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ABSTRACT

The Sliding Mode Control (SMC), being famous for remarkable robust-
ness, uses a discontinuous controller and is established in two phase, namely, reach-
ing phase and sliding phase. The sliding phase, represented by reduced order
dynamics, offers certain benefits like invariance with respect to parameters and
disturbances. However, the discontinuous nature of the controller and imperfec-
tion of physical systems imposes the undesirable high frequency oscillations called
chattering. In addition, the reaching phase has been reported to be sensitive to
uncertainties and disturbances which may degrade the performance or even cause
stability problems in some sensitive applications.

The Smooth SMC (SSMC), known for chattering eradication, do not approximate
the actual sense of sliding modes. In addition, the Integral SMC (ISMC) eliminated
the reaching phase and hence any sensitivity to any unwanted phenomenon in the
reaching phase. However, the SSMC such as Smooth Super Twisting Algorithm
(SSTA) has no theoretical measures for the performance and/or robustness while
the ISMC still suffers due to chattering, though reduced, and loses parameter
invariance property due to no order reduction in the sliding phase.

In this thesis, a novel Lyapunov function based analysis of the SSTA is proposed
and by the virtue of stability analysis, novel performance and robustness param-
eters are developed which include, analytical expressions for choosing the gains
of the controller, settling time of the closed loop system and stability bounds for
a class of uncertainties. The proposed settling time formulation suggests a me-
thodical approach to SSTA design in contrast to the available rules of thumb.
The proposed design framework is validated against a challenging problem of the
Underground Coal Gasification (UCG) process control.

On the other hand, the ISMC has been investigated for chattering removal and
possible performance degradation due to parametric variations in the sliding phase.
In this regard, the discontinuous part of the ISMC is made smooth to eliminate
chattering and the continuous part of the controller is proposed as a Linear Matrix
Inequality (LMI) based LPV gain scheduling state feedback controller which deals
with the possible performance degradation due to parametric variations. The
results are proved mathematically and are validated experimentally on laboratory
test bench ball on a beam balancer.

Keywords: Sliding Mode Control (SMC), Smooth Super twisting Algorithm
(SSTA), Higher Order Sliding Mode (HOSM), Discontinuous System, Underground
Coal Gasification (UCG), Lyapunov Function, Non-Vanishing Perturbations, In-
tegral Sliding Mode Control (ISMC), Linear Parameter Varying (LPV), Linear
Matrix Inequality (LMI), Ball on a Beam Balancer (BBB).
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Chapter 1

INTRODUCTION

“And whoever fears ALLAH - He will make for him a way out and will provide

for him from where he does not expect. And whoever relies upon ALLAH - then

He is sufficient for him. Indeed, ALLAH will accomplish His purpose. ALLAH

has already set for everything a [decreed] extent.”

Al–Quran, 65: 2-3.

The tradition of research in control theory is very long and distinguished which

stretches back to nineteenth century dynamics and stability analysis. It aroused as

an engineering discipline in late 1950s. Nyquist, Bode, Evan and Wiener were the

pioneers who worked in frequency domain for dynamical analysis and controller

synthesis. The early control system design techniques fulfilled the cause of au-

tomation but robustness, computational complexity when dynamics gets complex

and many other accompanied limitations were still open research challenges for

the control system community.

A number of control system algorithms were developed to provide robust automa-

tion of dynamical systems. These include H∞ and µ-synthesis based loop shaping,

Linear Matrix Inequality (LMI) based controllers, adaptive controllers, output

feedback linearization, back stepping and Sliding Mode Control (SMC). Among

these, the SMC got popularity due to its simplicity, remarkable properties of ro-

bustness against uncertainty/disturbances of matched nature1 and applicability to

both linear and nonlinear systems.

1SMC that cope with disturbances of mismatch nature are also researched but are not dis-
cussed here.

1



1.1 Sliding Mode Control Theory and Dynamic

Systems

In the mid-twentieth century S. V. Emalyanov and V. I. Utkin, the Russian theo-

reticians, and their co-workers felt that the conventional state feedback techniques

were not robust against disturbances and nonlinearities. Emalyanov and company

came up with the idea of having a special type of state feedback controller with

an additional property of polarity (direction or gain) switching. They called it the

“Variable Structure Control (VSC)”, now-a-days known by the name Sliding

Mode Control (SMC) [2, 3, 4, 5].

The basic idea of SMC is to enforce sliding modes, in a pre-defined manifold

known as the sliding manifold, sliding surface, switching line or hyperplane, in

a given system’s state space, with the application of a discontinuous (switching)

controller.

Traditionally, SMC occurs in two phases. The time instant, when the system’s

states trajectories are forced, from an initial condition to a pre-defined sliding

manifold, is known as the reaching phase. The accomplishment of reaching phase

is followed by a special type of system motion/trajectories, known as the sliding

phase. In this phase the system’s states trajectories are restricted to stay on

the sliding manifold and are allowed to slide along the surface to an equilibrium

(trivially the origin). The phenomenon of sliding phase and hence the existence

of sliding modes is a bench mark property of SMC as it provides guaranteed

robustness against model imperfections, parametric variations and certain class

of uncertainties and external disturbances (usually matched and bounded) [6, 7].

However, the discontinuous controller has to switch with a very high frequency

(theoretically infinite frequency), about the sliding manifold, in order to force the

states trajectories confined to the sliding manifold. This phenomenon, which is

2



too treacherous for mechanical actuators and the underlying mechanical system

to be controlled, is known as chattering. In addition to chattering an SMC is

sensitive to disturbances and uncertainties in the reaching phase.

A number of methods were proposed to overcome these problems e.g., the Higher

Order Sliding Mode (HOSM) control tackled the issue of chattering while the

Integral Sliding Mode Control (ISMC) eliminated the reaching phase and hence

they gave a strong argument of handling and assuming a dynamical system to

be nominal. Each of these variants are subjected to some trade-offs, which will

be discussed in comprehensive details in the forthcoming chapters.

1.2 Motivation of the Work

The tendency of using SMC algorithms, for the control and observation purposes,

steered the mathematicians and engineers to investigate these algorithms for all

possible improvements. As mentioned earlier, the HOSM was invented with the

rationale to keep intact the quality and properties of the conventional SMC and

yet to reduce chattering. The HOSM algorithms performed well regarding chat-

tering reduction but they were still sensitive to un-modeled fast dynamics. The

rationale of complete chattering free control brought the concept of Smooth Sliding

Mode Control (SSMC) algorithms. The SSMC algorithms provided a continuous

control action but at the cost of robustness. The issue of robustness is then solved

using sliding modes based observers. The SSMC algorithms, in combination with

the disturbance observers, proved very effective in terms of robustness and chat-

tering reduction. However, the SMC algorithms whether, first order or higher

order and/or smooth, are mathematically synthesized to ensure robustness. The

algorithm gains are often claimed greater than the upper bound of the possible

matched disturbance for this purpose. Thus, a concrete mathematical formula-

tion is necessary, which answers all the questions regarding the effects of various

controller parameters on the closed loop performance of the underlying system.

3



Moreover, if no observer is used for the robustification of the SSMC then what

must be the value of controller gains and other parameters to ensure robustness

as well as performance. The current research work is focused on the performance

based design of the SSMC.

Furthermore, some dynamical uncertain systems are very sensitive to even very

small disturbances and uncertainties in reaching phase2, which may cause undesir-

able results and in worst cases it may cause instability of the closed loop system.

The proposal of the ISMC algorithm [8] sorted out this issue by reaching phase

elimination. The reaching phase elimination facilitated the controller construc-

tion using a valid assumption of nominal system3. Inherently, there is no order

reduction and eventually all the system states and parameters appear in sliding

mode. This makes the closed loop performance, with ISMC in the loop, sensitive

to any possible parametric variations present in the underlying system. This re-

search work strives to find a way such that any possible variations in the system

parameters do not degrade the overall closed loop performance. Moreover, the

chattering, although it is less than the conventional SMC, is to be smoothen out.

This research however consider the following prime assumptions.

• The uncertainties and disturbances may be vanishing or non-vanishing but

they are norm bounded and matched.

• The system output and states are measurable.

• The constant system parameters are precise and the varying parameters are

available/measurable.

• The relative degree is one with respect to the sliding manifold.

2Sliding phase of any SMC algorithm has guaranteed invariance to disturbances.
3The ISMC rejects all the uncertainties/disturbances from the very beginning and hence the

system becomes a nominal one.
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1.3 Statement of Contribution

This research work presents the following main contributions.

1. The robustness and performance parameterization of the Smooth Super

Twisting Algorithm (SSTA) is performed. The robust stability analysis of

SSTA contribute the following:

• The robust stability of the SSTA is carried out using Lyapunov’s ap-

proach.

• A methodical way for choosing the SSTA gains, in terms of analytical

expressions, is proposed.

• A systematic and operation oriented mathematical formulation for the

convergence time of the closed loop dynamics with SSTA in the loop,

is proposed, which may be used for performance enhancement.

• The consequences of the controller parameters k1, k2 and ρ, on the

performance and stability of the closed loop system is explored.

• The SSTA, with the proposed systematic design procedure, is validated

on a highly nonlinear and challenging process control problem of the

Underground Coal Gasification (UCG).

2. The ISMC is made hybrid with the LMI based Linear Parameter Varying

(LPV) controller (as the continuous part of the controller) for a class of

uncertain systems which can be expressed in LPV form. This completely

eliminate the possible performance degradation due to any parametric vari-

ations in the closed loop. In addition, the discontinuous part of the ISMC

controller is made smooth to completely eliminate chattering for practical

purposes. The hybrid of ISMC and LPV is practically implemented for sta-

bilization purposes of a Ball on a Beam Balancer (BBB), which is a nonlinear

uncertain system.

5



1.4 Overview

A brief overview of the contents contained chapter wise in this thesis is given

below.

Chapter 2 explores the historical evolution of the tools and techniques for/in SMC.

This chapter focuses the literature which took a VSC to the modern day robust

and smooth SMC algorithms. The main theme on which this chapter stands is

to give a step by step the evolution of SMC with its merits and demerits. This

discussion then led us to the research gap, explored in this thesis.

Chapter 3 highlights the mathematical fundamentals and design procedures of

SMC algorithms, which will support the contribution in this thesis. A comparison

of linear and nonlinear control techniques is given which forms a road map between

the linear and nonlinear control techniques. The design of various SMC controllers

is shown via numerical examples and is elaborated using MATLAB/SIMULINK

simulations. The chapter ends with problem statement and research objectives.

Chapter 4 presents the first contribution of this thesis. The robust stability and

performance of SSTA is parameterized in this chapter. The effect of various con-

troller parameters on the performance and robustness of the SSTA is explained

mathematically. In addition, the analytical expressions for the gains of the con-

troller are developed and the algorithm is tested on a challenging process control

problem of UCG.

Chapter 5 is comprised of the second contribution of this thesis. The mathematical

framework, based on the LMI and LPV control, is developed for the conventional

first order ISMC. The proposed framework is proved mathematically and a step

by step design procedure is explored. The algorithm is tested on an experimental

laboratory test bench BBB to explore practically the algorithm’s authority.
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Chapter 6 concludes this thesis with emphasize on major contributions. In addi-

tion, some future directions are also given which may be considered as a direct

consequence of the contributions in this thesis.
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Chapter 2

DEVELOPMENT OF SLIDING MODE

CONTROL

“A pessimist sees the difficulty in every opportunity; an optimist sees the

opportunity in every difficulty.”

Winston Churchill.

This chapter presents a historical background of various techniques and algorithms

exercised by the Sliding Mode Control (SMC) research community. The evolution

of SMC theory from Variable Structure Control (VSC) initiated a long lasting dis-

cussion on the SMC theory because it provided properties like parameter invariance

and performance in the presence of uncertainties as well as external disturbances.

Over a period of time the research community identified various problems and

proposed a number of variants of the emerged sliding mode control in order to

cope with each identified problem. These variants include Integral Sliding Mode

Control (ISMC), Dynamic SMC (DSMC), Dynamic-Integral SMC (DISMC), Ter-

minal SMC (TSMC), Higher Order SMC (HOSMC) and Smooth Sliding Mode

Control (SSMC) etc.

