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ABSTRACT

Latest trends in digital electronics require designs with increased functionality,
contained in the smallest of spaces, performing at the highest of speeds, consuming
and dissipating the minimum of power and generating the least of electromagnetic
interference. The merger of all these properties in a single synchronous design is
becoming increasingly difficult, as one property contradicts the otHer, whereas
asynchronous systems exhibit technology independence, power efficiency, average
case computational capability and electromagnetic compatibility. Above all, the
problem of clock skews does not exist in asynchronous systems because of the

absence of a common clock.

Reconfigurable mediums such as Field Programmable Gate Arrays (FPGAs) associate
lower costs and lesser turn around time associated with prototyping. FPGA based

designs perform like ASICs while retaining the flexibility of General Purpose IC.

Because of the very construct of FPGAs and their programming environments,
asynchronous systems find their place in the full custom domain while reconfigurable
mediums are associated with synchronous designs. In the presented research, two
areas are combined to come up with techniques through which an asynchronous
system like a 4-phase micropipeline has been implemented in a reconfigurable and

traditionally synchronous medium of FPGAs.

The implementation of a FPGA—compliant micropipeline required development or
change in fundamental building blocks of standard micropipeline. Therefore, a
technology independent and customizable delay element with dynamic calibration

capability was developed for FPGAs. Special Event Controlled Register (ECR) for

vii
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Introduction

“He who finds a thought that enables him to obtain a slightly deeper
glimpse into the eternal secrets of nature has been given great grace.”
Albert Einstein.

1.1 Motivation

Increased functionality, reduced real-estate, high performance, power efficiency and
Electromagnetic Compatibility (EMC) have lead researchers into the arena of
asynchronous systems. Another important issue related to today’s mobile world is
reconfigurability of a digital system to make it more versatile for the varying user
needs. A lot of quality rescarch work has already been done in the field of
asynchronous processing while staying in the full custom domain. But
implementation of asynchronous designs in conventional reconfigurable devices such
as Field Programmable Gate Arrays (FPGAs), manufactured to suit synchronous
designs, has attracted the attention of a few, because of some very fundamental
reasons related to the architecture of such devices, Therefore, asynchronous systems
till now reside in the full custom domain, while the reconfigurable mediums support

synchronous designs. In this thesis a methodology is presented that imports
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asynchronous system like micropipeline to the reconfigurable medium of FPGAs. The

next few pages of the introduction chapter highlight the following issues:

= Justification of asynchrony,

» Importance of reconfigurability,

= Issues related to the implementation of micropipeline based asynchronous
systems in FPGAs,

* Thesis layout.

1.2 Synchronous vs. Asynchronous Systems

A synchronous system by definition is the one, whose subsystems are synchronized
by a common clock. The fundamental building blocks for a synchronous system i.e.
the flip flops are characterized by their setup and hold time requirements [RSS90]. An
input to the synchronous system is incorrectly manipulated if these requirements are
not met. These characteristic requiremcnts of sequential elements are dependent on
the associated wire and propagation delays [RFT91]. Technology involved in the
fabrication of these elements and the physical properties of metal interconnects /tracks
define the values of these delays [MJS897] in case of both, single IC based or larger,
synchronous systems. Conventional CISC (Complex Instruction Set Computer) and
RISC (Reduced Instruction Set Computer) processors [HIM86] are typical examples

of large synchronous systems.

A pipeline generally associated with RISC processors as shown in Figure 1.1, is a
synchronous system where the inter-stage latches, using common clock, synchronize
its various stages [DAPO03]. The size of functional units associated with each stage in

a pipeline and the total number of pipeline stages, define its real estate [JBT99]. As
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Figure 1.1: A 5S-stage synchronous pipeline with processing, driven by commen clock (CC).

the real estate of pipeline increases a problem that begins to emerge is that of clock
skews. The synchronizing edges of clock reach the various sections of synchronous
system with significant variation in time, although synchronous systems are based on
assumption that time is discrete [SHK95]. Significant variation means time period

comparable to the clock pulse width as explained by Figure 1.1.

In Figure 1.la, a large synchronous system is driven by a common clock. Clock path
to sub section B is much longer than path to sub section A. So the clock edge to A
reaches earlier than B. The result is a system that cannot truly be called synchronous
because all the subsections are not being triggered simultaneously. In case of a high
frequency common clock (CC2) an entire clock cycle can be missed before the
previous pulse reaches the farther sub section as shown in Figure 1.1b. Therefore, the
problem of clock skews is aggravated by clock speed [SMN97]. The maximum clock
speed is limited by the setup and hold time requirements of sequential elements, being
driven by it. Enhanced technology incorporating reduced feature size also affects the
sequential elements thus, permitting the use of high speed clocks. Therefore, as the
speed of a synchronous system is improved, the problem of clock skews becomes

more and more evident, forcing designers to modify designs [SMS96].
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Figure 1.2: Describes the phenomenon of clock skew: (a) Large synchronous system having
clock skews becausc of variation in common clock (CC) path length to sections 4 and B,
{b) Problem of clock skew aggravated in case of faster common clock CC2, where new pulse
arrives at A when B is still waiting for the previous pulse.

Another important aspect of enhanced technology is the issue of interconnects.
Interconnects consume major portion of total area and the rate at which interconnect
metal technology develops is three times slower than the rate at which the
semiconductor technology develops [DAP03, DAMOO]. This causes a rapid growth in
gap between transistor density and interconnect density on a large synchronous circuit

[(JDMO1]. Clock skews become more evident as a result of this difference in densities.

Increase in transistor density, on its part creates another kind of problem associated
with power. Increase in the number of transistors switching per unit area and the
frequency with which they switch leads to an overall growth in power consumption

[DAPO3].
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Additionally, in case of synchronous systems the spectral components that approach
or exceed the limits specified in the relevant {(Electromagnetic Compatibility) EMC
standard are those produced by clock oscillators or their harmonics [DLROG]. The
high speed clock on Printed Circuit Board (PCB) traces is a major cause of
Electromagnetic Interference (EMi), especially at the orthogonal trace corners
[HWQO88, CRP92]. As frequencies and edge rates continue to rise, comers introduce
excess capacitance and cause a small change in characteristic impedance [MIM96].
This becomes disastrous at high frequencies (e.g. 100 MHz) when electrons virtually
fly off the sharp comners of the bend [MIM96]. Therefore, an extemnal clock source, by

virtue of being off-chip (on—board) is a source of EMI, difficult to suppress.

In the light of the above mentioned issues, it can safely be stated that a race in time to
make synchronous systems like pipelined microprocessors faster with more real estate
for enhanced on-chip functionality and higher density for reduced cost, results in
serious issues to be dealt with. In order to accommodate these issues like clock skew,
electromagnetic interference and power inefficiency [JBT99], designers spend
exhaustive and expensive man hours in modifying the synchronous design thus
increasing the cost of the product [SHK95]. The pressure to launch an upgrade in the
minimum of time while maintaining cost in a highly competitive market has pushed

synchronous design engineers to their limits.

As a technical field moves closer to saturation, researchers look for alternate solutions
that are radically opposed to the fundamentals of the previous one. High end CISC
architectures like VAX (Virtual Address eXtension), triggered alternate approach of
RISC in the form of Berkeley RISC I [JBT99]. Similarly, for some time now,

researchers have been experimenting with asynchronous processor architectures as
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apposed to the prevalent synchronous ones [SMN99]. The problems associated with
large and high speed synchronous designs are inherently taken care of in case of

asynchronous designs.

A completely different approach generally requires development of all its
fundamental building blocks. Therefore, for a competitive asynchronous RISC
microprocessor to find its place in the market, basic structures like an asynchronous
pipeline dependent on request /grant protocol instead of clock, delay model, event
controlled registers etc. had to be developed first. This lead to the development of
micropipeline [IAS89]: an event-based elastic pipeline with or without processing.
Details of the asynchronous microprocessor architectures based on various models of
micropipeline are presented in the following chapter. The following chapter also
discusses the salient features, classification, design and characteristics of fundamental

building blocks for the asynchronous systems.

1.3 Reconfigurability

Another very important issue effecting the overall cost and tumn around time of a
product is prototyping. FPGAs have played a vital role in prototyping because of their
reprogrammable nature. A design can be implemented in an FPGA, modified and re—
implemented in a fraction of time and cost associated with full custom prototyping.
More recently, because of the incorporation of Run Time Reconfiguration (RTR)
capability [BLH95], FPGAs have found their way into the market as end products

providing platform to hardware designs requiring reconfiguration at runtime.

Application specific devices are efficient in power and performance but are limited to

specific type of applications. On the other hand, general purpose devices that are not
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limited to specific applications are less efficient in terms of power and performance as
they have real estate overhead to take care of all types of applications. All the
resources of such devices, therefore, are not fully utilized or are not available to the
extent required by a specific application. The real estate overhead adversely effects
power calculations, whereas lack of relevant resources, effects performance. Both
these factors are not acceptable in modern designs. Latest technology trends require
fast designs that are small in size to be contained in mobile devices. Mobile devices
with on-board power source are generally based on power efficient designs to avoid
frequent recharging. These factors pave way for reconfigurable devices such as
FPGAs that at run time can reconfigure to suit the requirement of a specific
application, while maintaining their real estate. Reconfigurable mediums such as
FPGAs are therefore expected to play a dominant role in tomorrow’s computing.
Hence, it was essential to introduce micropipeline based asynchronous systems to the

reconfigurable mediums.
1.4 Contribution: Merger of Asynchrony and Reconfigurability

FPGAs are extensively used today for the implementation of synchronous systems. In
fact, the very structure of FPGAs and associated programming environments support
synchronous designs, whereas asynchronous designs are dependent on their delay
model. For an asynchronous design to be technology independent, delays in the
design must have dynamic calibration capability. A delay element with these
characteristics is considered to be implausible in case of FPGAs. Isochronic forks
[AJM89] in the delay model also require full custom implementation. The problem is

aggravated by the fact that design implementations in FPGAs are not necessarily
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repeatable, in various programming environments because of the stochastic processes

involved and the varicty in reduction, placement and routing algorithms [SHK93].

As a result, asynchronous systems find their place in full custom domain while
reconfigurable computing is associated with synchronous designs. Altermnate
architectures for FPGAs, facilitating asynchronous design implementation have also
been proposed [REP96, JTLO4, CGWO03]. But implementation of asyﬁchronous
designs in conventional reconfigurable devices, manufactured to suit synchronous

designs, has attracted thc attention of a few.

In the presented research, the two fields arc combined to come up with a technique
through which an asynchronous system like a 4-phase micropipeline; an event based
pipeline with or without processing; has been implemented in a reconfigurable

medium of FPGAs.

Available models for the fundamental building blocks of full-—custom micropipeline,
such as the delay elements, Event Controllcd Registers (ECRs) and hand shaking
protocols could not be used, rather ncw concepts and techniques had to be developed

for their FPGA based implementation.

Therefore, the presented methodology can import asynchronous designs along with
their benefits to the traditionally synchronous environment of FPGAs. The merger of

asynchrony and reconfigurability may reshape computer architecture in future.
1.5 Thesis Layout

Following the introduction chapter, a detailed description of asynchronous systems,

their merits over synchronous systems, characteristics of their basic building blocks
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and associated protocols is presented in chapter 2. Evolution of reconﬁghrable
mediums justifying their importance and making them unique platform for the

implementation of hardware designs is also presented in the same chapter.

Chapter 3 is dedicated to the discussion of Single Inverter Ring Oscillator (SIRO)
implementation in FPGAs. SIRO’s behavior as technology independent element, its
characteristics as on-chip oscillator triggering fellow synchronous circuits and its use
in the generation of delay elements with dynamic calibration capability in

reconfigurable media is also discussed.

Chapter 4 presents the instruction set architecture of simple RISC, created to test the
concepts presented in this thesis. The same architecture is implemented in various
FPGAs in chapter 5, while triggered externally by a clock source and then by
coexisting SIRO based on-chip oscillator to show the advantages of SIRO based

designs and their optimal performance regardless of FPGA technology.

Chapter 6 gives the detailed description of the developed FPGA compliant
micropipeline. All the building blocks of this FPGA-based asynchronous system and
the associated protocols are also discussed in this chapter. In order to verify the
proposed concept, a Reconfigurable Micropipelined Processor (RMP) based on the
architecture of Simple RISC, is presented in chapter 7. Power calculations for the
applications to satisfy the power efficiency requirement of asynchronous designs are
discussed in chapter 8, while the conclusion and possible future extensions are given

in chapter 9.
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Background

Clearly, there is potential for use of asynchronous machines. In fact, it is
predictable that designers will become more familiar with this type of
machine, that asynchronous design techniques will improve, and that
asynchronous FSM methods will play an important role in the design of
Sfuture super high-speed microprocessors and computers. It is the
Jjudgment of many digital designers that synchronous IC system design
(in general) has been pushed to its practical limit and that new
approaches to digital design must be developed if future expectations
are to be realized.

Richard F. Tinder

2.1  Asynchrony

Being digital in nature, asynchronous circuits assume the signals to be binary, but the
other important assumption of time being discrete, is ignored in their designing.

