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Abstract

In this thesis, the problems of flow and ion-induced deformation of soft porous bi-

ological tissues have been examined by using continuum mixture theory approach.

In particular, we focus on the tissue deformation due to non-Newtonian fluid and

externally applied magnetic field. In this regard, we first analyze the problem of

non-Newtonian flow-induced deformation from pressurized cavities in absorbing

porous tissues. Specifically, a model with a spherical cavity embedded in an in-

finite porous medium is used to find fluid pressure and solid displacement in the

tissue as a function of non-dimensional radial distance and time. The governing

nonlinear equations have been solved numerically to highlight effects of various

emerging parameters. Furthermore, based on the geometry of the previous prob-

lem, the effect of the externally applied magnetic field on flow-induced deformation

of absorbing porous tissues is investigated. A biphasic mixture theory approach

has been used to develop a mathematical model. The governing dimensionless

equations for fluid pressure and solid displacement have been solved numerically

using the method of lines approach and the trapezoidal rule, respectively. The

effect of magnetic parameter on fluid pressure and solid displacement is illustrated

graphically. Finally, the problem of ion-induced deformation of articular cartilage

with strain-dependent nonlinear permeability and magnetohydrodynamic effects

is presented. The governing set of coupled partial differential equations are non-

dimensionalized using suitable dimensionless variables. Analytical solutions are

provided for the constant permeability case whereas for the nonlinear permeabil-

ity case the displacement equation is solved numerically using the method of lines

technique. The influence of magnetic and permeability parameter on solid dis-

placement and fluid pressure is illustrated graphically. In some cases, a graphical

comparison to the previously reported literature is also presented.
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Chapter 1

Introduction

The aim of this dissertation is to investigate the deformation of soft biological

tissues due to fluid flow or ion imbalance using continuum mixture theory ap-

proach. The tissues are modeled as nonlinear deformable porous media comprised

of a solid and a fluid phase. Apart from mixture theory for modeling multiphase

systems, many other theoretical frameworks such as finite elasticity, viscoelastic-

ity, growth and remodeling, thermomechanics and membrane theory were devised

to study the incredibly complex behaviors of soft tissues. A brief description of

each of these theories was given by Humphrey [1] in an excellent review paper on

continuum biomechanics of soft biological tissues mentioning the past successes

and identifying open problems for future research. He felt the need for new and

comprehensive theoretical frameworks, accurate mathematical models and effi-

cient computational approaches for modeling biological tissues for an improved

and better health-care delivery. Moreover, while describing other open problems

in biomechanics, Humphrey also emphasized the need to further explore the solid-

fluid interaction in living organisms such as removal of waste products by the

kidney, bladder and urinary tract, gas exchange process in lungs and pumping of

the blood by the heart, etc. Moreover, the deformational behavior of soft biologi-

cal tissues such as articular cartilage, skin, and arterial wall has been investigated

extensively to understand the solid-fluid interaction in biological systems. The

phenomenon of solid-fluid interaction occurs in many branches of science ranging

1
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from soil mechanics to biomechanics. Therefore, motivated by the importance

of coupling between solid and fluid in a physiological system such as flow from

an injection site into a tissue and permeation of fluid through soft tissues, the

goal of the present research is to gain a better understanding of the dynamical

and mechanical processes involved in solid-fluid interaction in porous tissues. Al-

though, accurate and direct biological modeling is avoided here, nevertheless, this

study serves as a reasonable platform for gaining an insight into the deformation

phenomena of soft tissues involving a variety of fluid models along with different

geometries.

The mathematical models developed in this thesis are based on continuum mixture

theory. It is thus important to furnish a historical background of the theory along

with its development and applications in biomechanics. However, for applications

of this theory in some other scientific fields, the reader is referred to a recent review

article by Siddique et al. [2]. This is followed by a thesis outline in Section 1.2

giving a brief description of each chapter in this thesis.

1.1 Historical Background

The deformation of a porous material changes the properties such as porosity

and permeability of the material, which consequently affects the passage of fluid

through the material. This process develops a complex coupling among con-

stituents of the mixture. This type of phenomenon exists in various biological

and industrial applications where mathematical modeling is usually done using

continuum mixture theory. In mixture theory, individual components of the mix-

ture are treated as superimposing continua so that each point in the mixture is

occupied simultaneously by a material point of each constituent. This assump-

tion, although physically inaccurate, is necessary so that the quantities used to

describe deformation are continuous and differentiable. The literature that laid

down the foundations of mixture theory were presented by Fick [3], Stefan [4] and

Darcy [5] in the nineteenth century. This was later improved by Truesdell and
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Noll [6], where he included the principles of continuum mechanics and proposed

balance equations appropriate to mixtures irrespective of their constitution. The

theory developed by Truesdell was named as a mechanical basis for diffusion in

which mass and momentum balance laws for the mixture constituents were pos-

tulated along with kinematic relations. In fact, this theory described the mass

and momentum transfer from one mixture constituent to another and it was also

shown that classical Fick’s law is a special case of this theory. Proceeding fur-

ther, Muller [7] presented a thermodynamic version of the mixture theory for two

Newtonian fluids and derived the energy equation and entropy inequality for the

mixture. The development of continuum theories of mixtures from the period

from 1957 to 1976 was presented in a review paper by Atkin and Craine [8] in

which they derived basic equations of mixture theory including the continuity,

momentum, and energy equations along with the entropy inequality. In particu-

lar, a constitutive theory for a mixture of two ideal gases was given and the results

were compared with the kinetic theory of gases. On the same lines, Bowen [9]

and Bedford and Drumheller [10] also furnished survey of mixture theory. Later

on, Rajagopal and Tao [11] wrote an excellent book on mechanics of mixtures in

which conservation laws were derived and several examples were considered and

analyzed from mixture theory viewpoint. All of the above-mentioned studies were

lacking the applications to biological systems in which many soft tissues behave

like deformable porous media and the application of mixture theory becomes an

obvious choice.

The application of mixture theory to soft biological tissues essentially started with

the work of Kenyon [12–14], who discussed radial flux of fluid through a porous

cylinder replicating a model of flow through arterial tissue. Following this, Ja-

yaraman [15] studied the problem of flow through an arterial wall with constant

permeability and Jain and Jayaraman [16] also investigated the same problem but

considered two layers in the artery wall each with different permeabilities. Simi-

larly, Klanchar and Tarbell [17] studied the water flow through arterial tissue by

considering a linear form of the strain-dependent permeability. Apart from arterial

tissue, the theory was extended further by Mow et al. [18–22] by considering the
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articular cartilage as a deformable porous material saturated with synovial fluid.

The main application, however, was the lubrication properties of synovial joints

such as the knee. Due to the compression of the cartilage, the synovial fluid moves

through the pores of the tissue to form a surface lubricating layer. Although, the

modeling of articular cartilage is a difficult task, nevertheless, the researchers such

as Mow, Lai, Holmes and many others have studied the cartilage extensively in a

series of papers starting from the year 1977. The role of fluid pressurization and

surface porosities on the boundary friction of articular cartilage was investigated

by Ateshian et al. [23]. Building on the previous studies, Barry and Aldis [24–26]

developed several mathematical models for flow-induced deformation of absorbing

porous biological tissues. In particular, the authors used biphasic mixture theory

to develop one-dimensional models to study the coupling between solid deforma-

tion and fluid flow. Similarly, other tissues that have been modeled in this manner

include cornea [27], skin [28] and lung [29], etc. Another important application

of mixture theory in biomechanics is the resorption phenomena in bones recon-

structed with bio-resorbable materials. Lekszycki and Dell’Isola [30] presented a

continuum poro-elastic mixture model where two apparent mass densities were

introduced to describe the situations in which bone tissues and bio-resorbable ma-

terials coexist and interact. They focused on the final healing stage process until

the bone is remodeled and eventually replaced by newly synthesized living tissue.

Giorgio et al. [31] studied the resorption and growth in bone tissue using finite

element analysis. The studies on cartilage mentioned above considered the tissue

as a biphasic material, however, a big stride was made by Lai et al. [32, 33] in 1991

to develop a triphasic mixture theory for articular cartilage by including the two

solid-fluid phases, and an ion phase, representing cation and anion of a single salt.

This triphasic theory essentially combined the physico-chemical theory for ionic

solutions with the biphasic mixture theory. Based on the triphasic theory, Gu

et al. [34] investigated the negative osmotic flows through charged hydrated soft

tissues and reported that the solvent would flow from high salt concentration side

to the lower concentration side for a particular choice of the fixed charge density

and that the negative osmosis phenomenon is due to the friction between ions and
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water. Similarly, Sun et al. [35] investigated the mixed finite element formula-

tion of triphasic mechano-electrochemical theory for charged hydrated biological

tissues. Moreover, Myers et al. [36] also employed the triphasic theory of Lai to

study the ion-induced deformation of soft tissues. In particular, the authors made

certain simplifying assumptions to the general equations of the triphasic theory

and obtained a coupled system of nonlinear partial differential equations in terms

of ion concentration and tissue solid deformation in a general form which covered

the Cartesian, cylindrical and spherical geometries. They predicted a lower ion

concentration in a rectangular specimen of the tissue in comparison to a similar

study by Myers et al. [37]. A spherical sample of the tissue was also considered

and the numerical results indicated that the tissue may contract internally before

swelling and/or swell internally before finally contracting. Finally, the authors

compared the nonlinear theory with the linearized version of the problem which

was obtained by considering the relative magnitudes and time variation of the

terms in the governing equations. Apart from these, several other studies on the

applications of triphasic theory to the soft biological tissues may be found in the

references [38–40]. Moving one step ahead, Frijns et al. [41] proposed a quadripha-

sic theory including the solid, liquid, cation and anion phases of the mixture to

discuss the swelling and shrinking nature of the intervertebral disc. Additionally,

some more recent papers on mixture theory in combination with soft biological

tissues may be found in the references [42–46].

Having described the development and applications of the mixture theory to soft

biological tissues such as articular cartilage, arterial tissue, skin, lung and inter-

vertebral disc, another important area of biology where this theory has been used

is the modeling of tumor growth, cancer modelling and growth and remodeling

of soft tissues. The study regarding modeling solid tumor growth using mixture

theory was by Byrne and Preziosi [47]. The authors developed a two-phase model

of an avascular tumor and reported the dependence of cell proliferation rate on the

cellular stress and the incorporation of mass exchange between the constituents.

Ambrosi and Preziosi [48] discussed the closure of mass balance models for tu-

mor growth by introducing a suitable velocity field. The authors also presented
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a critical review of the approaches used in the tumor growth modeling. Likewise,

a multiphase model of the tumor and tissue growth including cell adhesion and

plastic reorganization was presented by Preziosi and Vitale [49]. Their primary

goal was to embed the experimental data for the detachment force of single ad-

hesion bonds in a multicomponent model developed in the context of mixture

theory. The understanding of the development and spread of cancer tumors is

very important for finding cures and treatments of the disease. Thus, an effort

in this regard was made by Preziosi [50] to demonstrate that how mathematical

modeling and computer simulation techniques may help discover and develop an

understanding of the mechanics of tumor development and growth. An insight into

mixture theories for growth and remodeling was presented by Ambrosi et al. [51].

In particular, the authors discussed the emergence of residual stress due to growth

and remodeling of soft tissues modeled as a mixture of a solid and several fluids.

Ateshian and Humphrey [52] produced a review of continuum mixture models of

biological growth and remodeling and considered several illustrative examples to

show diverse applications of mixture theory. Moreover, the authors also identified

some open problems in the area of growth and remodeling of tissues.

In the following section, a layout of the thesis presenting a brief detail of the

problems considered in this thesis is presented.

1.2 Thesis Outline

The continuum mixture theory specialized to a binary mixture comprised of a solid

and a fluid phase is used to examine the deformation of soft biological tissues. In

particular, we develop a one-dimensional model of flow as well as ion-induced

deformation of soft porous tissues. The theory used here is based on the work of

Atkin and Craine [8] and Barry and Aldis [24]. Our focus in this dissertation would

be to study the fluid flow through deformable porous media such as soft biological

tissues with emphasis on medical and clinical applications. In the following, an

outline of the chapters to be considered in this dissertation is presented.
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In Chapter 2, we begin by presenting some basic definitions and concepts related

to the fluid flow through deformable porous media. This is followed by an account

of the basic equations of mixture theory which will be used for the development of

mathematical models in later chapters. Finally, we talk about numerical methods

used to solve the resulting nonlinear ordinary and partial differential equations.

In Chapter 3, we develop a mathematical model of non-Newtonian flow-induced

deformation from pressurized cavities in absorbing porous biological tissue using

mixture theory approach. In particular, a model with a spherical cavity embedded

in a porous medium of infinite extent is used to find fluid pressure and solid

displacement in the tissue as a function of radial distance and time. The tissue

is assumed to be a nonlinear deformable porous material where absorption of

injected fluid takes place at a rate proportional to the local fluid pressure. The

steady and unsteady solutions for the fluid pressure and solid displacement as a

function of non-dimensional radial distance and time are presented. In particular,

effects of the power-law index and permeability parameter on fluid pressure and

solid displacement profiles are illustrated graphically. This work is published in

Computer methods in biomechanics and biomedical engineering [53] in 2017.

Application of an externally applied magnetic field to excitable tissues has been ex-

tensively used recently for biological and physiological applications with an aim to

devise an accurate mechanism for the diagnosis and treatment of various diseases.