A common consideration in the development of each of these variants was to keep

intact the basic properties of the conventional SMC theory. The advent of ISMC

opened a research direction with the rationale of robustifying some controllers,

by reaching phase elimination, while the parameterization of various SMC algo-

rithms was a fascinating advancement in the last decade which allowed further

structural improvements of the SMC algorithms. Moreover, the SSMC algorithms

were of remarkable importance regarding the practical aspects of implementing
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SMC algorithms. However in fact each of these have some limitations which will

be discussed partially in this chapter1. The chapter is organized as follows:

In Section 2.1, the evolution of the theory of SMC with its merits and demerits

is discussed. Section 2.2 explores the utility of ISMC with its advantages and

disadvantages. In Section 2.3 various remedies, for chattering reduction, are ex-

plored with some details. Section 2.4 introduces a step by step advancement in

HOSM algorithms with their fascinations and shortcomings. In Section 2.5 some

of the smooth SMC algorithms are presented. Section 2.6 highlights some of the

mathematical tools being utilized for the stability analysis and proving finite time

convergence of various SMC algorithms. Section 2.7 gives the research directions

based on intuition attained in the above sections and Section 2.8 summarizes this

chapter.

2.1 Sliding Mode Control

The term variable structure control was introduced by S. V. Emelyanov in 1967.

Later on, the existence of the phenomenon known as sliding mode was introduced

by V. I. Utkin in 19772. The publication of survey paper [3] opened further arenas

for the researchers in the control system community and the SMC emerged as a

field. The SMC was formally introduced and implemented in [6, 9, 10, 11].

Sliding modes, as a phenomenon, are established in two phases, known as the

reaching phase and the sliding phase. In reaching phase, the system state trajec-

tories are forced towards a pre-defined manifold, known as the sliding manifold

(σ), by a discontinuous switching controller while in reaching phase the state tra-

jectories slide along the surface to an equilibrium.

1The water bed effect of control engineering is pronounced in all these variants of SMC. A
simplest example of water bed effect in SMC theory is that the performance will be sacrificed if
robustness is enhanced and vice versa.

2Sliding modes is a special type of system motion which is enforced between two symptomat-
ically different or almost opposite system structures.
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SMC offered impressive closed loop performance, which contain invariance with

respect to parametric variations, remarkable robustness with respect to distur-

bances/perturbations of matched type, uncertainties/model-imperfection and im-

portantly, the dynamics during sliding are of reduced order. However, the discon-

tinuous controller has to switch at a very high frequency (theoretically infinite fre-

quency) for sliding modes enforcement. However, unfortunately the infinite/very-

high frequency can not principally be attained with physical systems. This lim-

itation, in addition to the delays in physical systems, caused the high frequency

oscillations, called chattering, with respect to the switching line. These high fre-

quency oscillations were hazardous for the actuators and a worst case scenario may

be the total control system failure. The relative degree requirement add another

restriction on the use of the conventional first order SMC3. In addition, the sliding

modes were invariant to the unwanted phenomena like uncertainties and distur-

bances but the reaching phase of the conventional First Order SMC (FOSMC) was

never claimed to be invariant to these unwanted/unavoidable factors.

The highlighted problems in the FOSMC were of particular interest to the research

community and over many years the research aimed at nullifying these problems

through certain structural modifications in the FOSMC.

2.2 Integral Sliding Mode Control

In order to guarantee insensitivity to uncertainties/model-imperfections and dis-

turbances the only thing the designers needed was to ensure the insensitivity,

starting from the initial time instant. In other words, a justification to the as-

sumption of nominal system was required. The intended important advantage

of this concept was the certification of exact tracking of the trajectories, designed

actually for the nominal system, in the non-nominal (original) state space.

3The first order SMC is applicable to systems having relative degree “one” with respect to
the switching manifold i.e., Control appears explicitly in the first total time derivative of the
switching manifold.
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The only possibility in SMC regimes which attained the above mentioned objective,

by eliminating the reaching phase, was the concept of ISMC [12, 8]. The reaching

phase elimination was achieved using a special type of sliding surface, known as

the integral sliding surface or integral manifold. The dynamics of a system on

this surface, which start from the initial instant of time due to ISMC algorithm,

is equipped with the following highlighted merits:

• It makes the assumption of nominal system valid, as the uncertainties/dis-

turbances are coped with from the very beginning.

• It needed the smaller gain of the discontinuous controller which leads to

chattering reduction4.

However there are also some drawbacks of ISMC:

• The important property of order reduction is sacrificed, as the sliding modes,

established by the ISMC algorithm, have the dimension similar to the original

state space. In other words, we can say that the extended state space is

comprised of all the dynamics (states) of the system to be controlled.

• The fact that sliding modes comprised the original state space makes the

performance of the closed loop system sensitive to parametric variations.

• The ISMC needed to have measurement/estimation of all the system states

from the very beginning.

• Chattering, although reduced, but is still an issue in various control appli-

cations e.g. a multi-loop control scheme in which an inner loop’s continuous

controller is driven by a continuous signal from a controller in the outer loop.

4Because the discontinuous controller is accompanied by a nominal controller which is sup-
posed to have compensated the nominal system’s dynamics.

11



2.3 Chattering

Chattering was the most pronounced unwanted phenomenon in the earlier in-

novations of SMC. The experts proposed a variety of tools/variants for/of the

conventional SMC, some of which are listed here.

2.3.1 Boundary Layer Approach

The boundary layer approach address the chattering hazard by increasing the

physical dimensions of the surface such that the sliding modes are said to be es-

tablished in a predefined vicinity of the surface rather than exactly at the surface5.

This scenario is depicted in Figure 2.1 and is achieved by replacing sign-function

by a sat-function [13].

Figure 2.1: Boundary Layer approach for chattering minimization

The smoothening of the controller action achieved using this approach is directly

dependent upon the thickness/width of the defined vicinity. However, the unavoid-

able water bed effect comes in action in such a way that increasing thickness/width

5This means that switching will not occur as frequent as in the case of strictly enforcing
S = 0, where S represent the sliding surface.
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of the boundary layer causes serious performance degradations. This is exactly

because the boundary consideration approximates the actual sense of SMC and

hence causes losing the essence of it.

2.3.2 Observer Based Chattering Reduction

The un-modeled/unknown dynamics of a physical process, under consideration, is

one of the highlighted cause of producing chattering [7]. This method implements

the SMC with an asymptotically convergent observer in the closed loop. The

observer is meant to bypass the un-modeled dynamics and hence producing almost

ideal sliding mode.

The SMC with these and a number of other tools were appreciated in the research

regimes. These techniques solved the problem of chattering to some extent but a

drawback was that, the sliding modes exhibited under the lights of these techniques

were termed as approximate sliding modes [14]. In the mean time the researchers

carried out the cause oriented efforts to find variants of the conventional FOSM

such that the properties of the SMC are kept intact. One such variant equipped

with an in-built filter for chattering suppression is known as the DSMC [15]. An-

other variant with the idea to hide discontinuity of control in its higher derivatives

has been realized using HOSMC [16, 17, 18, 19].

2.4 Higher Order Sliding Mode Control

Higher order sliding mode control, being invented in the last decades of the 20th

century by the efforts of S. V. Emalyanov and his research colleagues, preserved

the main structure of the standard SMC with motion on a discontinuous set of

dynamic system understood in Fillipov’s sense [20]. Let σ represent the sliding

surface. Then, the sliding set is determined by:

σ = σ̇ = σ̈ = ... = σr−1 = 0 (2.1 )
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where r is the relative degree of the system with respect to the sliding manifold

(σ). This sliding set is termed as rth order sliding set and the sliding motion being

maintained against this set is called r−sliding mode. Furthermore, the sliding

order indicates the smoothness degree of the dynamics of the system in a small

neighborhood of the sliding mode.

The HOSM control is a generalization of the conventional FOSM control. In

conventional FOSM control the switching takes place against the line, plane or

hyperplane6 defined by σ = 0 while in HOSM control, the switching takes place

against the intersection of the lines, planes or hyperplanes defined by σ = 0, σ̇ =

0, σ̈ = 0, .... σr−1 = 0. The HOSM algorithms greater than second order, suffered

from practical feasibility as the higher is the derivative to determine the greater

is the sensitivity to noises7.

The practical HOSM algorithms reported are of second order such as Super Twist-

ing Algorithm (STA) and Real Twisting Algorithm (RTA). These algorithms

gained admiration among the experts in the control community, because of the

generalized structures, simpler implementation, enhanced performance and more

importantly, reduced chattering8. Moreover, the STA is applicable to systems hav-

ing relative degree one while the RTA can be used for relative degree two systems.

The HOSM algorithms (STA and RTA) minimized the chattering up to some

extent by reducing the physical dimensions of the switching manifold but it never

claimed complete elimination of chattering. This flaw was produced by the fact

that the HOSM algorithms are very sensitive to unmodeled fast dynamics [21, 22]

and chattering may appear sooner or later in the system. One such situation,

where even a small amount of chattering can cause trouble was a multi-loop system,

6The switching will take place against a line or plane or hyperplane depending upon the
system order and especially the order of the dynamics during sliding.

7Practically noises occur in both sensing and actuation. The derivatives of noise signals result
in very high peaks. This phenomenon is termed as noise amplification. This amplification is
directly proportional to the order of the derivative.

8They do not approximate the true sense of SMC.
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where STA and RTA are not auspicious with respect to performance improvement,

especially when a loop requiring a continuous signal is driven by another loop.

Thus the researchers thought of an SMC which was desired to be smooth and

differentiable at sampling times. All such controller were known by the name

Smooth sliding mode controllers. The smooth control algorithms, due to their

continuous (smooth or almost chattering free) control action, were found to be

very effective in many sensitive applications.

2.5 Smooth Sliding Mode Control

The smoothness of the control law was employed for a chattering-free SMC. As

stated earlier smoothening of the control signal was obtained by approximate

sliding modes (approximation of sign−function by sat−function which is usually

known as the boundary layer approach) or the HOSM. However, neither approxi-

mation nor HOSM were able to satisfy the researchers, regarding smoothness.

In the conventional FOSM the discontinuous controller was given by the following

equation:

u = −ksign(σ)

where u is the control input, σ is the sliding surface and k is a constant con-

troller gain selected intelligently to cope with the disturbances and uncertainties.

The constant gain causes a sort of inertia when the sliding modes are established

and the switching between two characteristically different system structures starts

under the action of u = −k (σ > 0) and u = k (σ < 0). This makes up the chat-

tering about the switching manifold with a chattering magnitude proportional to

the gain k. This observation brought the notion of achieving a smooth SMC by

manipulating the controller gain9.

9The controller gain can be made function of the sliding variable such that the gain exactly
vanishes at the origin.
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2.5.1 First Order Smooth Sliding Mode Control

W. Gao and his co-researchers [23] pioneered a first order smooth SMC. They

proposed the gain to be a function of the sliding surface, which reduces as the

surface is reached, and becomes exactly zero at the surface. This reaching law was

termed as power rate reaching law and is given as:

u = −k |σ|α sign(σ) 0 < α < 1.

In [24] a modified power rate reaching law based on the strong reachability was

proposed having the following structure:

u = −Mσαsign(σ)− kσβ

where the constants M, k, α and β are strictly positive. It may be observed in

both cases that the robustness is lost when σ → 0, due to the diminished gain.

In [25] an exponential reaching law has been proposed with the following structure:

u = −
k

N(σ)
sign(σ), k > 0

N(σ) = δ + (1− δ)e−α|σ|p

where 0 < δ < 1, and p > 0. The smoothness of the algorithm depends upon the

value of δ. It may be noticed that the gain of the controller varies itself in the set

(k, k
N(σ)

). For δ = 1, the algorithm reduces to a simple constant rate reaching law

while for δ other than 1, the gain schedules itself as an exponential function of

σ and hence state trajectories. This technique enhanced robustness and provided

smoothness but the obvious requirement of very high k may cause saturation

during the practical implementation. In addition, the increased computational

efficiency is also a concern.

All these first order smooth sliding mode controllers were considered superior in

terms of chattering suppression when compared to the approximation of sliding

modes, discussed earlier. However, the research continued to present smooth slid-

ing mode controllers which retain robustness as well. The research activities in
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the last decade came up with smooth as well as robust second order sliding mode

algorithms.