Asynchronous systems exhibit the following characteristics, giving them an edge over

their synchronous counterparts:

2.1.1 No clock skew

The absence of a common clock triggering every section of the design eliminates the

problem of clock skews. However, if the system is Globally Asynchronous and
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Locally Synchronous (GALS) [DMC84, AIR02] where subsystems driven by various
internal or external clocks communicate asynchronously to form the complete system
as shown in Figure 2.1. The synchronous subsystems may have clock skews

especially if they are large or improperly designed.

CLKA CLKB CLKC
Req Ack Req Ack Regq Ack
| LCC \[%C/\
GO ./ DONE
[ |
GO ' DONE “ GO ./ DONE
— -
Q ] et &
o E [T =
< <
Synchraonous — — Synchronous
Subsection A Subsection C
Synchronous
Subsection B

* LCC : Latch Control Circuit

Figure 2.1: Globaily Asynchronous Lacally Synchronous (GALS) system showing synchronous
subsections driven by different clocks.

2.1.2 Average-case performance

[n synchronous systems all the subsections are driven by a common clock. Some
sections are more sluggish than the other ones. Therefore, clock speed is chosen,
taking into cdnsideration the slowest subsection, exhibiting an overall worst case
performance. On the other hand, in case of asynchronous systems absence of a
common clock and freedom of subsections to operate at their own pace yields average

case performance.
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Prone to worst case scenario, synchronous systems, have all sub portions including
rarely used sections, carefully optimized to achieve the highest clock rate. Since
asynchronous systems operate at the speed of the circuit path currently in operation,
rarely used portions of the circuit can be left un-optimized without adversely affecting
system performance. This in turn facilitates designing process and reduces turn

around time.
2.1.3 Power efficiency

The continuously toggling ciock lines reach all subsections of a synchronous system
whether used in the current computation or not. For example, if an instruction stream
contains only integer manipulations, the floating point unit in the synchronous
processor will still be operated by the clock, despitc being unused. On the other hand,
asynchronous systems have transitions only in areas involved in the current

computation and the remaining regions stay in the sleep mode thus, conserving power,
2.1.4 Technology independence

A system may migrate from gate arrays, to semi-custom to custom IC in its
developmental process, or may face technology upgrade for enhanced performance as
discussed in the Chapter No. 1. Asynchronous designs exhibit technology
independence as design modifications are not required upon migration from one
technology to another. In many asynchronous systems, modification in only the more
critical system compenents can improve system performance on average, since
performance is dependent on only the currently active path. The asynchronous

systems where computation completion is sensed, components with different delays
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can be substituted into a system without altering other elements or structures

[SHK95].
2.1.5 Adaptation to physical environment

Delays in the system can change with variations in fabrication, temperature, and
power-supply voltage. The frequency of the common clock in case of synchronous
circuits must be sclected in such a manner that it incorporates even the worst
combination of factors adversely effecting system delays. This results in poor
performance, when most of the time, the situation is not critically worst.
Asynchronous systems automatically adapt to the changing environment, always
giving optimal performance under all circumstances. Or in other words, asynchronous

systems are characterized by system delays that have dynamic calibration capability.
2.1.6 Electromagnetic Compatibility

Because of the absence of common clock, the greatest single source of
electroinagnetic interference in a system, and wide spread clock traces / interconnects,
asynchronous systems show Electromagnetic Compatibility (EMC). These systems
generate less EMI, making them idcal for applications where the communication
section is to be placed close to the processing section. The example of such an
application 1s the use of asynchronous implementation of 80C51 microcontroller

[HVG98] in communication equipment.
2.2 Classification of Asynchronous Systems

Asynchronous systems can be hierarchically classified into the following five

categories:
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2.2.1 Delay Insensitive (DI} Designs

A DI circuit is the one that is designed to operate correctly regardiess of the delays on
its gates and wires i.e, an unbounded gate and wire delay model is assumed
[SMN97]. In bounded-delay model, if an input is applied to a circuit, it settles in a
finite and known amount of time so that a new input can safely be sent to it again. In
case of a delay—insensitive model, even an infinite amount of time does not guarantee
that the input is received properly. So before the sender sends another piece of
information it must wait for a (transaction) completion or acknowledge signal from
recipient, signifying that it has received the previously sent information, completely.
For the generation of such a signal in the receiver, completion detection circuitry is

added to it,

As an example consider a simple 4-bit serial adder whose inputs and outputs are
latched, as shown in Figure 2.2. The latched result (R[3:0]) is to be used by the
following stage, when the latched inputs to the adder are : A[3:0] = 0111 and B[3:0]
= 0001. For simplicity, it is assumed that the inputs are certainly known to have
reached stable state at the input latches and that wire delays associated with a[3:0] and
b[3:0] are equal. Before the following stage uses the latched value, the R must be
stable, which is dependent on lot of factors, i.e. length of rg, 1, r; and r; defined by the
wire delays, gate delays associated with the adders and the design of adder which is
serial in nature as every higher result bit is generated after a stable carry is generated
by the previous bit manipulation. The adder must not be allowed to perform the
following manipulation unless and until the present result is utilized by the following

stage or the loss of data will occur.
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In case of the current manipulation, least significant bit of the result will get stable
first, also generating cg, that will cause r; to be generated and finally the most
significant bit r; will get stable at the end. The output latch must not be allowed to
operate, till all the result bits r[3:0] are stable, or possibility of incorrect latching of
information will prevail. The gate delays associated with adders and the wire delays
associated with ¢[2:0], r[3:0] also contribute to the time that must be elapsed before

output latch is allowed to perform its function,
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Figure 2,.2: A simple 4-bit serial adder with latched inputs and outputs.

If the circuit is converted to a synchronous design, frequency of a common clock
triggering all the latches of the system is selected in such a manner that it incorporates
the associated gate and wire delays, so that the active edges activate the latches upon

the completion of delay requirements by the stage (adder). In case of more than one
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stages triggered by common clock the stage with the longest delay defines cycle time,

thus associating worst case scenario with synchronous designs.

The other possibility is that the gate delays of adders in Figure 2.2 are known, so the
time required in the generation of carry bits is known in each case, which in tumn can
define the amount of time lapse between the generation of successive result bits
(c[2:0] is predefined). The wire delays associated with r[3:0] can be adjusted in such a
manner that they cancel out the effect of generation of result bits in variable time.
Therefore, in this case all the results bits will reach the output latch at same instant
and at that moment, the latch can be permitted to perform its duty of latching. This is

a bounded delay model, where gate and wire delays are previously known.

One can imaginc the scenario when no limits are imposed on the gate and wire
delays associated with inputs, outputs and processing unit in Figure 2.2, as is the case
with technology independent designs. Such is the unbounded delay model for wire
and gate delays, defining a DI system. In DI circuits, there is no guarantee that a wire
will reach its proper value at any specific time, since some prior element may be
delaying the output. Therefore, for the data to transit between thc sender and the
receiver in a DI system, there must exist a handshaking protocol of request and
acknowledge between the two (i.e. one element informing the next that it can

proceed).
2.2.1.1 Handshaking Protocol

Upon sending data, a rcquest transition is sent from the sender to the receiver, and a
response transition is sent back by the completion detection logic, upon complete
reception. This forms a 2-phase handshaking, where both the positive and negative

edges are considered. On the other hand, a 4-phase handshaking protocol is the one
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wherc a second set of request and response (acknowledge) transitions are sent in order
to return the connecting wires to their original (inert) values. 2-phase and 4-phase

handshaking protocols are shown in Figure 2.3.

Request N Pl
Acknowledge
Event { triggered l_g/cnt i+3 received
by sender by receiver
Event i received_ | |Event /+3 triggered
by receiver by sender
Event i+/ triggercﬁj t Event i+2 received
by sender by receiver
Event i+ reccived_J | Event i+2 triggered
by receiver by sender
(a)
Request ™~ P
Acknowledge
Event / triggered lgata line has moved
by sender back to inert state
Event received_J | Data line moving
by receiver back to inert state
Data line moving__J | Event i+/ received
back to inert state by receiver
Data line has movgﬂ | Event i+ / triggered
back to inert state by sender
(b)

Figure 2.3: Shows (a) 2-phase handshaking protocol. Every edge in the request / acknowledge
protocol is an active edge. (b) 4-phase handshaking protocol. Only positive edges are active
edges in the request /acknowledge protocol. The other set of edges is used to bring the
communication line back to the inert state.
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In case of 4-phase protocol only rising transitions are considered active, for data
transmission and reception completion notification. Although the 4-phase
handshaking appears to require twice as much time because twice as many transitions
are sent, in most cases computation time dominates communication time, making 4-
phase delays competitive. Also, since only a rising edge initiates communication, the

4-phase circuits can be simpler than their 2-phase counterparts.
2.2.1.2 Bit Encoding

Another important aspect that needs to be discussed here is the completion detection
logic. How can the receiver know whether information that the sender sent is
completely received or not prior to generating an acknowledge signal. In the example
of Figure 2.2, r[3:0] pass through the following values before the result is stable: 0111
= 0110 = 0100 - 0000 -> 1000. An event is triggered, even at the transition of a
single bit, therefore the receiver has no way of knowing when the data is stable. In
case of DI systems, delays are unpredictablc making the issue a complex one. The
data in this case is said to be unbundled. Bit encoding is used to take care of this
problem, where each data bit is encoded to two wires. Let the two wires be labeled as
10 and I7 (Figure 2.4), with a transition on [0 indicating the data bit is a 0, and a

transition on /7 indicating the data bit is 1.

As an example, Lets consider the adder shown in Figure 2.2 to have R=0100,
After manipulation, the new R=1100. Only the most significant bit changed. But the
receiver did not know whether to expect change on a single bit or on all the bits,
because there is no way of differentiating between 0100 = 1100 transition and 0100

=> 1101 transition. Bit encoding can be used to ensure that all bits change their status
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upon a manipulation, whether their status changes in the actual manipulation or not.
Figure 2.4 shows the basic unbundled data handled by bit encoding and the related

completion detection circuitry.
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[ T
/ ! |
{ |
| FN— J
v ACKNOWLEDGE X
BIT-ENCODING COMPLETION DETECTION

CIRCUIT CIRCUIT

Figure 2.4: Bit-encoding and completion detection circuitry associated with unbundled data
strategy,

Table 2.1 shows the bit encoding with Return To Zero (RTZ) scheme. Note that both
2-phase and 4-phase protocols can be implemented to incorporate this scheme, where

prior to the following transition, the encoded data wires are forced to an inert statc

(zero in RTZ).
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TABLE 2.1

Bit Encoding with Return to Zero scheme for unbundled data strategy.
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2.2.1.3 Bundled Data Strategy

The problem associated with unbundled data strategy is real estate overheads, as twice

the number of data wires are required in the datapath implementation. So an alternate

approach called Bundied data strategy was developed [SHK95, SMN97, IES89], that

allows fewer wires to be used, but violates the delay-insensitive model. It allows a

single wire for each data bit, and one extra control (request) line for each bundled data

word as shown in Figure 2.5,
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Acknowledge

Figure 2.5: Bundled data strategy showing delay in request and acknowledge signals greater
than the delay in datapath.

It is assumed that the delay in the extra control wire is guaranteed to be longer than
the delay in each of the data wires. Thus, the control signal arrives at the receiver end
after all the data bits have reached it having the desired values on them. When the
receiver sees the transition on the control wire it knows the values on the data lines

have already arrived.

2.2.1.4 Muller C—Element

DI circuits evolved as a result of work done on Macromodules [WAC67] in 1960s and
70s by Clark and Molnar. The DI system was formalized by Udding [JTU86). C-
element {(REM65] shown in Figure 2.6 is an example of delay—insensitive circuit. C~
Element is extensively used while implementing handshaking in larger asynchronous

systems.
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Figure 2.6; Schematic view of a delay insensitive circuit called Muller C—element. If binary value is
same on both inputs, it appcars as output else a transition on a single input retains previous output state.

2.2.2 Quasi-Delay Insensitive (QDI) Designs

A Quasi Delay Insensitive (QDI) circuit is a Delay Insensitive circuit except that the
wire delays are not unbounded, rather they are arranged as isochronic forks with
bounded skews. Isochronic forks are forking wires where the difference in delays
between destinations is negligible [AJM89]. In case of DI circuits, the delays on the
fork wires are completely independent of each other and may vary considerably.
Martin and Van Bcrkel have extensively described the advantages and disadvantages

of QDI circuits [AMJ90, KVB92].

2.2.3 Speed—Independent (SI) Designs

A speed independent circuit operates correctly regardless of gate delays while the
wire delays are so negligible that they are ignored. SI circuits were introduced by

David Muller in [950s [REM65].

2.2.4 Self-Timed Designs

Speed independent elements i.e., circuits with negligible delays or circuits with well

bounded wire delays communicate delay insensitively with each other to form Self-
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Timed systems. Each element is considered to be in an equipotential region. Self-

timed circuits are described by Seitz [CMD80].

2.2.5 Micropipeline

Micropipelines were introduced in Ivan Sutherland [IES89] primarily as an
asynchronous alternative to synchronous pipelines. A micropipeline defined as an

event based elastic pipeline with or without processing is shown in Figure 2.7.
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Fig. 2.7. Shows the basic concept of micropipeline with processing [IAS89].

