auto-
associative excited by random Gaussian nois¢ while between sccond and third layer is
hetero-associative. The output of third layer was the estimatc of the observed image [33).
The weights were updated through feedback using gradients method, where cost function

was the square of the error between observed and the estimate of the blurred image.
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5.1 Neural Network for Blind Deconvolution of
Nonlinearly Degraded Images using Linear AR
Process

The true image model is represcnted as a linear autoregressive process which is
given in eq (4.1.1). However, the blurred image model is assumed to be a nonlinear process
in order to handle nonlincarities of the imaging sensor which may enhance or compress
certain intensity range of an image. Therefore, the degradation process is modeled

according to the Volterra filters [73] concept with the following state spacc relationship:

(i, f) = Z B x(i=m, j—n)+ Z P sy <X =m0y, J = )x(f =y, [ —11,) > o5

(m.n)cS, (my .y my .y I0S;
+v (i, )
(5.1.1)

where <...>;s5 represents modulo 255, There are also practical difficulties in estimating

Iy and A due to high computational complexity of PSF’s with large support,

mymLmg.m,
instability of the algorithm, and non-unique solution. Therefore, in order to avoid these
problems, the linear PSF /,, is assumed to be positive, symmetric and has zero phase.

However, the nonlinear part of PSF, i.e. & .

o)y ay ?

should be negative. This constraint is for

particular cases in which the sensor compresses certain intensity range of thc image
[50][73]. In general, the image formation systcm is also assumed not to absorb or generatc

energy. Therefore, the total cnergy in the object is equal to that of the observed image.

2 et 2 By, =1 (5.1.2)

(m.n)cS, (my . my 1, )CS,
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5.1.1  Neural Network for Blurred Image Representation

This artificial neural network consists of three 2-D structured layers L;, L; and L;.
Each layer contains MxN neurons. The inputs to the first layer L; are assumed to be a
random Gaussian process image with no information about the original tmage. ay; are
weights of connection which are initiated according to some criteria like GA’s and then
updated to optimize the solution. a; is space-invariant and hence is independent of i and ;.
The operation between the first and the sccond layer is given in eq (4.2.2). The ncuron

values of the second layer i.c., x(i, j), are then fedback to the corresponding neurons of the

first layer, i.e. X(i, j/)=x_(J, j}, for the next iteration.

The operation between second and third layer defines the hetero-associative
operation or MA process. The output of the (i,j/* neuron of the third layer will be calculated

as follows

v, ) = Z h, X(i—m, j—n)+ Z P omymy < X =10, f = )R =1y, = 11y) >

(nm,n)eS, (my.y ;.15 )€ 5,

(5.1.3)

where 4, and A are the connection weights, also called as coefficients of the PSF.

A, L A,

It is assumed that the PSF is spacc-invariant, therefore, 4 ., and # arc also

independent of / and j. The structure of the proposed ncural network is also shown in Figure

4.2 where A consists of image model coefficients a,, and H consists of nonlinear blurring

function having blurring parameters £, and A

"y Lyt
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5.1.2  Learning Algorithm

The identification and restoration processes are implemented simultancously by using a
dynamic itcrative algorithm to minimize the same hetero-associative errors given in eq
(4.2.5) and the auto-associative error given in eq (4.2.6). A gradient-based algorithm was
used to train and optimize the network by minimizing the squares of errors. Specifically the

weights between L; and L;, which only depend on E,, were updated as

OF (w)

h "™ =h M _g (5.1.4)
LX) P4 f oA
Oh‘,'q
and
new old aEy(W)
XY hp. ety e (5.1.5)
Pid P
The updating equation for lincar part of the blur cocfficients
b = b e S G, ) 5, DRy~ 4) (5.16)
P.q P M x N o, ] » 4 ¥ -
The updating equation for the nonlinear part of the blur coefficients
W ald 2an. P A . A . A, .
hp.m.p;.q, =hp,.qu.p,.q2 + Z {y(l!.])_y(‘ti.])}x(z—plvf_ql)x(I_pvar—QZ)
M x N(i.j)eR,
(5.1.7)

The weights of the auto-associative network are related to £, in L, and E, propagated form

L;. Therefore, the coefficients of the auto-associative network arc iteratively updated by

a =g W_p OLE, (W) + E.(w)} {5.1.8)

Y .y ~
Oah'.l‘
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We find the following updating equation for a,,,

new
a
uw

2 _
=a M+ { x(, ) —x(, )ix(i—u, j—v)
1) B “.§RJ M x N { }

+

{y(r',j)—j»(f.j)}{ D F(i—u—m,j=v—n) (5.1.9)

{m,n)cS,

MxN

+ Z P oo o [E(i—ml —u, j—n, —v) Z x(i-m,—r,j—n,—s)

(.7 my . ny)eS, (r.5)}es,

(&.FycS,

+x(i=m,—u, j—n,-v) Z X(i-m—k,j—n —I)JH

5.1.3 Simulation Studies

The proposed three laycr neural network was implemented for blind image
restoration, The form of the nonlinear blurming function is given in Table 5.1. The weights
of the neural network were initialized using GA’s and then updated using eqgs. (5.1.6),
(5.1.7), and (5.1.9). Thc momentum term and a littlc noise wcre added in the learning
process in order to get out of the local minima and flat plateau. Branin's method [78] was
also employed, which changes the sign of the leaming parameter if the error bccomes

greater than the previous one thus improving the convergence of the algorithm.

The algorithm has been applied on linear motion blur or de-focused images in which
nonlinearity of the imaging sensor was also considered. The performancc of the network
was cvaluated for Gaussian blur function with two types of noises, i.e. quantization noise

and AWGN.

78



{function.