2.5.2 Smooth Second Order Sliding Mode Control

The Smooth Second Order Sliding Mode (SSOSM) control figured out the chat-

tering problem using the same principle adopted for smoothening the first order

sliding modes10.

In [21, 22] a concrete platform was developed for a smooth second order sliding

mode control. They considered a system having relative degree one with respect

to the sliding manifold σ, as follows,

σ̇ = f(t, x) + bu (2.2 )

where the term f(t, x) is the so called drift term and b is the control channel.

The authors then proposed a smooth second order SMC law for a nominal system

(Eq. 2.3)11

σ̇ = u (2.3 )

as given below:

u = −α1 |σ|
2/3 sign(σ) + w,

ẇ = −α2 |σ|
1/3 sign(σ)

The robustness to unmodeled/neglected dynamics/drift-term was ensured using

smooth sliding modes based robust exact differentiator as an observer. The smooth

control law in combination with the disturbance observer provided robustness as

well as smoothness. The resulting closed-loop dynamics were smooth in the sense

that its discrete-time implementation did not contain high frequency components

in the vicinity of the sampling rate. This fact allowed the resulted control law to

be used in the outer loop, of a multi-loop system.

10The principle is to make the gain of the controller dependent upon the sliding surface and
hence the state trajectories.

11The assumption was that there is no drift term.
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In 2007, Shtessel et al. [26] proposed a SSOSM control based on the STA, for Mis-

sile guidance application. The Smooth STA (SSTA) was robustified using a first

order disturbance observer to estimate the drift terms. Like wise the algorithm was

devised once again for a nominal system (no disturbances and/or uncertainties).

This algorithm provided a hit-to-kill accuracy in the missile guidance application.

The SSOSM controllers are also extended to relative degree two systems. In 2010,

Iqbal et al. [27] proposed a SSOSM control based on RTA, for relative degree

two (with respect to the switching manifold) systems, with a second order robust

exact observer in the loop. The algorithm is applied to a benchmark DC-motor

speed control problem which elaborated the effectiveness (smoothness of the con-

trol signal) of this algorithm. The stability analysis and finite time convergence of

these algorithms have been carried out using homogeneity approach with arbitrary

gains.

In 2010, Zavala et al. [28] extended the well known Second-Order Sliding Mode

Observer (SOSMO) of Davila et al. [29]. The pronounced features of the modified

observer included the smoothness of the injection term and the uniformity of

the algorithm with respect to the initial conditions. One other distinguishing

feature of this article was the proposed Lyapunov based stability analysis, which

parametrized the algorithm.

2.6 Stability Analysis And Finite Time Conver-

gence Of SMC

Some of the most pronounced considerations of proposing an SMC algorithm are:

• Proving the stability, in the presence of uncertainties/disturbances (van-

ishing and non-vanishing), mathematically as well as practically, when the

algorithm is brought into the closed loop with a dynamical system.
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• Proving the finite time convergence of the closed loop dynamics.

• Analyzing the stability and finite time convergence in terms of the controller

parameters. This is simply called parameterizing the algorithm.

The last point above is of importance because a parameterized algorithm is easy

to use with respect to the choice of its parameters.

Each advent in the field of SMC theory brought with itself a mathematical design

for analyzing the stability and proving the finite time convergence. Initially, the

Lyapunov approach was adopted for proving the existence of sliding modes in a

pre-defined switching manifold. The existence of sliding modes, was equivalent

to stability. The Lyapunov approach performed well for the conventional FOSM

control. The proposal of HOSM algorithms created an ambiguity, regarding the

stability investigation and substantiating that they converge in finite time, which

was, how to find (choose) a Lyapunov function.

The course of HOSM control reported numerous tools for demonstrating the sta-

bility and finite time convergence. Among these techniques the most effective

methods included geometric approach [30] and homogeneity approach [31], which

are reported for the stability analysis and proving the finite time convergence of

some famous HOSM algorithms like, RTA, Smooth RTA (SRTA), STA and SSTA.

The geometric approach gave some insight to the dynamics offered by STA, e.g.

twisting of the closed loop system trajectories around the origin and eventually

converging to the origin, provided a solid proof of the stability while the homo-

geneity approach got popularity for the reason of being systematic.

These approaches (geometric and homogeneity) effectively provided the proofs

for stability and finite time convergence but yet some questions were there to be

answered.

• How could the convergence time be determined?
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• What are the effects of different controller parameters (e.g. gain of the

controller etc) on the stability of the closed-loop system?

• How were the controller parameters and the convergence time related to each

other?

• How to set the controller parameters right, i.e. any analytical expressions

for setting up various control parameters?

• What were the bounds on the closed loop system trajectories if the system

has to be operated under the effects of some non-vanishing perturbations?

• What about proving homogeneity when the system is not nominal?

A Lyapunov function, for the robust stability analysis and demonstration of the

finite time convergence of the STA, was proposed for the first time in Moreno et

al. [32]. The approach parameterized the algorithm’s robustness and performance

properties and gave more detailed dynamical view. Moreover, the approach can

readily be utilized for performance improvement of STA by addition of linear cor-

rection terms. In [33], a linear framework was set for the robust stability analysis

of STA on the basis of the approach coined in [32]. This linear framework gave

more insight of the algorithm and allowed to study it like Linear Time Invariant

(LTI) systems. In Moreno et al. [34], a concrete background was laid for de-

veloping strict Lyapunov functions. The proposed approach was systematic and

computationally very effective and efficient. In addition, the analytical expres-

sions for the STA’s convergence time, bounds on closed loop system trajectories

and gains, were proposed for the first time.

2.7 Research Gaps

1. Since there is no reaching phase and hence no order reduction in ISMC. So

any parametric variations in the underlying system, can severely degrade the
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closed loop performance. This possible performance degradation due to any

parametric variations can be researched for a remedy. One possible solution

is to integrate a Linear Parameter Varying (LPV) based gain scheduling state

feedback controller within the ISMC algorithm.

2. The SSTA may be parameterized, designed and proved in the presence of

external disturbances12.

3. The SSTA may be explored under the effects of some non-vanishing pertur-

bations because perturbations of non-vanishing type has a dynamic influence

of stopping the system trajectories to go to the origin. In such case, the sys-

tem trajectories may only be confined to some manifold by a controller. The

current work strives finding what is that manifold and how these perturba-

tions are going to influence the performance of SSTA.

4. The integral sliding mode control can be made continuous such that it is

applicable in very sensitive application e.g., a multi-loop control scheme.

2.8 Summary

The SMC, being robust, was accompanied with two inherent drawbacks such as

the sensitivity to disturbances/uncertainties in reaching phase and chattering.

The ISMC, being famous for reaching phase elimination, nullified the hazard of

sensitivity in reaching phase. At the same time the fact that ISMC offer no order

reduction in sliding phase, created a possibility of performance degradation in the

presence of varying parameters in the closed loop systems.

A world wide research on chattering reduction proposed approaches such as bound-

ary layer, use of observers and some variants of SMC such as DSMC and HOSMC.

12As SSTA and many other smooth second order sliding mode controllers were devised, ne-
glecting each and every aspect of the dynamical system except the controller.
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The farmer methods reduced chattering by approximating SMC while the variants

achieved chattering reduction without approximating the SMC. Among these, the

HOSMC got popularity due to their easy applicability and generalized structures.

The HOSMC were reported to be very sensitive to un-modeled fast dynamics and

chattering may appear sooner or later in the system. The smooth SMC filled this

gap by providing a continuous control action.

Initially, the Lyapunov’s stability theory served as a tool for proving the stability

of SMC. The advent of HOSMC brought geometric and homogeneity approaches,

for the stability analysis. The stability and finite time convergence were well

established with geometric and homogeneity approaches but they failed to param-

eterize the HOSMC. The research thus found Lyapunov functions for the HOSMC,

which proved the stability and finite time convergence and also parameterized the

HOSMC.

The current survey explores that the ISMC can be researched for avoiding the

possible performance degradation, due to the varying parameters. In addition,

the ISMC can be made continuous so that it may be applicable in many control

applications. The survey also notify the need for an SSTA whose performance is

parametrized in terms of its parameters.
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Chapter 3

SLIDING MODE CONTROL: THEORY AND

APPLICATIONS

“Start by doing what’s necessary; then do what’s possible; and suddenly you are

doing the impossible.”

Francis of Assisi.

The modern age is populated with a variety of machines and equipment to fa-

cilitate the human being. These machines include automotive, nuclear reactors,

robots, computers, industries and many other machines of daily use in our houses.

The sophistication of these machines is determined by various factors such as ma-

terial used, strength, weight, portability, compatibility and reliability. In addition

to the aforementioned factors, a well disciplined and controlled operation of these

machines is also a vital consideration. These factors are researched a lot in the
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industry and the academia and along with many other subjects, the control sys-

tem emerged as a multi-disciplinary science. The word “control” and hence the

subject of control system is spread over a wider spectrum including mechanical,

electrical, biological, chemical and social control systems. A control system is a

piece of hardware or a software, designed to achieve a pre-specified goal. In other

words, we can say that a control system supervises the dynamics of a component

or set/s of components such that the goal, for which the control system was de-

signed, is achieved. Thus, we can say that a control system is a setup that strives

to utilize the available resources, in accordance to our demands.

One of the major concerns in analyzing and synthesizing a control system, for

some physical system, is the mathematical description of that system. The math-

ematical models of physical systems are not always precise. Thus, a good control

engineer will always look for the control system that offers a better performance

and robustness in the presence of external disturbances and uncertainties/imper-

fection in the mathematical model.

The subject of control system deals with the analysis as well as the controller design

of dynamical system, using any one of its two broad and pronounced categories,

namely, the nonlinear control techniques and the linear one. The linear control

techniques consider the linear approximation of the mathematical model of a phys-

ical system and are further subdivided into frequency domain (Root Locus, Bode

Diagram and H∞) and time domain techniques e.g., state space. The domain of

linear control is equipped with the fascination of having systematic and methodical

tools for analysis and design purposes but suffers from the fact that they are valid

locally1. On the other hand, the domain of non-linear control theory utilize the

non-linear mathematical models of physical systems, for both design and analysis

purposes. Examples of nonlinear techniques include back stepping, Sliding Mode

1The linear controllers are concerned with the stability and performance of dynamical system
in the vicinity of an operating point, usually an equilibrium point, around which linearization
holds true.
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Control (SMC) and input-output linearization etc. The nonlinear techniques has

the fascination of quaranteeing global behavior of dynamical systems.

The rest of this chapter is organized as follows.

In Section 3.1 a historical background of some linear control techniques and their

various aspects are given while Section 3.2 is dedicated to nonlinear control tech-

niques. This section also gives a comparison between the linear and nonlinear

control techniques. Section 3.4 describes in detail the various terminologies of

sliding mode control with the help of numerical and simulation examples. In Sec-

tion 3.6 and Section 3.7 an introduction to the higher order sliding modes and

smooth sliding mode control, is given respectively. Section 3.8 gives the problem

statements and Section 3.9 gives a short summary of the intended research work.

Section 3.10 summarizes this chapter.

3.1 Linear Control Techniques

The linear control techniques utilize the linear approximations of mathematical

models of physical systems and have the advantage of having generalized and

systematic rules for analysis and design. However, the linear control techniques

are accompanied by two major disadvantages.

1. A linear model is always an approximation of a non-linear model (neglecting

some system dynamics).

2. A linear controller is valid around a specified operating point, usually some

equilibrium point, which means local stability.

All the linear control techniques can be classified as classical control, modern

control and Robust Control.

The classical control techniques, introduced in early 1930s, provided graphical

solutions to control problems e.g. transient response adjustment (rise time (tr),
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settling time (ts), peak overshoot (Mp)) and steady state adjustment (tracking con-

trol problem). Examples of classical control include Root Locus [35], Bode plots

[36] and Nyquist stability criterion [37]. All these graphical methods, predict the

dynamical behavior of an open-loop transfer function when the loop around it is

closed. Both Root Locus and Bode Diagram use lead compensation, lag compen-

sation or combined lead-lag compensation to get a desired dynamic response. On

the other hand the Nyquist stability criterion, which is actually a polar represen-

tation of the bode phase and magnitude plots, has the advantage of handling the

time delays and non-minimum phase systems. However these graphical techniques

have certain limitations like:

• They are limited to linear time invariant (LTI) systems.