Some of the biological applications of a magnetic field include drug targeting, mag-

netic hyperthermia, cell isolation and magnetic resonance imaging, etc. Therefore,

based on the flow geometry of the previous chapter, the aim of Chapter 4 is to

examine the effect of magnetohydrodynamics (MHD) on the flow-induced defor-

mation of porous biological tissues. Here again, we use mixture theory approach to

develop a mathematical model with an assumption of a linear permeability of the

solid matrix. The Navier-Stokes equations coupled with the Maxwell equations of

electromagnetism are used to obtain the equations in terms of fluid pressure and

solid displacement. These governing equations are solved numerically to assess the

influence of various pertinent parameters.
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Continuing on the applications of magnetohydrodynamics, in Chapter 5, we present

an MHD based mathematical model with strain-dependent nonlinear permeability

to study the deformation of articular cartilage equilibrated in a sodium chloride

solution. A linear biphasic mixture theory with the inclusion of ion concentration

term in the solid stress equation has been employed to develop a mathematical

model. In particular, a thin rectangular specimen of bovine cartilage is considered

which is subjected to changes in the ionic environment under the action of a uni-

form applied magnetic field. The governing PDEs in terms of ion concentration,

solid displacement and fluid pressure of the tissue are non-dimensionalized using

appropriate dimensionless quantities and then solved analytically and numerically.

Specifically, exact solutions are given for the constant permeability and numerical

solutions are provided for the nonlinear permeability case to highlight the influence

of magnetic and permeability parameter.

In Chapter 6, the conclusion along with a discussion for the future work is fur-

nished. Finally, the derivation of magnetohydrodynamics (MHD) equations in the

context of mixture theory are presented in the Appendix.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter, some important definitions and basic concepts that will assist in

understanding the fluid flow through a porous material are presented. In addition

to these basic concepts, we also present fundamental equations of mixture theory

including kinematic relations and balance laws. In the end, we discuss numerical

methods used to solve the nonlinear equations of the problems considered in this

thesis.

2.2 Porous Material

A material which contains pores or voids in it is known as the porous material.

The skeletal material is usually solid and is often termed as the matrix. The pores

of the material are typically filled with a liquid or a gas. Most of the materials

which are encountered in science and engineering are porous in nature. Therefore,

for accurate modeling, knowledge of properties of such materials is essential. A

structure of a porous material is shown in Figure 2.1. In general, porous mate-

rials can be classified into two main categories i.e. rigid and deformable porous

materials.

9
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Figure 2.1: Basic schematic of a porous material, Lagree [54].

The materials which allow fluid to pass through them and maintain their shape

and size are called rigid porous materials. Examples of such materials include

wood, brick, pipe and biomedical scaffolds, etc.

Deformable porous materials are those which undergo a deformation in the form

of shape or size such as sponge, artery, articular cartilage, and foam, etc. Our

focus in this thesis is to understand and highlight the important features and key

points related to deformable porous media by considering a few examples from

biomedical field.

2.3 Porosity

The measure of empty or void spaces in a porous material is termed as porosity.

Mathematically, porosity φn is a ratio of the volume of empty space to the total

volume of the porous material and typically lies between 0 and 1 or equivalently

expressed in percentage between 0% to 100%

φn =
VE
VT
, (2.1)

where VE is the volume of empty space and VT is the total volume of the porous

material, including the solid as well as void components. The porosity is a di-

mensionless quantity as suggested by the relation (2.1). Moreover, due to a large

number of empty spaces, a sponge is said to be more porous than a biological
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tissue. The term porosity has been used in many branches of science such as

metallurgy, manufacturing, soil mechanics and biomechanics. There are a variety

of methods available with which porosity of a material can be determined, for

instance, industrial CT scanning, water evaporation, gas expansion, optical and

imbibition method.

2.4 Darcy’s Law

During a seminal experiment on the fluid flow through a porous media, Henry

Darcy, a French engineer, proposed a linear relationship between the flow rate Q∗

and the pressure gradient ∇P in a single phase flow known as Darcy’s law which

is given by the mathematical relation

Q∗ = −κA
µ
∇P , (2.2)

where κ is the permeability, A the specific area and µ is the viscosity of the fluid.

In particular, Darcy’s law is based on the result of experiments on the flow of

water through beds of sand which laid down the foundation of hydrogeology, a

branch of geology. The Darcy’s law is valid for low Reynolds-number flow and

concerns the isotropic and homogeneous porous media. This law is analogous to

Fick’s law in diffusion theory, Fourier’s law in heat conduction and Ohm’s law in

electromagnetism. The Darcy’s law (2.2) may be reduced to a more convenient

form as

q = −κ
µ
∇P, (2.3)

where q is the flux or discharge per unit area and negative sign here indicates the

fluid flows from high pressure to low pressure. The fluid velocity in the porous

material v is related to the Darcy flux q by the following relation

v =
q

φn
, (2.4)



Preliminaries 12

where φn represents the porosity of the medium. These equations may, however,

be extended easily to multi-phase flows, thus giving Darcy’s law for multi-phase

flows through porous media Lagree [54].

2.5 Permeability

Another important property associated with a porous material is the permeability

which is defined as a measure of the ability of a porous material to allow fluid to

pass through it. It is denoted by the symbols κ and measured in SI unit m2 or more

practical unit darcy (d). Mathematically, it may be written from equation (2.3)

as

κ =
−qµ
∇P

, (2.5)

where the meaning of the negative sign is the same as described above. It is

important to note that the term permeability is defined differently in different fields

such as soil mechanics, electromagnetism, chemistry, and transportation. The

permeability of a material depends on porosity, shape, and size of pores and the

degree of their connectedness. The permeability of a material may be determined

in the laboratory by application of Darcy’s law for steady-state conditions or, more

generally, by application of various solutions to the diffusion equation for unsteady

flow conditions.

2.6 Fluid Classification

The classification of fluids is based on the concept of viscosity which is defined as

the resistance of a fluid to gradual deformation either by shear stress or tensile

stress. This means that a viscous fluid offers resistance to the immersed objects

through them and to the motion of layers with differing velocities within them.

Thus, honey is more viscous than water due to greater friction among its layers.
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Formally, dynamic viscosity denoted by the symbol µ is defined to be the ratio

of the shearing stress to the velocity gradient in a fluid. Mathematically, it is

expressed as

µ =
τ

du/dy
, (2.6)

where τ = F
A

is the shear stress and du
dy

is the velocity gradient. The viscosity of

a fluid is measured in Ns
m2 in the SI system. A fluid which has zero viscosity is

termed as an ideal or inviscid fluid and these fluids exist physically at very low

temperatures. The ratio of the dynamic viscosity to the density of the fluid is

known as the kinematic viscosity. It is denoted by the Greek symbol ν = µ
ρ

and

measured in m2

s
in the SI system. In general, fluids are classified into two main

types, namely, Newtonian and non-Newtonian fluids. These two types of fluids

cover most of the applications of industry, engineering, and biomedical sciences.

Below we present brief details on both of these fluid types.

2.6.1 Newtonian Fluid

A fluid in which shear stress is directly proportional to strain rate at every point

in a flow field is known as a Newtonian fluid. In other words, a Newtonian fluid

obeys the empirical formula (2.6) which is essentially Newton’s law of viscosity for

incompressible and isotropic case. However, for the anisotropic case, the coefficient

µ in equation (2.6) is replaced by a nine-element viscosity tensor µij. Examples of

Newtonian fluids include water, air, glycerol, oils, alcohol, etc.

2.6.2 Non-Newtonian Fluid

A fluid that does not obey Newton’s law of viscosity described in equation (2.6)

is known as a non-Newtonian fluid. The viscosity of such a fluid is not constant

and depends upon the shear rate. Examples of non-Newtonian fluids include salt

solutions, molten polymers, ketchup, custard, starch suspensions, honey, paints,
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blood, and synovial fluid, etc. There are numerous non-Newtonian fluid models

that have been developed and studied in the literature. However, one of the

commonly used and related to our thesis is the power-law fluid model, for which

the shear stress τ is defined as

τ = K∗
∂u

∂y

∣∣∣∣∂u∂y
∣∣∣∣n−1

, (2.7)

where K∗ is the flow consistency index, ∂u
∂y

the shear rate and n the power-

law index. Note that the relation (2.7) is derived from the stress tensor τij =

2K∗(2DklDkl)
n−1
2 ·Dij for power-law fluid [55] where Dij = 1

2
( ∂ui
∂xj

+
∂uj
∂xi

) represents

the stretching tensor. Moreover, the quantity µeff = K∗
∣∣∣∂u∂y ∣∣∣n−1

is termed as an

apparent or effective viscosity for the power-law fluid. It is important to note that

power-law fluid is further classified as shear-thinning and shear-thickening fluid

depending upon the power-law index n in equation (2.7) is less or greater than

unity, whereas n = 1, yields the Newtonian fluid case.

Figure 2.2: Relation between shear rate and viscosity for a power-law fluid.

As shown in Figure 2.2, in shear-thinning or pseudoplastic fluids, viscosity de-

creases by increasing the shear rate such as polymer solutions, paints, and bio-

fluids whereas in shear-thickening or dilatant fluids, viscosity increases with the
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shear rate, for example, the cornstarch solution, etc. The other important feature

that is presented in this thesis is to combine magnetohydrodynamics with mixture

theory modeling.

2.7 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a branch of physics which is related to the dy-

namics of the magnetic field in electrically conducting fluids, for instance, plasmas,

liquid metals, electrolytes and salt water. The credit of pioneering this field goes

to a Swedish physicist Hannes Alfvén in 1942. The main idea of MHD is that

magnetic fields can induce currents in a moving conductive fluid which are capa-

ble of altering the magnetic field itself. The Navier-Stokes equations coupled with

Maxwell equations are used to describe the dynamics in an MHD system, whose

details are presented in the Appendix. Although, MHD was originally applied to

the problems of astrophysics and geophysics but its applications have now encom-

passed many other fields of science such as magnetochemistry, magnetobiology and

bioelectromagnetism, etc. The externally applied magnetic field has significant ef-

fects on physiological systems. It has been established that applied magnetic field

stimulates the functions of biological tissues and also regenerates the tissues in

the body [56]. Moreover, a magnetic field is successfully used recently for the

diagnostic and treatment of many hazardous diseases such as cancer and tumors

in the body. In addition to these, our body contains magnetic fluids, which may

assist in cell isolation and drug targeting for clinical purposes under the suitably

designed magnetic field.

2.8 Biological Tissue

A biological tissue is defined as a group of cells in an organism which has identical

structure and capable of performing the same function. The biological tissues in

animals are classified into four different types: connective, epithelial, muscle and
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nervous as shown in Figure 2.3. The group of tissues makes up organs in the

animal body such as the heart, brain, and lungs, etc. On the other hand, soft

tissues are those which connect, support and surround other organs of the body

such as ligaments, nerves, fascia, tendons, fibrous tissues and synovial membranes.

Soft tissues are composed of collagen, elastin and the ground substance and ex-

hibit viscoelastic properties which make them amenable to the mathematical and

physical analysis. Understanding the behavior of biological tissues under different

physical situations is important from medical as well as clinical point of view.

Figure 2.3: Types of tissue [57].

As noted by Humphrey [1] and mentioned in the introductory chapter, there are

several theoretical frameworks available in the literature for modeling biological

tissues. Among these theories, one of well accepted and widely used is the mixture

theory, which we utilize in this study to investigate the solid-fluid interaction in

porous tissues. In the following, we briefly present some basics of continuum

mixture theory.
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2.9 Mixture Theory: Kinematics and Balance

Laws

Most of the materials whether natural or man-made are mixtures as they consist

of more than one constituents. But the need for continuum mixture theory arises

whenever there is a relative motion between the constituents of the mixture or the

constituents exchange mass. Biological systems tend to exhibit both phenomena,

thus paving the way for enormous potential of mixture theory for biomechanics.

The basic tenets of mixture theory are [58] (i) at each instant of time, every point

of the spatial domain of the mixture is simultaneously occupied by all the compo-

nents of the mixture and (ii) with suitable choices of variables, the mixture as a

whole obeys the standard balance laws of classical continuum mechanics. In the

following, we present kinematics and balance laws for a mixture of N identifiable

components.

Consider a mixture of N immiscible constituents which are supposed to occupy

each material point in space at the same time. The motion of the components of

the mixture is described by smooth functions

x = χη(Xη, t), (2.8)

where η = 1, 2, 3, · · · , N and Xη denote the position of the particle in the reference

configuration. The inverse of the function χη can be expressed as

Xη = ζη(x, t). (2.9)

The mass density of the mixture, ρ, may be defined as

ρ =
N∑
η=1

ρη, (2.10)
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where ρη is the mass density of the ηth constituent of the mixture. The volume

fraction φη of the ηth constituent of the mixture is defined as

φη =
ρη

ρηR
, (2.11)

where ρηR is the density for the ηth constituent in a homogeneous state. For a

saturated mixture, the volume fractions must satisfy the following constraint

N∑
η=1

φη = 1. (2.12)

The velocity vη and deformation gradient Fη of the particle Xη may be defined as

vη =
∂

∂t
χη(Xη, t), Fη = ∇χη(Xη, t), (2.13)

where ∇ represents the gradient operator with respect to spatial position. The

mean velocity v and diffusion velocity uη of the mixture can be written as

v =
1

ρ

N∑
η=1

ρηvη, uη = vη − v. (2.14)

The material time derivative Dη

Dt
of the ηth constituent of the mixture is defined

as [8, 59]

Dη(·)
Dt

=
∂(·)
∂t

+ {(vη · ∇)(·)} . (2.15)

Similarly, the material time derivative D
Dt

for the mixture as a whole is written as

D(·)
Dt

=
∂(·)
∂t

+ {(v · ∇)(·)} . (2.16)

We now turn our attention to the formulation of balance laws for the mixture. In

Eulerian formulation, the conservation of mass and linear momentum for the ηth

component of the mixture is given by Atkin and Craine [8]

∂ρη

∂t
+∇ · (ρηvη) = ρηΦη, (2.17)
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∂

∂t
(ρηvη) +∇ · (ρηvη ⊗ vη) = ∇ ·Tη + ρηbη + πη + ρηΦηvη, (2.18)

where ρηΦη is the mass supply rate, Tη the stress tensor, ρηbη the body force

and πη the internal interaction force of the ηth constituent of the mixture. Note

that for a binary mixture of solid and fluid (i.e. η = 1, 2), the conservation

laws (2.17)- (2.18) will be used under certain assumptions in the following chapters

for the development of mathematical models. The balance of mass (2.17) and linear

momentum (2.18) upon simplification take the following form [59]

∂ρ

∂t
+∇ · (ρv) = 0, (2.19)

ρ
Dv

Dt
= ∇ ·T + ρb, (2.20)

where the assumptions
∑N

η=1 ρ
ηΦη = 0 and

∑N
η=1(ρηΦηvη + πη) = 0 have been

used. It is important to note that we do not consider the temperature and rota-

tional effects here, therefore, for brevity, only the conservation of mass and linear

momentum for the mixture are presented above. However, conservation of angular

momentum and energy along with entropy inequality for the mixture may also be

described in a similar manner [8].