mng

Table 5.1 The form of nonlinear blu

[7,]
[ae]
n A1 Y - Y O, ]
nVUJ!I...I...I..l...
"By
4
g
£
[~y
o
B ) ot ) Bl
=
o
=
[}
=
=
&fy
B=
w
S~
fal
b}
=
i
-
I}
.
w:u:ubru..u
E
-
)
2
2
[y I ] P R P
~~~
[

, 1s given as

h
b Bl P R

ion, 1.c.
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5.1.3.1 Blind Image Deconvolution of Nonlinearly Degraded Images
with Uniform Quantization Noise

The two types of blurred images were obtained by using two different 5x5
nonlinear Gaussian blurring functions to produce degraded image having SNR of 30db and
20db which represents the degraded images with high SNR and low SNR, respectively.
Then a small quantization noise was also added to check the performance of the neural

network in the presence of this noise.

Figurc 5.1 shows the degraded images with high SNR and images restored with the
neural network model, The restored images show that feather on the hat of ‘Lena’ image are
more sharp and clear than the restored images obtained using neural network based on
linear ARMA model as shown in Figure 4.4. However, the proposed method provides
comparable estimation of blurring parameters as shown by the NMSE of estimated blur in

Table 5.2.

Figure 5.2 shows thc degraded images with low SNR and images restored with the
neural network model. The proposed network produced significant restoration cven when
the degraded images had low SNR. The blur was also estimated with comparable accuracy
to the results of neural network bascd on linear ARMA modcl as shown by the NMSE of

estitnated blur which is indicated in Table 5.2.

5.1.3.2 Blind Image Deconvolution of Nonlinearly Degraded
Images with AWGN

The two types of blurred images were obtained by using two different 5x5 nonlinear

Gaussian blurring functions with high SNR and low SNR along with 30db AWGN noise.
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Figure 5.1 Blind image deconvolution of nonlinearly degraded images small quantization
noise having SNR of 30db using neural networks based on linear AR model. a) Degraded
image of ‘Lena’. b) ‘Lena’ image restored using neural network.

Figure 5.2 Blind image deconvolution of nonlinearly degraded images with small
quantization noise having SNR of 20db using neural networks based on linear AR
process. a) Degraded image of "Lena’. b) "Lena’ image restored using neural network.

Table 5.2 NMSE of estimated blur and ISNR of restored images after blind image
deconvolution of nonlinearly degraded images with quantization noise having 20 db and
30db SNR using neural networks based on hinear AR model.

Performance measure SNR of 3db SNR of 20db
ISNR 3.016127 28512
NMSE 0. 116847 ] 0.0043589
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(a)

Figure 5.3 Blind image deconvolution of nonlinearly degraded images with AWGN
having SNR of 30db using neural networks based on lincar AR model. a) Degraded
image of "Lena’. b) "Lena’ image restored using neural network.

TR

TR

(b)
Figure 5.4 Blind image deconvolution of nonlinearly degraded images with AWGN
having SNR of 20db using neural networks based on linear AR model. a) Degraded
image of ‘Lena’, b) ‘Lena’ image restored using neural network.

Table 5.3 NMSE of estimated blur and ISNR of restored images after blind image
deconvolution of nonlinearly degraded inages with AWGN having 20 db and 30db

SNR using neural networks based on tinear AR model.

Performance measure SNR of 30db SNR of 20db
ISNR 246068 2.185799
NMSE 0.115554 0.00456




The performance of the ncural network was cvaluated in terms of ISNR of the restored
image and NMSE of the identified blur. The restored images show quite promising results
in terms of image quality and blur estimation. Figure 5.3 shows the degraded images with
high SNR along with images restored using neural network model based on nonlinear MA
model and lincar AR model. Table 5.3 shows the ISNR of the restored image and NMSE of

the identified blur.

Figure 5.4 shows the degraded images with low SNR and images restored with the
proposed neural network model. In case of degraded image with low SNR having AWGN,
slight noisc amplification has also been observed along with the restoration of thc blurred

images. However, quality of the restored images is still better than the linear model.

5.2 Neural Network for Blind Deconvolution of
Nonlinearly Degraded Images using Nonlinear ARMA
Model

In this section, a nonlinear ARMA model is proposed to solve the blind image
deconvolution of nonlinearly degraded images. The linear image model was used, which
assumes that the images should be smooth in nature, as represented by eq (4.1.1). In fact
images can contain sharp contrasts in certain parts of images. Therefore, in this section, we
have proposed a nonlinear image model in order to cater for the sharp contrasts that occur in
the natural images. It is this nonlinear image model which is the main motivation of this
chapter. The nonlinear image model is also model similar to the Volterra filters and it is

given as
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x(i, j}= Z a, x(i—k,j—1)+ Z A 4 ko dy <x(i—k, j—1)x(i—ky J = 1) >55
[CRALEN (4, 4 &y .0y )ES, (52])

+v,(4, /)
However, the blurred image was modeled as a nonlincar process using 2™ order Volterra

filter as represented in eq (5.1.1). The same assumptions like positive, symmetric and zero

phase PSF, are also made in order to avoid the problems of the estimating ax, A idoi? Amn

and & due to high computational complexity of point spread functions with large

gy

support, instability of the algorithm, and non-unique solution.
5.2.1  Neural network for Blurred Image Representation

This artificial neural network resembles the network explained in the previous
section. The structure of the network also consists of three 2-D structured layers L, L, and
Lj; with MxN neurons. The operation between the first layer L, and the second layer L, was
assumed to be cquivalent to that of a nonlinear auto-assoctative network, which is excited
by a random Gaussian process. The information then passes forward from the second layer
L, to the third layer L; by a nonlinear hetero-associative process. The output of the third
layer L; is the estimate of the observed blurred image. Initially, the inputs to the first layer
L; are assumed to be a random Gaussian proccss image with no information about the

original image. ax; and a, , , , , are weights of connection between layers L, and L, which

are initiated according to some criteria, i.e. GA’s, and then updated to optimize the solution.

The operation between the first and the second layer will be
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{kdjes, (k) &y kg ly JeS,

(5.2.2)

The neuron values of the second layer Lj, i.e. X(i, j), arc then fcdback to the corresponding
neurons of the first layer L, i.e., X(i,/)=x (i,j), for the ncxt iteration. The operation
between second layer L; and third layer L; defines the nonlinear hetero-associative
operation or MA process. The output of the (7/jth neuron of the third layer will be
calculated using cq (5.1.3). The structure of the proposed neural network is same as shown

in Figure 4.2 where the image model coefficients a,, and a, , , , are represented by A.

However, /1 is the same nonlinear blurring function having blurring parameters /, , and

?m,.m.m?.n, N

5.2.2  Learning Algorithm

A gradient-based algorithm was used to train and optimize thc network by
minimizing the same hetero-associative errors given in eq (4.2.5) and the auto-associative
error given in c¢q (4.2.6). The updating expressions for the weights betwcen L; and L;, which
only depend on E,, were calculated using eqgs (5.1.4) and (5.1.5). However, same updating

expressions were obtained as given in ¢q (5.1.6) and (5.1.7).

The weights of the auto-associative network are related to E; in L, and £,
propagated form L;. Therefore, the coefficients of the linear part of the auto-associative
network are iteratively updated by using eq (5.1.8) and the coefficients of the nonlinear part

of the auto-associative network are updated using the following expression
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We find the following updating equation for a, ,,
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5.2.3 Simulation Studies
The algorithm has been applied on nonlinear motion blur or de-focused images in
which nonlinearity of the imaging sensor was also considered. The results were tested on

degraded images with both high SNR and low SNR. The neural network was based on the
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nonlinear, image and degradation models. The form of the A, and A assumed in the

my LMy iy