Micropipeline is catcgorized as a delay-insensitive methodology with bundled data.
The timing constraints in this system are not simply bundled data, but timing of all
computation elements including the communication interfaces need be considered.
That is the reason why micropipeline implementation is associated with full custom
designs to conserve timing constraints. Since a micropipeline shares features of both
delay-insensitive and bounded-delay circuits, it can be considered as a class of its own

in the asynchronous hierarchy. The following features are characteristic to

Micropipelines:
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. Signaling protocol
= Bundled Datapath
- Delay Elements

There are two basic signaling protocols fundamental to micropipeline i.e. 2-phase and
4-phase [1AS89, TEW91, CSCO1, OAP97]. Sutherland’s micropipcline is an example
of 2-phase micropipeline, where special event—controlled registers are used for inter—
stage latching and Muller C-elements arc used for the mi_cropipeline control (as
discussed earlier, C-elements are DI circuits). Delay pads equivalent to the time taken
by the respective logic unit to generate thc desired result on the datapath are inserted
to bundle the data. In fact, these delay pads define the request (control) cycle at each
stage and the time difference between the edges of the request and the acknowledge
signals.

The micropipeline model used by Furber in the implementation of Amulet2e [SBF97]
and upgrades is a 4-phase model [SBF96], characterized by design simplicity and

reduced real-estate of control circuitry resulting in power efficiency.

2.3 Evolution of Asynchrony

Asynchronous processing has always been an integral part of computing.
Asynchronous designs have been successfully applied to control oriented applications
(such as chip interfaces [AYV9S, LLO93)}, bus controllers [KYY95], cache
controllers [SMN93], and network communication controllers [WSC93, MBJ92]),
datapath components (such as adders {AJM92, JDG93], multipliers [ADA94], and

dividers [TEW91a], as well as general purpose microprocessors.
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The dawn of event-based computing saw small asynchronous modules available for
integration with other modules to form a computing system. Asynchronous building
blocks such as registers, adders, memories, and control devices, called macromodules
[WAC67, WACT3], were designed and individually tested to construct arbitrarily

large and complex systems during 1960s and 70s at the Washington University.

Data Driven Machine (DDM) [ALD78] consisting of wire-wrapped boards and back
plane was the world’s first operational dataflow machine designed at the University of
Utah during 1978 and 1982. Its self-timed operation used Huffman- style state

machines [REM65] for control.

The Caltech asynchronous processor [AMN89] developed during 1988 and 1989 was
the first asynchronous processor from the VLSI era. It was not meant to be innovative.
Rather it was supposed to provide a proof-of—concept for Caltech asynchronous
design style. Caltech Asynchronous Processor was a simple 16-bit processor with
two-stage pipeline. It was constructed using 1.6-micron CMOS technology and had
20,000 transistors on board a 6.6x4.6mm die. It executed 18 million instructions per

second, a very high performance for a processor of that era.

The concept of micropipelines was introduced by Sutherland [IES89] in 1989 that led

to various micropipeline based asynchronous processing applications.

Research in asynchronous systems was driven by industry requiring speed and power
conservation in the 1990s that continues to the day. Some of the famous research
projects are STRiP of Stanford University [MED92], NSR by the University of Utah
[EBD93], Counterflow Pipeline Processor by Sun Microsystems [RES94], Amulet(-

1, -2, -3) of the University of Manchester [SBF94, SBF97, SBF98, SBF02], Fred of
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the University of Utah [WFR96], Titac(- 1, -2) of the Tokyo Institute of Technology
[ATA97][TYA99], MiniMIPs by Caltech [AIM97], Async 80C51 by Philips
[HVG98], Async DDMP: Joint venture of Sharp Corporation, Osaka University and
the Kochi University, Japan [HTA99] and FLEETzero Asynchronous Project by Sun

Laboratories [CEM95, CEM97, 1IES01, WSCOI].

The Amulet series of microprocessors was developed at the University of Manchester
to demonstrate the feasibility, desirability and practicability of employing
asynchronous techniques in embedded applications. The main goal was to reduce the
power consumption. Asynchronous architecture was usced as a means to that end.

Amulet series had a micropipelined organization. The research continues to this day.

Sun Microsystems developed a proof-of-concept chip called FLEETzero [WSCOL1],
with a radically new architccture. The conventional synchronous proccssors are
designed in terms of operations such as addition, division and I/O. This operations-
centric view was correct when cost of logic was more than communication, not only
in financial terms, but also in terms of delay, powecr consumption and volume.
Recently, the cost of logic has plunged, lcaving communications as the high cost task.
Today the task of getting two numbers to an adder takes more chip area, consumes
more energy, and takes longer than doing the addition. But the operation-centric

design remains dominant, in conventional designs.

The communication-centric design focus of the FLEETzero chip concentrates on how
the data moves through the circuit. The arrival of data triggers thc operations. In the
FLEETzero chip, cach processing element, called a "ship", performs its own function

at its own pace. Binary code routes data from ship to ship. This Icts the programmer
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specify a sequence of data movements, so that operations become side effects of
where the program sends data. Consequently, only the portions of the circuit that are
required for computation are actually active and the rest stay in sleep mode to

COnsErve power.
2.4 Reconfigurable Mediums

As the size of applications developed on the general-purpose computing machines
grew, speed became a major issue. Various endeavors to enhance speed included the
development of Application Specific Integrated Circuits (ASICs), performing specific
tasks with greater efficiency [MJS97]. These ICs were especially popular with
distributed computing setups, as they in conjunction with each other, resulted in better

performance.

With the advent of mobile computing {MSN97], real estatc also became an issue of
significant importance. Independently efficient ASICs, integrated to form efficient
setups took too much of space to be part of hand-held mobile devices. This gave birth
to a new field called Reconfigurable Computing [KCNO02], in which the ASICs had
the capability of pgetting reconfigured to suit the requiremcnts of multiple
environments without affecting the real—estate. Although programmable devices such
as Programmable Array Logic (PAL) and Programmable Logic Array (PLA) existed
since the 70s, they were only used to eliminate the hard-wired glue logic and the
timing mismatches associated with unequal fork legs in its implementation [MJS97].
With the passage of time, the programmable devices started increasing in size and
functionality and today we live in the era where microprocessors are sold as open

cores, implementable in reconfigurable devices. Another very important issue
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effecting the overall cost and tum around time of a product, is prototyping.
Reconfigurable mediums have played a vital role in prototyping because of their
reprogrammable nature. As shown in Figure 2.8, reconfigurable devices give the

performance of ASICs with the flexibility of General Purpose ICs (GPICs) [SHK98].

In order to fully understand the characteristics of reconfigurable devices, a hierarchy
of devices [MJS97] used in various modes of computing, must be kept in mind. Such
a hierarchy chart is presented in Figure 2.9. Some important features of today's more
complex reconfigurable devices like FPGAs can be traced back to the Simple
Programmable Logic Devices (SPLDs). The internal structure a generic PALOV6G is

shown in Figure 2.10 for demonstration.

Reconfigurable
Devices

FLEXIBILITY

v

PERFORMANCE

Figure 2.8: Comparison of GPICs, ASICs and reconfigurable Devices on the performance vs.
flexibility scale,

Any logic circuit can be written in Sum-Of-Products (SOP) form. Left hand side of
the truth table describing the circuit is nothing but an implementation of minterms

with AND gates. The right side of the truth table represents the summing of these
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Figure 2.9: Hierarchy describing devices used in various modes of computing.

terms with OR gate. Programmable Array Logic (PAL) type devices are characterized
by a fixed OR-array and a programmable AND-array for the implementation of the

circuit equation in SOP form. The output can, however, be manipulated. If the
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resulting output moves out of the devices without changing the logic level, then such
a PAL is H-type device. If the resulting output is inverted in logic before being

ejected from the device, then PAL is L-type.

However, both L and H type PALs can only be used for the implementation of
combinatorial logic. A D-type latch can be placed at the output within the device to
make it compatible to the sequential logic. Such a PAL would then be called an R-
type PAL. The Evolution of R-type PAL meant that counters could be implemented in
it. But the counter equations consist of feedbacks. For an R-type PAL output to be fed
back to the input, wires external to the devicc had to be used, that were inefficient.
Therefore, R-type PALs were designed to have local feedbacks within the device, for

the implementation of efficient feedbacks.

Requirement of different type of PALs for the implementation of combinatorial
(positive / negative logic) and sequential logic has the potential to increase the real
estate of a design, by possibility of having unused resources in the different types.
This problem can be eliminated by using a V-type PAL, whose outputs can be
configured with the help of fuses to deliver in the L, H or R mode as per requirement,
The output is manipulated in an additional section of the device called OLMC (Output
Logic Mega Cell), as shown in Figure 2.10. Important thing to note is that result is
generated in both combinatorial and sequential forms by letting it move through
combinatorial and sequential paths, A multiplexer decides which result moves to the

output pad. The multiplexer select signal is controlled by a fusc.

PALs are single shot devices based on fuse or anti-fuse technology [MAJ97], They
are field programmable but not reprogrammable. A UV-PAL can be used to introduce

the element of re-programmability, as it can be erased by UV exposure.
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-31 -



Background Chapter 2

However, these devices cannot be labeled as reconfigurable, as they need to be pulled
out of the circuit to be erased and require programming voltages higher than the
operational voltages. GAL is a variant of PAL that is non-volatile and has the

capability of in-circuit reconfiguration at operational voltage.

The circuit implementation capacity of PALs / GALs is dependent of their 10s. The
implementation of a large circuit therefore, requires cascading of these devices. The
circuit has to be broken into smaller circuits suitable for the PAL size and then after
implementation, these PALs can be cascaded to get the result. For different circuits,
the I0s betwecn different PALs / GALs will vary in the cascaded circuit. So if the
cascaded structure is moved to a single IC platform it will require interconnects to be
reconfigurable. Such a devicc with cascaded SPLDs, communicating with each other
through reconfigurable interconnect structure called Programmable Switch Matrix
(PSM) the Complex Programmable Logic Device (CPLD). The feedbacks within
SPLDs constituting a CPLD act as local interconnects, while interconnects associated
with PSM can be labeled as global interconnects of the device. A Generic structure of

a CPLD is shown in Figure 2.11.

—  SPLD! £ SPLD3 —
— = G
— = I

F

2

3

7]

L

=

-

E
] E

£ T
E— gﬂ —
e SPLD2 & SPLD4 —

Figure 2.11: A generic structure of CPLD showing SPLDs cascaded through Programmable
Switch Matrix (PSM).
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FPGAs constitute the next higher level of reconfigurable devices. FPGA families are
generally SRAM based as shown in Figure 2.9 i.e., their configuration memory is
composed of SRAM cells and are, therefore, volatile. The two major FPGA structures
can categorized as MUX based like the FPGA families by Actel and LUT (Look-Up
Table) based like Xilinx and Altera FPGA families [MJS97]. Logic is implemented in
the FPGAs in Logic Elements (LEs), Configurable Logic Blocks (CLBs) and modules
for Altera, Xilinx and Actel, respectively. A logic equation can be implemented in an
Actel module with the help of Shannon’s Expansion theorem and binary trees, while
the output of a truth table can directly be considered an LUT in case of Altera and
Xilinx. Figure 2.12 explains the difference between design implementation style of

MUX and LUT based FPGAs.

A B C F 0
0 0 0 0 B
0 0 1 1 A ——J -ér
0 | 0 0 — =
0 1 0 B —g— A F
1 0 o0 | 0 c— |7
l 0 1 I KN
i 1 0 I T
| 1 1 1 —
F =(A.B) +(B".C)
(a) (b) (c)

Figure 2.12: (a) Implementation of logic in a MUX-based FPGA, (b) Truth Table of logic to
be implemented, (¢} Implementation of same logic in LUT-based FPGA.

in the presented rescarch LUT based FPGAs are used therefore Altera and Xilinx
FPGAs need further explanation. Function F in Figure 2.12, after emerging from the

LUT based function generator moves through the combinatorial and sequential paths
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as in SPLDs, before one of the results is selected to leave LE in case of Altera and
CLB in case of Xilinx. Eight LEs constitute a Logic Array Block (LAB) [FLX10].
Within a LAB, local interconnects exist that are fast and are used to cascade
fragmented logic in the LEs. The same local interconnects are used for the
implementation of fecedbacks also. Xilinx FPGAs have the CLBs arranged in matrix
formation [XXC30, VTX25]. Direct interconnects (like the local interconnects in
Altera) exist between neighboring CLBs in Xilinx. Other global interconnects are
spread around FPGA to connect different parts of the circuit. Extensive discussion of
the Scquential and combinatorial paths of logic elemcnts and the local interconnects
will be presented in Chapter No. 3, to explain the behavior of technology independent

implementation of SIRO.

FPGASs are associated with programming environments that hold the information on
thesc FPGAs in their libraries. The main responsibility of these environments is to
convert a design available in Hardware Descriptive Language (HDL), Schematic or
any other acceptable form, to a configuration file that can be loaded into the
configuration memory of the device. The environments make use of stochastic
processes and various algorithms to reduce the entered design, map it to the device
resources by effective placement and routing of sub circuits. Sometime the resulting
scheme may not satisfy the design constraints, in which case an altered design or
manual adjusted in placement and routing is necessary to achieve the desired results.
Simulations are necessary each step of the ways to know which step requires
amendment. Simulations are also important to verify compatibility with user-defined
constraints before the downloading of configuration into the device. Two main

categories of simulation are the functional simulation done in the beginning of the
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process to ensure the functional correctness of the entered design. This kind of
simulation is device independent as it onty checks functionality with the help of test
vectors to the equations. The more important kind of simulation done, just before the
configuration is downloaded into the device is called post-layout simulation, which is
device dependent and incorporates the delays of the device, found in the library
database, for the manipulation of results, to verify the timing constraints. Figure 2.13

shows the various steps associated with FPGA programming environments.