2.10 Numerical Method and Matlab Solvers

In this section, we present numerical methods which will be used to solve the

resulting nonlinear ordinary and partial differential equations in the chapters to

follow. In particular, we first present the method of lines along with an illustrating

example. This is followed by a discussion on Matlab solvers bvp4c and pdepe.
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2.10.1 Method of Lines

The method of lines (MOL) is a general numerical procedure used to solve the

time-dependent partial differential equations, usually one-dimensional parabolic

or elliptic PDEs [60, 61]. MOL is a semi-analytical technique in which the spatial

derivatives are discretized leaving the time variable continuous. This leads to

a system of coupled ordinary differential equations (ODEs) which can then be

solved using numerical methods for initial value problems. The salient features

of the MOL which justify its use include: computational efficiency, numerical

stability, reduced programming effort and reduced computational time. In order

to illustrate this method, we consider one-dimensional heat equation and compare

the result with the exact solution. Consider the problem

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, t > 0, (2.21)

subject to the following conditions

u(x, 0) = 1, u(0, t) = 0, u(1, t) = 0, (2.22)

which admits the closed form solution

u(x, t) =
4

π

∞∑
k=0

1

(2k + 1)
sin {(2k + 1)πx} e−(2k+1)2π2t. (2.23)

As required by the MOL, we discretize the spatial derivative appearing on the right

hand side of equation (2.21) by using central finite difference scheme accurate up

to second order and write

dui
dt

=
ui+1 − 2ui + ui−1

h2
, i = 1, 2, 3, · · · , N, (2.24)

where u0 = 0 and uN+1 = 0 is obtained from the left and right boundary condition

respectively, and

ui = u(xi, t), h =
1

N
, xi = ih. (2.25)
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The initial conditions at each node may be expressed from the first equation

in (2.22) as

u(xi, 0) = 1. (2.26)

We thus have a system of N ODEs (2.24) and the corresponding initial conditions

outlined in equation (2.26), which may now be solved using well established and

efficient Matlab’s ODE solvers such as ode23s.

In Figure 2.4, we present a graphical comparison between the exact and numerical

(MOL) solution of the heat equation (2.21) at t = 0.95. An excellent agreement

between the two solutions can be noticed which validates the proposed numerical

scheme. Also, note that choice of time in this graph is random, however, different

values of the time may also be considered.

Figure 2.4: A comparison between the exact and MOL solution of the heat
equation (2.21).

In addition to a graphical comparison, we also present a comparison in the form of

table between the two solutions by varying time and number of spatial nodes. The

maximum absolute error between the exact and numerical solution in Table 2.1 for

different number of spatial nodes N and time t justifies that MOL scheme meets

the required order of accuracy.
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Error = max (|Exact - MOL|)

Number of Nodes Time

N t = 0.1 t = 0.5 t = 0.75 t = 0.80

25 1.1918× 10−4 4.1465× 10−5 3.8468× 10−6 1.9989× 10−6

100 1.1849× 10−4 1.1501× 10−6 1.8441× 10−6 1.6577× 10−6

300 1.1796× 10−4 9.6002× 10−7 1.4369× 10−6 1.3606× 10−6

Table 2.1: Maximum absolute error between the exact and MOL solution of
heat equation (2.21) for different times and spatial nodes.

2.10.2 bvp4c

The predefined Matlab function bvp4c is a finite difference code that utilizes a

collocation method to solve a two-point nonlinear boundary value problem in a

finite domain by dividing the interval of integration into sub-intervals and solving

a system of algebraic equations obtained from the collocation conditions Esfandi-

ari [62]. Additionally, bvp4c computes the error of approximate solution on each

subinterval. If a tolerance criterion is not met, the solver modifies the mesh and

repeats the procedure. In order to begin a numerical experiment, bvp4c requires

initial points of the mesh along with initial guess of the solution at the mesh points

and of the unknown parameters. Thus, in summary, bvp4c requires three pieces

of information: the equation to be solved, its relevant boundary conditions, and

initial guess for the solution and the parameters.

2.10.3 pdepe

The predefined function pdepe, which stands for parabolic-elliptic partial differ-

ential equations, is a Matlab built-in function used to numerically solve initial-

boundary value problems for a class of parabolic and elliptic PDEs usually in one

space dimension [63]. The function pdepe is based on method of lines technique

that converts the PDEs into a system of coupled ODEs by discretizing the space

derivatives using finite differences accurate up to second order and leaving the
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time variable continuous. Then the resulting ODEs are integrated using a stiff

ODE solver ode15s to obtain approximate solutions at various times. However,

for complex geometries and nonclassical boundary conditions, one has to develop

a different MOL code which may be validated by pdepe in the special case.



Chapter 3

Non-Newtonian Flow-Induced

Deformation From Pressurized

Cavities in Absorbing Porous

Tissues

3.1 Introduction

In this chapter, a mathematical model of non-Newtonian flow-induced deforma-

tion from pressurized cavities in the absorbing porous biological tissues has been

developed and discussed. In particular, the tissue is modeled as a nonlinear de-

formable porous material where the injected power-law fluid is absorbed by the

tissue at a rate proportional to the local fluid pressure. A spherical cavity em-

bedded in an infinite porous medium is used to find the fluid pressure and solid

displacement in the tissue as a function of radial distance and time. The govern-

ing nonlinear equations are solved numerically to highlight the effects of various

emerging parameters. In particular, it is noted that the shear-thickening fluids

exhibit less fluid pressure and induce small solid deformation in comparison to the

24
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shear-thinning fluids. Moreover, fluid pressure and solid displacement are increas-

ing functions of the permeability parameter as well as the absorption parameter.

A graphical comparison to the previously available literature for the Newtonian

fluid case is also presented. The current chapter is based on the work of Siddique

and Anderson [64] which was the only available power-law model in combination

with the mixture theory for the capillary rise of power-law fluid into a deformable

porous material.

In Section 3.2, the mathematical formulation of the problem using the modern

mixture theory approach has been presented. This is followed by an account of

the boundary conditions between the fluid and the porous material in Section 3.3.

The results along with discussion have been presented in Section 3.4 followed by

conclusion in Section 3.5.

3.2 Mathematical Formulation

In order to develop the mathematical model, we consider a spherical cavity em-

bedded in a porous biological tissue of infinite extent as shown in Figure 3.1. The

tissue is modeled as a nonlinear deformable porous material consisting of a mix-

ture of a solid and a fluid phase. The problem is modeled using mixture theory

approach. The main underlying idea of mixture theory is that each constituent of

the mixture is continuous and occupies every point in the space at each instant of

time.

We assume that the fluid is a non-Newtonian viscous fluid which follows power-law

model and further suppose that the elastic solid matrix is homogeneous, isotropic

and body as well as osmotic forces are neglected. It is also assumed that the

shear stresses are negligible on account of one dimensional radial flow and the

constituents of the mixture are intrinsically incompressible and that the elastic

properties of the medium are linear.
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Figure 3.1: Diagram and coordinate system for power-law fluid flow from an
injection site in a porous medium. Growth of the cavity from radius 1 to a(t)
is shown.

The apparent densities of individual constituents of the mixture are written as

ρη = lim
dV→0

dmη

dV
, (3.1)

where η = s, ` represents either the solid or fluid phase, dmη is the mass of the η

phase in the small volume dV . The true density ρηT and relative porosity φη of the

η phase of the mixture are defined as

ρηT = lim
dV η→0

dmη

dV η
, (3.2)

φη = lim
dV→0

dV η

dV
, (3.3)

where dV η is the small volume of the η phase. Using equations (3.2) and (3.3)

into (3.1), we get a relation between density and porosity as

ρη = φηρηT . (3.4)
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The relations for densities and porosities of the solid and fluid phase can be written

as Barry and Aldis [24]

ρs + ρ` = ρ, (3.5)

φs + φ` = 1. (3.6)

The balance of mass for the solid and fluid phase is written respectively as Barry

and Aldis [24]

∂ρs

∂t
+∇ · (ρsvs) = 0, (3.7)

∂ρ`

∂t
+∇ · (ρ`v`) = −βp, (3.8)

where vs and v` are velocities of the solid and fluid phase, respectively, β is the

proportionality constant which depends upon the concentration of capillaries and

lymphatics in the biological tissue and permeability of their walls and p is the fluid

pressure. Note that the term appearing on right hand side of equation (3.8) is due

to the loss of fluid mass at a rate proportional to the fluid pressure while it passes

through capillaries and lymphatics. Invoking the relation (3.4) into the continuity

equations (3.7) and (3.8), we obtain

∂φs

∂t
+∇ · (φsvs) = 0, (3.9)

∂φ`

∂t
+∇ · (φ`v`) = −βp

ρ`T
. (3.10)

Adding equations (3.9) and (3.10) and making use of the relation (3.6) leads to

∇ · v = − β

ρ`T
p, (3.11)

where

v = vsφs + v`φ`, (3.12)
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is defined to be the macroscopic or composite velocity of the mixture. The con-

servation of linear momentum for the ηth component of the mixture as described

in the previous chapter is rewritten here as

ρη
(∂vη

∂t
+ (vη · ∇)vη

)
= ∇ ·Tη + ρηbη + πη, (3.13)

where Tη is the stress tensor and bη the net body force of the η phase whereas

πη represents the internal frictional interaction force between the mixture con-

stituents. The inertial terms appearing on the left hand side of equation (3.13)

are taken into account for the derivation of governing equations by Barry and

Aldis [65] and proven to be negligible for a particular choice of time scale but our

reason for neglecting these terms is due to small velocities and deformation rates

that reduces the momentum equation (3.13) to the following form

∇ ·Tη + πη = 0, (3.14)

where body forces are neglected and Newton’s third law for internal frictional

forces means that πs + π` = 0. The stress tensor Tη may be defined as [24]

Tη = −φηpI + ση, (3.15)

where ση represents either the solid or fluid stress and I is the identity tensor.

In this chapter, we neglect the viscous stress σ` on account of one-dimensional

radial flow and assume that σs = σ for the rest of the derivation. It is worth

noting that in usual non-Newtonian fluid modeling, the rheological effects enter

into the governing equations from the viscous stress σ` whereas in the present

mathematical model under above-mentioned assumptions, the rheological effects

enter through the drag forces πη. The drag force for the power-law fluid in a

deformable porous medium is defined as [64]

−πs = π` = K
(
vs − v`

)∣∣vs − v`
∣∣n−1 − p∇φs, (3.16)

where K is the drag coefficient of relative motion and n is the power-law index
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with n < 1 for shear-thinning, and n > 1 for shear-thickening fluids. Setting

n = 1, in this equation, yields the relation for the Newtonian fluid case [24]

and taking vs = 0 and φs=constant gives rigid non-Newtonian fluid case. Using

equation (3.15) into (3.14) and taking into account the assumptions σs = σ and

σ` = 0, yields

∇ · (−φspI + σ) + πs = 0, (3.17)

∇ · (−φ`pI) + π` = 0. (3.18)

Adding equations (3.17) and (3.18) and making use of the relations φs + φ` = 1

and πs + π` = 0 allows us to write

∇ · σ = ∇p. (3.19)

Substituting the relations for πs and π` from equation (3.16) into (3.14) and

taking into account equation (3.6), we have

∇ · σ = K
∣∣vs − v`

∣∣n−1(
vs − v`

)
+ φs∇p, (3.20)

0 = −K
∣∣vs − v`

∣∣n−1(
vs − v`

)
+ φ`∇p. (3.21)

Eliminating the pressure p from these equations and writing the resulting equation

in terms of u and v, gives

∇ · σ =
1

κ

(∂u

∂t
− v

)n
, (3.22)

where

κ =
(φ`)n+1

K
, (3.23)

is the permeability of the medium which reduces to the corresponding relation

in [24] for power-law index n = 1. Here, u denotes displacement of the solid and

vs = ∂u
∂t

. Equation (3.22) can be explained physically by taking into account the

Darcy’s law and considering the solid stress as being governed by the standard
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equilibrium equation of the theory of linear elasticity. As suggested by the rela-

tion (3.23), the permeability κ of the porous medium decreases as a consequence

of solid compression. Following Barry and Aldis [24], we assume that κ = κ(φ),

where φ denotes the change in porosity (or dilatation) of the medium. Many

authors [17, 18, 24, 64, 66, 67] have considered different forms of this functional

relation to account for the motion of fluid through various porous media.