view of the assumptions is shown in Table 5.1.

5.2.3.1 Blind Deconvolution of Nonlinear Degraded Images
with Uniform Quantization Noise

The two blurred images wcre obtained by using two different 5x5 nonlinear
Gaussian blurring functions with SNR of 30db and 20db which represents the degraded
images with high SNR and low SNR, respectively. Then a small quantization noise was also

added to check the performance of the neural network in the presence of this noise.

Figure 5.5 shows thc nonlinearly degraded image with small quantization noisc,
having high SNR, and image restored with the neural network based on nonlincar ARMA
model. The network provided better performance as compared with the results of
nonlinearly degraded image restored using neural nctwork based on Iinear AR model. Table

5.4 gives NMSE of the ecstimated nonlincar blur and ISNR in the restored images.

Figure 5.6 shows the nonlinearly degraded image with low SNR and image restored
with the neural network based on nonlinear ARMA model. The NMSE of the estimated
nonlinear blur and ISNR in the restored images of degraded images with low SNR is also

shown in Table 5.4,
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(a)
Figure 5.5 Blind image deconvolution degraded images with quantization noise, having
SNR of 30db, using neural networks based on nonlinear ARMA model. a) Degraded
image of "Lena” . b) Restored "Lena™ image.

(a) G
Figure 5.6 Blind image deconvolution degraded images with quantization noise. having
SNR of 20db. using ncural networks based on nonlincar ARMA model. a) Degraded
image of "Lena’ . b) Restored "Lena’ image.

Table 5.4 NMSE of estimated blur and ISNR of restored images after blind image
deconvolution of nonlinearly degraded images with quantization noise having 20 db and
30db SNR using neural networks based on nonlinear ARMA model.

Performance measure SNR of 30db SNR of 24db
ISNR 3.01055 ) 28
NMSE 0.084010 0.006948
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5.2.3.2 Blind Image Deconvolution of Nonlinearly Degraded
Images with AWGN

The two types of blurred images were obtained by using two diffcrent 5x5 linear
Gaussian blurring functions with SNR of 30db and 20db which represents the degraded
images with high SNR and low SNR, respectively. Then 30db AWGN noise was also added

to check the performance of the ncural network in the presence of this noise.

Figure 5.7 shows the nonlincarly degraded images with AWGN, having high SNR,
and images restored with the neural nctwork model. Table 4.3 shows the blurring functions
used to degrade the images, estimated blurring function obtained from the neural network

and ISNR in the restored images.

Figure 5.8 shows the degraded images with low SNR and images restored with the
neural network model. Table 5.5 shows the NMSE of estimated blur and ISNR of restored
images after blind imagc deconvolution of nonlinearly degraded images with AWGN

having SNR of 20 db and 30db using neural nctworks based on nonlinear ARMA model.
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Figure 5.7 Blind image deconvolution of nonlincarly degraded images with AWGN.
having SNR of" 30db. using necural network based on nonlincar ARMA model. a)
Degraded image of "Lena’. b} Restored image of “Lena’

Figure 5.8 Blind image deconvolution of nonlinearly degraded images with AWGN,
having 20db SNR, using neural networks based on nonlinear ARMA model. a) Degraded
image of "Lena’. b) Restored image of "Lena’

Table 5.5 NMSE of estimated blur and ISNR of restored images after blind image
deconvolution of nonlinearly degraded images with AWGN having 20 db and 30db
SNR using neural networks based on nonlinear ARMA model.

Performance measure SNR of 30db SNR of 20db |
ISNR 2.863799  2.288236 !
NMSE 0.089488 , 0.03233 |
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Chapter 6

A New Space-Variant Neural Network Approach to
Blind Image Deconvolution

The spatially variant blurs occur in variety of applications €.g. when two or more
objects moving with different vclocities relative to a recording device produce spatially
variant motion blurs. Spatially variant blurs also occur when the object and image
coordinates are tilted relative to cach other, as well as in X-ray projection imaging, lens
distortions, wave aberrations, and spatially varying Gaussian type blurs [79][80]. The carly
mcthods, for restoring image degraded by spatially variant blurs, are geometrical
transformation techniques [81], but are not practical for complicated blurs. Another
approach, which can treat a more gencral class of blurs, is based on the assumption that the
blur is approximately spatially invariant in small sub-rcgions of image domain. Thesc
sectioning methods [82][83] partition the image, restoring cach local region using its
corresponding spatially invariant PSF, and results are then sewn together to obtain the

rcstored image.

The goal of space-variant blind image restoration algorithms is described concisely
as 1dentification of useful a priori information such as the variant features of input images,
integration of extracted knowledge into the schemes without compromising their flexibility,
and development of appropriate computational techniques to optimize the cost function. In

this section, we will develop an algorithm that addresses these requirements for systematic

91



image restoration, intelligent information integration using neural networks with massive
parallel computing architectures, and effective optimization techniques. The proposed
neural network-based scheme for image restoration can identify not only the space-variant
noncausal blur function but can also cater for sharp contrasts that occur in the natural
images along with the additive noisc suppression in smooth backgrounds and restoration of
severely blurrcd images. The structure of the proposed network is divided into small sub-
regions, and autoregressive (AR) and moving average (MA) processes are implemented in

view of the activity of thc sub-regions.

A cost function, motivated by the human perception system is also assumed which
consists of five parts i.e. data fidclity measure, image regularization error, blur domain
regularization errors, local standard deviation mean square error (LSMSE) between
degraded and an cstimate of dcgraded image, and local standard deviation mean square
error (LSMSE) between restored and degraded image. The first thrce terms arc widcly
reported in litcrature while the last two terms arc new, and are onc of the motivations of this
chapter. The structure of the neural nctwork model is a combination of two adaptive
associative networks and a random Gaussian process, to estimatc the coefficients of the
space-variant blur model and image model. The nonlinear cstimation and restoration
procedures are implemented using a dynamic iterative algorithm to minimize the error
functions of the network. It provides a self-organization like structure to solve the problems

without original undistorted data and blur information.
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6.1 Image and Degradation Models

We have used lincar image and degradation model for simplicity in the space-variant
blind image restoration algorithm. Thercfore, the state space representation of these models

is given below:

x, =Y a)x(i—k, j=D+v,(i,)) (6.1.1)
{k,1)es,

i, )= 3 Wx(i—m, j-n)+v, (i, j) (6.1.2)
(m.n)eS,

where x(i, f) is the undegraded image value at (i, /) and y(i, ) is the observed
image distorted by a space-variant blurnng function or point spread function (PSF) h:,(,,").

v, (i, j) and v,(i, /) are additive white Gaussian noises which are mutually independent with

- . AlA . .
zero mean and variances o and o2, respectively. The {a™*} are noncausal minimum
¥ vy k.

vartance representation (NMVR) coefficients and S, is the support of this noncausal model.

There are practical difficulties in estimatinga,, and A, , due to instable and non-unique

A{A)

solution. Thercfore, in order to avoid these situations, the PSF A is assumed to be

positive, symmetric and has zero phase [73]. As the image formation system is assumed not
to absorb or generate encrgy. Therefore, the total energy in the object is equal to that of the

observed image [8]

> m = (6.1.3)

(m.a)es,
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6.2 Neural Network for Blurred Image Representation

A 2-D, three-layer fced-forward neural network structurc can be presented to
identify the space-variani noncausal blur function and restore the degraded image,
simultancously. This structured nctwork was decomposed into two space-variant adaptive