HDL / Sch. etc.

Design Entry

Functional

Simulation
£ Synthesis / @
ilc & . =
ElS E Oplimization = 2
2 E =] el
S R 3 o S
Elo g = > 9
<1E 3 E &
clo g o =
Do 4 Placement and E
A Rouitng e

Post-Layout

Simulation

Configuration File

Generation
Downloalld FPGA
Configration Design
Environment
Configuration
FPGA (hex) file

Figure 2,13: FPGA design environment and the associated design flow.
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A FPGA can be visualized as haVing two layers, a real one and a virtual one.
The real layer consists of the FPGA resource layout, while the virtual layer consists of
SRAM cells used for configuration [XXC30]. Systems implemented with FPGAs can
make use of their reconfigurability in one of two ways: Compile-Time
Reconfiguration (CTR) or Run-Time Reconfiguration (RTR) [BLH95]. CTR systems
do not change the FPGA's configuration for the life-time of the application. RTR
systems change the FPGA configuration during the course of operation, either by full
reconfiguration [JMDOQ0, DRS93] or partial reconfiguration [JDH95, SMMO0Q].
Dynamic partial reconfiguration allows an FPGA to implement multiple functions and

to change those functions while the system is running.

Therefore, the reprogrammable nature of FPGAs in CTR mode makes them
ideal for low cost and fast prototyping, while thc RTR makes them suitable hardware
implementations designed to support applications performing variety of tasks in real

estate and power controlled environment.
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A standard ring oscillator consists of an odd number of inverters connected in a
feedback loop. The odd count results in a self—oscillating circuit. A simple Single
Inverter Ring Oscillator (SIRO) as shown in Figure 3.1(a) is an inverter whose input
and output are connected, so that the gate and wire delays of this circuit account for

the cycle time of oscillator.

0sC

(a)

QSsC

(b}

Figure 3.1: (a) single inverter ring oscillator, (b) tri inverter ring oscillator
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Any odd number of inverters can be placed in series following the same pattern to
implement oscitlators with lesser frequencies. Very commonly used is Tri Inverter

Ring Oscillator (TIRO), as shown in Figure 3.1(b).

Due to its integrated nature, a ring oscillator can be used in a variety of applications,
such as clock recovery circuits, on-chip clock distribution schemes [TMI04, RFR98,
RWRE7, DLLS2] and as sensor [SLB02, NDJ0O] where the frequency of oscillator
varies with the parameter to be sensed. These applications of ring oscillator are full-
custom. Ring oscillator application does exist in FPGAs within the Delay—Locked

Loop (DLL) [DLLS2] but this is also a full-custom implementation.

Schematic diagram of a GaAs—based Direct Coupled FET Logic (DCFL) TIRO is
shown in Figure 3.2. Simulation shown in Figure 3.3 was done in AIM-Spice
ver.3.08f, using Shur’s unified extrinsic model for uniformly doped N-—channel
MESFET [KLE93]. According to the simulation results this fullcustom ring

oscillator operates at 41.5GHz.

—3
T

¥(4)

Figure 3.2: Schematic diagram of GaAs based DCFL tri inverter ring oscillator.
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Figure 3.3: Simulation of TIRO done in AIM-Spice.

Now consider implementation of a ring oscillator in a reconfigurable medium such as
FPGA using HDL. A SIRO model in Verilog HDL, fails to produce functional
simulation results as A = ~4; makes no sense, yet when the same code is synthesized
and implemented in an FPGA, one can observe a stable oscillatory signal in its post-

layout simulation. SIRO implementation presented in this thesis, consists of a simple

2—input Nand gate, as shown in Figure 3.4(a).

module siro(osc, reset);
input reset;
output osc;
wire oscl;

nand nl(osc, reset, oscl);

I assign oscl = osc;
0sC

/reset
endmodule

(b)

(a)

Figure 3.4: represents (a) Schematic diagram of SIRO, (b) Verilog model of SIRO
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Figure 3.4(b) shows the Verilog model for SIRO, where the Nand gate, has its output
‘os¢’ looping back to one of its inputs. The other input of the Nand gate is the global,
negative logic ‘reset’. As a result, ‘osc’ remains high when ‘reset’ is low and toggles

when it is high.

The result is an oscillator with frequency far exceeding the maximum frequency
specifications of the FPGA used to implement the design. The maximum frequency of
the FPGA, specified in its data sheet [FLX10, VTX25] is associated with the setup
and hold time requirements of its sequential elements. The reason why SIRO
frequency by-passes the maximum operational frequency, is based on thc internal
structure of FPGA [FLX10, VTX25, XXC30]. A typical structure of logic clement in
an LUT-based FPGA is shown in Figure 3.5. The inputs to the LE are manipulated by
the LUT to generate an output, that passes through two paths; sequential containing
D-flip flop and combinatorial. A multiplexer controlled by an SRAM configuration
bit decides the path that can proceed out of the LE. The HDL code is responsible for

the setting or resetting of the Multiplexer related SRAM bit.

C-path
Lur ouT
@
_’ B D
e b Q S-path
. ol &
Z ~—— < =
L] g [} -
551258
& D CLK

~
-

Figure 4.5; A typical Logic Element (LE) of an LUT-based FPGA.

]
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The self-starting SIRO presented in Figure 3.4, fits into a single LE following the
combinatorial path shown as c-path in Figure 3.5. Figure 3.6 shows the fast
interconnects of FPGAs. Altera model is presented in Figure 3.6a, where group of
LEs form a Logic Array Block (LAB) and the output of each LE can move to the
global as well as local interconnects that establish fast feedback to the inputs of other
LEs in the LAB. Figure 3.6b shows the Xilinx model, where the output of CLBs can
connect directly to the global, as well as direct interconnects that provide a fast and
direct link to the neighboring CLBs. There ar¢ also feedback loops with LEs and

CLBs that are direct and fast [FLX 10, XXC30].

The fast interconnects (direct / local) establish the feedback ring of SIRO. As a result
delay in the combinatorial path plus wire delay associate with fast local interconnects
of LE separate 4 from ~4, producing a high frequency oscillator, with frequency
greater than the setup and hold time requirement of the latch found in the sequential
path presented as s-path in Figure 3.5. As SIRO, independent of the FPGA
programming environment, always consumes a single LE, this {requency is always

optimal.

For SIRO to mect the setup and hold time requirements FPGAs’ sequential elements,
Latch Synchronizing Circuit is added to the oscillator circuit to generate a Latch
Synchronized Oscillator (LSO) called Asynchronous Clock (4CLK) in Figure 3.7. In
the LSO Verilog model, as shown in Fig. 3.7(b), ‘os¢’ is prevented from triggering the
LE latch, till its present state ‘al’ is opposite to next state ‘a2’, as the output of latch

‘ACLK’ is fed back to its input after inversion, to generate a T-flip flop.
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ACLK
»>

o LSO

T

clk d

OSC

al

D

/RESET

" SIRO
(a)

module lso(osc, aclk, reset);
input reset; output aclk, osc;
reg aclkl, al, ack; wire osc, a2;

siro s1{osc, reset);

always @ (posedge osc or negedge reset)
begin
al = ~aclk;
if (osc ==1)
begin
if (reset == 0)
begin
aclkl =0;
al=1,
ack =0,
end
if (ack == 1) aclkl = ~aclk;
if (al !=a2) ack =1;
else ack =0;
end
end
assign a2 = aclkl;
assign aclk = aclkl; (b)
endmodule

Figure 3.7:  (a) Functionally equivalent schematic diagram of LSO, (b) Verilog code for LSC.
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As in case of T-flip flop, the present state and next state only complement upon the
satisfaction of setup and hold time requirement, the ‘ack’ signal permits triggering
only when al/ # a2. This automatically generates a toggling ‘4CLK’ signal, that
complies with setup and hold time requirement of LE latch. As the technology is
uniform over the entire FPGA, SIRO adjusted to Latch Synchronized Oscillator
(LSO) for one latch, is compatible to the sequential elements over the entire chip.
‘ACLK’ may further be divided as per the requirement of circuit. Figure 3.8 shows
SIRO (OSC), LSO (ACLK) and LSO divided by a factor of two (D/¥2) and eight

(DIV8).

3.1  SIRO as on—chip clock source

The property of SIRO circuit that it adapts to the FPGA technology by varying its
oscillation frequency is considercd while using it as an on-chip clock sourcc to drive
co-existing synchronous circuits. Same SIRO Verilog code, without any modification
was synthesized and implemented in various FPGAs, to demonstrate self-adjustment
of the circuit proportionate to the maximum frequency specification of the device. In
fact LSO frequency was found to be the same as the maximum specified value. Table
3.1 presents the observed values of SIRO, LSO, DIV2 and DIV8 for XC2S400E-
7FG456 and XCV200E-8FG456 devices, emphasizing the concept of technology

independence through dynamic calibration or adaptation.

The SIRO circuit is stable enough so that the FPGAs can be identified with their
SIRO number; an entity measured on the time scale, directly proportional to the

maximum frequency factor of the device.
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TABLE 3.1

SIRO, LSO, DIV2 (LSO divided by 2) and DIV8 (LSO divided by 8) values
for different devices showing technology independence of circuits.

SIRO LSO DIV2 | DIVS

DEVICE @S) | (@S) | (S) | (@s)

@) | XCV200E-8FG456 226 | 452 | 9.04 |36.16
(b) XC258400E-7FG456 2.53 5.06 10.12 40.48

Another set of readings was taken after letting the clock signals (external and internal})
ride the global clock—tree via Delay-Locked Loop (DLL) to enhance the fanout and
reduce the skews in the clock signal [DLLS2, DLLVE]. CLKDLL macro provided by
Xilinx was used to implement DLL. In order to connect internal clock to the ‘clkin’
input of CLKDLL, a windows environment variable ‘XIL_MAP_ALLOW_ANY_
DLL_INPUT’ w;as set to ‘1°. It was necessary as the environment in normal mode
only lets external clock signal riding the clock tree to use DLL macro. Whereas, SIRO
acting as the clock source, is implemented on the same FPGA and is not required to
utilize any of the FPGA IOs. Therefore, CLKDLL was forced to accept an internal

signal at the input by setting the environment variable.

[t was observed that the maximum external frequency locked by the DLL in an FPGA
is approximately the same as the SIRO parameter for that device. This frequency is
much greater than the maximum frequency specification for that device and if used to
drive a synchronous circuit, causes setup and hold time violations. It was also
observed that an external frequency, same as the LSO, when manipulated by

CLKDLL, effectively drives a synchronous circuit without timing violations. This
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frequency is the same as maximum frequency parameter specified in the datasheet for

the device.
3.2 SIRO based Delay Element

SIRO can be used as a delay element with dynamic calibration capability. The
adaptive nature of SIRO circuit already discussed in section 3.1 can be utilized in the
generation of such an clenient, as Figure 3.9 explains. In this scheme, SIRO is
controlled by LSC, which is used to drive an N-bit counter where the depth of the

counter  is parameterized.

‘-_
/ACK .
:
F 3
z LSC
]
DIVIDING
C[N:0] 5
g
- /REQ

Figure 3.9: SIRO based delay element with dynamic calibration capability.

The N-bit counter basically divides the frequency of LSO to introduce the desired
delay anywhere in the circuit. Setup and hold time violations do not exist in the

counter circuit because of it being driven by LSO. The cleared counter is initially
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triggered by a request signal and the Nth bit of the counter acts as an acknowledge
signal. Therefore, the depth of the counter defines the delay between request and

acknowledge while the circuit acts as a delay element.

As asynchronous systems including micropipelines depend critically on their delay
model, the SIRO based technology independent delay element is widely used in this
thesis to introduce desired delays. The delay element can be used in different stages of
the micropipeline to insert required delay. A simple change in the parameter N of the
N-bit counter, changes the value of delay to suit the requirements of any stage. Post—
Layout simulation of the SIRO output (OSC), LSO (ACLK) and the 8-bit counter
(N=3), for Altera’s Flex10K and Xilinx XCV50e-8 is shown in Figure 3.10. It can be
observed that ‘reset’ triggers SIRO based ‘osc’, that is adjusted by LSC to produce
‘aclk’. ‘aclk’ is divided by 2 without timing violations to produce ‘aclk2’. ‘count’ is
the output of 3-bit counter driven by SIRO based oscillator. In Figure 3.10a&b, post-
layout simulations in both Altera and Xilinx devices is prcsented to show the
technology independent behavior of the developed delay element for FPGAs. The
delay element adapts to the FPGA environment due to the frequency variation in
SIRO i.e., the same counter driven by variable environment based frequency sets bit N

after variable dclay.
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Instruction Set Architecture

Instruction Set Architecture (ISA) for a simple 32-bit Load / Store RISC machine was
developed, so that its various microarchitectures [DAP03, JBT99] are based on the
techniques presented in this thesis. As the main focus of this thesis is not the
development of a new kind of architecture, rather it is used as an application to
support the presented concepts, therefore the ISA has intentionally been kept minimal,

but complete [DAP03, JBT99], as shown in Figure 4.1.