In order to develop the governing equations of motion, we assume that solid de-

formations are very small so that by symmetry only the radial components of

displacement and velocity are nonzero and that the permeability function κ de-

pends only on the porosity of the medium, φ. The solid stress components are

defined as

σrr = (λ+ 2µ)
∂u

∂r
+ 2λ

u

r
, (3.24)

σθθ = (λ+ 2µ)
u

r
+ λ

∂u

∂r
+ λ

u

r
= σφφ, (3.25)

where λ and µ are Lamé stress constants. All other stress components are assumed

to be zero. The divergence of the stress in the radial direction is given by

(
∇ · σ

)
r

=
∂σrr
∂r

+ 2
σrr − σθθ

r
. (3.26)

Substitution of the relations (3.24) and (3.25) into equation (3.26) results into

(
∇ · σ

)
r

= (λ+ 2µ)

[
∂2u

∂r2
+

2

r

∂u

∂r
− 2

r
u

]
. (3.27)

This may be written in a compact form as

(
∇ · σ

)
r

= Ha
∂φ

∂r
, (3.28)

where Ha = λ+ 2µ is the aggregate modulus of the solid matrix and the porosity

φ in terms of displacement u is given by

φ =
1

r2

∂

∂r
(r2u). (3.29)
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Taking into account equations (3.19) and (3.28), the governing equation (3.22) can

be written in the radial direction as

∂p

∂r
= Ha

∂φ

∂r
=

1

κ(φ)

(∂u
∂t
− vr

)n
, (3.30)

which on equating and integrating the first two expressions leads to

p(r, t) = Haφ(r, t), (3.31)

where both p and φ tend to zero as r →∞. From equations (3.30) and (3.31), we

can get a relation for vr as

vr(r, t) =
∂u

∂t
−

(
κ
( p

Ha

)∂p
∂r

) 1
n

. (3.32)

Following Barry and Aldis [24], we consider the permeability function κ as

κ(p) = κ(Haφ) = emp, (3.33)

where m is a material constant. Note that m = 0 corresponds to constant per-

meability case whereas m > 0 represents nonlinear permeability case. Plugging

the expression (3.32) into the continuity equation (3.11) and using the definition

of divergence for spherical coordinates, yields

1

r2

∂

∂r

(
r2∂u

∂t

)
− 1

r2

∂

∂r

{
r2
(
κ
( p

Ha

)∂p
∂r

) 1
n

}
= − β

ρ`T
p. (3.34)

The above equation is non-dimensionalized using the following dimensionless quan-

tities

t =
t

t0
, r =

r

r0

, p =
p

p0

, u =
u

u0

, κ =
κ

κ0

, (3.35)

where t0, r0, p0, u0 and κ0 are typical time, radius, pressure, deformation and un-

deformed permeability scales, respectively. After introducing these choices and

using equations (3.29) and (3.31), equation (3.34) on dropping the bars assumes
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the following form

∂p

∂t
=
α

r2

∂

∂r

{
r2
(
κ
(
pδ
)∂p
∂r

) 1
n

}
− ωp, (3.36)

where

α =
Hat0κ

1
n
0 p

1−n
n

0

r
n+1
n

0

, δ =
p0

Ha

, ω =
βHat0
ρ`T

. (3.37)

Note that values of various parameters involved in this equation may differ con-

siderably among biological tissues [24]. The equation (3.36) is required governing

equation in terms of fluid pressure p as a function of radial distance r and time t

which is related to the porosity φ via equation (3.31). This equation is parabolic

in nature and highly nonlinear due to the presence of power-law index n, which

evidently makes it difficult to solve analytically. Moreover, it is worth mentioning

that setting power-law index n = 1, recovers the Newtonian fluid case [24]. We

choose

t0 =
r
n+1
n

0

Haκ
1
n
0 p

1−n
n

0

, (3.38)

so that α = 1, which then allows us to write ω in equation (3.37) as

ω =
βr

n+1
n

0

ρ`Tκ
1
n
0 p

1−n
n

0

. (3.39)

This is to remark here that using simple dimensional analysis, right hand side of

equation (3.38) can be shown to have the dimensions of length over power-law

velocity. Moreover, the diffusion time scale for the Newtonian fluid case can be

recovered by setting n = 1 in equation (3.38).



Non-Newtonian Flow-Induced Deformation... 33

3.3 Initial and Boundary Conditions

In this section, we outline the initial and boundary conditions required to solve the

governing equation for a spherical cavity embedded in an infinite porous medium

presented geometrically in the previous section. It is important to note that Hou et

al. [68] established the general boundary conditions at the interface between a bi-

nary mixture (articular cartilage) and a viscous fluid (synovial fluid) which may be

Newtonian or non-Newtonian. They used the biphasic mixture theory to develop

a set of boundary conditions using the conservation laws of mass, momentum and

energy. The proposed boundary conditions were validated by imposing the Couette

and Poisuelle flow conditions for a Newtonian viscous fluid on a porous-permeable

biphasic material and the Taylor slip condition was derived. The boundary con-

ditions for the fluid pressure and solid displacement of the porous tissue are given

by [24]

p(r, 0) = f(r), p(a, t) = g(t), p(r, t)→ 0 as r →∞, (3.40)

and

[∂u
∂r

+ 2λ̄
u

r

]
r=a

= 0, u(r, t)→ 0 as r →∞, (3.41)

where f(r) and g(t) are some specified functions and λ̄ = λ
λ+2µ

. Note that the

given displacement boundary condition for infinitesimal deformation was derived

from general boundary condition between a fluid and a porous material [68]. A

similar version of boundary condition for radial flow through cylindrical shells

was considered by [13, 17]. Although, we choose to use the same boundary con-

ditions [24], however, modeling with non-Newtonian fluid models presents many

interesting features both physically and numerically. Keeping in view the expo-

nentially decaying behavior of fluid pressure p(r, t) for the Newtonian fluid case,

we consider f(r) = e−r. The inner radius of the cavity a(t), appearing in the
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boundary conditions, is written as

a(t) = u
(
a(t), t

)
+ a(0). (3.42)

Note that this displacement condition, which defines a moving domain problem,

is generally a nonlinear implicit equation which may be solved numerically. This

moving boundary value problem presents many complexities in numerical compu-

tations. Thus, in order to simplify the system, we follow Barry and Aldis [24] and

assume that the initial position of the boundary a(0) is close to the final position

a(t), which allows us to write

a(t) = u
(
a(0), t

)
+ a(0). (3.43)

The boundary conditions are applied at a(0) rather than a(t) and this approx-

imation is valid for infinitesimal solid displacements. Moreover, for numerical

simulation, we have chosen the cavity radius a(t) = 1, which assists in comparing

the results with Barry and Aldis [24]. However, different values of the cavity radius

may also be considered.

In order to describe the motion of the solid matrix, we seek a relation that shows

a connection between the solid displacement u(r, t) and the fluid pressure p(r, t).

For this, we combine equations (3.29), (3.31) and (3.35) to write

p(r, t) =
1

γr2

∂

∂r
(r2u), (3.44)

where γ = p0r0
Hau0

is a dimensionless parameter. Equation (3.44) on integration with

respect to r and application of displacement boundary condition (3.41), yields

u(r, t) =
γ

r2

{∫ r

a(t)

s2p(s, t)ds+
a3(t)g(t)

2(1− λ̄)

}
, (3.45)

which on substituting r = a(t) gives

a(t) = a(0)
[
1− γg(t)

2(1− λ̄)

]−1

. (3.46)
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The governing equations (3.36) and (3.45) along with initial and boundary con-

ditions suggest that exact solutions are not possible even for the simple case of

constant permeability and we solve them numerically. The steady-state solutions

are computed using bvp4c solver whereas for unsteady version of these governing

equations, we use pdepe solver that were discussed in Chapter 2. The equation for

the solid displacement of the tissue is solved using the trapezoidal rule of numerical

integration for the constant as well as non-linear permeability case. The justifica-

tion of our numerical solutions is presented in Figure 3.5 later in the discussion

section.

3.4 Results and Discussion

In this section, we outline the outcomes of numerical computations for pressure

and displacement of the porous tissue for various values of power-law index n,

permeability parameter m and the absorption parameter ξ(= ω
α

).

Figure 3.2 shows fluid pressure p(r, t) as a function of time for constant permeabil-

ity (m = 0). It is important to note in this figure that we used three different values

of the power-law index n along with two different pressure functions g(t) for radial

distance to be r = 1.1. The two pressure functions that are being used here are

g(t) = e−2t and g(t) = t
1
2 e−2t. When g(t) = e−2t, the power-law fluid pressure falls

exponentially shown by solid lines whereas for g(t) = t
1
2 e−2t, we observe an initial

increase in power-law fluid pressure which eventually decreases exponentially after

reaching to its local maximum value shown by dashed lines. Similar dynamics

was observed by Barry and Aldis [24] with the exception of shear-thinning and

shear-thickening property of the power-law fluid which is an important key point

of the current study. Moreover, for both pressure functions, fluid pressure drops

slowly for shear-thinning fluids as compared to shear-thickening fluids.
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Figure 3.2: Power-law fluid pressure vs time for α = 1, δ = 1, ω = 2. Solid
lines show g(t) = e−2t and dashed lines indicate g(t) = t

1
2 e−2t.

Figure 3.3 describes fluid pressure p(r, t) in the cavity as a function of radial

distance r for different times t = 1, 4, 7 for shear-thinning (n < 1) and shear-

thickening (n > 1) fluid for constant (m = 0) as well as nonlinear (m = 3)

permeability. The range of the material constant m reported in the literature [21,

24] for biological tissues can be between 0 and 10. For the rest of the numerical

computations, the following parameter values are used: α = 1, δ = 1, ω = 0.2, γ =

1, λ̄ = 0.5 and a(t) = 1 = g(t). These values are consistent with Barry and

Aldis [24], since in some cases we have shown a comparison with their Newtonian

case. In Figure 3.3, on the left we show shear-thinning case and on the right, we

show shear-thickening case. The key observation in both cases is for large time

t = 7, where the steady state is reached which we have shown by solid lines. The

effect of nonlinear permeability is more prominent in the case of shear-thinning

fluids as compared to shear-thickening fluids. The general dynamics of pressure

drop is similar to that of the Newtonian case, where the nonlinear permeability case

shows a slow drop off in pressure as a function of radius as compared to the linear
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permeability case where the pressure drop off is faster. It is important to note

that pressure p is proportional to the volume fraction φ, which can be seen from

equation (3.31). As the solid deformation increases, so does the volume fraction of

the power-law fluid, which in turn, affects the permeability of the porous medium.

The increase in permeability of the porous medium creates easiness in the motion

of the power-law fluid, which eventually causes pressure to drop slowly. This means

that pressure drops off more slowly as we move from the constant permeability

case to the nonlinear permeability case. Moreover, Figure 3.3 also suggests that

from the center of the spherical cavity, pressure drops off more slowly with radial

distance for shear-thickening fluids than shear-thinning fluids.

Figure 3.3: Left: Pressure vs radial distance for various times when n = 0.5;
Right: Pressure vs radial distance for various times when n = 1.5.

The solid displacement u as a function of radial distance r at times t = 1, 4, 7 and

permeability parameter m = 0, 3 for shear-thinning and shear-thickening fluids

is presented in Figure 3.4. Interestingly, for linear permeability the decrease in

displacement is quite uniform for both shear-thinning (shown on the left) and

shear-thickening (shown on the right) fluids. When permeability is nonlinear, the

shear-thinning fluid case shows a definite inflection because of non-linearities in

the system similar to the Newtonian fluid case [24] whereas for shear-thickening

fluids the inflection is not observed and solid displacement decays quite uniformly
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but slower than the constant permeability case. This is due to the fact that shear-

thickening fluid resists gradual deformation by shear stresses more than the shear-

thinning fluids, which in turn, deform the porous material less as compared to the

shear-thinning fluids. Moreover, for both the constant and nonlinear permeability

cases, the solid displacement increase with time t for power-law fluid with more

noticeable effect for shear-thinning fluids.

Figure 3.4: Left: Displacement vs radial distance for various times when
n = 0.5; Right: Displacement vs radial distance for various times when
n = 1.5.

When the power-law index is set to n = 1, the effect of absorption parameter, ξ =

ω
α

, on steady-state fluid pressure p(r) and solid displacement u(r) for the constant

as well as non-linear permeability case is shown in Figure 3.5. Both graphs show

that steady-state pressure and displacement increase as the parameter ξ increases

for constant and non-linear permeability function. Moreover, for the same ξ, it is

also observed that p(r) and u(r) increases as the parameter m increases, with more

distinct effect for nonlinear permeability. From the graph on left, we notice that

an increase in the parameter ξ magnifies the effect of nonlinearities in the system,

which in turn, decreases the fluid absorption in the tissue and consequently the

fluid pressure in the spherical cavity drops off more slowly for large ξ. In the figure

on the right, large m and ξ contribute to the non-linearities in the system, which

evidently affect the porosity of the material and produce an overall expansion of

the medium despite radial compression. The inflection in the solid displacement
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u(r) increases as the parameter ξ increases for nonlinear permeability. Moreover,

it is worth mentioning that for the Newtonian fluid case (n = 1), both graphs

establish an excellent graphical agreement with the results of Barry and Aldis [24]

for steady-state pressure and displacement as a function of radial distance for the

nonlinear permeability case as indicated by the solid lines for various values of

parameter ξ.

Figure 3.5: Left: Steady-state pressure vs radial distance for various ξ;
Right: Steady-state displacement vs radial distance for various ξ.

The effect of power-law index n on steady-state pressure and displacement is shown

in Figure 3.6. The other parameter values that we have used here are ξ = 10, 1

and m = 0, 3. For the constant permeability case, the fluid pressure reaches to

its steady state quickly following a uniform drop as compared to the nonlinear

permeability case where we notice an exponential pressure drop. Large values of

the absorption parameter ξ correspond to the higher intrinsic permeability, which

shows a more dominant effect in both graphs in Figure 3.6. The decrease in ξ

values decreases the effect of non-linearities in the solid displacement distribution

which shows an opposite trend as compared to the large values of ξ. The inflection

point that we observe in the displacement u(r) shows that the porous medium is

always in a state of local expansion even if the medium is compressed radially.

It is evident from the graph on the right that for the constant permeability case,

the solid displacement falls uniformly with the power-law index whereas in case of

nonlinear permeability shear-thinning fluids exhibit greater inflection highlighting
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the presence of non-linearities in the system while shear-thickening fluids show

no inflection in the solid displacement even for large ξ. Thus, shear-thinning

fluids induce greater solid deformation as compared to the Newtonian and shear-

thickening fluids.