associative networks [33] where each layer of the neural nctwork is sub divided into small

region called blocks. The operation between the first layer L, and the second layer L, was

assumed to be equivalent to that of a space-variant auto-associative network which is

excited by a random Gaussian process. The information then passes forward from the

second layer L, to the third layer L, by a space-variant hetero-associative process. The
output of the third layer L, is the estimatc of the observed blurred image. The weights of

the two associative networks were updated in parallel according to the error functions.
When the networks have converged to stable states, wcights of the hetero-associative
network cqual the coefficients of unknown blur function and the undegraded image is

obtained from the second layer.

6.2.1  Activity

It has been observed that degradation effccts are more severe in the region with high
texture of activity and noise does not contribute much as for as the visual quality of the
image is concerned. However, the effect of the degradation is not severe in the smooth or
low activity regions but the effcct of noise in smooth regions will affcct the visual quality of
the image badly. Therefore, in order to suppress noisc in the smooth regions and to enhance

the sharpness in high activity region, we have proposcd to use activity as one the measure
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along with the cost functions. All thc three, 2-D structured, layers L, L, and L, having
same number of (M x N) neurons, wecre divided into small blocks of reasonable sizes. The
activity A(A) of each block of the degraded image was calculated, using the following

relation [71]:

=2 Y S (i )=l 5, )} (6.2.1)

even £, f x=-11x-1

According to the activity A (), these blocks were then catcgorized to belong to one

of the four catcgories i.c., very high (VH) activity, high (H) activity, low (L) activity and
very low (VL) activity. This information was then used by the ncural network to treat the

block accordingly.

6.2.2 Identification and Restoration

Initially, the inputs to the first layer L , which is converted into small block, are
assumed to be a random Gaussian process image with degraded image information y(i,j).
A(4)

a,; are four different types of weights of connection between the blocks of layers L, and

L, according to the activity A(A) of the blocks. These weights are also named as image

model coefficients and are initiated according to some criterion and are then updated to
optimize the solution. The space-variant auto-associative operation between the first and the

second layer, of any block A, will be given as:

0.0)= ) alt %, (i =k, j=1)+v, (i, )) (6.2.2)

(k.Jycs,

where ¥, (7, /) represents output of the (i, 4)" neuron, in 4" block of the second layer L,

and v,(#, /) is the white Gaussian noise with zero mean and variance cfl . §, 1s the subset
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of the whole region R, (M x N matrix)in L, . This structure is similar to thc AR model in

thc noncausal system. The (z’, j)m ncuron in L, is computed from neighboring neuron of its
corresponding X,(i,j) in L except X, (i, ). The dependence of the second layer outputs
on the weights of different ncurons is the same if the weights in this layer correspond to the
same cocfficients of the image NMVR model. This autoassociative network between L, and
L, is an indirect generalization of the Hopfield circuit model [71], which is itself a special

case of the Cohen-Grossberg theorem [84]. Moreover, the data processed in this associative
model are interval valued and hence depict fuzzy sct which is excited by random Gaussian
noise [33]. The model adjusts its connection weights to reach an cquilibrium state in which

its associative error and the error propagated from L, are minimized. Once the cquilibrium

is reached, this model is equivalent to the NMVR modecl of the image.
The operation between second layer L, and third layer L, defines the space-variant

hetero-associative operation or MA process. The output of the (i, j)m neuron in A" block

of the third layer will be calculated as follows

=Y % (i-m,j-n) (6.2.3)

{m.n)es,

where h,‘:_(:) ar¢ the connection weights, also called as estimates of coefficients of the space-

A(A)

variant PSF. It is assumed that the point spread functionh is space-invariant inside a

block but also depends upon the activity of the block. S, is a subset of the whole region R,
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(M x N matrix) in L,. The size of the window §, determines the order of the eq (6.2.3)

.The structure of the proposed neural network is shown in Figure 6.1.

6.2.3 The Cost Function

The identification and restoration processes are¢ implemented simultancously by

using a dynamic iterative algorithm to minimize the error function £, (w) and E, (w)oflhe
neural network. The hetero-associative errors £ (w) consists of data fidelity measure
E,(w) in the layer L,, image regularization error £,(w), blur domain regularization
error £, (w), local standard deviation mcan square error (LSMSE) of degraded with an
estimate of degraded image £, (w), and local standard deviation mcan square error

(LSMSE) of restored and degraded image £, (w) i.e., [85][86]
EW=EW+E,W+E, (W+E,(W)+E, (W) (6.2.4)

where weight vector w consists of {hm} and {au} for all m,n,k,1. The first three terms

involved in hetero associative error are given below:

1 . 2
E:(W)=m PR PR HESA ()} (6.2.5)
“vj)ch
A 2
E,(w=—2 % Sld % (i-m,j-n) (6.2.6)
M (i, j)eRy (m.n)
__® 2
E,(w)= MN (;)(;){¢q.,hm_q,,,_,} (6.2.7)

97



2nd layer (L) Observed image

3rd layer (L,)
5z~ Noncansal support *i*

S~ Nonsymmetric support G

Random Ficld

Figure 6.1 The structure of the proposed artificial neural network based on linear space-

variant ARMA model.
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where ¢ is the lcarning parameter and ¢_, is the high pass filter. Three terms in hetero

associative error, which are given in eq (6.2.5), (6.2.6) and (6.2.7), arc widely reported in

literature. The fist term in eq (6.2.4) is data fidelity measure and is minimized when %(i, /)

is equal to the onginal image, where as second term in (6.2.4) increascs in the presence of

noise. Therefore, l.\( 4 should be taken higher for smooth blocks and low for textured

blocks, in order to regularize image more in smooth rcgions than the textured ones.
Likewise, the third term in (6.2.4) is blur domain regularization tcrm which is used to render

piece-wise smoothness in the blur.

The last two terms arc proposcd from the motivation of human perception system
becausc the terms prescnted in eq (6.2.5), (6.2.6) and (6.2.7), favour slow variations in the
image and bear very little relationship to the manner in which humans view the differcnces
between two images. Humans tend to pay more attention to sharp differences in intensity
within an image c.g., edges and noise in background regions. Hence an error measure
should takc into account the concept that low variance regions in original image should
remain low variance regions in the enhanced image, and high variance regions in the
original image likewise remain high vanance regions. Therefore, we have included two
crror measures which attempts to quantify the statistical differenccs between regions in an

image rather than the differcnces between individual pixcls which are given below:

2

LS o2 (5 (i) -0 (7 (1)} (6.2.8)

E, (W) = W :
(6. j)CRy

E,(w)=MN ¥ {o2(%,(i.)-02(». (0. /)} (6.2.9)

(i ey
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where the local standard deviation o ; (y‘4 (1, 7)) is defined as

. &8
i+—

o (y.(i/))= i Hi liyA (s,t)‘Mg{Ju (s,t)}]z (6.2.10)

82

L] i—gf- i--
2772

where the local mean M, {yA (s,t)} of the Bx B neighborhood of pixel y, (i, /) in the

image is defined as

Moy (i)} = i Jf [y‘f;;t)] (6.2.11)

$-i-—fmj-—
7=t

2

Therefore, the error £, (w) given in eq (6.2.8) is termed as local standard deviation

mean square error (LSMSE) of degraded with an cstimate of degraded image. It is important
because the mean square error between the two standard deviations gives an indication of
the degree of similarity between the two images. The proposed LSMSE error between
degraded image and an estimate of degraded image should be minimized in order to obtain

homogeneous statistical regtons.

However, the last term in the (6.2.4) shows local standard deviation mean square
error (LSMSE) of restored and dcgraded image as shown in ¢q (6.2.9). As degradation is
more severe in highly textured regions, which in turn causes decrease in corresponding local