The architecture defines an Integer Unit and a 16*32 bit register file. RO is fixed at
zero. Instruction and Data Memories consume the on—chip memory resources of the
FPGA used in its implementation. Data manipulations are restricted to 32-bit only. It
has four types of instructions, arranged in two groups (Group 1 and Group 2), details

of which are presented in the following sections.
4.1 Instruction Set

Instructions belonging to Groups 1 & 2 are shown in Table 4.1. Being a tri-operand
architecture, opcode of ADD has intentionally been kept zero, so that a 32-bit ‘zero’
instruction provides a no operation function (NOP: RO€R0+R0). Note that R0 is not

writable in the register file.



CHAFPTER 4

Instruction Set Architecture

~10883201d HSTY 1G-Z¢ aduns yo duljadig 1y amBig

(am)
MOVE-ILIHNM

 — — 1 1

z z Z z

._..=._ ._.._._._ .._.=._ 1X3 NOIS -_ _.|=_

2 .H K— .H K o

o, ) o 8] &

=K =~ = ZESL | 4

» ™ » » >

Q @ Q 34 [~ AHOW3W
m m ul ‘034 m

L ANOWIW | e e ASNI
> K . s nv Lig-z¢ > 130d >

a viva a o BISh; 0

. : £ z

w Y] w ﬁ
L] S M L)

A (eBe1s-) e {ebeys-x}) e (eBeys-q) e (abers-4)

AMOWIW Viva _ 31noax3 T 3005340 T Ho13d

¥3INNOD
(| Wwaooud
La-ze

| sawoivizovis-wain

(ebeys-()

i

LNIWIUINI

-51 -




Instruction Set Architecture

CHAPTER 4

TABLE 4.1
Simple RISC Instruction Set

INSTRUCTION | FUNCTION OPCODE | GROUP
ADD / ADDI Add / Add Immediate 0000 ]
ST/ STI Store / Store Immediate 0001 1
LD/ LDI Load/ Load Immediate 0010 1
SUB / SUBI Subtract /Subtract Immediate | 0011 1
AND / ANDI AND / AND Immediatc 0100 1
OR /ORI] OR./ OR Immediatec 0101 1
XOR / XORI XOR / XOR Immediate 0110 1
SHR / SHRI Shift Right / Shift Right by 1000 1

Immediate
SHL / SHLI Shift Left / Shift Left by 1001 1

Immediate
BR Un-Cond. Branch - 2
BNEZ Branch if not zero - 2
BEZ Branch if zero - 2

4.2 Instruction Types

Table 4.2 shows different instruction types in RMP. Register—Type (R-type) and
Immediate-Type (I-type) instructions (Group 1) are characterized by bit 31 =0. ‘0’ at
bit 26 for group 1 represents R-type, while ‘1’ at this location for the same group
represents I-type instruction. Conditional-Control (CC-type) and Direct—Control (DC-

type) instructions (Group 2) have bit 31 = 1. ‘0’ at bit 30 for group 2 represents CC-

type while ‘1’ represents DC-type.




Instruction Set Architecture

CHAPTER 4

TABLE 4.2

Simple RISC Instruction Types

REGISTER-TYPE INSTRUCTION
0 Opcode 0 Rd Rsl Rs2 Unused
31 | 30... 27 | 26 | 25..21 | 20.16 | I5.11 10... 0
Format: ADD RI, R2,R3
RTL: RI1 € [R2]+ [R3]
IMMEDIATE-TYPE INSTRUCTION
0 Opcode 1 Rd Rsl Immediate
31 | 30... 27 | 26 | 25..21 | 20..16 15 ... 0

Format: ADDI R1, R2, 0300

RTL:

R1 € [R2] + 0300

CONDITIONAL-CONTROL INSTRUCTION

1 |0 | T]|unused | Rc Offset
31130|29 | 28.26 {25.21 20... O
Format: BNEZ R4, Loop
RTL: If(R4!=0)PC=PC+ 1+ offset

DIRECT-CONTROL INSTRUCTION

1 |1

Offset

31130

29...0

Format: BR Loop
RIL: PC=PC+ 1+ offset
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‘Rd’ stands for the destinations register; ‘Rsl’ for source register 1; ‘Rs2’ for source
register 2; ‘Rc’ for condition register to be tested for validity of condition and ‘T” for

the type of condition; ‘0’ for BEZ and *1’ for BNEZ.

As simple RISC is a Load /Store machine supporting register and immediate modes,
the ALU instructions must have at least one source coming from the register file
(Rsl). The other source can be from the register file (Rs2) or can be an immediate
value (IMM). The manipulated result is stored in the register file at location specified
by Rd. In case of load instruction, Rsl + (Rs2 or IMM), defines the effective data
memory address, from where the data is loaded into Rd. In case of store instruction,
Rsl + (Rs2 or IMM), defines the effective data memory address, to which the

contents of Rd are copied.

When the condition is true for CC-type instruction or in case of unconditional branch,
the offset specificd by the control instruction is added to the Program Counter (PC)
value and then loaded back into the PC. As the offsets and immediate values in casc
of fixed instruction length architectures are always limited, so these values must

always be sign extended prior to addition.
4.3 Pipeline

The program counter resets to zero which is the reset address and when the load
control signal is set high upon the execution of a control instruction, it loads a new

value else it increments.

Multi-port register file with read after write capability in the same stage is

implemented to avoid structural hazards, because of the Write Back (WB) operation.



Instruction Set Architecture CHAPTER 4

Decode stage, receives two destination register (Rd) values simultaneously, one from
the current instruction reaching this stage and other, from a previous ALU or load
instruction. A point to be noted here is that out—of—order execution is not supported in

this simple RISC.

The Read After Write (RAW) type data hazards were avoided through forwarding
using multiplexers at ALU input whereas control hazards were avoided by insertion of

stall.

A branch, conditional or otherwise, is deciphered in the decode stage, by which time
PC increments as if branch was not taken and points to the flowing instruction in the
memory. If a branch is to be taken, load control signal originating from the decode
stage orders PC to load branch offset and at the same time masks the unwanted
fetched instruction to zero before it enters the decode stage. A 32 bit zero instruction
in the decode stage is interpreted as a NOP, which disables the PC load control signal,
active during the last cycle to load branch offset. If in case of conditional control
instruction, condition is not met, load control signal docs not become active and the

instruction following the branch instruction is normally executed without stall.



Externally Clockless RISC

In this chapter a SIRO implementation in FPGAs, serving the purpose of on—chip
oscillator driving co—existing clocked circuits is presented. The property of SIRO to
adapt to the FPGA technology by automatic frequency adjustment always ensures
optimal performance of synchronous circuit. Externally clocked circuits upon FPGA
technology variation require a change in oscillating source for optimal performance,
whereas SIRO-based on—hip oscillator provides platform independence, without
power overhead. In addition, a clocked circuit driven by the on—chip oscillator has
greater Electromagnetic compatibility (EMC), as compared to the externally clocked
one. To support the claim, simple RISC presented in Chapter No. 4, was implemented
in various FPGAs and was driven by external clock source. Then the same RISC was
moedified to incorporate on—chip oscillator as shown in Figure 5.1 and was driven by
it. In case of external frequency source, oscillator had to be changed for optimal
performance, while in case of on-chip SIRO-based design, optimal frequency was

automatically achieved.

5.1 Implementation
Presented is the clocked (external oscillator) and clockless (SIRO-based on—chip

oscillator) implementations of simple RISC in Xilinx XC2S400E-7FG456 and
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XCV200E-8FG456 FPGAs. Test program given in Table 5.1, was executed in case of

all these implementations as shown in Figure 5.2 and Figure 5.3.

TABLE 5.1
Test program for externally clockless RISC machine
Address | Data Memory Instruction Instruction
(hex) (hex) Memory (hex)

0 (0000000 00000000 NOP
1 00000000 14200003 LDI RI1, R0, #3
2 00000000 14400004 LDI R2, R0, #4
3 00000003 14600005 LDI R3,R0, #5
4 00000006 14800006 LDI R4, RO, #6
5 00000002 14A10007 LDI RS, R1, #7
6 00000001 10C11000 LD R6,R1,R2
7 (0000000 14E10002 LDI R7,R1, #2
8 00000000 00432000 ADD R2,R3, R4
9 00000008 00642800 ADD R3,R4,R5
A 00000005 00853000 ADD R4, R5,R6
B 00000000 08253000 ST R1,R5,R6
C 00000000 08413000 ST R2,R],R6
D 00000000 08620800 ST R3,RI1,R2
E 00000000 00000000 NOP
F 00000000 1480000D LDI R4, RO, #0D

It was observed that the clocked and clockless versions consumed, approximately, the
same amount of power. The excess power consumed by the on—hip oscillator in case

of the clockless version was comparable to the power consumed by external clock
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input in case of the clocked version. The results as presented in Table 5.2 were
verified using Xpower and Xilinx power estimator worksheets [POWS2, XXPOW].
Additionally, clocked version of simple RISC when implemented in XCV200E-
8FG456 worked well with 55.6MHz oscillator, whereas, the same core when
implemented in XC2S400E-7FG456, failed to function properly and required a
replacement of external oscillator by the one with lower frequency for proper
functioning. Post-layout simulation shown in Figure 5.2 presents this fact. On the
other hand, as shown in Figure 5.3, SIRO—Based on—chip oscillator automatically
adapted itself to the technology change by reducing its frequency in case of
XC28400E-7FG456, optimally triggering simple RISC core in both the devices, thus,
producing correct results without the need of any circuit modification.
TABLE 5.2

Comparison of various parameters of the
Clocked and Clockless versions of RISC

Design Device | Ext. Clock| Freq. Power ‘mW?
/On-chip | ‘MH2’
Osc. ‘n§’ C T
Externally | XC2S400E 22 45.4 27.046 648.59
29,488 653.81
Clocked 34.164 | 655.14
RI ) : -
SC XCV200E 18 55.6 34,532 657.03
Externally | XxC28400E| 20.2 495 0.0 654.55
Clockless
RISC XCV200E 17.8 56.2 0.0 656.28

C = Clock Input, T = Total power consumption including the Quiescent power of 547mW,

=Calculations @ clockless freq. for comparison.

In case of larger sequential circuits, where the on—chip oscillator is required to ride
the clock tree within the traditionally synchronous FPGA mediums, CLKDLL and

BUFG (Buffer for Global) modules [DLLS2, DLLVE] are incorporated to enhance
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the fanout of the signal and to reduce the skews. But when the LSO was connected to

BUFG, in order to use CLKDLL module, the following error message appeared:

“When the CLKIN pin or the CLKFB pin of a CLKDLL is being driven by a BUFG,
the BUFG must also be driven by a CLKDLL. To by-pass this error, set environment

variable XIL_MAP_ALLOW ANY DLL_INPUT. “

Therefore, as explained in Chapter No. 3, the environment variable
XIL_MAP ALLOW_ANY_DLL INPUT was set to 1, in order to let the LSO use
delay-locked Ioop.

Because of being on—chip rather than on-board, the SIRO-based oscillator driven
synchronous designs have better EMC (a property generally associated with
asynchronous circuits), with an option of further improvement through IC shielding,
impossible in case of externally triggered systems. This makes SIRO-based oscillator

driven circuits, more suitable for use with communication equipment.
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As already explained in Chapter No. 2, a micropipcline is an event driven elastic
pipeline with or without processing [IAS89]. It can exist in a 2-phase or in a 4-phase
form [IAS89, TEW9!, CSCO01, OAP97] and is characterized by bundled data strategy.
In Sutherland’s 2-phase micropipeline [IAS89], special event-controlled registers are
used for inter stage latching and Muller C-elements are used for the micropipeline
control. Delay elements equivalent to the time taken by the respective logic unit to
generate thc desired results on the datapath are inserted to bundle the data. In fact,
these delay elements define the request cycle at each stage and the time difference
between the edges of the request and the acknowledge signals. This approach works
very well with full custom dcsigns but fails in case of FPGAs because of difficulty in
implementing delay elements in FPGAs. Therefore, a modified FPGA compliant

micropipeline model is presented in this chapter.

The concept of micropipeline which is native to full custom design is imported to a
traditionally synchronous environment of FPGAs by introducing SIRO-based delay
elements, customized with the help of dividing counters to suit the requirements of

various stages of micropipeline. To implement FPGA—compliant micropipeline
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unbundled data strategy has been adopted by incorporating special event controlled

registers as opposed to traditional bundled data approach of micropipeline.

Micropipelines are not implemented in reconfigurable mediums because FPGAs have
predefined building blocks such as LE or Configurable Logic Blocks (CLBs) and
interconnects. These FPGAs are reconfigurable but their layout is fixed and different
for various devices. Secondly, variety of synthesizers, optimizers and routers follow
different schemes for the implementation of a given design. This makes it virtually
impossible to implement technology independent delay model in commercially
available FPGAs. Manual intervention can eliminate this problem, but then the time
factor becomes the same as that for a full custom implementation making full custom

solution preferable for its higher efficiency.