Figure 3.6: Left: Steady-state pressure vs radial distance for various n when
ξ = 10; Right: Steady-state displacement vs radial distance for various n when
ξ = 1.

The influence of power-law index n on pressure gradient dp
dr

and displacement

gradient du
dr

for the case of non-linear permeability (m = 3) is shown in Figure 3.7.

It is evident from both graphs that pressure as well as displacement gradient

increase by increasing the power-law index for the larger radial distance away

from center of spherical cavity. It can be seen from the figure on the right that for

large values of the parameter ξ, du
dr
> 0 in a small region close to spherical cavity

but not adjacent to it. This region is found larger for shear-thinning fluids than

Newtonian and shear-thickening fluids. This means that in some porous materials

non-linearities are sufficient to produce an expansion in the annular as well as

radial directions and this effect may be useful in various industrial applications.
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Figure 3.7: Left: Steady-state pressure gradient vs radial distance for
various n when m = 3; Right: Steady-state displacement gradient vs radial
distance for various n when m = 3.

Finally, the effect of power-law index n on tissue permeability expressed in equa-

tion (3.33) is presented in Figure 3.8. The tissue permeability, which is a measure

of the ability of a porous material to allow fluid to pass through it, is found more

for shear-thinning fluids in comparison to Newtonian and shear-thickening fluids.

This is because of the fact that shear-thinning fluids are less viscous (i.e. vis-

cosity decreases with applied shear stress) and experience less resistance in the

flow which enable them to pass in more quantity through the tissue than shear-

thickening fluids. This effect serves as a justification for the reduction of fluid

pressure and hence the solid displacement of the porous tissue with the power-law

index.
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Figure 3.8: Pressure-dependent permeability vs radial distance for various n
when m = 3, t = 3.

3.5 Conclusion

In this chapter, we have analyzed non-Newtonian flow-induced deformation in ab-

sorbing porous biological tissues modeled as a nonlinear deformable porous mate-

rial by using the continuum mixture theory approach. The soft tissue was assumed

to be isotropic, homogeneous and linearly elastic. A nonlinear diffusion equation

in terms of power-law fluid pressure and a relation for the solid displacement of the

tissue was obtained as a consequence of mathematical modeling of a spherical cav-

ity embedded in an infinite porous medium. The governing equations for the fluid

pressure and solid displacement were solved numerically for the non-Newtonian

fluid case. In particular, Matlab’s solvers pdepe and bvp4c were utilized to solve

the pressure equation for the unsteady and steady-state case, respectively whereas

trapezoidal rule of numerical integration was employed to get the solution for the

solid displacement profile.
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Our solutions indicate that porosity of the tissue is increased due to annular ex-

pansion and in highly non-linear situations a radial expansion can result as well.

This expansion of the porous material increases the fluid absorption in the biolog-

ical tissue which is observed more for shear-thinning fluids than shear-thickening

fluids. The increase in the permeability of the absorbing porous tissue causes more

fluid to seep through the tissue with less resistance. The power-law fluid pressure

and the solid displacement profiles were found to increase with time, permeability

and absorption parameter for both the steady and unsteady situations. The large

values of the permeability and absorption parameters correspond to the presence of

non-linearities in the system which enhance the fluid pressure and solid displace-

ment of the tissue. It was also shown that permeability of the tissue decreases

by increasing the power-law index and this effect causes the fluid pressure in the

tissue and hence the solid displacement to decay more slowly for shear-thinning

fluids as compared to shear-thickening fluids.



Chapter 4

Application of Magnetic Field to

Flow Induced-Deformation in

Absorbing Porous Tissues

4.1 Introduction

Based on the geometry of the previous chapter, the effect of a uniform applied

magnetic field on the flow-induced deformation in the absorbing porous biological

tissues has been investigated in this chapter. Specifically, a model with a spherical

cavity embedded in a porous medium of infinite extent has been used to find fluid

pressure and the solid displacement of the tissue as a function of radial distance and

time. The governing set of equations is non-dimensionalized using some suitable

dimensionless variables. The method of lines approach is used to numerically

solve a one-dimensional partial differential equation in terms of fluid pressure

whereas the solid displacement is computed numerically using the trapezoidal rule.

The effect of magnetic parameter on fluid pressure, solid displacement and tissue

permeability is illustrated graphically.

44
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In Section 4.2, the mathematical formulation of the problem using the continuum

mixture theory approach is presented. Solution methodology is presented in Sec-

tion 4.3. The results are included in Section 4.4 with an appropriate discussion

followed by the concluding remarks in the last Section 4.5.

4.2 Mathematical Formulation

Based on the geometry of the problem considered in the preceding chapter, we

develop a model of flow-induced deformation in absorbing porous tissues subject

to a uniform radial magnetic field as shown in Figure 4.1. The orientation of the

applied magnetic field is taken in such a way that it produces a radial flow in the

tissue. The soft porous tissue containing a spherical cavity is considered to be a

binary mixture of an organic solid and a conducting fluid.

We assume that the injected fluid in the porous tissue is conducting and viscous

while the organic solid matrix is isotropic, homogeneous and linearly elastic. The

gravitational and osmotic forces are neglected and the solid deformation is sup-

posed to be small. It is also supposed that the shear stresses are negligible on

account of one dimensional radial flow and the constituents of the mixture are

intrinsically incompressible. Under these assumptions, the equations of motion

for solid and fluid phase are written in scalar form as (see Appendix A for details)
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Figure 4.1: Schematic of MHD fluid flow from an injection site into a porous
medium. Growth of the cavity from radius 1 to a(t) is indicated.

∂φs

∂t
+

1

r2

∂

∂r

(
r2φsvs

)
= 0, (4.1)

∂φ`

∂t
+

1

r2

∂

∂r

(
r2φ`v`

)
= − β

ρ`T
p, (4.2)

vs − v` =
φ`

K

∂p

∂r
− σ0B

2
0

K
vs, (4.3)

∂σrr
∂r

+ 2
σrr − σθθ

r
=
∂p

∂r
, (4.4)

where φs and φ` represent solid and fluid volume fractions and vs and v` are

velocities of solid and fluid phase, respectively, ρ`T is the intrinsic density of fluid

phase, β is the proportionality constant which depends upon the concentration of

capillaries and lymphatics in the tissue and permeability of their walls, p is the fluid

pressure, K the drag coefficient of relative motion, σ0 the electric conductivity of

the fluid, B0 the uniform magnetic flux. It is important to note that the last term

on right hand side of equation (4.3) is the contribution of MHD and left hand side

of equation (4.4) is the divergence of solid stress in the radial direction where σrr
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and σθθ = σφφ are defined as components of solid stress. Equations (4.1) and (4.2)

represent the mass balance relations for solid and fluid phase, respectively, whereas

equations (4.3) and (4.4) are derived from solid and fluid momentum balances [69,

70]. The term appearing on right hand side of equation (4.2) is due to loss of fluid

mass at a rate proportional to fluid pressure while it passes through capillaries

and lymphatics. Adding equations (4.1) and (4.2), we obtain

∂

∂t

(
φs + φ`

)
+

1

r2

∂

∂r

(
r2
(
φsvs + φ`v`

))
= − β

ρ`T
p, (4.5)

which on denoting the macroscopic medium velocity in the radial direction, vr =

φsvs + φ`v`, and using the relation, φs + φ` = 1, reduces to

1

r2

∂

∂r

(
r2vr

)
= − β

ρ`T
p. (4.6)

Using equation (4.4) into (4.3) and simplifying, yields

∂σrr
∂r

+ 2
σrr − σθθ

r
=
K

φ`
(vs − v`) +

σ0B
2
0

φ`
vs. (4.7)

Denoting vs = ∂u
∂t

, where u is a component of solid displacement and using an

expression for v` from macroscopic medium velocity vr into the relation (4.7) and

keeping in view equation (4.4), we have

∂p

∂r
=
∂σrr
∂r

+ 2
σrr − σθθ

r
=

1

κ(φ)
(
∂u

∂t
− vr) +

σ0B
2
0

φ`
∂u

∂t
, (4.8)

where

κ(φ) =
(φ`)2

K
, (4.9)

is defined to be the permeability of the medium [24]. Equation (4.8) can be

explained physically by taking into account the Darcy’s law and considering the

solid stress as being governed by the standard equilibrium equation of the theory

of linear elasticity. As suggested by the relation (4.9), the permeability κ of the

porous medium decreases as a consequence of solid compression. Taking into
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account equation (4.4) and the relation ∂σrr
∂r

+2σrr−σθθ
r

= Ha
∂φ
∂r

where Ha = λ+2µ

is the aggregate modulus and (λ, µ) are Lamé constants (see Appendix for details),

the governing equation (4.8) can be written as

∂p

∂r
= Ha

∂φ

∂r
=

1

κ(φ)

(∂u
∂t
− vr

)
+
σ0B

2
0

φ`
∂u

∂t
, (4.10)

which on equating the first two expressions and then integrating gives the rela-

tionship between p and φ as

p(r, t) = Haφ(r, t), (4.11)

where both p and φ tend to zero as r → ∞. From equations (4.10) and (4.11),

a relation for vr in terms of fluid pressure p and solid displacement u may be

obtained as

vr(r, t) =
∂u

∂t
−

(
κ
( p

Ha

)∂p
∂r

)
+
κ
(
p
Ha

)
σ0B

2
0

φ`
∂u

∂t
. (4.12)

Combining equations (4.6) and (4.12), we obtain

1

r2

∂

∂r

(
r2∂u

∂t

)
− 1

r2

∂

∂r

{
r2κ
( p

Ha

)∂p
∂r

}
+

1

r2

∂

∂r

(
r2
κ
(
p
Ha

)
σ0B

2
0

φ`
∂u

∂t

)
= − β

ρ`T
p. (4.13)

As the porous tissue is compressed, consequently its permeability would reduce

due to a decrease in porosity. The relationship between porosity and displacement

of the medium is given by [24]

1− φ` =
φs0√
detG

, (4.14)

where G is the left Cauchy-Green deformation tensor and φs0 is the initial solid

volume fraction. For infinitesimal solid deformations this can be approximated
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as [24, 71]

φ` = φ`0 + φs0∇ · u = φ`0(1 + α0φ), (4.15)

where φ = ∇ · u is the one-dimensional dilatation and α0 =
φs0
φ`0

. The permeability

as a function of porosity can then be expressed as κ = κ(φ) which is related to

fluid pressure via equation (4.11). Recognizing the first term on left hand side of

equation (4.13) as the time derivative of φ = 1
r2

∂
∂r

(r2u) and keeping in view the

relation (4.11), we obtain

1

Ha

∂p

∂t
− 1

r2

∂

∂r

{
r2κ
( p

Ha

)∂p
∂r

}
+

1

r2

∂

∂r

(
r2
κ
(
p
Ha

)
σ0B

2
0

φ`
∂u

∂t

)
= − β

ρ`T
p. (4.16)

This equation is expressed in terms of fluid pressure p except the third term on

left hand side which still involves solid displacement component u in the paren-

thesis. In order to eliminate u from equation (4.16), we in view of relations (4.11)

and (4.15) assume a linear permeability of the form

κ(φ) = k0(1 +mφ), (4.17)

where k0 and m are material constants. Note that this simple form of permeability,

which is a general approximation to any κ(φ) for small φ, is valid for infinitesimal

solid deformations and various authors [17, 66] have considered a similar form to

study the water flow through arterial tissue and radial flow through deformable

porous shells. Using the relations (4.11), (4.15) and (4.17) into the governing

equation (4.16), we obtain

1

Ha

∂p

∂t
− 1

r2

∂

∂r

{
r2k0

(
1 +m

p

Ha

)∂p
∂r

}
+

1

r2

∂

∂r

{
r2
k0

(
1 +m p

Ha

)
σ0B

2
0

φ`0
(
1 + α0

p
Ha

) ∂u

∂t

}
= − β

ρ`T
p. (4.18)
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Assuming initial fluid volume fraction φ`0 to be constant and m = α0, this equation

can be reduced to a more convenient form as

1

Ha

(
1 +

k0σ0B
2
0

φ`0

)
∂p

∂t
− k0

r2

∂

∂r

{
r2
(

1 +m
p

Ha

)∂p
∂r

}
= − β

ρ`T
p. (4.19)

This equation may be non-dimensionalized using the following dimensionless quan-

tities

t =
t

t0
, r =

r

r0

, p =
p

p0

, u =
u

u0

, (4.20)

where t0, r0, p0 and u0 are typical time, radius, pressure and deformation scales,

respectively. After introducing these choices, equation (4.19) on dropping the bars

takes the following form

∂p

∂t
=

α

1 +M

1

r2

∂

∂r

{
r2
(
1 +mδp

)∂p
∂r

}
− ω

1 +M
p, (4.21)

where various dimensionless parameters are defined as

α =
Hat0k0

r2
0

, δ =
p0

Ha

, ω =
βHat0
ρ`T

, M =
k0σ0B

2
0

φ`0
. (4.22)

Note that values of various parameters appearing in this equation may differ con-

siderably among biological tissues [24]. The equation (4.21) is required governing

equation in terms of non-dimensional fluid pressure p(r, t) under the action of a

uniform applied magnetic field and is related to porosity φ via equation (4.11).