variance, therefore the error £, (w) takes care of this decrease in local variance in degraded
images. Hence the two proposed crrors will cause smooth regions to remain noisc free as

much as possible and highly textured regions to be enhanced accordingly.
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The second important error for the neural network is autoassociative error E (w),

which consist of only data fidelity measure between the layer L, and L, is given as

E.(W)=—A;—N- S E, () - 40 )Y (62.12)
{i. f)=R,;

The next subsection will represent how errors have been minimized for the neural

network.

6.2.4  Learning Algorithm

A gradient-based algorithm was used {o train and optimize the network by
minimizing the squares of errors. According to Figure 6.1 and its associated discussions,
therc is special requirement for the identification and restoration process in this neural
network. The weights of different neurons which represent the same NMVR coefficient in

L, and same PSF coeflicicnts in L, must be updated in thc same fashions in order for
network’s output to satisfy eq (6.2.2) and cq (6.2.3) Specifically the weights between L,
and L,, only depends upon heteroassociative error E},(w). Thercfore, the PSF will be

updated as follows:

O, ()
AR

mH

h,':fﬂ") (new)= h:.(:) (old)-a

OE,(w) {BE,(W) O, (W) | OEy (W) , OEy (W) O, (w) (6.2.13)

or | anl T g T GpAl T gt T gy Al)
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where @ is an adaptive convergence factor while partial derivatives given in eq (6.2.13)

were evaluated and are given below:

OE,(w) -2 i Y- (i iIVNE (i /
ah’!\((/«)) :W(';g {'vA (1,])-—)1(!,])}-"4 (z—m,j—n)
ma 14 )C R

OE, (w)

ohAA) =0

Eul) () 3 o2 (52 )03 (0400)

oRMY MN J ik,

OF,, (w) _

ahA(A)

oL, (w Al
ahyn'\((A)) = éo& Zz¢t.rhk\—(:3—l¢k—m|f—n (62'14)
m,n ki sy

Therefore, the weights between the layers L, and L, should be updated using (6.2.13) and
(6.2.14). However, The weights of the auto-associative network are related to £ (w) in L,

and E,(w) which propagates form the layer L,. Therefore, the coefficicnts of the linear

part of the auto-associative network are iteratively updated as
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al? (new)=a}\" {old) - Ba{E’(g);f’(w)} (6.2.15)
a

kf

NE, W)+ E (W)}  B{E,(W)+E (W)+E, (W)+E, (W)+E,(W)+E_(w)}

(':’a;\.SA) aaﬁ")

where

where B is also a convergence factor whilc partial denivatives given in eq (6.2.15) were

evaluated and are given below:

OE (W) -2 LN A g (,4)
— s J)= , E h, -k -1
aa“ 4 MN (E.J)ER_‘{yA (7)=5. g J)] ma limm=hoj=n= )

;
0 M5 ok

akf i owy pyg

OE (W) 4 2~ fa 2 .
oa:"“’ T MNA (,Z {0 (04(00)) -2 ()}

ki i J)F Ry
A j.d nd g
2 o2
S A X (s
iAo A PR,
prr ATy =l ity
i j+—
xAZh"W (p-s—k,qg—t-1)- E Zh,,, % (s—-m—k,t-n-1)
Jr—;!-jg

OE, (w) —4MN . . AN
ZulD - S o2 ()03 (0, )
k.f

U IRy
”ﬁ'j*é i jiﬁ
2 . _ l 2
< X dpa)-E ) Bk 3 F(s—ka-1)
oF, (w)
=0
6(1,‘}")
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w2 — s = s
GE(W) 2 X, (6, =2, 0, )X ik, j-1)
Ga;\.&") MN (i.;ﬂz{ ! A } A

Therefore, the weights between the layers L, and L, should be updated using (6.2.15).

6.3 Simulation Studies

Thercfore, we have implemented a three layer neural network, in each layer,
including the given degraded image, was subdivided into smaller block of sizes 1616 and
it was assumed that the blur is spacc-invariant in each block. Activity of each block of the
degraded image was then calculated in order to catcgorize each. The operation between first

two layers was assumed to the space-variant auto-associative process. Therefore, the block

with VH activity were treatcd with onc type of {a;;} NMVR coefficients, the blocks with
H activity were treated with second type of {a:f,} NMVR coefficients, the block with L
activity werc treated with third type of {a;,} NMVR coefficients and the blocks with VL

activity were treated with last type of {a;;} NMVR coefficients. Similarly, second and third
layer of thc neural network reprcsented the space-variant heteroassociative process

containing h:(")

. blurring coefficients for the blocks having activity a(«) [71]. The
momentum term and a little noise were added in the learning process in order to get out of
the local minima and flat plateau. Branin's method [78) was also employed, which changes

the sign of the learning parameter if the crror becomes greater than the previous one and

hence improve the convergence of the algorithm,
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6.3.1 Blind Deconvolution of the Images Degraded by Space-
invariant Gaussian Blur with Uniform Quantization
Noise

The blind deconvolution, using space-invariant neural nctwork, of an image
degraded by space-invariant Gaussian blur with uniform quantization noise is illustrated in
Figure 6.2 and Figure 6.3. The original “Lena” image has dimension of 256x256 with 256
grey levels as shown in Figure. 4.3(a). It was degraded by two different types of 5x5
Gaussian spacc-invaniant masks with some quantization noise to form Figure 6.2(a) and
6.3(a). The blurring coefficients are given in Table 4.1 and 4.2. These degraded images
represent the lincar motion blur or de-focused image with space-invariant blur having high
SNR and low SNR. The proposed algorithm was applied to these degraded images. The
final restore images are given in Figure 6.2(b) and Figure 6.3(b). We observed that the
restored image recover the {ine details near the feather of the hat. In addition it suppresses

the quantization noise in the smooth backgrounds effectively.

Our proposed method produces better ISNR of 6.69dB for high SNR (30db) as
compared to ISNR of 2.1666db given in Table 4.1 and 4.966db for low SNR (20db) as
compared to 1.839db given in Table 4.2. Similarly we have carried out comparison with two
other models given in the literature - hierarchical model based neural network by Yap [85]
and Hopfield type ncural network method by Zhou [32], as shown in Table 6.1. NMSE of
our proposed method and hierarchical model based neural network by Yap are 0.0268 and
0.048, respectively. The smaller NMSE value of our method shows that it produces more

accuratc blurring function estimates than the other one’s.
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(a) (b}

Figure 6.2 Blind deconvolution of images degraded with lincar and space-invariant
process. having SNR of 30db, using neural networks based on space-variant linear
ARMA model. a) Degraded tmage of "Lena” with 30db SNR and small quantization
noise, b) Restored image of "Lena’

{a)
Figure 6.3 Blind deconvolution of images decgraded with linear and space-invariant
process. having SNR of 20db, using ncural networks based on space-variant linear
ARMA moedel. a) Degraded image of “l.ena” with 20db SNR and small quantization
noise. b) Restored image of "Lena’.

Table 6.1 ISNR restored images degraded by Gaussian blur and guantization noise having
SNR of 20db with different image restoration methoeds.

Space-variant Hierarchical model Hopfield NN method by Zhou
Melhod 1 network based NN by Y o1 6 |
necural networ ased NN by Yap A=10" 2=10"°
ISNR (dB) 4966 4.75 3.39 4.6
NMSE 0.0268 0.048 - -
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6.3.2 Blind Deconvolution of the Images Degraded by Space-
Invariant Gaussian Blur with AWGN

This subsection presents the blind deconvolution of an image degraded by space-
invariant Gaussian blur with additive white Gaussian noise (AWGN) in order to
demonstrate the flexibility of the proposed algorithm. The original image in Figure 4.3(a)
was degraded by two different 5x5 Gaussian blurs with standard deviation of 2.0, followed
by a 30-dB additive white noise to form noisy and blurred image having high and low SNR
as shown in Figure 6.4(a) and 6.5(a). We have applied the same approach as before, to
deconvolve the degraded tmages. The restored images in Figure 6.4(b) and 6.5(b) show that
the overall sharpness of thc image has been recovered, especially in highly textured regions

of the recovered image.

Our proposed method produces ISNR of 4.325dB for high SNR (30db) as compared
to ISNR of 2.1666db given in Table 4.1 and 3.465db for low SNR (20db) as compared to
1.839db given in Table 4.2. This is due to the ringing effects and noise amplification in
smooth background regions in the algorithm given in chapter 4. The Table 6.2 shows a
comparison of ISNR, for low SNR images, of the restored images and NMSE of identified
blurs with hierarchical model based ncural network by Yap [85]. The identified blur using
the proposed method and by Yap [85] produces an NMSE of 0.03599 and 0.032,
respectively. As these values arc quite close thercfore, NMSE value of the two algorithms