The difficulty in case of FPGAs is the unpredictability of on—chip delays. To be
technology independent a predefined delay requires a circuit that supports dynamic

calibration. It has been shown that on—chip SIRO is a circuit with this property.

Another critical problem is that of datapath implementation in FPGAs. Reduction in
real estate of a design requires bundled data strategy. To bundle the data in an
asynchronous design generally means to place accurate delay elements parallel to the
datapath [IAS89]. Now even if a technology independent delay pad is placed in the
circuit, various design tools may implement the same datapath in different styles
ruining the ratio between delay element and the propagation delays in various fork
legs of datapath [TEW91, CSCOI]. Therefore, in this study, the unbundled data
strategy with bit—encoding is adopted for the implementation of micropipeline in

FPGAs.



FPGA Compliant Micropipeline CHAPTER 6

6.1 SIRO-based Delay Element

Design of a SIRO-based delay element has already been discussed in detail in
Chapter No. 3. It has also been proven that this circuit is technology independent.
Therefore, these delay elements are used to develop the delay model for the FPGA—
compliant micropipeline, and thus eliminate the first problem associated with such an
implementation. By changing the parameterized depth of the dividiné counter, the
delay elements can be placed in various stages of micropipeline to insert the required
delay. The technology independent nature of these delay elements ensures dynamic
calibration of delay to maintain timing constraints for the micropipeline upon
technology variation. Technically, this should be enough to bundle the data, but the
uncertainty associated with environments’ implementation styles force the use of
unbundled data strategy despite the use of technology independent delay elements.
Figure 6.1 shows the implementation of delay elements in Xilinx XC2s400e-6fg456
and Altera EPF10K30ETC144-1 devices. ISE Foundation series 5.2i with ModelSim
XE ver. 5.6e was used for the simulation of Xilinx device, while Max Plus+2 ver.10.2
was used for Altera device. Rising edge of a request signal triggers the SIRO that
drives the dividing counter. Upon reaching a preset count value, the SIRO stops and
acknowledge signal is generated to show that the stage has completed its task.
Another request to the stage, forces acknowledge_signal to go low while the SIRQO is
retriggered to run the dividing counter. F'igure 6.1a&b show post-layout simulation
results for the same delay i.e. N=2 in Xilinx and Altera devices, while Figure 6.1c
shows simulation results for the same code in Altera device when the delay required

parameter &V to be 3.
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6.2 Unbundled Datapath

To overcome the unpredictability of the datapath layout in FPGAs special event
controlled inter stage registers have been designed which incorporate bit encoding and
return-to-zero strategies to handle the unbundlcd datapath [WIBO1]. A 2-bit Event

Controlled Register (ECR) is shown in Figure 6.2.

[ INp1) IN[O] REQ

WV
0
[y
-~
ouTe]

[ ACK

[
]
[w)
=
OUTT4} l

Figure 6.2: Functional equivalent of Verilog model for a 2-bit event controlled register with bit

encoding,
Each input data bit is encoded to ‘10’ or ‘01’ for its state of ‘1’ or ‘0’ respectively. At
the falling edge of the request signal, all the encoded bits return-to-zero so that even if
a similar event occurs twice, the two may be distinguishable. At the rising edge of the
request to the ECR the input bits get encoded generating a ‘1’ at the ‘clk’ input of LE
latch. Whereas on the falling edge of the request, stable value of the event is latched
and an inverted acknowledge (/ACK) signal is triggered when all the cncpdcd bits

return-to-zero.
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Muller C-element implementation in FPGA is used for completion detection. Verilog
model of C-element implemented and the post-layout simulation results for

XC2S44E-6fg456 and EPF10K30ETC144-1devices are shown in Figure 6.3.

module celement(z,x,y);
input x,y;

output z;

wire z1, 22, z3;

nand ul(zl, x, y);
nand u2(z2, z, y),
nand u3(z3, z, x);
nand ud(z, z1, z2, z3);

endmodule

Name: ¥ II.IIIIns 4U.|Uns 60.0ns HJ.EJns 1lIl.ll]ns 120.|Uns 14

_~x[0] | _‘_—|___
—~y (0 f l___l__—l___
e - I e

(©)

Figure 6.3: (a) Verilog code for Muller C-element, (b) post-layout simulation results for Xilinx
XC2544E-6fg456 and (c) Altera EPF10K30ETC144-1 devices.

The ECR receives a request from the associated state. After receiving all the bits of
data, it generates an acknowledge signal to the associated state that computes the next

result and goes into sleep mode but does not deliver this new result to the ECR till the
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following stage receives the previously latched result from ECR. Once the ECR
delivers the result to the following stage, it removes it’s acknowledge signal, that lets
the associated stage latch the pre-computed result in it. The cycle is then repeated.
This pre-charging feature resembles the William’s PSO pipeline [TEW91]. Post
layout simulation of a 32-bit ECR for (a) XC2s400e-6fg456 and (b)

EPFI10K30ETC144-1 devices is shown in Figure 6.4.

6.3 Micropipeline for FPGAs

Figure 6.5 shows a FPGA—compliant model of a 4-phase micropipeline [YZR04]. In
this figure special ECRs provide inter stage latching. Each stage consists of a delay
pad with its own adaptive SIRQ, latch synchronizing circuit and a counter with
reconfigurable depth N. The depth of the counter is parameterized to customize the
delay element of each stage. A stage after completing its task stops the SIRO and
generates a request signal to the following ECR. The ECR does not process this
request till the following stage completes its task and generates a request to its
relevant ECR for the saving of the results. Once the results are successfully latched,
the acknowledge signal from the ECR of stage 1 re-triggers the SIRO for another task

to be performed by stage 1.

This request / grant protocol is repeated in every stage of the micropipeline. The only
difference being in case of the final stage where the request to the following ECR
comes from stage 1. as in case of Williams PSO pipeline [TEW91]. As a result of this
strategy, a stage completes its task; its SIRO goes into the sleep mode to conserve
power and does not wakeup till the following stage requests the results of the first

stage to be passed onto it through the ECR.
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JRESET (8}
- (3)
— S_T T — § 1T — P
L 5 5 5
SIRO | LSO 0 SIRO | LSO % SIRO| LSO g
L 1| & I & J g
Counter 3 Counter fg Counter [, °
CIN:1] E_E]] = ci 5 ClJ:1]1 e ﬁ IS
IRST E "g’ IRST £ g
LOGIC NEY 3Gy L0SC Ly ol s
STAGE 1 c STAGE 2 s STAGE 3 "é
S g S
1] w w
IACKA1 | IACK2 ) IACK3 |

(1) Request to the last stage (2) System Reset (3} REQ4

Figure 6.5; [Illustrates a micropipeline model implemented in FPGA.

Same Verilog code for a 5-stage FPGA—compliant micropipeline was implemented in
various FPGAs, to confirm the technology and environment independence of the
design. Figures 6.6 and 6.7 show the post—layout simulation results when the design
was implemented in Xilinx XC2S400E-6456FG and Altera EPF10K30ETC144-1
devices using ISE Foundation series + ModelSim XE and MaxPlus+2 environments,
respectively. Different stages of the micropipeline have different values of N, to
implement the desired delay. Stage onc has a 32-bit counter as the functional unit
associated with it. This counter is also triggered by the same SIRO that is used in the
implementation of delay element, thus eliminating the need of external clock source.
In the same manner other stages can also have processing units that may use the on-
chip oscillator associated with that stage, giving micropipeline an over all GALS look
[YZR5a], for the stages communicate asynchronously. The count of stage 1 proceeds

through the other stages with different delays and emerges from the final stage,
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proving the correctness of design. Variation in performance of the same design upon
implementation in different devices, emphasizing technology independence, is
reported in Table 6.1. The simple RISC presented in Chapter No. 4 was implemented
using this micropipeline model, as an application to support the claims. The following
chapter describes in detail the implementation Reconfigurable Micropipelined

Processor (RMP) and the associated power issues are discussed in Chapter No. 8.

TABLE 6.1
Micropipeline performance in Altera and Xilinx devices.
Device SIRO | LSO | Avg.Data Throughput
‘nS’ | ‘nS’ | output ‘nS’ | ‘10° Data items /S’

Altera

EPF10K30ETC144-1 | 18 | 36 70 14.3
Xilinx

XC25400c-6£2456 24 4.8 94.6 10.6




Reconfigurable Micropipelined Processor

As an application of FPGA—compliant micropipeline, simple RISC presented in
Chapter No. 4 was implemented as RMP in different FPGAs such as Altera
EPF10K70RC240-2 and Xilinx XC2s400¢c-6fg456. In the implementation, on—chip
memory resources of FPGA were configured as instruction and data memories. Multi-
port register file with read after write capability in the same stage was implemented to
avoid structural hazards. Read After Write (RAW) type data hazards were avoided
through forwarding using multiplexers at ALU input. Control hazards were avoided

by insertion of stall.

This chapter presents two different implementations of RMP. First one is its
implementation in Altera EPF10K70RC240-2 device using MaxPlus+2 environment,
This implementation is simple without human interference. The second
implementation is in Xilinx XC2s400e-6fg456 device using ISE Foundation series
with ModelSim XE. In this implementation, timing constraints are provided through a
customized user constraint file (ucf) and manual editing is done in placement and
routing. Additionally, in both cases all the stages of the micropipelined processor are

individually tested to observe their performance and are then merged in a top level
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module to test the entire asynchronous processor. It is found that the design confirms

the properties of micropipeline in the reconfigurable medium of FPGAs.

As the purpose of implementing RMP was to confirm the asynchronous properties of
FPGA-—compliant micropipeline and not to develop a new kind of architecture with
advancéd features, the architecture has been kept minimal but complete to verify the
presented concepts. Firstly, the Altera implementation with its details is presented,

while the later sections present Xilinx implementation.

Figure 7.1 shows FPGA compliant model of a 4-phase 5—stage micropipeline used in
the implementation of RMP in Altera device. In this figure special ECRs provide inter
stage latching. Each stage consists of a delay element with its own adaptive SIRO,
LSC and a dividing counter with reconfigurable depth N. The depth of the counter is

parameterized to customize the delay element in each stage.
7.1 Increment PC Stage

The program counter resets to zero which is the reset address and when the load input
is set high upon the execution of a control instruction, it loads a new value else it
increments. SIRO of this stage is synchronized with the setup & hold time of flip
flops through LSC, to produce ‘ACLK’. As shown in Figure 7.2, N of the dividing
counter for this stage is 3 (2:0). The second Most Significant Bit (MSB) of the counter
i.e. counter[1], is used to drive the PC, while the MSB produces the acknowledge
signal. Upon successful delivery of PC value to the ECR associated with stage 1,
request to this stage clears, resulting in the halt of SIRO, forcing the stage to go into

sleep mode. Post-layout simulation of the functional unit (32-bit resetable / loadable
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PC) associated with stage 1 (Increment PC) of our micropipeline is presented in

Figure 7.3.

lmsssr

SIRO

LOAD (Group 2)

Cal LSC

JACK]

—31  DIVIDING COUNTER

C[2)

v REQI

A

cm

L5

32-BIT
PROGRAM COUNTER

—

A-BUS

Figure 7.2: Block diagram Increment PC stage.
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7.2 Fetch Stage

Fetch receives PC value from the stage 1 via ECR to address the instruction memory,
implemented using embedded array resources of the FPGA, as shown in Figure 7.4.
The embedded array resources of the FPGA are configured as 32-bit wide words in
ligu of RMP’s fixed length instruction size. The N of dividing counter for this stage is
4(3:0). The second MSB of the counter i.e. counter[2], is used to fetch instruction

from the memory, while the most significant bit produces the acknowledge signal.
7.3 Decode Stage

As maximum on—chip memory resources are reserved for the implementation of
instruction and data memories, the functional unit associated with decode stage, i.e.
the multi-port register file is implemented using latch resources of the LEs. Therefore,
this stage consumes the maximum space in our design and is the slowest. & for this
stage is 5 with MSB of the dividing counter producing the acknowledge signal. Write
strobe (/counter[4] & /counter[3] & counter[2]) and read strobe (counter[3])

implement read after write functionality in the register file.

Another important feature associated with the decode stage is the Write Back (WB)
operation., Decode stage, therefore, receives two destination register (Rd) values
simultaneously, one from the current instruction reaching this stage and other, from a
previous ALU or load instruction, As mentioned earlier, out—of—order execution is not
supported in this version of RMP. Figure 7.5 shows post—layout simulation of the

multi-port register file with read after write capability in the decode stage.
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Figure 7.5: Post-layout simulation of the multi-port register file with read after write capability in

the decode stage.
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7.4 Execute Stage

Execute stage is associated with a 32-bit ALU. It is used to calculate effective address
in case of load / store instructions, while in case of ALU instructions it is used to
perform arithmetic and logic operations on the data in registers. The value of N for
this stage is 4(3:0). The MSB of the counter produces the acknowledge signal. The
post—layout simulation of ALU is shown in Figure 7.6, where c¢bus = 0 means addition

operation, while e¢bus = 1 means subtraction.