This parabolic PDE is nonlinear which makes it difficult to solve analytically. We

thus use a numerical method for its solution described in the next section. It is

worth mentioning that setting the magnetic parameter M = 0 in equation (4.21)

and assuming a linear permeability of the form (4.17), we recover the Newtonian

fluid case [24]. A natural time scale t0 for the current problem may be obtained

by setting α
1+M

= 1 as

t0 =
r2

0

Hak0

(
1 +

k0σ0B
2
0

φ`0

)
, (4.23)
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which reduces the parameter ω in equation (4.22) to

ω =
βr2

0

ρ`Tk0

(
1 +

k0σ0B
2
0

φ`0

)
. (4.24)

The non-dimensional boundary conditions for fluid pressure p(r, t) and solid dis-

placement u(r, t) in the tissue from the preceding chapter are rewritten as

p(r, 0) = f(r), p(a, t) = g(t), p(r, t)→ 0 as r →∞, (4.25)

and

[∂u
∂r

+ 2λ̄
u

r

]
r=a

= 0, u(r, t)→ 0 as r →∞, (4.26)

where f(r) and g(t) are some specified functions of their arguments and λ̄ = λ
λ+2µ

.

Note that the given displacement boundary condition for infinitesimal deformation

was derived from a general boundary condition between a fluid and a porous

material [68]. Since the governing equation (4.21) is solved for fluid pressure,

therefore an equation is required that relates solid displacement to fluid pressure.

This is accomplished by combining the relations φ = 1
r2

∂
∂r

(r2u) and p(r, t) =

Haφ(r, t) with equation (4.20) to give

p(r, t) =
1

γr2

∂

∂r
(r2u), (4.27)

where γ = p0r0
Hau0

is a dimensionless parameter. Integrating this equation and

applying the boundary conditions (4.26) for solid displacement, yields

u(r, t) =
γ

r2

{∫ r

a(t)

s2p(s, t)ds+
a3(t)g(t)

2(1− λ̄)

}
, (4.28)

which gives displacement of solid as a function of non-dimensional radial distance

r and time t. Note that the effect of magnetic parameter on steady-state solutions

is absent as suggested by equation (4.21). In order to carry out numerical com-

putations for the nonlinear problem, we assume that a(t) = 1, g(t) = 1, f(r) =

0, α = 1, γ = 1, λ̄ = 0.5 and δ = 1, which are consistent with the values considered
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in [24].

4.3 Solution Methodology

In this section, we briefly outline the procedure for the solution of governing set

of equations. To begin with, we first give an exact solution of equation (4.21) in

terms of MHD fluid pressure p(r, t) subject to boundary conditions (4.25) for the

constant permeability case (i.e. m = 0) and compare the result with method of

lines (MOL) as a validation of numerical scheme to be employed for the solution

of nonlinear problem. Following the method adopted by Barry and Aldis [24] for

linearized problem, the solution for fluid pressure for the choice of applied pressure,

g(t) = e
−ω

1+M
tt
m
2 , is given as

p(r, t) =
a

r
e

−ω
1+M

t(4t)
m
2 imerfc

(
r − a

2
√

αt
1+M

)
Γ
(

1 +
m

2

)
, (4.29)

where m is a non-negative integer, Γ(·) is the gamma function and ierfc represents

integration of the error function [72]. As stated earlier, for the nonlinear problem

we use method of lines whose main idea is to discretize the space variable and its

derivatives and leaving the time variable continuous [73]. This space discretization

results into a system of coupled ODEs which may then be solved using Matlab’s

well established and efficient solvers as an initial value problem. For complete-

ness, we now show a brief calculation of the MOL by discretizing the governing

equation (4.21) using central finite difference formulas for the first and the second

space derivatives as

dpi
dt

=
α

1 +M

[
2(1 +mδpi)

a+ (i− 1)dr

(pi+1 − pi−1

2dr

)
+mδ

(pi+1 − pi−1

2dr

)2

+

(1 +mδpi)
(pi+1 − 2pi + pi−1

(dr)2

)]
− ω

1 +M
pi, (4.30)
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where

i = 1, 2, 3, · · · , N, pi = p(ri, t), ri = a+ (i− 1)dr, dr =
b− a
N

. (4.31)

From the boundary conditions (4.25) for fluid pressure, we have

p0 = g(t), pN+1 = 0, p(ri, 0) = f(ri), (4.32)

where p0 and pN+1 represent, respectively, the left boundary and right boundary

value of fluid pressure and p(ri, 0) are the initial conditions for the descritized

problem. We thus have an initial value problem consisting of N number of ODEs

in equation (4.30) and corresponding initial conditions outlined in equation (4.32),

which may now be solved using efficient Matlab’s solver such as ode23s. It is

important to note that in order to carry out numerical simulations, we truncate

the spatial domain for fluid pressure at r = 13 due to satisfaction of the far

field boundary condition and the temporal domain at t = 7 because after this

value there is no significant change in the fluid pressure and hence the long time

behavior of the solution may be obtained. Moreover, solid displacement u(r, t) in

equation (4.28) is computed using trapezoidal rule by solving a definite integral

involving fluid pressure. It is also important to note that in the implementation

of numerical method for the nonlinear problem the left boundary condition was

applied at non-dimensional radius r = 1 corresponding to initial radius.

Figure 4.2 presents a comparison between the exact (i.e. equation (4.29)) and

numerical (i.e. equation (4.30)) solution for the non-dimensional fluid pressure

in the presence of magnetic field for the constant permeability case. An excellent

agreement between the two solutions is observed validating the proposed numerical

scheme.
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Figure 4.2: A comparison between the exact and numerical solution for fluid
pressure when m = 0.

4.4 Results and Discussion

This section contains the outcome of our numerical simulations for fluid pressure

and solid displacement for various values of emerging parameters. Methods de-

scribed in the previous section are used and the results are illustrated graphically.

In Figure 4.3, non-dimensional fluid pressure p(r, t) is plotted against time t for

the choice of four different applied pressure profiles g(t). The solid curve on the

graph indicates that fluid pressure in the tissue drops off exponentially with time

whereas the dashed curve suggests that there is an initial increase in the pressure

to a local maximum followed by an exponential decay. These two applied pressure

profiles were also considered by Barry and Aldis [24]. Moreover, the dashed-dotted

curve on this graph representing a periodic form of applied pressure shows that

fluid pressure in the porous tissue rises initially to a maximum value followed by a

periodic decrease while the dotted curve representing a quadratic type of applied

pressure indicates that pressure of fluid in the tissue is increasing from the center
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of the cavity. It is to be noted that similar form of periodic and quadratic pressure

was also considered in [74].

Figure 4.3: Fluid pressure vs time for various g(t). Solid line: g(t) = e−2t,

Dashed line: g(t) = t
1
2 e−2t, Dashed-dotted line: g(t) = 0.5(1− cos(0.75πt)),

Dotted line: g(t) = 0.15t2.

Figure 4.4 describes the influence of magnetic parameter M on fluid pressure p(r, t)

at t = 0.5, 7.0 for a given distance from center of the cavity. This graph shows

that fluid pressure in the tissue drops off more rapidly as strength of the magnetic

field increases. The Lorentz force associated with applied magnetic field boosts

the fluid flow in the tissue which consequently reduces fluid pressure in the porous

material. Thus, application of a suitably designed magnetic field may possibly

assist to control the fluid flow in deformable porous tissues for practical purposes.

On the other hand, for fixed M , fluid pressure in the tissue rises with time and

there is not much difference in pressure distribution after t ≥ 7 explaining the long

time behavior of the solution. Since fluid pressure and porosity of the tissue are

related directly via equation (4.11), so this plot also illustrates the porosity as a

function of radial distance and time.
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Figure 4.4: Fluid pressure vs radial distance for various M at t = 0.5, 7.0.

The effect of magnetic parameter M on solid displacement u(r, t) at t = 0.5, 7.0 is

presented in Figure 4.5. The relation for solid displacement (4.28) suggests that

higher fluid pressure in the tissue should induce greater solid deformation, and vice

versa. Accordingly, due to a reduction in fluid pressure with magnetic parameter,

the tissue solid displacement also decays with magnetic parameter as shown in

Figure 4.5. This means that a properly applied high magnetic field can prevent

large solid deformation of the material. Additionally, this graph also illustrates

that deformation of the solid increases with time, and that after t ≥ 7, there is

not significant change in the displacement distribution of the tissue. Moreover, in

the absence of magnetic effects (i.e. M = 0) and for large m, it is expected that

solid displacement u would exhibit greater inflection due to nonlinearities in the

system, particularly, for large time.
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Figure 4.5: Solid displacement vs radial distance for various M at
t = 0.5, 7.0.

The pressure-dependent permeability, κ = 1 + mδp, is plotted against radial dis-

tance r in Figure 4.6 for different values of magnetic parameter M when m = 0.25

and δ = 1. The tissue permeability reduces as strength of transversely applied

magnetic field increases validating the direct relation with fluid pressure. This

fact indicates that a high magnetic field would allow less fluid to seep through the

porous tissue.
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Figure 4.6: Pressure-dependent permeability κ(p) = 1 +mδp vs radial
distance for various M when m = 0.25 and δ = 1.

Finally, influence of the parameter ω on unsteady fluid pressure and solid displace-

ment in the absence and presence of magnetic field is illustrated in Figures 4.7

and 4.8, respectively. The fluid pressure in porous tissue decreases as more fluid

is absorbed with more profound effect in the absence of magnetic field. This effect

is consistent with variation of fluid pressure due to fluid flow in porous materi-

als. The application of magnetic field allows fluid pressure to drop more rapidly

even for higher fluid absorption rate. A similar behavior of solid displacement

is noted for the parameter ω in Figure 4.8. Moreover, from these two graphs, it

appears that higher fluid pressure causes greater solid deformation suggesting a

direct relation between the two quantities.
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Figure 4.7: Fluid pressure vs
radial distance for various ω when
m = 0.25, t = 2.

Figure 4.8: Solid displacement
vs radial distance for various ω
when m = 0.25, t = 2.

4.5 Concluding Remarks

In this study, we analyzed a one-dimensional model of flow-induced deformation

from pressurized spherical cavities in absorbing porous tissues under an applied

magnetic field. The deformable porous tissue was assumed to be isotropic, homo-

geneous and linearly elastic. The continuum mixture theory was used to develop

the model assuming solid deformation to be infinitesimally small. A linear perme-

ability relation was considered which allowed the governing equation to be written

explicitly in terms of fluid pressure. A method of lines approach was adopted to

solve the nonlinear parabolic PDE in terms of fluid pressure which was then used

to find tissue solid displacement by employing the trapezoidal rule.

We noticed a reasonable reduction in fluid pressure, solid displacement and per-

meability of the tissue due to the presence of magnetic effects. Thus, a properly

designed magnetic field may help achieve the required fluid flow and solid defor-

mation in the tissue for certain physiological applications. The solid deformation

enhances fluid absorption in the tissue and alters the porosity and permeability of

the material. Although, we assumed that the absorption rate and tissue pressure



Application of Magnetic Field to Flow Induced-Deformation... 60

are related linearly, however, more sophisticated forms of the absorption process

may be considered to enhance the understanding of these complex systems.

This work is relevant to the interpretation of experimental studies on neurophar-

macology and in situ electrochemistry, especially with MHD effects. Other ap-

plications include the activation and magnetization of a variety of soft tissues

for clinical purposes. Finally, it is worth mentioning that within the framework

of mixture theory for modeling multiphase systems, a small extension can reveal

interesting physical features despite the resulting nonlinearity of the governing

system of equations.



Chapter 5

Ion-Induced Deformation of

Articular Cartilage with

Strain-Dependent Nonlinear

Permeability and MHD Effects

5.1 Introduction

The aim of this chapter is to examine the effects of the applied magnetic field and

strain-dependent nonlinear permeability on the deformation of articular cartilage

equilibrated in a sodium chloride solution. A thin rectangular specimen of bovine

cartilage is considered which is assumed to be isotropic and linearly elastic solid.

A biphasic mixture theory approach has been employed to model the nonlinear

deformable porous medium in the presence of a change in the ion concentration

of the bathing solution. The governing set of coupled equations in terms of ion

concentration, solid displacement, and fluid pressure are non-dimensionalized us-

ing appropriate dimensionless quantities. Analytical solutions are provided for

the constant permeability case whereas for the nonlinear permeability case the

displacement equation is solved numerically using the method of lines. The effect

61
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of various emerging parameters such as magnetic and permeability parameters on

the displacement and pressure profiles is illustrated graphically. Moreover, in some

cases, a graphical comparison to the previously published results is also provided.

In Section 5.2, a mathematical model using biphasic mixture theory is introduced.

The solution procedure is explained in Section 5.3 followed by results and discus-

sion in Section 5.4. In the last section, the concluding remarks are presented.

5.2 Mathematical Modeling

We consider a small rectangular specimen of bovine articular cartilage in a contin-

uous supply of sodium chloride (NaCl) salt solution under the action of a uniform

applied magnetic field as shown in Figure 5.1. The typical length, width and thick-

ness of the sample tissue are taken as 1.5 × 10−2m, 1.7 × 10−3m and 2 × 10−4m,

respectively [37]. We consider a Cartesian geometry where the coordinates x, y, z

are taken along the height (or thickness), width and the length directions, respec-

tively.

Figure 5.1: Schematic diagram and coordinate system of a cartilage
specimen under continuous salt bath and magnetic field.
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Like other soft biological tissues [17, 28, 75], articular cartilage was also modeled as

a mixture composed of porous solid organic matrix and the interstitial fluid [19, 21].

In order to develop the mathematical model, we assume that the fluid is viscous

and conducting, solid and fluid are intrinsically incompressible, the elastic solid

matrix is linear, homogeneous and isotropic, the viscosity of fluid is negligible

except for its contribution to diffusional drag force, osmotic and gravitational

forces are neglected and the coefficient of diffusive resistance as well as solid content

of the material are independent of deformation. The conservation of mass for the

mixture of solid and fluid is written as [21, 76]

div v` = −ψ div vs, (5.1)

where v` and vs denote the fluid and solid velocity, respectively, and ψ is the ratio

of solid to fluid volume. The momentum balance for the solid and fluid phase by

taking into account the body force due to magnetic field is given by [69]

ρη
(
∂vη

∂t
+ (vη · ∇)vη

)
= ∇ ·Tη + ρηbη + πη + J×B, (5.2)

where η = s, represents the solid, and η = `, the fluid phase of the mixture. Here,

ρη, vη, Tη and πη denote respectively the density, velocity, stress and drag force

of the η phase whereas J represents the current density and B the magnetic flux

density. The body force except the magnetic field is neglected here. The inertial

terms appearing on the left hand side of equation (5.2) were taken into account

for the derivation of governing equations by Barry and Aldis [25] and proven to be

negligible for a particular choice of time scale but our reason for neglecting these

terms is due to small velocities and deformations that reduces the momentum

equation to the following form

∇ ·Tη + πη + J×B = 0, (5.3)

where Newton’s third law for the internal frictional forces implies that πs+π` = 0.