show equal capacity to achieve accurate blurring function in the presence of AWGN.
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4
:

(b)
Figure 6.4 Blind image deconvolution of degraded images with AWGN having 30db
SNR using neural networks based on space-variant linear ARMA model. a) Degraded

image of "Lena’, b) restored Image.

(b)
Figure 6.5 Blind image deconvolution of degraded images with AWGN having 20db
SNR using neural networks based on space-variant {incar ARMA model. a) Degraded
image of ‘Lena’. b) Restored image of "Lena’.

Table 6.2 ISNR of restored images degraded by space-invariant Gaussian blur and
AWGN noise having SNR of 20db with difterent space-invariant image restoration
methods

Qur proposed ‘ Hierarchical imodel Hoptield NN method by Zhou ‘

Method aleorithm based NN by Ya -1 -t |
= o v vap A=10 A=10 j

ISNR (dB) 3.465 2,95 2.59 0.44 |
NMSE 0.03399 0.032 - |
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6.3.3 Blind Deconvolution of the Image Degraded by Space-
Variant Gaussian Blur

Many real images contain degradations which are space-variant in nature. This could
be due to motion of the object localized to a specific region, or relative motion of more than
two objects having different velocities, or different types of severe degradations in different
parts of the images, etc. Such degradations can however be modeled as space-invariant in
the small sub-regions of the image because different regions of the images suffer different
types of degradations. The current neural nctwork may be extended to handle such
degradations by restoring all thc small sub-regions of the dcgraded image indepcndently.
But in order to illustrate the capability of the current algorithm to handle space-variant
degradations, we have assumed a specific type of the degraded image in which degradations

arc subject to the activity of the regions.

The proposed space-variant neural network approach to blind image deconvolution
was also evaluated to illustrate its capability to handle a specific type of space-variant
Gaussian blur in the presence of quantization noise and AWGN in which spacc-variant
Gaussian blur affects the images according to the activity of the region. In order to obtain
degraded images having 30db SNR, we have used a set of four 5x5 Gaussian blurs. The
form of these blurs is same as shown in Table 4.3. These blurs were applied to the original
image given in Figure 4.3(a) according to the activity of the sub-regions of the image. The
small quantization noise or 30db AWGN was also added into the image. Similar procedure
was applied to get the degraded image having 20db SNR using another sct of four 5x5

Gaussian blurs followed by small quantization noise or 30db AWGN.
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(a) (b)
Figure 6.6 Blind deconvolution ot images degraded by a lincar and space-variant process
with quantization noise using spacc-variant neural network approach. a) Degraded image
of ‘Lena’ having SNR= 30db. b) Restored image of "Lena’

el
vd |

(b)

Figure 6.7 Blind deconvolution of images degraded by a linear and space-varnant process
with AWGN using space-variant neural network approach. a) Degraded image of “Lena’
having SNR= 30db, b) Restored image of *Lena’

110



(b)

Figure 6.8 Blind deconvolution of images depraded by a linear and space-variant process
with AWGN using space-variant neural network approach. a) Degraded image of
‘peppers’ having SNR= 30db. b) Restored image of “peppers’.

(b)
Figure 6.9 Blind deconvolution of images degraded by a linear and space-variant process
with quantization noise using space-variant neural network approach. a) Degraded image
of ‘Lena’ having SNR= 20db. b) Restored imagc of "Lena’
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@ (b)

Figure 6.10 Blind deconvelution of images degraded by a linear and space-variant
process with AWGN using space-variant neural network approach. a) Degraded image of
‘Lena’ having SNR= 20db. b) Restored mmage of “Lena’

Table 6.3 NMSE of estimated blur and [SNR of restored images of *Lena’, after blind
deconvolution of images degraded by a lincar and space-variant process, having 20 db
and 30db SNR, using space-variant neural network approach.

Degraded images with Degraded images with AWGN
Performance measure quantizatlion noise having having
SNR of 30dl | SNR of 20db | SNR of 30db SNR of 20db
ISNR 409484 | 3763 39103 3.492 B
NMSE 0.0872 | 0.0143 0.0871 0.0124 1




The restoration results using the proposed network are shown in Figures 6.6-6.10
along with the degraded images. It is clear that the algorithm is effective in restoring the
itnage by providing the clarity in the fine textured rcgions while suppressing the noise and
ringing effects in the smooth backgrounds. This is in accordance with the ISNR of the
restored images and NMSE of the identified blurs shown in Table 6.3. The ISNR of rcstored
images of ‘Lena’ after blind deconvolution of degraded images having 30db SNR with
small quantization noise and AWGN, are 4.09484 and 3.9163, respectively. However, the
ISNR of resorted images of ‘Lena’, after blind deconvolution of degraded images having
20db SNR with small quantization noise and AWGN, arc 3.765 and 3.492, respectively.
The small NMSE values shown in Table 6.3 represents the close resemblance of the
identified blurs to the Gaussian blurs. These satisfactory results illustrate that the proposed
technique is uscful in blind deconvolution of images decgraded under different

circumstances, namely Gaussian blurring functions with various noisc levels.



Chapter 7

Conclusion

7.1 Summary of Results

In the field of blind image deconvolution, the recent advances in the use of artificial
neural nctworks have been exciting. The artificial neural network provides a level of
flexibility and adaptability which has not been fully exploited, so far. For this rcason, this
dissertation shows that this approach can be extended to handle the casc on blind image
deconvolution of images suffering from linear or nonlinear and space-invariant or space-
variant degradations. Anothcr important factor is visual improvement in the quality of the
tmage which requircs that thc concepts of human visual perception system should be
incorporated in the identification and restoration process by modifying the cost function of
the network. Thercfore, a very important objective of this dissertation is to devclop useablc
cost functions based on matching of the second order statistics of the images which can

describe important human visual criteria.

In this dissertation, we havce used the artificial neural nctwork based on
autoregressive moving averagc ARMA network with random Gaussian process in which the
noisy and blurred images arc modeled as continuous associative networks, where as auto-
associative part determines the image model coefficients and the hetcro-associative part

determines the blur function of the system. We have used genetic algorithms to search for
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global minimum of the error performance surface of a blind image restoration problem
using artificial neural networks. The weights of the network were first of all initialized using
genetic algorithm. Once global minima is near, iterative gradient based algorithm was uscd
to minimize the crror function. The self-organization like structure of the proposed neural
network provides the potential solution of the blind image restoration problem. The beauty

of the algorithm lics in the fact that cstimation and restoration are achieved simultaneously.

The neural network has been extended by modifying the linear ARMA process to
nonlinear ARMA process in order to handle nonlinear degradations. The artificial neural
networks bascd on nonlinear ARMA models provides better capabilities of restoration of
degraded images and identification of blur, in tcrms of ISNR and NMSE, than the nctworks

based on lincar ARMA models.

A new approach to adaptive blind image deconvolution, for space-variant degraded
images, based on multilayer neural nctwork has also been proposed. The first subnetwork
was treated as space-variant autoassociative network which determine the image model
coefficients. The second subnetwork was treated as space-variant heteroassociative network
which determines the space-variant blur function. These subnets are space-variant because
they convert images into smaller blocks, categorize them according to activity in the blocks
and then process the image according to their activitics. The highly textured blocks were
treated as very high activity regions while slightly less highly textured block were treated as