• They can handle Single-Input-Single-Output (SISO) systems only.

• It is difficult to work them out for complex systems.

• They can not handle irrational functions such as delays (delays need to be

approximated for both bode and root locus e.g. Pade approximation).

The modern control techniques utilize state space representation to deal with

control problems. Despite the transfer function representation, the state space

method develops a relation between the inputs and the outputs of a dynamical

system via the first order Ordinary Differential Equations (ODE). The state space

method has the following superiority merits over classical control (frequency do-

main) methodologies.

• It can handle Multi-Input-Multi-Output (MIMO) systems.

• The dynamical analysis and controller synthesis for complex systems be-

comes easier with state space approach.
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• In transfer function representation the stability is termed as Bounded-Input-

Bounded-Output (BIBO) and a rare but possible problem of pole-zero can-

cellation can cause serious problems when the control system is implemented

physically while in state space representation the stability is coined as inter-

nal stability and there is no question of pole-zero cancellation.

There are also some other methods of linear control e.g. Proportional-Integral-

Derivative (PID) control [38], H∞ control [39] and optimal control [40]. PID

control is the most widely used linear control technique which adjusts the control

input (u) to the system, in accordance with the error between the actual and

desired output of the system. Optimal control strives for finding the best possible

controller for the accomplishment of a control problem. The H∞ control got

popularity due to the inclusion of parameters for robustness, in the controller

design process. A more detailed study of linear control theory can be found in

[38, 39, 41] and [42].

3.2 Non-Linear Control Techniques

The subject of non-linear control deals with the analysis and controller design for

non-linear plants directly (no linear approximation is required).

3.2.1 Non-Linear Versus Linear Control

1. The fact that in non-linear control the non-linear model is used directly,

gives the major advantage of non-linear control theory, because it eliminates

the imprecision caused by approximating a non-linear model.

2. The stability and desired dynamic response by a linear controller is guaran-

teed locally in the vicinity of a pre-specified operating point, beyond which a

linear controller may act poorly or cause instability. On the other hand the
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non-linear control gives, in general, a wider range for controller to operate

properly (global behavior) [43].

3. The hard nonlinearities (backlash, hysteresis, saturation and coulomb fric-

tion etc) [43, 44], often encountered in control engineering practices, are

non-linearizable and so linear control theory can not devise a controller for

these. On the other hand the non-linear control deals directly with these

hard nonlinearities.

4. The nonlinear control theory does not possess much generalized rules for

dynamical analysis and controller synthesis while, the linear control theory

is based on generalized and well established mathematical tools for analysis

and controller design.

5. Most of the linear controller synthesis is normally carried out with the as-

sumption that the parameters of the model are well known (neglects para-

metric uncertainties) while the non-linear control may provide robustness

against parametric uncertainties.

6. Analyzing the dynamical behavior of non-linear systems is more difficult

than the linear systems.

There are various methods for analyzing and designing the non-linear control sys-

tems but none of them can be claimed to be universal [43] because, a direct solution

to a non-linear differential equations is usually impossible and frequency domain

transformations don’t apply [43, 44]. These methods include, phase plane analy-

sis, Lyapunov analysis, describing function and center manifold theorem etc. The

two most commonly used methods for the analysis of non-linear systems are given

below.

• Phase Plane Analysis [43]: It is a graphical method of finding the solution

of second order non-linear differential equations. It has the advantage that
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it provides physical insight of the system motion (nonlinearities in the sys-

tem) and a disadvantage that it is limited only to second order differential

equations.

• Lyapunov Analysis: Lyapunov theory [43, 44] is the most powerful tool for

the analysis of non-linear systems. The Lyapunov analysis is used in two

ways, namely Direct Method and Indirect Method. The indirect method

gives the stability of a non-linear system in the vicinity of an operating

point via the use of linear control techniques. The direct method utilizes

the energy concept for claiming the stability. A disadvantage is that finding

an energy like function for a specific system is a difficult task. Moreover, as

given in Slotine et. al. [43] “if Lyapunov does not prove the stability

of a system it does not mean that the system is unstable rather

Lyapunov function fails to prove the stability”.

The design of a control system has two pronounced aspects i.e., stabilization (reg-

ulation) and tracking [43]. In addition to many other techniques for achieving

these two objectives, the linearization of nonlinear system is also used as tool

such that the design process is benefited from the luxury of linear controller de-

sign techniques. The linearization about an operating point, which results in an

LTI representation of the nonlinear system, suffered from not covering the whole

operation range. Thus the concept of global linearization brought the idea of

Linear Parameter Varying (LPV) systems and hence LPV based gain scheduling.

The LPV based gain scheduling will be discussed in fair detail in the subsequent

section.

3.3 LPV Based Gain Scheduling

An LPV based gain scheduling is a linear controller which monitors the operating

conditions of the physical system and continuously changes its parameters [45, 46].
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The design of such global linear controller may involve the following steps.

• Construction of an LPV model/system/plant: An LPV system is a

special type of representation of the nonlinear systems in which the system

appears “linear” in states but the coefficients are dependent of exogenous

time varying parameters which can be measured or estimated. The ideal

performance or less conservatism of an LPV based gain scheduling controller

requires an LPV system as close to the nonlinear system as possible. How-

ever, the LPV representation of a nonlinear system is not unique and the

level of performance is strictly dependent upon the LPV description. The

simplest but not trivial way of obtaining an LPV description is to hide the

nonlinearity in the parameter. Consider the following simple example.

Example 3.1. Consider the nonlinear system

ẋ = − sin(x)

can be represented as an LPV system by choosing α = sin(x)/x, as a schedul-

ing parameter.

ẋ = −αx

• Controller Synthesis: After an acceptable LPV model is achieved, the

controller can be synthesized similar to the LTI counterpart e.g., using H∞,

state feedback or any other generalized technique.

• Controller Scheduling: The scheduling scheme for the synthesized con-

troller i.e., computation of the gain scheduling, is performed in this step.

• Performance Assessment: The synthesized controller with the chosen

scheduling scheme is simulated and tested on the originol nonlinear system

to see whether it is acceptable or the steps are needed to be revised.

The most commonly used methods to achieve these two objectives, in nonlinear

control theory, are the feedback linearization and the Sliding Mode Control (SMC).
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Feedback linearization suffers from model imprecision and implementation cost, as

extra sensors are required to measure all the states of the system, while the Sliding

Mode Control got popularity due to its robustness against model uncertainties and

lower implementation cost than the feedback linearization. The theory of Sliding

Mode Control is studied in comprehensive details in the upcoming sections.

3.4 Sliding Mode Control

The term variable structure control was introduced by S. V. Emelyanov [2]. Later

on in [3], the term sliding modes was coined for the first time and the theory of

SMC was formally introduced in [6, 9, 10, 11].

One of the most inspiring feature of the SMC is that the controller is of discontinu-

ous nature. The prime function of this controller is to provide necessary switching

between two symptomatically different system configurations such that another

type of system motion, known as the sliding modes, subsists in a manifold,

known as the switching line or sliding surface or sliding manifold. This inspira-

tional system spectacle outcomes in fabulous performance of the system such as,

invariance with respect to parametric variations, a remarkable robustness against

model imperfections and external disturbances and is applicable to both linear

and nonlinear systems.

The SMC algorithm works in two phases, the reaching phase and the sliding phase

[9, 14]. In reaching phase, the system dynamics are driven, by a discontinuous

controller, from initial condition/s onto a prerequisite manifold, known as the

switching manifold (also known by the names sliding surface, switching surface,

hyperplane and switching line), while the sliding phase is said to be accomplished

when the sliding modes are established in the sliding manifold i.e., when the system

slides on the surface towards an equilibrium.
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The SMC algorithm is designed in two steps. These steps include the design of a

sliding surface and a discontinuous control law.

1. Sliding Surface Design: The sliding surface may have one of the following

forms depending upon the controller design specifications.

• Hurwitz Polynomial as Surface: The sliding surface (S) is a monic

polynomial and is a linear combination of the states of the system.

These surfaces are normally used for regulation (stabilization) purposes.

• Tracking Specific Sliding Surface: The usual option, as a surface, for

tracking purposes is the error e.g., S = E = R − Y , where E is the

error, Y is the concerned output of the underlying system and R is the

desired signal/trajectory/path etc which is to be tracked.

A critical consideration in the design of a sliding surface is to ensure the

existence of stable sliding modes. In other words, a surface must be designed

such that when the reaching phase is accomplished, the system trajectories

slide towards the origin. This discussion yields the following definition of

sliding modes.

Definition 3.1. Sliding Modes: The system modes/poles governing the dy-

namic behavior of a system as it slides along the surface.

2. Design of Reaching/Control Law: The control law used in SMC algo-

rithms is generally a discontinuous function of system states. This must be

designed such that the reaching phase is accomplished in finite time and the

system trajectories are confined to the surface afterwards. Since this con-

trol law is responsible for the accomplishment of reaching phase so it is also

called reaching law or reaching control law.

The following example will explore the design technicalities of a conventional First

Order Sliding Mode Control (FOSMC).
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Example 3.2. To explain the SMC design steps/procedure and its robustness,

taking a simple second order nonlinear system,

ẋ1 = x2

ẋ2 = −x1 + x2 + x1x2 + b(u+∆(t)) (3.1 )

where, −1 ≤ ∆(t) = sin(t) ≤ 1 is a bounded matched external disturbance and b is

a strictly positive constant. This system is inherently unstable as can be seen from

the open loop response shown in Figure 3.1 and may be explored mathematically

using the Lyapunov’s indirect method for equilibrium point (x1, x2) = (0, 0),

J =





∂f1
dx1

∂f1
dx2

∂f2
dx1

∂f2
dx2



 =




0 1

−1 1





which has the Right Half Plane (RHP) eigen values (0.5± 0.866j).
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Figure 3.1: Open Loop Response (Response due to the initial conditions)

Hence the control objective is to stabilize this system in the presence of the given

sinusoidal disturbance.

A robust sliding mode controller is devised using the following steps.

1. Sliding Surface Design: A Hurwitz and monic linear combination of the

system states is an obvious choice for sliding surface, when the objective of
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the controller is stabilization of the underlying system.

S = Cx1 + x2 (3.2 )

Where, S denotes the sliding surface and C is a design parameter. Prior to

control law design, the parameter C is designed to ensure a desired response

and to make sure that the resulting sliding modes will be stable. Thus

assuming that S = 0 has been accomplished by a discontinuous control law,

then:

x2 = −Cx1

which in tern gives,

ẋ1 = −Cx1 (3.3 )

Solving the above ODE gives:

x1(t) = x1(0)e
−Ct (3.4 )

We can conclude the following.

(a) The surface surface (Eq. 3.2) is Hurwitz.

(b) The resulting sliding motion (the motion/dynamics when reaching phase

has been accomplished) is represented by a reduced order dynamics.

(c) The sliding modes are stable (notice the decaying exponential), which

ensure that the system will slide along the surface, towards the origin.

(d) The parameter C can be defined for a desired response e.g., to define a

decay rate.

2. Control Law Design: Conventionally, the control law u, for an SMC,

with a gain denoted by M , has the following form.

u = ueq −Msign (S) (3.5 )

Where ueq is known as the equivalent control component. The ueq is continu-

ous and gives the average behavior of the system. This component reduces the
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mathematical complexity in proving the stability of the system as well as re-

duces the high gain requirement in the discontinuous part (Msign(S))2. The

equivalent controller ueq constitute the known system dynamics and hence

it is analytically calculated for nominal system by assuming steady state

(Ṡ = 0).

Ṡ = Cẋ1 + ẋ2

0 = (C + 1)x2 + x1(x2 − 1) + bueq

ueq = −
1

b
[(C + 1)x2 + x1(x2 − 1)] (3.6 )

3. Reachability Condition (Existence of sliding modes): This step of

the design process deals with the mathematical proof of the existence of sliding

modes in the sliding manifold, defined earlier, with the application/help of

the discontinuous controller. This can equivalently be stated that whether or

not the sliding modes, S = 0 dynamics, are attained i.e., the reaching phase

is accomplished.