7.5 Memory Stage

The data memory is implcmented using embedded array of the FPGA. Its structure
resembles the instruction memory, the only difference being that it can be read as well
as written into at an address generated by the ALU in case of load or store instruction.
The contents to be written, in case of store instruction, originate in the decode stage
using the ‘Rd’ field. They pass by the successive stages unaltered using ECRs. In case
of load instruction, the data memory address is generated in the ALU with the help of
‘Rs1’ and ‘Rs2’ (or ‘IMM’) fields and the data that gets ejected by the memory, is
written into a register in the register file, pointed by the ‘Rd’ field. The ‘Rd’ field is

therefore, carried along the various stages for write back purposes.

N of the dividing counter for this stage is 4(3:0). The second MSB of the counter i.e.
counter[2], is used to read or write from /to the data memory, while the most
significant bit produces the acknowledge signal. The post layout simulation of data

memory implemented using the embedded array resources is shown in Figure 7.7,



CHAPTER 7

Reconfigurable Micropipelined Processor

YTV Ug-7E Qi pateroosse JiAny Jo a3es 2IMDaXY 31 JO UOLEJNUIS MOAB|-IS0g 92 g1y

{ v0002233 § 00002333 ) 20002333 § (003333 § 002333 (03333 - - | A
1 S0001003 § SOTME0) § pQCICOD § £0C000D § Z0C00C0D ¥ 10CDD0OD f 0000000 | - q -
Y gr003333 ¥ 60093353 § r0A09233 § FCO0Z33 ) 0002333 § 0003533 000333 - b <

z__,%gE__;E___%_EEEEE____%%% Tl __%w I o e
L L e
N O s s O B Mo o

1 o 13581 =gl

\g ]
s Lot 50 002 su3 00 Suf; / JM e ey
VD SN G S S W e e G o
[ S .“_!,jJ T
o oy % Y o f ) oy g vy . .
_______n__a__=___======__m__=_=______=_=_==_=_====E__=_==__=__==____==_==m==___=__=__ﬁ y e &

_ fl% 11; ||_ S0 513wl

Iél%lﬁi %IﬁL -Iﬁ#l%l. I@.ﬁlMllﬁlﬁlﬁ ﬁg‘ MJ 1 ww”M

| SN0 SI00F 4TI 0TS CLGACe NQO0r SMI00T SATIW nT o Al ALK
C

i A

-84 -



Reconfigurable Micropipelined Processor

CHAPTER 7

Nama:

Valus:
[

O

SUJ.IDns

1.

E!us

1.‘.Slus

Z.QUs

2.Elrus

|~ wed
|~ rpr
|~ roset
= rogS
|~ pr

. regid
| aclk1D
| ~ data
|~ intadd
|~ axtadd

|~ gqd

Name:

|

o o —- 0 ao O

—

708,0ns

750.I0ns EIT]J.IOns

|~ wed
|~ rpr

| — reset
|~ reqd
= pr

L regld
| aclki0
|+ data

t ~ intadd
| ~ extadd
| qd

Name:

o

0

o 0O - 0o o o

HO
HO

f

/

l

/

~ ¥ EfEcon07 Y EEEP0008 | EEEENOD Y EEEEDOA X EEEEO

.

/ 0

5 X 7

X /®

X

s X

A

X B

_Value: 1.5us
- L w2

B

EEEEOO6 ) FEEEOD? )

EEEE0D0B X

X EEEE000A

|~ wed

| A~ 1pr
|~ reset
|~ ragh
|~ pr

| reqld
|+ aclk10
|~ data
|~ intadd
|~ extadd

| qd

0

O o —=- 0O o o

HO

1.5§us

1.8Ius

1.B§us

1.7.us

1.75us 1.F.!us

/

|

/

T

[

|

VLI
/

1

a

FFFFOO01 X FFFFODD2 Y FFFFOOO3 X FFFFOOG4 Y FFFFOO05 ||

2

X

3

)4 4

X 5

&

1]

X

FFrFO000 X

Y FFFFoooz  {  FFFFOOO3  }  EEEE0006

Figure 7.7: Post—layout simulation of the Memory stage of RMP associated with data memory,
implemented using the embedded array of FPGA.
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7.6 Reconfigurable Micropipelined Processor

All the stages, separated by the ECRs, are instantiated in a top level module. Each
stage has its own SIRO based delay element customized by its dividing counter, N of

which is provided by Figurc 7.1 for Altera implementation.

A sample program shown in Table 7.1 is loaded into the memory to validate the
results. Figur_e 7.8 shows a few signals in the post layout rsimulation of RMP.
Important thing to note is that because of varying delay elements each stage operates
at its own pace. The SIRQ of a particular stage goes into sleep mode after completing
its task till it is requested_ to wake by the following stage. So the events of varying
length are observed including the power saving sleep-mode durations in each stage, a
property unique to asynchronous processing. Of particular importance is the result ‘r’
generated by ALU in stage4, which is transported by different stages at their own
leisure to finally reach register file for writing as ‘res3’. In case of an ALU instruction
‘res3’ is the output of ALU to be stored in the register file, whereas in case of a LD

(Load) instruction it is the data memory content moving towards the register file.

TABLE 7.1
Test program loaded into RMP to validate results
Addr. INSTRUCTION
0] o010 |1 [ oooor | 00000 0000000000000001
65H | G| Opcode | 1 Rd RS1 Immediate
LDI RI, RO, #1
0| oo11 Jol ooo10 | ooo1l 00000 00000000000
66H | G| Opcode | I Rd RSI RS2 Unused
SUB R2,R3, RO
€7H 0| ooo1 o ooot1 | oooor | 00000 | 00000000010
ST R3,RI, RO
63H 0| oo1o o[ ooo10 | 00001 | 00000 | 00000000001
LD R2,RI1,R0
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7.7 Edited Implementation in a Xilinx Device

As explained earlier, an alternate optimized implementation of RMP in a Xilinx
XC2S400E-6FG456 device using ISE Foundation Series and ModelSim with user
constraints and manual editing in placement and routing is also being presented.
Figure 7.9a&b show the post-layout simulation of 32-bit program counter and
instruction memory associated with Increment PC and Fetch stages, respectively.
Instruction Memory is loaded when the program/ run (pr) signal is high. In the run
mode preloaded instructions are read by the internal PC generat’ed address, to be
decoded in the following stage. Figure 7.10a&b present the post—layout simulation of
RMP’s multi-port regfile and ALU associated with Decode and Execute Stages. In
order to test the read after write and multi-port capability of the register file, it is
Ioaded with the contents of R1, R2, R3 and R4 shown in Table 7.2 and the
instructions presented in the same table are provided to the decode stage to be
decoded. The instructions generate the expected signals on the control bus and deliver
the updated results at the appropriate ports of the register file. Post-layout simulation
of the execute stage is done while using the contents provided in Table 7.3. It can be
observed that the control signals generated by the decode stage, in context of the
corresponding ALU instructions, perform the desired operations in the execute stage,

thus verifying the correctness of this stage.

A feature to be noted in all these simulation results is that the request signal to a stage
triggers the operation and the completion of the task for a particular stage is
represented by the generation of acknowledge signal by that stage. As already

explained in Chapter No. 6 the request signal turns—on the SIRO of this
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stage and after the required dividing counter value, acknowledge signal is generated

that also stops the SIRO and ensures the completion of task by the relevant stage.

Table 7.2
Register File contents and instructions decoded in Decode Stage
Rl 00000003
R2 00000004
R3 00000005
R4 00000006
ADD R2, R3, R4 00432000
AND R2, R3, R4 20432000
SUB R6, R2, R1 18C20800
STIR4, R3, #7 0C830007
JIMP #C C000000C
Table 7.3
ALU instructions to test the Execute Stage
ALU Control Bus | Operand 1 Operand 2 Resuit
Instnuction cbhus a (hex) b (hex) r (hex)
ADD 000 00000002 00000001 00000003
SUB 001 00000002 00000001 00000001
AND 100 00000004 00000003 00000000
OR 101 00000003 00000004 00000007
SHL 110 00000007 00000004 00000070
SHR 111 00000007 00000001 00000003

Figure 7.11 presents the post-layout simulation of data memory associated with
Memory Stage for the duration of 0~365nSec. The difference between the instruction
and data memories is that data memory can be read as well as written into. However,

it does not support read after write feature like the register file.

Figure 7.12 shows the post-layout simulation of the integrated RMP, where each

stage runs at its own pace, because of its customized delay element.
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M Rejsibmrck' g
' fesdberchied

Figure 7.11; Memory stage associated with data memory (both read and write functions).

Stages go into sleep mode to conserve power upon completion of their assigned task,

while the sluggish states are busy performing their duty.

As explained in Chapter No. 2, if any of the sub-circuits in an asynchronous design is
optimized, it can directly be replaced without changing the entire circuit. In the edited
implementation of RMP, it can be observed that some of the stages are optimized but
the over all design remains the same thus, complying with the properties of full

custom asynchronous implementations.
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The micropipeline model presented in Chapter 6 was used to implement RMP
therefore, the performance of the pipeline is the performance of the processor with the
exception that branch instructions are associated with a stall. A comparison table for
the RMP performance in Altera and Xilinx devices, assuming 1% branch instructions

in Test program is presented in Table 7.4.

TABLE 7.4
RMP performance in Altera and Xilinx devices.
Device SIRO | LSO Avg. Data Throughput @ 1%
‘nS’ ‘nS’ output ‘n§’ branch instr.
(no branch) “10° Data items / S’
Altera
EPF10K70RC2402 | 40 | 98 193 513
Xilinx 76
X(C2s400e-6fg456 24 4.8 (optimized 13.03
| implementation)
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Power Analysis

One of the major advantages of asynchronous circuits is power efficiency. It has been
shown that the proposed methodology for the implementation of asynchronous
circuits in reconfigurable medium of FPGAs, complies with all the properties of
asynchronous circuits, making it a viable solution. The only topic that was not
touched yet was the power analysis of the proposed model. Therefore, this chapter is

dedicated to the power issues.

A lot of factors affect the power efficiency of a design. Majority of these factors are
associated with the technology involved in the fabrication of an integrated circuit.
However, if the technology is kept constant, different designs can then be evaluated
for their power efficiency. This methodology can very easily be adopted in case of
FPGAs, for they permit implementation of a variety of designs, while retaining
consistency in technology. So a lot of parameters used in the power calculations are
eliminated, and the calculations become solely dependent on the designs properties. In
the current discussion, power analysis for three designs is presented for similar FPGA
(in order to keep the technology constant). The first one is the simple externally
clocked RISC, the second is the Simple RISC driven by on-chip SIRO based

oscillator, presented in Chapter No. 5 and the third one is RMP.
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It must be kept in mind that the platform remains "the same in all these
implementations, therefore the factors effecting the calculations, are mainly the real
estate, frequency of the oscillator source and average toggle rate of the design. A brief
discussion of the above mentioned parametcrs is necessary to establish their

relationship with power calculations.

8.1 Factors Affecting Power Calculations

Toggling means a transition from low to high state or vice versa. In case of
complementary MOS or CMOS technology, for a signal to toggle one of the paths i.e.,
the source or sink must be opened. N-type and P-type transistors gate these paths. For

demonstration, lets consider a CMOS inverter, as shown in Figure 8.1.

Vdd Vdd

(a) (®)

Figure 8.1: CMOS inverter representing toggling (a) 02> 1, (&) 1 =2 0.
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A zero at the output means the N-type transistor opens the path to sink, while a 0 > 1
transition at the output means, the P-type transistor opens the path to the source. In
both cases a transistor has to be activated to open the path. Now lets consider

switching ‘ON' of a transistor. Figures 8.2a&b show the transistor switching

! E """"" IN=1 vdd IN=0
oxide

ouT t | ! | ‘l - OUT

N-typw -0 N-type P-type -
Ditain Drain

Source Source

AAA A

N-type

.,”__.

' @ P-type

Vdd

‘ IN=0 E 1[ -------- :-: - :

(a) (b)

Figure 8.2: Switching of CMOS transistors used in the inverter design (a) N-type, (b) P-type.

in case of N-type and P-type transistors. In both the cases, the gate pulls the relevant
carriers towards it, to form a channel that acts as a path between drain and source. The
pulling of carriers by the gate and the forming of channel requires electric field, which
is generated by consuming power. Larger the area of gate, greater is the size of
channel, which is created by the pulling of greater number of carriers resulting in the
consumption of larger amount of power. If the FPGA technology is kept constant by

implementing various designs in the same FPGA, all the physical factors remain the
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same, but different designs have different real estate. Larger real estate engages larger
number of transistors. So technically a larger design must consume more power, but
all the transistors might not be toggling all the time. For example, the least significant
bit of a 2-bit counter made out of T-flip flops toggles at every clock edge, whereas the
most significant bit toggles at half the rate. The rate of toggling for higher order bits
in larger counter, is even less. So, if a design contains a 32-bit counter, and another
one contains three 2-bit counters, the first one is larger in real estate, but has low
average toggle rate, whereas, the second design, .though small in rcal estate has greater
average toggle rate, for its active sections at any given time are more than the first
case. So it is very possible that the smaller design might consume more power than
the larger one. Another issue is the frequency at which the design toggles. A 2-bit
counter running at 10MHz will have its transistors switching ON for toggling at twice
the speed as compared to the same run at SMHz. Therefore, the frequency also plays a

important role in determining the amount of power consumed by a design.