Following [69], the Maxwell’s equations of electromagnetism along with Ohm’s law
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can be written as

∇×B = µcJ, ∇ ·B = 0, ∇× E = −∂B

∂t
, J = σ0(E + vη ×B), (5.4)

where µc is the permeability of free space, E the electric field and σ0 the electric

conductivity of fluid. The solid stress Ts and fluid stress T` may be defined as [37]

Ts = −ψpI + 2µe + λeI + ψc(3λ+ 2µ)CI, (5.5)

T` = −pI. (5.6)

Here p is fluid pressure, I the identity tensor, e the infinitesimal strain tensor, e the

trace of strain tensor, (λ, µ) Lamé stress constants, ψc the coefficient of isotropic

chemical contraction and C the molar concentration of salt. It is important to note

that the last term appearing on right hand side of equation (5.5) represents the

contribution of ion concentration in the biphasic modeling of ion-induced deforma-

tion. Myers et al. [36] considered an exponential form of the chemical expansion

stress estimated from experimental data by employing the triphasic mixture the-

ory [33]. However, the biphasic theory with the inclusion of ion concentration term

in the solid stress equation, nevertheless, captures the similar dynamics to that of

triphasic theory along with the advantage of solving a relatively easier system of

equations. The drag force between the constituents is given by [37]

−πs = π` = K
(
vs − v`

)
, (5.7)

where K is the coefficient of diffusive resistance. Using equations (5.4) and (5.7)

into equation (5.3), we obtain for the solid and the fluid phase the following

∇ ·Ts −K
(
vs − v`

)
− σ0B

2
0vs = 0, (5.8)

∇ ·T` +K
(
vs − v`

)
− σ0B

2
0v` = 0, (5.9)

where B0 is the constant magnetic flux. Note that the last term appearing in

equations (5.8) and (5.9) is the contribution of the MHD to the modeling of fluid
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flow through a deformable porous material [69]. Incorporation of the stress rela-

tions (5.5) and (5.6) into equations (5.8) and (5.9) respectively, yields

−ψ∇p+ 2µ∇ · e + λ∇e+ ψc(3λ+ 2µ)∇C −K
(
vs − v`

)
−σ0B

2
0vs = 0, (5.10)

−∇p+K
(
vs − v`

)
− σ0B

2
0v` = 0. (5.11)

Elimination of the pressure term from these equations leads to

−K(1 + ψ)
(
vs − v`

)
− σ0B

2
0

(
vs − ψv`

)
+ 2µ∇ · e + λ∇e+

ψc(3λ+ 2µ)∇C = 0. (5.12)

Following Myers et al. [37], we assume that the interstitial flow field is one-

dimensional and u(x, t) and v`(x, t) denote respectively the solid displacement

and fluid velocity component in the thickness direction. Thus, integrating the

continuity equation (5.1), we obtain

v` = −ψ∂u
∂t
. (5.13)

Keeping in view equation (5.13) and taking the solid velocity component, vs = ∂u
∂t

,

we can write equation (5.12) in scalar form as

−K(1 + ψ)2∂u

∂t
− σ0B

2
0(1 + ψ2)

∂u

∂t
+ (λ+ 2µ)

∂2u

∂x2
+ ψc(3λ+ 2µ)

∂C

∂x
= 0,(5.14)

which can be written after simple mathematical manipulation as

(
1 + κσ0B

2
0(1 + ψ2)

κ

)
∂u

∂t
= (λ+ 2µ)

∂2u

∂x2
+ ψc(3λ+ 2µ)

∂C

∂x
, (5.15)

where

κ =
1

K(1 + ψ)2
, (5.16)

is defined as the permeability of the elastic solid matrix. Many authors [24, 64, 77]
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have considered different forms of this functional relationship to account for the

fluid flow through various porous materials. It appears that the most versatile and

commonly used form of permeability in biomechanics is [21]

κ = κ0e
m du
dx , (5.17)

where du
dx

is the one-dimensional strain or dilatation and κ0 and m are material

constants. It is important to note that the permeability parameter m lies in the

range 0 ≤ m ≤ 10 for articular cartilage [78], where m = 0 correspond to constant

and m 6= 0 correspond to nonlinear permeability. Using the relation (5.17) into

(5.15) and after simple mathematical manipulation, we obtain

∂u

∂t
=

κ0e
m du
dx

1 +Mem
du
dx

(
Ha

∂2u

∂x2
+ ψcE

∂C

∂x

)
, (5.18)

where M = κ0σ0B
2
0(1+ψ2) is defined to be the dimensionless magnetic parameter,

Ha = (λ + 2µ) is the aggregate modulus and E = 3λ + 2µ. Equation (5.18) is

required governing equation in terms of solid displacement as a function of distance

x and time t. The solid displacement may be obtained once the ion concentration

C(x, t) in the tissue is known. It is to remark here that setting the magnetic

parameter M to zero and considering the permeability to be constant (i.e. m = 0

or κ = κ0) in equation (5.18), we recover the displacement equation in Myers et

al. [37] in dimensional form. Equation (5.18) is subject to the following initial and

boundary conditions

u(x, 0) = 0, u(0, t) = 0,
∂u

∂x
(±h/2, t) = −ψcE

Ha

C(±h/2, t). (5.19)

In order to obtain a relation for the interstitial fluid pressure p(x, t) in the tissue,

we combine equations (5.10) and (5.11) to get

−(1 + ψ)∇p+ 2µ∇ · e + λ∇e+ ψc(3λ+ 2µ)∇C − σ0B
2
0

(
vs + v`

)
= 0. (5.20)
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Utilizing again the relations v` = −ψ ∂u
∂t

and vs = ∂u
∂t

, we can write equation (5.20)

in scalar form as

∂p

∂x
=

Ha

(1 + ψ)

∂2u

∂x2
− σ0B

2
0(1− ψ)

(1 + ψ)

∂u

∂t
+

ψcE

(1 + ψ)

∂C

∂x
. (5.21)

Elimination of the term ∂u
∂t

from equations (5.18) and (5.21) gives

∂p

∂x
=

{
Ha

(1 + ψ)
− HaM(1− ψ)em

du
dx

(1 + ψ)(1 + ψ2)(1 +Mem
du
dx )

}
∂2u

∂x2
+{

ψcE

(1 + ψ)
− ψcME(1− ψ)em

du
dx

(1 + ψ)(1 + ψ2)(1 +Mem
du
dx )

}
∂C

∂x
, (5.22)

subject to the condition

p(±h/2, t) = 0. (5.23)

Note that equation (5.22) on integration gives the fluid pressure p(x, t) in the

tissue once the solid displacement u(x, t) and ion concentration C(x, t) profiles are

known. The contribution of the nonlinear permeability in pressure comes from

equation for the solid displacement (5.18). Moreover, the second term on the right

side of equation (5.21) is the contribution of MHD towards the fluid pressure and

setting this term equal to zero recovers the corresponding equation in [37].

In order to complete the dynamical problem under consideration it is now impor-

tant to state the diffusion problem for the internal salt concentration for articular

cartilage. Following Myers et al. [37], we suppose that the diffusion problem is

uncoupled from the displacement and that the diffusion of salt is unaffected by

the convection effect due to fluid flow and body forces. Moreover, because of the

thin specimen of the tissue, the diffusion of NaCl in the tissue is assumed to be

one-dimensional.

∂C

∂t
= D

∂2C

∂x2
, (5.24)
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subject to the initial and boundary conditions

C(x, 0) = 0,
∂C

∂x
(0, t) = 0, C(±h/2, t) = C0H(t), (5.25)

where D is the diffusion coefficient of salt in the tissue, C0 the step rise in salt con-

centration on tissue sample and H(t) the unit step Heaviside function. Note that

we use the solution for ion concentration C(x, t) from equations (5.24) and (5.25)

in equations (5.18) and (5.21) to get solutions for solid displacement and fluid pres-

sure of porous tissue. Below we present solution methodology for the governing

set of partial differential equations.

5.3 Solution Procedure

We introduce the following set of dimensionless quantities to non-dimensionalize

the ion concentration, solid displacement and fluid pressure equations

t = D
t

(h/2)2
, x =

x

h/2
, u =

u

h/2
, C =

C

C0

, p =
p

p0

, (5.26)

where p0 is a typical pressure scale. The resulting equations on dropping the bars

take the following form, i.e. ion concentration

∂C

∂t
=
∂2C

∂x2
, (5.27)

C(x, 0) = 0,
∂C

∂x
(0, t) = 0, C(±1, t) = H(t), (5.28)

which has the following solution

C(x, t) = 1− 4

π

∞∑
k=0

(−1)k

2k + 1
cos

(
(2k + 1)πx

2

)
e

−(2k+1)2π2

4
t. (5.29)
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The solid displacement

∂u

∂t
=

Rem
du
dx

1 +Mem
du
dx

(
∂2u

∂x2
+Q

∂C

∂x

)
, (5.30)

u(x, 0) = 0, u(0, t) = 0,
∂u

∂x
(±1, t) = −Q. (5.31)

where R = κ0Ha
D

and Q = ψcC0E
Ha

are dimensionless parameters. Considering the

permeability function to be constant (i.e. m = 0) and using the expression (5.29)

into equation (5.30), the closed form solution for the solid displacement u(x, t) by

employing the eigenfunction expansion method using Green’s formula is written

as

u(x, t) =
8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

(
(2k + 1)πx

2

)
×[

RQ

R−M − 1
e

−(2k+1)2π2

4
t +

Q(1 +M)

M −R + 1
e

−R(2k+1)2π2

4(1+M)
t −Q

]
. (5.32)

The interstitial fluid pressure

∂p

∂x
=

{
Ha

p0(1 + ψ)
− HaM(1− ψ)em

du
dx

p0(1 + ψ)(1 + ψ2)(1 +Mem
du
dx )

}
∂2u

∂x2
+{

QHa

p0(1 + ψ)
− QHaM(1− ψ)em

du
dx

p0(1 + ψ)(1 + ψ2)(1 +Mem
du
dx )

}
∂C

∂x
, (5.33)

p(±1, t) = 0, (5.34)

whose solution in view of equations (5.29) and (5.32) for m = 0 is be written as

p(x, t) =
4QHa(1 +M)

π(M −R + 1)

{
1

p0(1 + ψ)
− M(1− ψ)

p0(1 +M)(1 + ψ)(1 + ψ2)

}
×

∞∑
k=0

(−1)k

2k + 1
cos

(
(2k + 1)πx

2

)
×
[
e

−R(2k+1)2π2

4(1+M)
t − e

−(2k+1)2π2

4
t

]
. (5.35)

It is important to note that for large times, the steady state solution for concen-

tration and displacement of equations (5.27) and (5.30) reduce to C∞ = 1 and

u∞ = −Qx, respectively, which means that a constant concentration and a linear

displacement is obtained for steady state case and a similar result was reported

in [36] for triphasic theory. Moreover, since the parameter Q is positive, therefore,
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the steady state displacement u∞ will be negative and this suggests that tissue will

contract with the passage of time. We now turn our attention to the solution of

the nonlinear problem when the permeability parameter m 6= 0 in equation (5.30)

and hence in equation (5.33). In particular, the closed form solution for the solid

displacement and the fluid pressure calculated previously cannot be found due

to the nonlinear nature of the partial differential equation. The solution of this

problem is computed numerically using method of lines (MOL) technique. For

completeness, we now show a brief calculation of the MOL by discretizing the

governing equation (5.30) after using equation (5.29) and employing the central

finite difference formulas for the space derivatives to give

dui
dt

=
Rem

ui+1−ui−1
2dx

1 +Mem
ui+1−ui−1

2dx

×[
ui+1 − 2ui + ui−1

(dx)2
+ 2Q

∞∑
k=0

(−1)ksin

(
(2k + 1)πxi

2

)
e

−(2k+1)2π2

4
t

]
,(5.36)

where

i = 1, 2, 3, · · · , N, ui = u(xi, t), xi = a+ (i− 1)dx, dx =
b− a
N

. (5.37)

From the boundary conditions for the displacement, we have

u0 = 0, uN+1 =
1

3
(−2hQ+ 4uN − uN−1). (5.38)

Here a and b denote respectively the left and right end points of the domain and

N is the number of spatial nodes. Moreover, u0 corresponds to the left boundary

condition and uN+1 represents the approximated right boundary condition [61] of

the solid displacement. From the initial condition for the solid displacement, we

have

u(xi, 0) = 0. (5.39)

Thus, we have an initial value problem consisting of N number of ODEs in equa-

tion (5.36) and corresponding initial conditions outlined in equation (5.39) which
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may now be solved using efficient Matlab solvers such as ode23s. It is impor-

tant to note that we truncated the temporal domain at t = 5 because after this

value there is no significant change in the ion concentration and solid displace-

ment distributions and hence the long time behavior of the solutions may be

obtained. The pressure gradient in equation (5.33) is solved numerically using

the trapezoidal rule for the nonlinear permeability case. A comparison between

the exact and numerical solution for the ion concentration profile is presented in

Figure 5.2 below. The values of various parameters considered in this chapter are

R = 0.4, Q = 0.03630, Ha = 4, ψ = 0.3, p0 = 1 and these values are consistent with

previous related studies [36, 37].