The particular system (Eq. 3.1) in this example with the sliding surface given

in Eq. 3.2 and the control/reaching law in Eq. 3.5, the reachability is said to

be confirmed if the following Lyapunov function,

V =
1

2
S2,

satisfy the following condition.

V̇ = SṠ ≤ 0.

From Equations 3.1-3.6, the following equations hold true.

SṠ = bS (∆(t)−MSign(S))

≤ bS (1−Msign(S))

≤ b [S −M |S|]

2The chattering magnitude is directly proportional to the gain of the discontinuous controller.
Hence, ueq also helps reducing chattering hazards.
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The above equation is strictly semi negative definite if and only if M > 13.

This implies that the total energy in the system decays and eventually the

sliding modes will be enforced (reaching phase will be accomplished).

4. Sliding Phase: As mentioned earlier, the sliding phase constitute a special

type of system motion, enforced and maintained by the discontinuous con-

troller. The motion in sliding phase is called special because it governed by

designed system modes, called the sliding modes.

Eq. 3.3 shows the dynamics governing the sliding motion while Eq. 3.4 show

that these dynamics are asymptotically stable.

The system in Example 3.2, with the given SMC, is simulated in MATLAB/SIMULINK

R2008b with the parameters given in Table 3.1.

Entity Value
M 15
C 2
b 1

Initial Condition
[
4 2

]

Step Time Variable

Table 3.1: Simulation Parameters

Figure 3.2 shows the sliding surface reached by the controller (Eq. 3.5) with the

corresponding controller effort shown in Figure 3.3. It may be noticed that the

surface is reached in the presence of a persistent sinusoidal external disturbance

(shown as a small portion of Figure 3.2). Thus, the robustness claim is verified.

Furthermore, the state trajectories under the effect of the SMC are given in Fig-

ure 3.4, which shows that the states are not only stabilized but also converge in

finite time. In Figure 3.5 the phase portrait of the system states is given which

elaborates the accomplishment of reaching phase and sliding phase.

3In general it must be ensured that M > η, where η is the upper bound of any matched
external disturbance.
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Figure 3.2: Sliding surface and the applied external disturbance
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Figure 3.3: Controller effort

In addition to the fascinating benefits of SMC, there are also some limitations. The

discontinuous nature of u, delays in mechanical systems, neglected or unknown dy-

namics and imperfection of hardware, results in high frequency oscillations against

the sliding manifold. These high frequency oscillations are known as chattering

[47], see the zoomed portion of Figure 3.2. These high frequency oscillations may

cause wear-tear in the system. Moreover, the discontinuous controller switches

with a high frequency and a fixed magnitude proportional to the gain M , see Fig-

ure 3.3. Here arises a water bed effect which is, reducing M decreases robustness
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Figure 3.4: Closed loop state trajectories
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and increasing M causes the magnitude of the controller effort to rise. Both these

situations look threatening from a control engineer’s point of view and a trade-off

has to be made between robustness and achievable performance. The conventional

first order SMC also suffers from the fact that it is applicable only if the dynamics

are relative degree one with respect to the switching manifold [48].

The pronounced efforts in the last few decades, for relaxing the relative degree

requirement and suppression/elimination of the worst chattering phenomenon,

38



added many techniques and variants in the theory of sliding mode control. One

such achievement of the control theoreticians and practitioners is the Higher Order

Sliding Modes (HOSM), which relaxes the relative degree constraints and mini-

mizes the chattering.

Furthermore, some nonlinear systems show very sensitive behavior to even very

small disturbances in the reaching phase. This sensitivity of a system in reaching

phase of SMC may cause an undesirable result or even the instability of the sys-

tem4. Thus it is needed to have a reaching phase free sliding mode. The cause

oriented efforts of the researchers found out the Integral Sliding Mode Control

(ISMC) as a remedy [8, 49, 50, 51].

The ISMC and HOSM are discussed in the coming sections.

3.5 Integral Sliding Mode Control

The Integral Sliding Mode Control (ISMC), being famous for reaching phase elim-

ination, diminishes the hazard of possible instability and/or performance degra-

dation due to the external disturbances, in the reaching phase. The elimination

of reaching phase enhances the robustness to external disturbances but excludes

the property of order reduction from the conventional SMC.

The attractive phenomenon, of reaching phase elimination, in the ISMC is attained

by a special type of sliding surface, usually known as the integral manifold. The

integral manifold is an algebraic sum of the conventional sliding surface (linear

combination of states) and an integral term. The integral term can be termed as

added dynamics and is a function of system’s states and parameters5. The cor-

responding ISMC controller have a discontinuous control component, responsible

for keeping the system trajectories confined to the integral manifold by rejecting

4As the invariance is claimed only in the sliding phase.
5It is these added dynamics which pulls the property of order reduction, in the sliding mode,

out of the conventional SMC.
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the uncertainties and disturbances of a certain class and a continuous control com-

ponent, usually a state feedback controller, responsible for stabilizing the sliding

mode (nominal) dynamics. A simple introduction of the ISMC is presented below.

Consider a Single-Input-Single-Output (SISO) nonlinear system with the following

state space representation.

ẋ(t) = f(x, t) + B(x, t)u(t) + ξ(x, t) (3.7 )

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the control input, f(x, t) : ℜn×ℜ →

ℜn is a smooth vector field and B(x, t) : ℜn ×ℜ → ℜn is a smooth input channel.

In practice there are always uncertainties and external disturbances affecting the

dynamical behavior of systems. These are mathematically represented by ξ(x, t).

Assumption 1. Assume that:

1. |B(x, t)| 6= 0 i.e., this matrix is full rank.

2. The system is controllable.

3. The nominal system (ideal case), with state vector xnom(t) ∈ ℜn, operates

under the effect of state feedback control law u0(xnom) = −kxnom

Assumption 2. The following assumptions are made regarding ξ(x, t).

1. The uncertainties and disturbances are of matched nature i.e., the term

ξ(x, t) affects the system through input channel. This assumption provides

the following mathematical equivalence.

ξ(x, t) = B(x, t)η (3.8 )

2. The uncertainties and disturbances are norm bounded.

||ξ(x, t)|| ≤ δ

where, δ is a known positive constant.
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3. The term ξ(x, t) vanishes at the origin i.e.,

ξ(0, t) = 0

The system operating under the effect of u0 (the nominal system or the sliding

mode dynamics) may have the following form,

ẋnom = f(xnom, t) + B(xnom, t)u0 (3.9 )

where xnom represent the nominal state trajectories.

The core objective of an ISMC algorithm is to enforce nominal system, the one

having no uncertainties and/or disturbances, from the very beginning. Mathemat-

ically,

x(0) = xnom(0),

and this retained afterwards i.e.,

x(t) = xnom(t).

Therefore, the ISMC algorithm uses a linear combination of two controllers as

given below.

u(t) = u0(t) + u1(t), (3.10 )

The controller u1(t), is the basic building block and is discontinuous in nature,

copes with uncertainties and disturbances to achieve the above mentioned objec-

tive while the controller u0(t) is linear or nonlinear or continuous or discontinuous

controller used to stabilize the nominal system.

As mentioned earlier the ISMC uses a special type of sliding surface known as the

integral manifold and is given by the following equation.

s(x) = s0(x) + z. (3.11 )

Where s0(x) =
n∑

i=1

cixi, with cn = 1, is the conventional sliding surface while z is

the integral term which will be explored in the subsequent paragraphs.
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The time derivative of Eq. 3.11, along the dynamics of Eq. 3.7, with u(t) given in

Eq. 3.10, takes the form:

ṡ = ∇s0 [f(x, t) + B(x, t)u0 +B(x, t)u1 + ξ(x, t)] + ż (3.12 )

Now, selecting the integral term as a function of f(.) and u0.

ż = −
∂s0(x, t)

∂x
(f(x, t) + B(x, t)u0) (3.13 )

As the ISMC is characterized by no reaching phase i.e., s(x0) = 0, where x0 = x(0)

is the initial condition, which leads to the following mathematical description for

the initial conditions of the integral term.

z(x0) = −s0(x0).

The above choice of the integral term, reduces the dynamics in Eq. 3.12 to the

following form.

ṡ = ∇s0 [B(x, t)u1 + ξ(x, t)] (3.14 )

In order to achieve the convergence condition, the discontinuous control may be

selected as follows:

u1(t) = ueq − ksign(s),

where ueq is the equivalent controller and can be selected using the directions

given in [5] and k > η is the controller gain. This choice of u1, guaranteeing the

convergence, leads to the sliding mode dynamics (nominal system) given in Eq. 3.9.

Notice that an obvious assumption for the above analysis is that det(∇σ0B(x, t) 6=

0).

The ISMC with the aid of integral manifold and hence no reaching phase provides

robustness from the initial instant of time with acceptable performance. However,

chattering can be reduced with the use of some smoothening algorithm. In ad-

dition, the possible varying parameters in the system can seriously degrade the

performance of the dynamics governed by a controller u0. These problems are

addressed in Chapter 5
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The following design example explains the construction of an ISMC.

Example 3.3. Consider the nonlinear system of Example 3.2. Now the controller

u is as given in Eq. 3.10. The integral manifold, as mentioned earlier, is given by

the following equation,

s = s0 + z, (3.15 )

where, s0 is as given in Eq. 3.26 and z is the integral term.

Taking the time derivative of the integral manifold (Eq. 3.15) along the trajectories

of the nominal system (Eq. 3.1), i.e., ∆(t) = 0.

ṡ = ṡ0 + ż

Now taking the component u1 as given in Eq. 3.5 and fact that s = 0 from the very

beginning7, the above equation can be equated for ż, considering the steady state

i.e., ṡ = 0.

ż = −u0 (3.16 )

A solution of Eq. 3.16 gives the term z in Eq. 3.15. Reconsidering Eq. 3.1 in

addition to the z and u1 given above and the fact that sliding modes are invariant

to external disturbances, the following double integrator system will represent the

dynamics during sliding8.

ẋ1 = x2

ẋ2 = u0 (3.17 )

Now the continuous part of the controller u0 may be designed using any linear

control technique e.g., state feedback u0 = −Kx(t), where K is the controller gain.

The simulation result in Figure 3.6 shows the sliding surface being maintained by

the ISMC algorithm without any reaching phase.

6Generally s0 =

n∑

i=1

Cixi with Cn = 1.

7As there is no reaching phase.
8Note that there is no order reduction.
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Figure 3.6: Integral Manifold being maintained by an ISMC

The SMC algorithms in the above two examples showing a stamped authority

when it comes to robustness. However, the limitations imposed by the danger-

ous chattering phenomenon (see Figures 3.2, 3.3 and 3.6) and the relative degree

requirement was still a matter of concern9.

There is a rich literature of proposals claiming chattering suppression e.g. bound-

ary layer approach, approximation of sign function by a saturation function,

exponential reaching law and much more. All these proposals did well in chat-

tering minimization but they approximated the original SMC algorithm. In the

mean time the research diverted to finding techniques which could work the cause

of chattering elimination without approximating the SMC. These directed efforts

resulted in the introduction of HOSM control.

3.6 Higher Order Sliding Mode Control

The Higher Order Sliding Mode Control (HOSMC) [14, 17, 52] is a variant of the

conventional SMC. The HOSMC relaxes the requirement of relative degree and

reduces chattering.

9The conventional first order SMC can only be applied systems having relative degree 1 with
respect to the sliding surface.
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The HOSMC actually reduces the physical dimensions of the switching manifold,

as the switching takes place on the intersection of switching surface (S) and its

time derivatives. This leads not only to S = 0 but also its derivatives are forced to

zero. The HOSMC algorithm which produces S = Ṡ = 0 is known as the Second

Order Sliding Mode (SOSM) control. Mathematically, an mth order sliding mode

control can be claimed if and only if the algorithm enforces the following equation.

S = Ṡ = S̈......... = Sm−1 = 0

The fact that an increase in sliding order actually decreases the manifold dimen-

sion, guarantee the attenuation of chattering [1]. A description of this fact can be

seen in Figure 3.7, where σ is the switching line and σ̇ is the total time derivative of

the switching line. In short, it may be coined that there is inverse proportionality

between sliding order and chattering. It may be observed that in first order sliding

Figure 3.7: Description of Sliding Order and Manifold Dimension [1]

mode or conventional sliding mode, the algorithm is meant to attain σ = 0, hence

the switching line is the whole σ̇ − axis (large area for switching to take place).