In short, if the technology is kept constant, the three factors that affect the power
calculations are: a) the real estate of the design, b) average toggle rate and c) the

operating frequency.

In case of synchronous designs power consumption is high, because all the sections of
such a system, whether required in the current manipulation or not, are always driven
by the master clock. So they consume power all the time, whereas in case of
asynchronous systems, during a processing only the relevant portions are active whilst

other portions are in sleep mode, resulting in reduced power consumption.

-98 -
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In FPGAs, the real estate of a design is calculated on the basis of CLBs it consumes.
For a given FPGA, its CLB may consist of one or more similar slices and the real
estate associated with slices is known. The other factor i.e., the average toggle rate is
calculated by separating various sections of the design. As per their design
characteristics an average toggle rate value is assigned to each section, as suggested
by the FPGA vendor [POWS2]. The operational frequency in case of synchronous

designs is also known.

All these parameters are entercd in the power estimator sheet for the FPGA [POWS2]
containing the design. These sheets are available from the vendor and are FPGA
family specific, as they contain fundamental information such as the device quiescent
power dependent on the FPGA technology. Quiescent power and the estimated power
for the design, amount to the overall power consumption of a synchronous design.
Xilinx Xpower plug-in to the ISE Foundation series that calculates the power for the

entered design also performs power calculations using these estimator sheets.

There are however, few other factors that effect the power estimation. For example,
[Os, clock tree and the DLLs, they all consume power. Therefore, use of any of these

elements also effects calculations in the estimator sheets.

The standard power calculating techniques, in the FPGA environments are
customized towards synchronous designs. Therefore, in order to calculate power for
asynchronous designs that may have more than one or no clock sources, a different

technique must be improvised to use the available power calculations resources.

Figure 8.3 shows various parameters enlisted in Power Estimator Sheet for Xilinx

Spartan 2S [POW2S], that that are requires for the calculation of expected power
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consumption of a given design when implemented in Spartan 28 family FPGA. Most
of the required parameters are obtained during the implementation process of a design
in ISE Foundation Series upon automatic generation of mapper report file (.mrp). The
remaining fields are directly filled with the help of comments associated with blank
enteries in the excel sheet. Scripts from the sample mapper report file are presented in

Figure 8.4 for reference.

Total Number Slice Registers: 191 out of 9,600 1%
Number used as Flip Flops: 181
Number used as Latches: 10
Number of 4 input LUTs: 101 out of 9,600 1%
Logic Distribution:
Number of occupied Slices: 141 out of 4,800 2%
Number of Slices containing only related logic: 141 out of 141 100%
Number of Slices containing unrelated logic: Ooutof 141 0%
*See NOTES below for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 119 out of 9,600 1%
Number used as logic: 101
Number used as a route-thru: 18
Number of bonded 10Bs: 43 outof 325 13%
IOB Flip Flops: 32
Total equivalent gate count for design: 2,564
Additional JTAG gate count for IOBs: 2,064
Peak Memory Usage: 64 MB

Figure 8.4: Scripts from the automatically generaled .mrp file for estimator sheet fields.

Power was estimated with the help of estimator sheets for externally clocked RISC,

on-chip SIRO triggered RISC and RMP, for mutual comparison.

It was observed that the externally clocked and on-chip SIRO triggered synchronous
versions of simple RISC consumed, approximately, the same amount of power. The

excess power consumed by the on—chip oscillator in case of the externally clockless
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version was comparable to the power consumed by external clock input in case of the
clocked version, when implemented in XC2S400E-6FG456 device. The FPGA
compliant micropipeline based RMP was found to be 20% more power efficient than
its synchronous counterpart. In case of RMP, relative area occupation of the

functional units, datapath and delay elements, was found to be 39.5%, 57% and 3.5%

respectively. A few parameters of power estimator sheet are presented in Figure 8.5.

{c)

Total Total
Number of|Number of| Average |Amount of] VCCint | % real-
Frequency] CLB Flip/Flop | Toggle | Rouiing | Subtotal | estate of
Name (MHz) Slices |or Latches] Rate % Used [mW) total
stage1_Async 208 72 37 4% Medium 8 12.18512
datapath_stage1 208 63 1 1% Medium 1
stage2 Async 208 23 6 6% Medium 6 13.4598
datapath stage2 208 126 2 1% Medium 2
stage3 Async 208 315 170 8% High 75 45.52846
datapath_stage3 208 189 3 1% Medium 3
staged Async 208 39 6 6% Medium 5 14.80515
datapath_staged 208 126 2 1% Medium 2
stageb_Async 208 28 11 7% Medium 9 13.91147
datapath_stage5 208 1ZL 2 1% Medium 2
Total 1107 113 100
(a)
slage1 sync 208 65 33 10% Medium 15 14.84018
stage2_sync 208 22 7 12% Medium 7 5.022831
stage3 sync 208 300 150 13% High 108 68.49315
staged sync 208 32 0 10% Medium 6 7.305936
slage5 sync 208 19 0 12% Medium 7 4.3379
Total 438 143 100
(b)
datapath siro rel power
design | overhead | overhead| power power | % =(Ps-
{overall | (overall | (overall [async'Pa’|sync 'Ps’| Pa)* 100
%eage) %age %age) {mwW) | (mWw) iPs
39.5664 | 56.91057 | 3.523035 113 143 20.97902

Figure 8.5: Power calculations for (a) RMP, (b) Synchronous RISC, (¢} mutual comparison.



Power Analysis CHAPTER 8

It is worth mentioning that in order to use standard estimator sheet developed to suit
synchronous designs, special methodology was adopted for power estimation of
asynchronous RMP. As our micropipeline is a Globally Asynchronous, Locally
Synchronous system, a particular frequency is not associated with complete RMP.
Therefore, using power estimator, power consumption of each stage was calculated
individually, by using SIRO frequency for XC25400E-6FG456. It was observed in
case of asynchronous version that the reduction in ‘average toggle rate’ because of the
sleep-mode in various stages as shown in Figures 7.8 and 7.12, reduced power
consumption much more than the increase caused by real-estate overhead due to
delay-elements, 4-phase handshaking circuitry and unbundled datapath. The
performance of the developed system directly depends on the host FPGA, as the latch
synchronizing circuit adjusts the SIRO output to match the maximum permissible

frequency of the device.



Conclusion and Future Research Plans

Latest trends in digital electronics require designs with increased functionality,
contained in the smallest of spaces, performing at the highest of speeds, consuming
and dissipating the minimum of power and generating the least of electromagnetic
interference. The merger of all these properties in a single synchronous design is
becoming increasingly difficult, as one property contradicts the other. Consequential
issues such as clock skews, power and real estate overheads, and design modifications
associated with upgrades, resulting in slow turn around time in a highly competitive
market, have forced rcsearchers to look for altermate solutions like asynchronous
designs. Asynchronous systems exhibit technology independence, power efficiency,
average case computational capability and electromagnetic compatibility. Above all,
the problem of clock skews does not exist in asynchronous systems because of the

absence of a common clock.

Reconfigurable mediums such as Field Programmable Gate Arrays (FPGAs) have
become increasingly popular since the 90s because of lower costs and lesser turn
around time associated with prototyping. Additionally, reconfigurable computing has

made it possible for a design to perform like ASIC while retaining the flexibility of
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general purpose IC. Reconfigurable mediums are power efficicnt for applications that
require divcrsc resources, as they maintain real estate, while re-allocating existing

resources optimally.

FPGAs are extensively used today for the implementation of synchronous systems. In
fact, the very structure of FPGAs and associated programming environments support
synchronous designs, whereas asynchronous designs arc dependent on their delay
model. For an asynchronous design to be technology independent, delays in the
design must have dynamic calibration capability. A delay elcﬁent with these
characteristics is considered to be implausible in case of FPGAs. Isochronic forks in
the delay model also require full custom implementation. The problem is aggravated
by the fact that design implementations in FPGAs are not necessarily repeatable, in
various programming environments because of the stochastic processes involved and

the variety in reduction, placement and routing algorithms.

As a result, asynchronous systems find their place in full custom domain while
reconfigurable computing is associated with synchronous designs. In the presented
research, the two fields are combined to come up with a technique through which an
asynchronous system like a 4-phase micropipeline; an event based pipeline with or

without processing; has bcen implemented in a reconfigurable medium of FPGAs.

Available models for the fundamental building blocks of full-custom micropipeline,
such as the delay elements, Event Controlled Registers (ECRs) and hand shaking
protocols could not be used, rather new concepts and techniques had to be developed

for their FPGA based implementation.
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It was observed that a Single Inverter Ring Oscillator ‘SIRO’ (A = ~A), that cannot be
functionally simulated, can be implemented in an FPGA and its behavior is
observable in post-layout simulation. It was also observed that SIRO adapts to the
FPGA technology by altering its frequency thus, exhibiting technology independence.
SIRO always consumes a single Logic Element (LE) of a LUT-based FPGA, as it
consists of a single primitive and its feedback loop always uses the local / direct
interconnects, irrespective of the FPGA or its associated environment. Technically,
SIRQ is a combinatorial element, thus it follows the combinatorial path within LE. On
the other hand, the maximum operational frequency defined for an FPGA, depends on
the setup and hold time requirements of its sequential path. Therefore, the SIRO
frequency is too high for the sequential elements to function. For this reason, a special
Latch Synchronizing Circuit (L.SC) was developed that automatically adjusts SIRO
frequency to meet the requirements of sequential path. It was also observed that the
maximum frequency locked by Delay-Locked Loop (DLL) in a FPGA, is the same as
the SIRO frequency for that FPGA. Output of LSC called Latch Synchronized
Oscillator (LSQO) can drive co—existing sequential circuits such as counters. If FPGA
technology permits higher frequency operations, SIRO adapts to the same technology

by enhancing its frequency. Thus, the entire circuit becomes technology independent.

A simple 32-bit RISC processor was driven externally by clock while being
implemented in various FPGAs and was then driven by co-existing on-chip SIRO
based oscillator. It was observed that the externally clocked RISC required a change
in clock source upon FPGA technology variation, while the on-chip SIRO based
oscillator, automatically adjusted its frequency along with the circuit driven by it, to

give optimal performance without the requirement of any design modification. The

- 106 -



Conclusion and Future Research Plans Chapter 9

technology independent SIRO driven RISC was found to consume the same amount
of power as its externally clocked counterpart. However, the SIRO based circuit has
better Electromagnetic Compatibility (EMC) because of being off~board and on—chip.

The EMC is a real issue for synchronous systems operating beyond 100MHz.

The adaptive nature of SIRO was used to drive counters with parameterized depth N.
As counters divide the frequency of triggering source, these counters with their own
SIRO and LSC were placed as delay elements in FPGA compliant micropipeline
stages. By changing the value of A, delay for different stages was controlled as per
their processing requirements. As discussed earlier, sequential circuits driven by
SIRO based oscillator exhibit technology independence, so the SIRO based delay
elements in the micropipeline model for reconfigurable medium, possess the same

feature as exhibited by their full custom counterparts.

The uncertainty associated with repeatability in datapath implementation in various
FPGAs, was covered by developing special ECRs consisting of Muller’s C-elements.
The datapath in FPGA—compliant micropipeline follows unbundled data strategy
incorporating bit encoding and retumn to zero schemes as apposed to bundled data

strategy in full custom micropipeline implementations.

The handshaking protocol in the presented micropipeline model also involves
additional signals between SIRO-based delay element of the stage and it’s ECR, to

force the stage into sleep mode upon completion of its task to conserve power.

As an application, to validate the FPGA—compliant micropipeline model, a
Reconfigurable Micropipelined Processor (RMP) based on the simple RISC

architecture was implemented. It was observed that each stage in the RMP functioned
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at its own pace driven by its SIRO and LSO. Furthermore, the sluggish stages went
into sleep mode while waiting for faster stages to accept or deliver data. The design
was portable to various FPGAs and related environments without the requirement of
any modification thus, exhibiting technology independence. The RMP was estimated

to be 20% more power efficient than its synchronous counterpart.

Therefore, the presented methodology can import asynchronous designs along with
their benefits to the traditionally synchronous environment of FPGAs. The merger of

asynchrony and reconfigurability may reshape computer architecture in future.

The inspiration in the development of RMP architecture comes from DLX
architecture [DAP96]. DLX is a synchronous pipelined architecture, which has a
floating point unit and is further expanded to incorporate features like dynamic
scheduling. Development of RMP is the first step in formalizing technique that
imports such architecture to an asynchronous domain implementable in a
reconfigurable medium. In this thesis, the emphasis was on the development of
methodology and its verification by actual implementation. For this reason, the RMP

architecture was kept minimal, though complete.

Now that the technique has been formalized, the next step is to develop a full scale
micropipelined processor, implementable in a reconfigurable medium that can
compete with its counterparts in performance and related issues. So the plans are to

concentrate the research efforts on the following issues:

= Addition of a Floating Point Unit in RMP
= Incorporation of Dynamic Scheduling with Scoreboard
= Incorporation of Dynamic Scheduling using Tomasulo Algorithm
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= Conversion of RMP into a Reconfigurable Multiple—Issue Processor in

both forms i.e. Superscalar and VLIW (Very Long Instruction Word).
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