high activity blocks, even less activity block wcre treated as low activity regions, and
smooth blocks were treated as very low activity regions. Thereforc, the subnetworks
perform their operations in such a way that the sharpness and contrast in very high and high

activity regions should be increased as noise is not prominent in textured regions. However,
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noise and ringing effects should be suppressed in low and vcry low aclivity regions.
Therefore, such space-variant blind deconvolution method based on ARMA model was
implemented using neural network methodology. The supcrior restoration results highlight

the advantages of space-variant auloregressive and moving average process.

We have also proposed new terms in the cost function for this mcthod which is
based upon the human visual perccption system. Human cye is nol so sensitive to absolute
pixel values as it is to edges and textures of images. These are related to local second order
statistics 1.e., local variances. This cost function contains two proposed terms which are

error measures based on the local SOS of the images being compared.

An iterative stcepest descent algorithm is implemented to minimize the square of the
errors. Therefore, the proposed method provides the more reliablc restoration as compared
with the other methods in terms of ISNR of restored image and NMSE of identified blur. In

addition it is shown that it provides more robustness towards additive noise.

7.2 Future Directions

e The performance of the developed algorithm needs to be further assessed using a
range of both controlled and real-world still and moving noisy images

representing various scenarios.

o Currently, the images are partitioned into blocks of equal size. In the future, the
images could be partitioned into blocks of variablc sizcs and the size of each
block could be set to be inversely proportional to the level of activity of the

corresponding region.
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At present, simple thresholds have been used to categorize each block according
to its level of activity. In the future, intclligent fuzzy logic based rules could be

used to improve the catcgorization process.

Currently, linear space-variant degradation processes have been modeled, and

these can also be extended to 2™ or 3" order nonlinear cases.

In this thesis, the human visual perception based cost functions have been
dcveloped in this thesis to match second order statistics of the restored image. In
future, the cost function could be extended to match the higher order statistics of

the restored image.

Compression issues have not been addressed in this thesis. These need to be

investigated for both still and moving image scenarios.

Also for the future work, the developed blind deconvolution algorithms could be
implemented in hardware for real-time applications and their associated real-

time rclative computational complexity requirements investigated.

Finally, the developed algorithms can also be extended to address the problem of
multichannel blind image restoration using multiple degraded images of the
same scene. The required multiple images of a single dcgraded image can also

be obtained using the concept of directional filter banks.

117



References:

Andrews H. C. and B. R Hunt, Digital Image Restoration, Prentice-Hall, Inc., 1977.
Gonzalez, R. C. and R. E. Woods, Digital Image Processing, 2 Ed., Pearson Edu.
2002.

Schulz, T., “Multiframe blind deconvolution of astronomical images”, JOSA-A, vol.
10, no. 5, pp. 1064-1073, 1993.

Mutihac, R. and V. Hulle, “Bayesian restoration of medical X-ray digital images”,
Proceedings 2nd Int. Conf. on Electronics, Control and Signal Processing and E-
Activitics .World Scientific and Engincering Academy and Socicty (WSEA'S),
Singapore, 7-12 December 2002, pp. 451-288, 2003.

Nguyen, N., P. Milanfar, and G. Golub, “Efficient generalized applications to
parametric image restoration and resolution enhancement”, IEEE Trans. on Image
Processing, vol. 10, no. 9, pp. 1299-1308, 2001.

Gull, S. F. and G. J. Daniell, “Image reconstruction from incomplete and noisy
data”, Nature, vol. 272, pp. 686-690, 1978,

Angwin, D. L. and H. Kaufamn, Digital Image Restoration, Springcr Verlage, New
York, 1991.

Kunder D. and D. Hatzinakos, “Blind image deconvolution”, IEEE Signal

Processing Magazine, May 1996.

[18



10

11

13

14

18

19

Tanaka, A., H. Imai and M. Miyakoshi, “On formulations and solutions in linear
image restoration problems”, IEICE Trans. on Fund. Electr. E87A, vol. 8, pp. 2144-
2151, 2004.

Kokaram, A., “A statistical framework for picturc reconstruction using 2D AR
models”, Image Vision Comput., vol. 22, no. 2, pp. 165-171, 2004.

Boncelet, C., “Image noise models”, Handbook of Image and Video Processing,
editor Al Bovik, Academic Press, 31 May, 2000.

Lagendijk, R. L. and J. Biemond, “Basic methods for image restoration and
identification”, Handbook of Image and Video Processing, editor Al Bovik,
Academic Press, 31 May, 2000.

Likhterov, B. and N. S. Kopeika, “Motion-blurred image restoration using modified
inverse all-pole filters”, J. Electron. Imaging, vol. 13, no. 2, pp. 257-263, 2004.
Rajagopalan A. N, S. Chaudhuri and U. Mudenagudi, “Depth estimation and image
restoration using defocused sterco pairs”, IEEE Trans. on Pattern Anal., vol. 26, no.
11, pp. 1521-1525, 2004.

Stark, H., Image Recovery: Theory and Applications, Academic Press, London,
1987.

Zehngut, E., Iterative Image Restoration, Technion Press, Haifa, 1988.

Zhang D.,, and Z. Wang, “Impuise noise detection and removal using fuzzy
techniques”, IEE Elect. Lett., vol. 33, no. 5, pp. 378-379, 1997.

Feller, W., An Introduction to Probability Theory and Its Applications, John Wiley
and Sons, New York, 1968.

Billingsley, P., Probability and Measure, John Wiley and Sons, New York. 1979,

119



20

21

22

23

24

25

26

28

29

Montgomery, D. C. and G. C. Runger, Applied Statistics and Probability for
Engineers, John Wiley and Sons, 2™ ed., 1998.

Ho, C. W. and M. Nikolova, *“Salt-and-pepper noise rcmoval by median-type noise
detectors and detail-preserving regularization”, accepted for publication by IEEE
Transactions on Image Processing.

Jain, A. K., “Advances in mathematical models for image processing”, Proceeding
of the IEEE, vol. 69, no. 5, pp. 502-528, May 1981.

Hunt, B. R., “The application of constrained least squares estimation to image
restoration by digital computer”, IEEE Trans. on Computers, vol. 2, pp. 805- 812,
Sept. 1973,

Zhang, J., P. Fieguth, and D. Wang, “Random fields”, Handbook of Image and
Video Processing, editor Al Bovik, Academic Press, 31 May, 2000.

Jeng, F. and J. W. Woods, “Compound Gauss-Markov random ficlds for image
cstimation”, IEEE Trans. on Signal Processing, vol. 39, pp. 683-697, 1991.

Tinku A. and A. K. Ray, Image Processing - Principles and Applications, John
Wiley & Sons, 2005.

Biemond, J., R. L. Lagendijk and R. M. Mersereau, “Itcrative methods for image
deblurring”, Proc. of the IEEE, vol. 78, no. 5, pp. 856-883, May 1990.

Sroubek, F. and J. Flussr, “Multichannel blind iterative image restoration”, IEEE
Trans. on Image Processing, vol. 12, no. 9, pp. 1094-1106, 2003.

Nagy, J. G., K. Palmer and L. Perrone, “Iterative methods for image deblurring: a
matlab object-oriented approach”, Numer. Algorithms, vol. 36, no. 1, pp. 73-93,

2004.

120



30

31

32

33

34

35

36

37

Figueiredo, M., and J. Leitdo, “Unsupervised image restoration and edge location
using compound Gauss-Markov random fields and the MDL principle”, in IEEE
Trans. on Image Processing, vol 6, n. 8, pp. 1089-1102, August 1997.

Shin, J., S. H. Hwang, S. W. Lee, J. Paik, B. Abidi and M. Abidi, “Real-time digital
auto- focusing using a priori estimated set of PSFs”, Opt. Eng. Lett., in preparation
for submission, August 2004.

Zhou, Y. T., R. Chellappa, A. Vaid and B. K. Jenkins, “Image restoration using
neural networks”, IEEE Trans. On Acoustics, Speech and Signal Processing, vol. 36,
no. 7, pp. 1141-1151, 1988.

Cho, C. M. and H. S. Don, “Blur identification and image restoration using a
multilayer neural network”, IEEE Int. Joint Conf. On Neural Networks, vol. 3, pp,
2558-2563, 1991.

Pail, J. K. and A. K. Katsaggelos, “Image restoration using a modified Hopficld
network™, IEEE Trans. on Image Processing, vol. 1, no. 1, pp. 49-63, 1992.

Sun, Y., J. G. Li,and S. Y. Yu, “Improvement on performance of modified Hopfield
neural network for image restoration”, IEEE Trans. on Image Processing, vol. 4, no.
5, pp. 688-692, 1995,

Muneyasu, M., K. Yamamoto and T. Hinamoto, “Imagec restoration using layered