5.4 Results and Discussion

In this section, we present graphical results for the ion concentration, solid dis-

placement and fluid pressure profiles for articular cartilage as a function of non-

dimensional distance and time. In particular, the exact solutions for the constant

permeability and numerical solutions obtained for the nonlinear permeability case

are discussed to explore the dynamical features caused by the magnetic and per-

meability parameter.

5.4.1 Ion concentration profile

Figure 5.2 describes ion concentration distribution in the tissue as a function of

distance x at time t = 0.1, 0.25, 1.0, 4.0. The concentration of the ions in the tissue

increases gradually with time due to diffusion process and attains an equilibrium

state at time t = 4. However, for the triphasic theory [36], the equilibrium value

of the ion concentration was reported to be approximately 0.71.
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Figure 5.2: Ion concentration vs distance at t = 0.1, 0.25, 1.0, 4.0.

5.4.2 Influence of magnetic parameter

Figures 5.3, 5.4 and 5.5 describe the effect of magnetic parameter M on solid

displacement, fluid pressure and strain-dependent permeability respectively for

various times as a function of distance x. In Figure 5.3, solid displacement increases

by increasing magnetic parameter from the center line of the tissue with more

profound effect for large times. This effect is in accordance with the earlier related

study [69] for the fluid flow through a thin deformable porous layer. On the

other hand, for the fixed value of the magnetic parameter, the tissue contracts

uniformly with the passage of time and follows a linear behavior as an equilibrium

state for a long time as validated by equation (5.32). The slope of the final state

in the absence of magnetic effects (i.e. M = 0), as predicted in [36], is found

to be −0.03630 and this slope gets shallower with an increase in the strength of

magnetic field. This fact suggests that there could be an expansion of the tissue

before final contraction for small times when the applied magnetic field is high.

For the constant permeability case, the interstitial fluid pressure in the tissue

increases with magnetic parameter for large times, however, an opposite effect is
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noted for small times as shown in Figure 5.4. The fluid pressure vanishes slowly

in the presence of MHD effects. Keeping magnetic parameter fixed, the fluid

pressure elevates in the tissue for time t = 0.1 due to salt-induced contraction of

the porous tissue. The subsequent decrease of pressure is caused by the discharge

of fluid across the tissue surface. This observation is consistent with [37] when

magnetic effects are absent.

The strain-dependent permeability κ under a chemical expansion stress in Fig-

ure 5.5 is observed to increase with the increase in magnetic parameter with domi-

nant effect for large time. This means that a high magnetic field would allow more

fluid to pass through the tissue and this effect can be utilized for clinical purposes

which need to be explored in more details. Interestingly, when stress is relaxed the

concentration, displacement and pressure distributions in Figures 5.2, 5.3 and 5.4

respectively, appear to achieve the equilibrium states when the magnetic effects

are absent.

Figure 5.3: Solid displacement vs distance for various M at t = 0.1, 1.2, 5.0
when m = 0.
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Figure 5.4: Fluid pressure vs distance for various M at t = 0.1, 1.0, 5.0 when
m = 0.

Figure 5.5: Strain-dependent permeability vs distance for various M at
t = 0.1, 3.0 when m = 1.0.

5.4.3 Influence of permeability parameter

The solid displacement and pressure gradient profiles are plotted as a function of

distance and time for various values of permeability parameter m in Figures 5.6
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and 5.7, respectively. In Figure 5.6, solid displacement increases, although slightly,

with permeability parameter for small as well as large time. This means that the

tissue will experience a contraction with a decrease in permeability parameter.

Indeed, due to negative chemical expansion stress and zero initial concentration

and displacement conditions, the subsequent deformations are contractions and

displacement u must be negative as predicted. Moreover, the effect of permeability

parameter on solid displacement is consistent with previous related studies [24, 53]

on flow-induced deformation in porous biological tissues.

The pressure gradient profile ∂p
∂x

in Figure 5.7 appears to decrease with an in-

crease in permeability parameter for a fixed distance from the center line of the

rectangular sample of tissue, however as before, an opposite trend is observed

for smaller values of time. This suggests that fluid pressure in the tissue would

increase with permeability parameter and this result is also consistent with previ-

ous studies [24, 53], the difference, of course, is the geometry and the presence of

chemical effects here. The pressure gradient at large times is negative suggesting

that the interstitial fluid pressure is a decreasing function of time for the nonlinear

permeability as well.

Figure 5.6: Solid displacement vs distance for various m at t = 0.1, 1.2, 5.0
when M = 0.1.
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Figure 5.7: Pressure gradient vs distance for various m at t = 0.1, 1.0 when
M = 1.0.

5.5 Concluding Remarks

We have examined ion-induced deformation of articular cartilage with strain-

dependent nonlinear permeability and magnetohydrodynamics (MHD) effects. In

particular, a thin rectangular specimen of bovine cartilage was exposed to a uni-

form applied magnetic field and allowed to swell freely under a continuous salt

shower. We used a biphasic mixture theory with the inclusion of ion concentra-

tion term in the solid stress equation. A one-dimensional PDE uncoupled from the

solid displacement was considered to account for the salt diffusion in the porous

tissue.

The solid displacement and fluid pressure in articular cartilage were found to

increase as the strength of the externally applied magnetic field was increased,

however, an opposite effect was noted for a small time. This solid deformation

allows more fluid to pass through the tissue which enhances the fluid pressure in

the tissue. This effect may be of importance in some physiological processes. It

was also noted that the application of a high magnetic field may cause the tissue
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to expand for a specified time before final contraction due to chemical expansion

stress. Like the magnetic parameter, solid displacement and fluid pressure were

also found to increase with an increase in the permeability parameter, however,

the effect was not that apparent. Moreover, the presence of magnetohydrody-

namics effects elevated the strain-dependent permeability, particularly, for large

time. Finally, it is worth mentioning that the influence of magnetic parameter on

steady-state solutions was absent.

This work contributes to enhancing the understanding of the behavior of articular

cartilage under the action of an applied magnetic field. This study is also relevant

to the situations where the electric or the magnetic energy is generated with the

help of an electronic device outside excitable tissues including articular cartilage

to activate and magnetize the tissues for clinical purposes. The findings of the

current research suggest that this mathematical model may further be improved

both theoretically and experimentally.



Chapter 6

Conclusion and Future Work

In this dissertation, a number of problems related to fluid flow through deformable

porous biological tissues are considered. A continuum mixture theory approach is

used to model these problems. Below we conclude the present study and indicate

some possible future directions.

6.1 Conclusion

Over the past forty years, there is a tremendous rise in the interest to examine

the fluid flow through rigid as well as deformable porous media. However, spe-

cial attention has been given to mathematical modeling of the biological problems

where many soft tissues exhibit deformable porous behavior and applications of

mixture theory becomes a natural need. By using a biphasic mixture theory, the

problems of flow and ion-induced deformation of soft porous tissues are modeled

in this thesis. Partial differential equations for the fluid pressure and the solid

displacement are obtained by using the fundamental laws of conservation of mass

and linear momentum. These PDEs are non-dimensionalized by using the appro-

priate dimensionless variables and the emerging non-dimensional parameters are

also defined. The governing equations are solved analytically as well as numeri-

cally and the solutions are illustrated graphically. In some cases, the results are

78
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also compared with those of the previously published papers. The main findings

of the present research have been listed as below.

1. It is observed that the flow-induced deformation improves the fluid absorp-

tion in the tissue.

2. The porosity of the medium is increased due to annular expansion of the

porous tissue.

3. It is noted that the shear-thinning fluids exhibit greater fluid pressure and

solid deformation in the tissue as compared to the shear-thickening fluids.

4. The effect of nonlinearities is observed to be more significant for the shear-

thinning fluids than the Newtonian and shear-thickening fluids.

5. The power-law fluid pressure and solid displacement are decreased by in-

creasing the permeability and absorption parameter.

6. A considerable reduction in the permeability of the porous tissue is noted in

the presence of rheological effects.

7. The solid deformation enhances the permeability of the medium which results

in an increment in the local porosity of the tissue.

8. A reasonable reduction in the fluid pressure and the solid displacement of

the spherical cavity is observed in the presence of the magnetic effects.

9. The magnetic parameter does not affect the steady-state solutions.

10. The concentration of ions in articular cartilage is increased gradually with

time and an equilibrium state is achieved for t ≥ 4.

11. In general, the displacement of the solid and fluid pressure in articular car-

tilage is found to increase as the strength of the externally applied magnetic

field is increased.

12. A high magnetic field allows the cartilage to expand for a short interval of

time before the final contraction.
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13. Importantly, the deformation of the cartilage allows more fluid to seep through

it which results in an increment in the fluid pressure.

14. An enhancement in the permeability parameter results into an increment in

the solid displacement and the fluid pressure in the articular cartilage.

6.2 Future Work

The continuum mixture theory has already been used successfully for a number

of problems in physics and biology. In the present work by using this theory,

some unresolved problems in biomechanics are addressed. However, there is still

a need to further improve the modeling of the real life problems in this area.

Some interesting possible questions that have not been addressed yet and could

be investigated in future are listed below.

1. The effect of non-Newtonian magnetohydrodynamics fluid on flow-induced

deformation of absorbing porous tissues can be considered.

2. The non-Newtonian modeling of ion-induced deformation of articular carti-

lage may be undertaken.

3. In modeling the problems in this thesis, we assumed that tissues are homo-

geneous and isotropic, however, in-homogeneity and anisotropy of the tissues

can also be considered for more accurate modeling.

4. Consideration of nonlinear stress-strain relationship, different permeability

functions, sophisticated chemical stress mechanism, and more realistic ge-

ometries can enhance the understanding of the solid-fluid interaction in soft

tissues.

5. Analysis of full nonlinear moving boundary value problem along with variable

magnetic field can also be investigated.
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6. A more sophisticated form of the absorption process in the tissues and re-

fined forms of the drag force between the constituents of the mixture can be

considered.

7. Another interesting future direction could be the consideration of more re-

alistic fluid models along with appropriate boundary conditions.

8. Last but not the least, the models presented in this thesis are based on the

theory, however, experiments can be undertaken to validate and improve

these models for physiological as well as clinical applications.
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Appendix A

MHD Equations for a Biphasic

Mixture

We consider the porous deformable material as a continuous binary mixture of

intrinsic incompressible solid and magnetic fluid phase, where each point in the

mixture is occupied by both the fluid and the isotropic solid. Balance of mass for

the solid and fluid phase can be written as [24]

∂ρs

∂t
+∇ · (ρsvs) = 0, (A.1)

∂ρ`

∂t
+∇ · (ρ`v`) = −βp, (A.2)

where vs,v` are velocities and ρs, ρ` are densities of the solid and fluid phase,

respectively, p is the fluid pressure and β a proportionality constant.

Conservation of linear momentum for both phases is written as [69]

ρη
(∂vη

∂t
+ (vη · ∇)vη

)
= ∇ ·Tη + ρηbη + πη + J×B, (A.3)

where η = s, ` represents either the solid or fluid phase, Tη = −φηpI + ση is the

stress tensor for the η phase and −πs = π` = K
(
vs − v`

)
− p∇φs is the friction

force term which satisfies the relation πs + π` = 0. Here I is the identity tensor,

φη the volume fraction, ση the stress and K the drag coefficient of relative motion.
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Moreover, bη is the net body force in which the gravitational force is neglected, J

is the current density and B the magnetic flux density.

Maxwell’s equations of electromagnetism along with Ohm’s law are written as [69,

70]

∇×B = µcJ, ∇ ·B = 0, ∇× E = −∂B

∂t
, J = σ0(E + vη ×B), (A.4)

where µc is the permeability of free space, E the electric field and σ0 the elec-

tric conductivity of the fluid. The Lorentz force term J×B in the momentum

equation (A.3) may be written in view of Ohm’s law as

J×B = σ0(E + vη ×B)×B, (A.5)

where the total magnetic field B may be decomposed as [79, 80], B = B0 + b, in

which B0 is the imposed magnetic field and b is the induced magnetic field which

may be ignored on account of low magnetic field Reynolds number approximation.

Thus, equation (A.5) when induced magnetic and electric fields are negligible,

takes the form

J×B = σ0(vη ×B0)×B0, (A.6)

which on using the vector relation (X×Y)×Z = Y(X ·Z)−X(Y ·Z), reduces to

J×B = σ0

(
B0(vη ·B0)− vη(B0 ·B0)

)
. (A.7)

Assuming that magnetic field lines are perpendicular to the velocity vector (i.e.

vη ·B0 = 0 ) and B0 = (0, B0, 0), where B0 is the strength of the applied magnetic

field B0, we have from equation (A.7)

J×B = −σ0B
2
0vη. (A.8)
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Finally, the momentum equation (A.3) takes the following form

ρη
(∂vη

∂t
+ (vη · ∇)vη

)
= ∇ ·Tη + ρηbη + πη − σ0B

2
0vη. (A.9)

We now turn our attention to the motion of the solid phase. Under the assumptions

of small deformations and one-dimensional radial flow, the components of the stress

tensor for the solid phase are defined as [24]

σrr = (λ+ 2µ)
∂u

∂r
+ 2λ

u

r
, (A.10)

σθθ = (λ+ 2µ)
u

r
+ λ

∂u

∂r
+ λ

u

r
= σφφ, (A.11)

where λ and µ are Lamé stress constants and all other stress components are

assumed to be zero. The divergence of the stress in the radial direction is given

by

(
∇ · σ

)
r

=
∂σrr
∂r

+ 2
σrr − σθθ

r
. (A.12)

Substituting equations (A.10) and (A.11) into equation (A.12) and simplifying,

we obtain

(
∇ · σ

)
r

= Ha
∂φ

∂r
, (A.13)

where

φ =
1

r2

∂

∂r
(r2u), (A.14)

is the local change in porosity and Ha = λ+ 2µ is the aggregate modulus.
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