On the other hand, in second order sliding mode or 2-sliding mode, the algorithm

is meant to enforce σ = σ̇ = 0 and hence the manifold dimensions are reduced.
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The second order SMC (S = Ṡ = 0) is the most popular amongst the researchers

and is successfully implemented for many practical applications [53, 18, 54, 55,

56, 57]. The practical second order sliding mode controllers appear with different

names like, Super Twisting Algorithm (STA), Real Twisting Algorithm (RTA)

[14], suboptimal second order SMC [19] and a variety of smooth second order

sliding mode controllers [1, 58].

The following example aids a highlight to the design of second order sliding mode

control.

Example 3.4. Reconsidering the dynamical system of Example 3.2, with the same

persistent sinusoidal disturbance (sin(ωt)), to demonstrate the effectiveness (in

terms of chattering reduction and disturbance rejection) of enforcing second order

sliding modes.

There is a rich pool of algorithms which enforces second order sliding modes.

Amongst them, the most popular and widely used algorithm is the STA with the

structure given in Eq. 3.18 below,

u = −α |S|1/2 sign(S) + u1,

u̇1 = −βsign(S), (3.18 )

where α and β are the controller’s tuning/design parameters.

The sliding surface is chosen to be that of Example 3.2 (see Eq. 3.2) and the

controller parameters/gains, chosen for simulation, are α = 5 and β = 310. The

simulation results for the closed loop system states, sliding surface and control

effort are shown in Figures 3.8, 3.9 and 3.10 respectively. These figures, with the

shown zoomed portions, reveal the superiority, in terms of chattering elimination as

well as disturbance rejection, of enforcing second order sliding mode11. In addition

to these results the phase portrait of the sliding surface and its first total time

10There is no systematic procedure for choosing these gains.
11As STA is proven to enforce second order sliding modes.
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Figure 3.9: Sliding surface reached and maintained by STA

derivative is shown in Figure 3.11, which show the trajectories twisting around the

origin (S, Ṡ) = (0, 0) and finally reaching the origin (2-sliding mode). Hence the

name twisting controller.
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Figure 3.8: Closed loop state Trajectories under the effect of STA and in the
presence of sinusoidal disturbance
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Figure 3.11: Phase portrait showing the twisting nature of STA and enforce-
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3.7 Smooth Sliding Mode Control

The conventional SMC had some very useful characteristics but at the same time

it suffered due to high frequency chattering. The HOSM claimed to reduce the

chattering effects while preserving the useful characteristics of conventional SMC.

However, the HOSM control is reported sensitive to un-modeled fast dynamics [58]

due to which chattering will appear sooner or later in the closed loop system.
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In some very sensitive applications a complete chatter free control is required. As

mentioned in Chapter 2, the second order sliding mode controllers are prone to

performance degradation in such situations due their sensitivity with respect to un-

modeled fast dynamics. To cope with the said performance degradation issue the

smooth second order SMC frameworks were anticipated in [22, 26]. The smooth

SMC algorithms characteristically produced chattering free smooth control action

and hence provided guaranteed effectiveness in many sensitive applications, like

the one mentioned above. The structures of Smooth STA (SSTA) and Smooth

RTA (SRTA) are given in the following equations respectively.

u = −α |S|
ρ−1

ρ sign(S) + u1

u̇1 = −β |S|
ρ−2

ρ sign(S) (3.19 )

u = −r1 |S|
ρ−2

ρ sign(S)− r2 |S|
ρ−2

ρ−1 sign(Ṡ) (3.20 )

In both cases the smoothing parameter ρ ≥ 2. Notice that when ρ = 2 the SSTA

and SRTA reduces to the conventional STA and RTA. The gains α, β, r1 and r2

are strictly positive numbers.

As mentioned in previous Chapter, the robust stability analysis of each SMC

algorithm is mandatory in any case. The homogeneity approach for proving the

stability and finite time convergence of SSTA and SRTA, proved the stability in

nominal sense. In addition, this approach do not provide any concrete evidence

about the choice of the above mentioned parameters. This problem is addressed

in detail in Chapter 4.

3.8 Problem Statements

1. The stability and finite time convergence of SSTA is proved using homogene-

ity approach which effectively determines the existence of 2-sliding mode

and finite time convergence. However, the homogeneity based mathematical
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proof construction does not provide any analytical solutions (equations/re-

lations) for the gains and the convergence time of these algorithms. In ad-

dition, the effects of controller parameters (smoothing parameter and gains)

on the algorithm’s performance and robustness is yet to be explored.

2. The ISMC enhances robustness in the closed loop but looses the property of

order reduction. The subtraction of the order reduction property from

ISMC causes the loss of the parameter invariance12. Especially, when

there are some varying parameters and/or nonlinearities in the system, the

performance may degrade significantly and in worst cases it may cause in-

stability. In addition, the ISMC do not claim any thing related to chattering

suppression.

3.9 Objectives

1. To parametrize the SSTA such that the closed form expressions for select-

ing the gains of the controller are achieved. The parameterization is also

intended to explore the robust performance and robust stability conditions

in terms of the controller parameters. Such an analysis will be helpful in

structural enhancement of the algorithm.

“Robustness and Performance Parameterization of Smooth Second Order

Sliding Mode Control”, Vol. 13, No. 4, IJCAS 2016

2. To make the ISMC smooth (to eliminate chattering) for practical applica-

tions. In addition, to make a hybrid of Linear Matrix Inequality (LMI) based

Linear Parameter Varying (LPV) control with a Smooth ISMC (SISMC), in

order to improve performance in the presence of any time or state dependent

varying parameters.

12As in this case the sliding mode dynamics constitute all the system dynamics.
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“Smooth Integral Sliding Mode Control and LPV Approach to Uncertain

Nonlinear Systems”, Under Review in ISA-Transactions.

3.10 Summary

The SMC, as a nonlinear and discontinuous control scheme, is recognized due

to its remarkable robustness. This algorithm tend to bring the dynamics onto

a pre-defined sliding surface in two phases. The reaching phase and the sliding

phase. Ideally a switching with an infinite frequency is required but practically

components are not perfect and so the dangerous phenomenon called chattering

appears in the system.

The HOSM control equipped with the useful properties of the conventional First

Order Sliding Mode (FOSM) control, cope with the chattering by reducing the

physical dimension of the sliding manifold. In addition, the HOSM algorithms

allow to use the SMC for the relative degree two systems as well. The HOSM

algorithms are very sensitive to un-modeled fast dynamics, due to which chattering

may appear in the system sooner or later.

The thirst for a complete elimination of chattering brought the idea of continuous

SMC or Smooth SMC (SSMC). The SSMC algorithms are differentiable at sam-

pling time and hence provide a smooth/continuous control action. The stability

analysis and finite time convergence of the SSMC is carried out using homogeneity

approach, which does not parametrize the algorithms. The Lyapunov approach

can be used as a useful tool to parametrize the SSMC algorithms.

The art of no order reduction in the ISMC may cause significant performance

degradation if there are time or state dependent parameters and/or possible non-

linearities in the system. To cure such possible trouble the parameter invariance

properties of the LMI based LPV controllers can be combined with the robustness

properties of the ISMC.
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Chapter 4

IMPROVEMENTS TO THE SMOOTH SUPER

TWISTING ALGORITHM

“I have learn that people will forget what you said, people will forget what you

did, but people will never forget how you made them feel.”

Maya Angelou.

The comparison of control algorithms, is determined in the lights of properties like,

simplicity of the algorithm, applicability in different circumstances, robustness

against disturbances and/or model uncertainties and time domain performance.

The Sliding Mode Control (SMC), as mentioned in previous chapters, got pop-

ularity due to its remarkable robustness against uncertainties and disturbances

of certain class. However, the accompanied chattering phenomenon limited their

practical use. A variant of the conventional first order SMC, known as the Super

Twisting Algorithm (STA), overcomes the hazard of chattering but with certain

problem of sensitivity to un-modeled fast dynamics due to which chattering may

appear sooner or later. This restricted the use of STA in some applications where

a complete chattering free control environment was mandatory.

The Smooth Super Twisting Algorithm (SSTA) [26], a continuous version of STA

and a practical second order sliding mode controller, has a simple and generalized

structure with acceptable robustness and better performance. This algorithm uses

a smoothening parameter, as will be discussed later in this chapter, which makes

the SSTA continuous on sampling times and hence the un-modeled fast dynam-

ics can not produce/excite chattering. However, the robust stability investigation
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and performance measures of the SSTA, in terms of the algorithm’s parameters,

is still an open field of research i.e., a proper parameterization of the algorithm

is necessary in terms of design ease, performance and any possible structural im-

provements.

The definitions of some frequently used terms are given below.

Definition 4.1. Robustness is the property of a control algorithm, to absorb

the effects of external disturbances and/or model inaccuracies [39].

Definition 4.2. Performance is the ability of a control algorithm to achieve a

desired quantitative description of the parameters that constitute quality of the

system behavior [39].

In this chapter, a novel robust stability analysis of the SSTA, in the closed loop, is

presented. The robust stability analysis and parameterization is performed with

the use of Lyapunov theory instead of homogeneity or geometric approaches, used

previously. A Lyapunov function for the SSTA is constructed. The investiga-

tion of that Lyapunov function along the trajectories of the closed loop system

give rise to the analytical expressions for the gains of the SSTA. The convergence

time, in terms of the SSTA parameters, is also explored, which may be handy in

the overall closed loop performance improvement. In short, the effect of the con-

troller parameters on the robustness and performance of the closed loop system

is explored mathematically. In addition, the challenging nonlinear process con-

trol of the Underground Coal Gasification (UCG) is controlled, using computer

simulations, with the proposed analytical design for the SSTA.

The chapter is structured as follows. Section 4.1 gives the motivation of the

problem. Section 4.2 presents a Lyapunov function for the nominal case and its

stability and finite time convergence are mathematically elaborated. In Section 4.3,

the idea of the previous section is extended to the closed loop dynamics (Eq. 4.4)
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perturbed by bounded matched disturbance. An analytical method, for picking

the gains of the controller, is coined. In Section 4.4, the SSTA is tested/simulated

in loop for maintaining the calorific value of the product gas mixture at a set point

in the process control of UCG. Section 4.5 summarizes the chapter.

4.1 Problem Formulation

Consider the relative degree one sliding variable dynamics, of an output feedback

plant shown in Figure 4.1, calculated along the plant trajectories,

σ̇ = g(t) + u, (4.1 )

where, σ ∈ ℜ is the sliding variable, u ∈ ℜ is the controller and g(t) ∈ ℜ is

a sufficiently smooth uncertain function. In usual cases σ = 0 defines a motion

on the sliding surface. However, it may be noted that the closed loop dynamics

will be stabilized by u if and only if the σ-dynamics or sliding variable dynamics

(Eq. 4.1) are stable.

In [26], a smooth control, modified STA, u is designed such that it drives σ = σ̇ = 0.

u = −k1|σ|
ρ−1

ρ sign(σ) + u1

u̇1 = −k2|σ|
ρ−2

ρ sign(σ), (4.2 )

In Eq. 4.1, let σ = x1 and u1 = x2, led us to the following σ-dynamics which may

be termed as a closed loop system representing σ-dynamics.

ẋ1 = −k1|x1|
ρ−1

ρ sign(x1) + x2 + g(t)

ẋ2 = −k2|x1|
ρ−2

ρ sign(x1). (4.3 )

SSTA Plant
u σ

Figure 4.1: Output Feedback Configuration and Sliding Variable Dynamics
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Where ρ ≥ 21 is the smoothing parameter, x ∈ ℜ2 is the state vector, kj , j = 1, 2

are the gains of the controller.

The stability of the algorithm is proved using the homogeneity approach for the

nominal case (g(t) = 0) (see [26]). A closer look at the dynamics in Eq. 4.1 and

Eq. 4.3, show that these dynamics are very sensitive to the so called drift term,

g(t) in this case. So the authors (see [26] and [59]) used a disturbance observer

to nullify the effects of this term. However, the homogeneity lacks to deliver a

concrete reasoned solutions for the controller gains and the convergence time. In

addition, when the system (Eq. 4.4) is not nominal, then proving the homogeneity

for the closed loop dynamics turns out to be a question. It may also be noticed

that the robustness and performance of the closed loop dynamics can vary with

the parameters of the disturbance observer. It will be attempted to propose a

mechanism for designing gains of the controller.