neural networks and Hopfield networks”, Proc. of the 1995 Int. conf. on Image
Processing (ICIP), pp. 33-36, 1995,

Wong, H. S,, and L. Guan, “Adaptive regularization in image restoration using a

model based neural network”, Opt. Eng., vol. 36, no. 12, pp. 3297-3308, 1997.

121



38

39

40

41

42

43

44

45

Perry, S. W. and L. Guan, “Weight assignment for adaptive image restoration by
neural networks”, IEEE Trans. on Neural Networks, vol. 11, no. 1, pp. 156-170,
2000.

Wong, H. S. and L. Guan, “A neural leaming approach for adaptive image
restoration using fuzzy model bascd network architecturc”, IEEE Trans. on Neural
Networks, vol. 12, no. 3, pp. 516-531, 2001.

Yap. K.H., L. Guan, and W. Liu, “A recursive soft decision approach to blind image
deconvolution”, IEEE Trans. on Signal Processing, vol. 51, no. 2, pp. 515-526,
2003.

Robini, M. C. and |. E. Magnin, “Stochastic nonlinear image restoration using the
wavelet transform”, IEEE Trans. on Image Processing, vol 12, no. 8, pp. 890-905,
2003.

Figueircdo, M. A. T, and R. D. Nowak, “An EM algorithm for wavelet based image
restoration”, IEEE Trans. on Image Processing, vol 12, no. 8, pp. 906-916, 2003.
Antoniadis, A. and J. Fan, “Regularized wavelet approximations”, J. Amer. Statist.
Assoc., vol. 96, pp. 939-967, 2001,

Banham, M. and A. Katsaggelos, “Spatially adaptive wavclet based multiscale
image restoration”, IEEE Trans. on Image Processing, vol. 5, pp. 619-634, 1996.
Belge, M., M. E. Kilmer and E. L. Miller, “Wavelet domain image restoration with
adaptive edge preserving regularity”, IEEE Trans. on Image Processing, vol. 9, pp.

597-608, 2000.

122



40

47

48

49

50

51

52

53

54

Qureshi, 1. M., T. A. Cheema, A. Naveed and A. Jalil, “Genetic algorithms based
artificial neural networks for blur identification and restoration of dcgradced images”,
Pakistan Journal of Information and Technology, vol. 2, no. 1, pp. 21-24, 2003.
McCallum, B. C., “Blind deconvolution by simulated annealing”, Opt. Comm., vol.
75, no. 2, pp. 101-105, 1990.

Alder, D., “Genetic algorithms and simulated annealing: a marriage proposal”, IEEE
Int. Conf. on Neural Networks, pp. 1104-1109, 1993.

Robini, M. C., T. Rastello, and I. E. magnin, “Simulatcd annealing, acceleration
tcchniques and image restoration”, IEEE Tran. on Image Processing, vol. 8, no. 10,
pp. 1374-1387, 1999.

May K., T. Stathaki and A. G. Constantinides, “A simulated annealing genetic
algorithm for blind deconvolution of nonlinearly degraded images”, IEEE Workshop
on Nonlincar Signal and Image Processing, Mackinac Island, Septecmber 1997,
Ghannakis, G. B., and R. W. Heathe, “Blind identification of multichannel FIR blurs
and perfect image restoration”, IEEE Trans. on Image Processing, vol. 9, no. 11, pp.
1877-1890, 2000.

Pai, H. T. P, and A. C. Bovik, “Exact multichannel blind image restoration”, IEEE
Signal processing Lett., vol. 4, no. 8, pp. 217-220, 1997,

Vrhel, M. J.,, and M. Unser, “Multichannel restoration with limited A priori
information”, IEEE Trans. on Image Processing, vol. 8, no. 4, pp. 527-536, 1999.
Molina, R., J. Mateos and A. K. Katsaggelos, “Bayesian Multichannel image
restoration using compound Gauss-Markov random fields”, IEEE Trans. on Image

Processing, vol. 12, no. 12, pp. 1642-1654, 2003.

123



55

56

57

58

59

60

61

Galatsanos N. P., and R. T. Chin, “Digital restoration of multichannel images”,
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no. 3, pp. 415-
421, 1989.

Hunt B. R,, and O. Kubler, “Karhunen-Loeve multispectral image restoration. Part
1. Theory”, IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-
32, no. 3, pp. 592-600, 1984.

Galatsanos, N. P., A. K. Katsaggelos, R. T. Chin, and A. D. Hillery, “Least squares
restoration of multichannel images”, IEEE Trans. on Signal Processing, vol. 39, pp.
2222-2236, Oct. 1991.

Guo, Y. P, H. P. Lee, and C. L. Teo, “Multichannel image restoration using an
iterative algorithm in space domain”, Image Vis. Comput., vol. 14, no. 6, pp. 389-
400, 1996.

Molina, R. and J. Mateos, “Multichannel image restoration in astronomy”, Vistas
Astron., vol. 41, no. 3, pp. 373379, 1997.

Molina, R., A. K. Katsaggelos, J. Mateos, A. Hermoso, and C. A. Secgall,
“Restoration of severely blurred high range images using stochastic and
deterministic relaxation algorithms in compound Gauss Markov random fields”,
Paitem Recognit., vol. 33, no. 3, pp. 557-571, 2000.

Molina, R., J. Mateos, and A. K. Katsaggclos, “Multichannel image restoration
using compound Gauss-Markov random fields”, in Proc. Int. Conf. on Acoustics,
Speech, and Signal Processing, (ICASSP 2000), vol. 1, Vancouver, BC, Canada, pp.

141-144, 2000.

124



62

63

64

65

66

67

68

69

Vese, L. A. and S. J. Osher, “Image denoising and decomposition with total
variation minimization and oscillatory functions”, J. Math. Imaging Vis., vol. 20, no.
1-2, pp. 7-18, 2004.

Lagendijk R. L., J. Biemond and D. E. Boekee, “Identification and restoration of
noisy blurred images using the expectation-maximization algorithm”, JEEE Trans.
on Acoustics, Speech, and Signal Processing, vol. 38, July 1990,

Cheema, T. A., I. M. Qureshi, A. Jalil, and A. Naveed, “Blurred image restoration of
nonlinearly degraded images using ANN and nonlinear ARMA model”, Journal of
Intelligent Systems, vol. 11, no. 5, pp. 299-312, 2001

Reeves, S. J. and R. M. Mersercau, “Blur identification by the method of generalized
cross-validation”, IEEE Trans. on Image Processing, vol. |, pp. 301-311, July 1997.
Acton, S. T., and A. C. Bovik, “Piecevisc and local image models for regularized
image restoration using cross-validation”, IEEE Trans. on Image Processing, vol, 8,
no. 5, pp. 652-665, 1999,

Golub, G. H., M. Heath and G. Wahba, “Generalized cross-validation as a method
for choosing a good rigid parameter”, Technometrics, vol. 21, no. 2, pp. 215-223,
1979,

Cheema, T. A., 1. M. Qurcshi, A. Jalil, and A. Naveed, “Artificial neural networks
for blur identification and restoration of nonlinearly degraded images”, International
Journal of Neural Systems, vol. 11, no. 5, pp. 455461, 2001.

McCulloch, W. S. and W. Pits, “A logical calculus of the ideas immanent in nervous

activity”, Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943,

125



70

71

72

73

74

75

76

77

78

79

Minsky, M. and S. Papcrt, Perceptrons: An Introduction to Computation Geometry,
The MIT press, 1969.

Carratio, S., Neural Networks: Advances and Applications, 2, ch. 9, North-Holland,
pp. 177-198, 1992,

Coello, A and C. Carlos, "An updated survey of GA-based multiobjective
optimization techniques”, ACM Computing Surveys, vol.32, no.2, pp.109-143, June
2000.

Haupt, R. and S. E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, 1998.
Chellappa, R. and A. Jain, Markov Random Ficlds - Theory and Applications,
Academic Press, New York, 1993.

Rawlins G. J. E., Foundations of Genetic Algorithm, San Mateo, CA: Morgan
Kaufmann, 199].

Davis L. E., Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold,
1991.

Yap, K. M., L. Guan, and W. Liu, “A recursive soft-decision approach to blind
image deconvolution”, |[EEE Trans. on Signal Processing”, vol. 51, no. 2, pp. 515-
526, Feb. 2003.

Branin, F. H.,, “A widely convergent method for finding multiple solutions of
simultaneous nonlinear equations”, IBM Journal of Research and Development, vol.
16, pp. 504-522, 1972,

Nagy, J. G. and D. P. O’Leary, “Fast iterative image restoration with spatially-
varying PSF”, Advanced Signal Processing Algorithms, Architectures, and

Implementations IV, Editor Franklin T. Luk, 3162, pp.388-399, 1997.

126



80

81

82

83

84

85

86

Nagy, J. G. and D. P. O’Leary, “Restoring images degraded by spatially-variant
blur”, SIAM J. Sci. Comput., vol. 19, pp. 1063- 1082, 1998.

McNown, S. R. and B. R. Hunt, “Approximate shift-invariance by warping shift-
variant systems”, in the Restoration of HST Images and Spectra I, R. J. Hanisch and
R. L. White, eds., pp. 181-187, 1994.

Adorf, H. M., “Towards HST restoration with space-variant PSF, cosmic rays and
other missing data”, in the Restoration of HST Images and Spectra II, R. J. Hanisch
and R. L. White, cds., pp. 72-78, 1994,

Fish, D. A., J. Grochmalicki, and E. R. Pike, “Scanning singular-value-
decomposition method for restoration of images with space variant blur”, J. Opt.
Soc. Am. A_, vol. 13, pp. 1-6, 1996.

Simon Haykin, Neural Networks, Prentice Hall Pub, 1997,

Yap, K. M., L. Guan, and W. Liu, “A recursive soft-decision approach to blind
image deconvolution” IEEE Trans. on Signal Processing”, vol. 51, no. 2, pp. 515-
526, Feb. 2003.

Perry, S. W. and L. Guan, “Perception based adaptive image restoration”, Proc. Of

ICASSP’98, pp. 2893-2896, May 1998.

127