Consider a modified notation, such as, g(t) = ζ1(t, x) and adding another possible

source of uncertainty ζ2(t, x) (see [32, 34]), we re-write Eq. 4.3 as:

ẋ1 = −k1|x1|
ρ−1

ρ sign(x1) + x2 + ζ1(t, x)

ẋ2 = −k2|x1|
ρ−2

ρ sign(x1) + ζ2(t, x) (4.4 )

In this work, the controller design process (selection of the controller gains k1, k2

and smoothening parameter ρ) is completely parameterized using the Lyapunov

approach. The parameterization is such that a selection rule is proposed for choos-

ing the controller gains and the performance in terms of settling time, of the closed

loop dyanamics, is also presented. In addition, the effect of these design parame-

ters on the robust stability of the SSTA is explored. Moreover, the robust stability

of SSTA, without requiring a disturbance observer for the estimation of the drift

1ρ > 2 is required because if it is less than 2 then the term |x1|
(ρ−2)/ρ will go to the denomi-

nator of the integral part (ẋ2), which will cause infinity when x1 = 0.
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term, is also proven mathematically. The SSTA with the proposed design frame-

work is then elaborated against a highly nonlinear and uncertain process control

problem of UCG.

4.2 SSTA: The Nominal Case

Consider the system in Eq. 4.4 to be nominal (ζ1(t, x) = ζ2(t, x) = 0)2, as given in

Eq. 4.5.

ẋ1 = −k1|x1|
ρ−1

ρ sign(x1) + x2,

ẋ2 = −k2|x1|
ρ−2

ρ sign(x1). (4.5 )

Taking a positive definite and radially unbounded quadratic Lyapunov function

candidate [32, 34], given below:

V (t, x) = ξTPξ, (4.6 )

where ξT = [|x1|
ysign(x1) x2], y = ρ−1

ρ
and P ∈ ℜ2×2 is the solution of the

Algebraic Lyapunov Equation (ALE) (Eq. 4.7) and is characterized as symmetric

and positive definite,

ATP + PA = −Q, (4.7 )

where Q ∈ ℜ2×2 is also a positive definite symmetric matrix.

The total time derivative of the vector term ξ, in Eq. 4.6, will evolve along the

trajectories of the closed loop system (Eq. 4.5) in the following fashion:

ξ̇ =

[
∂

∂t
|x1|

ysign(x1)
∂

∂t
x2

]T

,

=
[

y|x1|
y−1ẋ1 ẋ2

]T

,

=




y|x1|

y−1(−k1|x1|
ysign(x1) + x2)

−k2|x1|
Msign(x1)



 .

2The nominal or in other words ideal dynamic conditions is a universally good starting point
in dynamic analysis and controller design.
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Since y−1 = 1/ρ andM = [(ρ−2)/ρ] = y− (1/ρ), the above equation can further

be simplified as:

ξ̇ =




y|x1|

−1/ρ(−k1|x1|
ysign(x1) + x2)

−k2|x1|
−1/ρ|x1|

ysign(x1)



 ,

= |x1|
−1/ρ




y(−k1|x1|

ysign(x1) + x2)

−k2|x1|
ysign(x1)



 ,

= |x1|
−1/ρ




−yk1 y

−k2 0








|x1|

ysign(x1)

x2



 ,

= |x1|
−1/ρ




−yk1 y

−k2 0



 ξ,

= |x1|
−1/ρAξ,

where,

A =




−yk1 y

−k2 0



 .

Hence we have:

ξ̇ = |x1|
− 1

ρAξ,

ξ̇T = |x1|
− 1

ρ ξTAT . (4.8 )

The total time derivative of Eq. 4.6 can readily be presented based on the above

derivations.

V̇ (t, x) = ξ̇TPξ + ξTP ξ̇,

Put ξ̇ and ξ̇T from Eq. 4.8, we get,

V̇ (t, x) = |x1|
− 1

ρ

[

ξTATPξ + |x1|
− 1

ρ ξTPAξ
]

,

= |x1|
− 1

ρ

[
ξTATPξ + ξTPAξ

]
,

= |x1|
− 1

ρ ξT
[
ATP + PA

]
ξ,
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and following the definition of ALE (Eq. 4.7),

V̇ (t, x) = −|x1|
− 1

ρ ξTQξ. (4.9 )

This associate the negative definiteness of V̇ (t, x) to the matrix Q i.e., if Q is

positive definite then Eq. 4.9 is semi negative definite. In contrast, the positive

definiteness of the matrix Q, by definition of the ALE (Eq. 4.7), can be claimed

if and only if matrix A is Hurwitz3. Since the matrix P is already assumed to be

positive definite and symmetric while the mathematical investigation of matrix A

reveals its Hurwitz nature if and only if the gains of the SSTA (k1 and k2) are

non-negative constants. This way the stability of the nominal system (Eq. 4.5),

like a Linear Time Invariant (LTI) system, is entirely determined by the stability

of the matrix A.

The following theorem formalizes the above mentioned concept for the stability of

closed loop system dynamics given in Eq. 4.5.

Theorem 4.3. If the controller gains k1 and k2 are non-negative then the suc-

ceeding statements are entitled for the closed loop nominal system (Eq. 4.5).

• A finite time stable and unique equilibrium point of the system is its origin.

• Second order sliding modes will be enforced in the state space of system

(Eq. 4.5).

• Any system motion starting at an arbitrary initial conditions x0, with any

indiscriminate but symmetric and positive definite choice of matrices Q and

P , will grasp the origin in time less than Ts:

Ts =
ρλmax[P ]

λ
1

ρ

min[P ]λmin(Q)
V 1/ρ(x0),

where, λmin(Q), λmin[P ] and λmax[P ] are the minimum and/or maximum Eigen

values of the matrices Q and P respectively.

3The Eigen values of A are strictly in the left half of the s-plane.
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Proof. The closed loop dynamics (Eq. 4.5) is a differential inclusion (ẋ ∈ f(x))

and are interpreted in Filippov sense [20] because of the discontinuous right hand

side. It may also be noted that 0 ∈ f(0) [60], so an equilibrium point of Eq. 4.5 is

the origin. At the equilibrium ẋ1 = ẋ2 = 0, so Eq. 4.5 becomes,

0 = −k1|x1|
ρ−1

ρ sign(x1) + x2,

0 = −k2|x1|
ρ−2

ρ sign(x1)

This equality is possible if and only if x1 = x2 = 0, which means the origin is a

unique equilibrium point of the system.

The stability of the nominal system and hence the equilibrium point (origin), is

directly followed from Eq. 4.9, such that

1. If V̇ (t, x) is negative definite then the system is stable4.

2. V̇ (t, x) is negative definite if and only if Q is positive definite.

3. According to the definition of ALE (Eq. 4.7), Q is positive definite if A

is Hurwitz (all the eigen values are strictly negative). In this regard, the

characteristic equation is,

|λI − A| = 0,
∣
∣
∣
∣
∣
∣




λ 0

0 λ



−




−yk1 y

−k2 0





∣
∣
∣
∣
∣
∣

= 0,

λ2 + λyk1 + yk2 = 0.

This shows that the eigen values will be strictly negative if and only if k1

and k2 are strictly positive (y = ρ−1
ρ

is already positive because ρ ≥ 2). This

proves the stability of the origin in terms of the controller gains.

Existence of 2-SMC: The investigation of total time derivative of the Lyapunov

function (Eq. 4.9), in the lights of invariant set theorem [43], dictates the fact that

4Because the negative definiteness of the energy like Lyapunov function guarantee that the
total energy in the system decays exponentially which is termed technically as convergence.
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V̇ (t, x) = 0 on a set defined by:

R = {(x1, x2) ∈ ℜ2 | x1 = 0}

from which the largest invariant set (say ℓ), is investigated as follows.

ℓ = {(x1, x2) ∈ ℜ2 | x1 = x2 = 0}.

This clearly dictates that if x1 = x2 = 0 then ẋ1 = ẋ = 0 (see Eq. 4.5). Thus the

invariant set ℓ is a necessary and sufficient condition for the existence of second

order sliding mode (x = ẋ = 0) in the state space of system in Eq. 4.5.

Finite Time Convergence: The following conclusions/claims holds true in the

lights of the above discussion.

• System in Eq. 4.5 is stable.

• The only equilibrium point is the origin of the state space of Eq. 4.5.

• The gains k1 and k2 are strictly positive.

• The matrices P and Q are symmetric and positive definite.

• If Ts denote the convergence time of the closed loop trajectories then,

x(Ts) = 0 ⇒ V (Ts, 0) = 0.

The finite time convergence of the closed loop trajectories and the associated

convergence time Ts is then calculated as follows.

Let x(0) = x0 and V (0, x) = V0, be the arbitrary initial conditions then the

following inequalities are true for the quadratic Lyapunov function (V (t, x) =

ξTPξ) [43],

λmin(P ) ‖ξ‖
2
2 ≤ V (t, x) ≤ λmax(P ) ‖ξ‖

2
2 ,

‖ξ‖22 ≥
V (t, x)

λmax(P )
,

‖ξ‖22 ≤
V (t, x)

λmin(P )
, (4.10 )
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where, λmax(P ) and λmin(P ) are the maximum and minimum eigen values of

matrix P respectively. Also since,

‖ξ‖2 =
√

|x1|+ x22,

‖ξ‖22 = |x1|+ x22,

implies that

|x1| ≤ ‖ξ‖22 ≤

[
V (.)

λmin(P )

]

,

|x1|
1

ρ ≤

[
V (.)

λmin(P )

] 1

ρ

. (4.11 )

Note that the inequalities in Eq. 4.10 also hold true for ξTQξ (see Eq. 4.9), and

hence Eq. 4.9 can readily be stated as the following inequality.

V̇ (t, x) ≤ − |x1|
−1/ρ λmin(Q) ‖ξ‖

2
2 .

Now using Eq. 4.10 and Eq. 4.11, the above inequality is modified as,

V̇ (t, x) ≤ − |x1|
−1/ρ λmin(Q)

V (.)

λmax(P )
, (Using Eq. 4.10.)

≤ −
λ
1/ρ
min(P )

V 1/ρ(.)
λmin(Q)

V (.)

λmax(P )
, (Using Eq. 4.11.)

Simplifying the above inequality, we get,

V̇ (t, x) ≤ −δV y(.), (4.12 )

where,

δ =
λ

1

ρ

min(P )λmin(Q)

λmax(P )
.

Eq. 4.12 proves the exponential and hence finite time stability of the closed loop

dynamics (Eq. 4.5).

The use of Bihari’s inequality [61] and the separation of variables approach to

solving differential equations [62], for Eq. 4.12 produce the following results.

V (t, x) ≤

[

−
δ

ρ
t+ V

1

ρ

0

]ρ

,
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At t = Ts (see the bulleted points above), we have,

0 ≤

[

−
δ

ρ
Ts + V

1

ρ

0

]ρ

,

−
δ

ρ
Ts ≥ −V

1

ρ

0 ,

δ

ρ
Ts ≤ V

1

ρ

0 ,

which gives,

Ts ≤
ρ

δ
V

1

ρ

0 .

This completes the proof of the theorem.

Remark 4.4. In the proof given above it may be noticed that:

• The settling time is dependent upon the controller parameters such as, the

smoothening parameter ρ.

• By the virtue of Lyapunov function formulation, for the inherently discon-

tinuous system, the stability and performance can be visualized similar to a

continuous, Linear and Time Invariant (LTI) system.

4.3 SSTA with Matched Disturbances: The Non-

Nominal Case

In this section, the stability of the closed loop system (Eq. 4.4) subjected to the

external disturbances, which satisfies the following assumptions, is explored.

Assumption 3. ζ2(t, x) vanishes at the origin and ζ1(t, x) = 0. Mathematically,

ζ1(t, x) = 0 ∀ x and t ∈ [0,∞)

ζ2(t, x) = 0 ∀ x = 0 and t ∈ [0,∞)

|ζ2(t, x)| ≤ L ∀ x 6= 0 and t ∈ [0,∞). (4.13 )
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With the aid of the above assumption, the robust stability analysis of the perturbed

closed loop system is presented next. In addition to the robust stability analysis a

selection rule, in the form of analytical expressions, is anticipated for choosing the

controller gains in such a way that the assumed perturbations are compensated

without requiring a disturbance observer.

Theorem 4.5. Consider the perturbation terms in Eq. 4.4 satisfy the assumption

(Eq. 4.13), then there exist, constant and positive definite symmetric matrices P

and Qp in such a way that Eq. 4.6 will be positive definite and

V̇ (t, x) = −|x1|
− 1

ρ ξTQpξ,

will be globally semi negative definite. In addition, the origin will be a global and

finite time stable equilibrium point if the gains k1 and k2 are chosen properly, with

a settling time denoted by Tps.

Tps =
ρ

δp
V

1

ρ

0 ,

where,

δp =
λ

1

ρ

min (P )λmin (Qp)

λmax(P )
.

Proof. The total time derivative of Eq. 4.6, along the closed loop system trajecto-

ries Eq. 4.4 is presented as,

V̇ (t, x) = ξ̇TPξ + ξTP ξ̇. (4.14 )

Keeping in view the assumption (Eq. 4.13), the total time derivative of ξT =

[|x1|
ysign(x1) x2] is given by:

ξ̇ =

[
∂

∂t
|x1|

ysign(x1)
∂

∂t
x2

]T

,

=
[

y|x1|
y−1ẋ1 ẋ2

]T

.

Now using the dynamics of the perturbed Eq. 4.4, in the above equation.

ξ̇ =




y|x1|

y−1(−k1|x1|
ysign(x1) + x2)

−k2|x1|
Msign(x1) + ζ2(t, x)



 .
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Now simplifying the above equation gives,

ξ̇ =




y|x1|

−1/ρ(−k1|x1|
ysign(x1) + x2)

−k2|x1|
−1/ρ|x1|

ysign(x1) + ζ2(t, x)



 ,

=




y|x1|

−1/ρ(−k1|x1|
ysign(x1) + x2)

|x1|
−1/ρ(−k2|x1|

ysign(x1) + |x1|
1/ρζ2(t, x)



 ,

= |x1|
−1/ρ




y(−k1|x1|

ysign(x1) + x2)

−k2|x1|
ysign(x1)



+ |x1|
−1/ρ




0

|x1|
1/ρζ2(t, x)



 ,

= |x1|
−1/ρAξ + |x1|

−1/ρζ,

= |x1|
−1/ρ[Aξ + ζ]. (4.15 )

Where,

ζ =
[

0 |x1|
1

ρ ζ2(t, x)
]T

, (4.16 )

and ξ̇T can readily be followed from Eq. 4.15, as,

ξ̇T = |x1|
−1/ρ[ξTAT + ζT ]. (4.17 )

When we put the results obtained in Eq. 4.15 and Eq. 4.17 in Eq. 4.14, we get,

V̇ (t, x) = |x1|
− 1

ρ

[
ξTATPξ + ξTPAξ + ζTPξ + ξTPζ

]
. (4.18 )

The universal standards of linear algebra states that the transpose of a scalar is

equal to that scalar. In Eq. 4.18 the terms ζTPξ and ξTPζ are scalars, so they

are equal to their transpose. Furthermore, if we choose an arbitrary P as,

P =




P11 P12

P21 P22



 , (4.19 )

where P12 = P21 and an M matrix as,

M(t, x) =




0 0

n(t, x) 0



 , (4.20 )

where, n(t, x) = ζ2(t, x) |x1|
− ρ−2

ρ sign(x1). From Eq. 4.13, one can conclude that

n(t, x) will be bounded. Then the following is true,

ζTPξ = ξTPMξ,
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and

(ζTPξ)T = ξTPζ = (ξTPMξ)T = ξTMTPξ.

Put these in Eq. 4.18, we get:

V̇ (t, x) = |x1|
− 1

ρ ξT
[
(A+M)TP + P (A+M)

]
ξ. (4.21 )

The upper mentioned discussion give rise to the following observations about the

negative definiteness of V̇ (t, x) (Eq. 4.21) and hence the stability of the perturbed

system.

• P is symmetric and positive definite.

P will be symmetric and positive definite if and only if,

1. P12 = P21.

2. The elements of principle diagonal are positive.

3. det(P ) > 0.

4. Eigen values of P are positive.

All these are satisfied if,

P11 > 0, P22 > 0. (4.22a)

P11P22 > P 2
12. (4.22b)

Choosing P11 = 1/y (a function of the smoothing parameter) and denote

P22

P 2

12

= γ then P11 > 0 (∵ ρ ≥ 2 =⇒ y > 0) and Eq. 4.22 becomes,

P22 > yP 2
12 > 0

P22

P 2
12

> y

γ > y (4.23 )

Also if we let P22 > P 2
12, then, γ > 1, which satisfies Eq. 4.23 (∵ y < 1).

65



• A+M has bounded and negative eigen values.

The eigen values of A+M will be bounded and negative if and only if

k1 > 0,

k2 > n(t, x).

The use of (k2 − L) ≤ (k2 − n(t, x)) ≤ (k2 + L), provide the following

concluding inequalities for the eigen values of A+M to be negative.

k1 > 0,

k2 > L. (4.24 )

• (A+M)TP+P (A+M) = −Qp, is satisfied, for a symmetric

and positive definite matrix Qp.

According to the definition of the ALE, Qp must be symmetric and positive

definite because P is a positive definite symmetric matrix and A + M is

Hurwitz. However, here is presented a cross check.

Let

Qp =




Q11 Q12

Q21 Q22



 ,

where

Q11 = 2[−k1yP11 + (n(.)− k2)P12],

Q12 = Q21 = yP11 − yk1P12 + (n(.)− k2)P22,

Q22 = 2yP12. (4.25 )

As Qp is already symmetric (Q12 = Q21), so it will be positive definite if and

only if det(Qp) > 0.

det(Qp) = −4yP12[k1 + (k2 − n(.))P12]...

...− [1− yk1P12 + (k2 − n(.))P22]
2 > 0.

0 < −4yk1P12 − 4y(k2 − n(.))P 2
12 − (1− yk1P12)

2...

...− ((k2 − n(.))P22)
2 + 2(1− yk1P12)(k2 − n(.))P22. (4.26 )
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Using the inequality (k2 −L) ≤ (k2 − n(.)) ≤ (k2 +L), the equation may be

rephrased as:

0 < −4yk1P12 − 4y(k2 + L)P 2
12 − (1− yk1P12)

2...

...− ((k2 + L)P22)
2 + 2(1− yk1P12)(k2 − L)P22. (4.27 )

Now if choose a set new variables β, γ, χ and ψ such that, 0 < β < 1, γ > 1

and both satisfying βγ > 2 as:

ψ = y (k2 + L)P22, χ = −yk1P12, β =
k2 − L

y(k2 + L)
. (4.28 )

Then Eq. 4.27 can be written as:

ψ2 + (χ+ 1)2 < −4χ− 4y
Ψ

γ
+ 2y(χ+ 1)Ψβ. (4.29 )

Since the above inequality, if changed to equality, is the equation represent-

ing the circumference of an ellipse hence it can trivially be said that this

inequality in Eq. 4.29 characterizes the interior of an ellipse usually termed

as sub-level trajectories sets. These sub-level sets are centered at (χc, ψc)

in the plane (χ, ψ) and are branded by the parameters β, γ and ρ. This is

replicated in Figure 4.2.

χc = 1, ψc = y

(
βγ − 2

γ

)

. (4.30 )

0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

χ

ψ

β = 0.5
γ = 5
ρ = 3

Figure 4.2: Ellipse describing the boundary of set (Eq. 4.29)
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It may be observed from Eq. 4.30 that for βγ > 2 the ellipse will be centered

in the first quadrant and hence Qp will be positive definite.

The above discussion give the following set of inequalities for Eq. 4.21 to be neg-

ative definite.

P11 > 0,

P22 > 0 and P22 > P 2
12,

k1 > 0 and k2 > L. (4.31 )

These inequalities are satisfied with the following choices.

1. P11 = 1/y: Since y > 0 so P11 > 0.

2. The use Eq. 4.28, for k1 and k2 gives,

k1 =
1

y
χ

√

2γL

(1− β)ψ
,

k2 = L

[
ρ (1 + β)− β

ρ (1− β) + β

]

. (4.32 )

Clearly k1 > 0 and k2 > L.

With these choices Eq. 4.21 becomes,

V̇ (t, x) = − |x1|
− 1

ρ ξTQpξ,

which is negative definite everywhere except at the origin. Furthermore, the finite

time stability and the convergence time calculations can be performed similar to

that of Theorem 1.

In Theorem 4.5 the robustness of the closed loop dynamics with SSTA in the loop

is explored, for a class of disturbances which satisfy Eq. 4.13.

Remark 4.6. A general perception, for guaranteeing the convergence of any closed

loop dynamics having SMC in the loop, is that the gains of the SMC algorithm
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should be greater than the disturbances5. This requirement give rise to a trivial

question: how much greater? An answer to this question is provided by Eq. 4.32.

The robust stability analysis of the perturbed system is presented next, for a class

of disturbances/uncertainties with a non-zero and bounded ζ1(t, x).

|ζ1(t, x)| ≤ α1 + α2 ‖ξ‖2 (4.33 )

Where α1 and α2 are non-negative constants. It may be noticed that whether

ζ1(t, x) will vanish at the origin or not, depend upon α1.

• α1 = 0: This implies that the term ζ1(t, x) will vanish as the origin is reached

and the trajectories will eventually be confined to the origin.

• α1 6= 0: This implies the non-vanishing nature of the term ζ1(t, x), even at

the origin. Consequently, they change the equilibrium of Eq. 4.4 and hence

the motions/dynamics (trajectories) will be ultimately bounded [43, 44, 61].

Theorem 4.7. Consider the system in Eq. 4.4 with the perturbation terms ζ1(t, x),

ζ2(t, x) and gains k1, k2 satisfying Equations 4.33, 4.13 and 4.32 respectively.

Then the trajectories of the perturbed system (Eq. 4.4) are globally ultimately

bounded by:

b =

√

λmax(P )

λmin(P )

2α1η

(1− κ)[λmin(Qp)− 2α2η]
,

for α2 ≤
λmin(Qp)

2η
, α1 > 0, η∆

√

1 + (yP12)2, with a symmetric and positive definite

P and the non-negative constant 0 < κ < 1. In addition, if α1 = 0, the origin will

be a global and finite time stable equilibrium, with convergence time less than T 1s,

T 1s =
ρλymax(P )

λmin(Qp)− 2α2η
V

1

ρ

0 ,

where V0 = V (0, x0) and x0, as mentioned above, represent the initial conditions.

However, the trajectories will converge to the manifold Ω (which may contain the

5Normally we talk about bounded disturbances. In such cases the controller gain must be
greater than the upper bound.
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origin), if α1 6= 06.

Ω =
{
x ∈ ℜ2 | V (t, x) ≤ λmax(P )µ

2
}

In this case the convergence of trajectories to Ω will take place in time which is

less than T 2s,

T 2s = ρ
λymax(P )

κ (λmin(Qp)− 2α2η)

(

V
1

ρ

0 − λ
1

ρ
max(P )µ

2

ρ

)

,

where,

µ∆
2α1η

(1− κ) (λmin(Qp)− 2α2η)
.

Proof. The proof of this theorem is accomplished in two stages i.e., (α1 = 0 and

α1 6= 0).

Keeping in consideration the assumptions given in Equations 4.13 and 4.33, men-

tioned above, the total time derivative of ξ can be calculated as:

ξ̇ =

[
∂

∂t
|x1|

ysign(x1)
∂

∂t
x2

]T

,

=
[

y|x1|
y−1ẋ1 ẋ2

]T

,

=




y|x1|

y−1(−k1|x1|
ysign(x1) + x2 + ζ1(t, x))

−k2|x1|
Msign(x1) + ζ2(t, x)



 ,

= |x1|
−1/ρ




y(−k1|x1|

ysign(x1) + x2 + ζ1(t, x))

−k2|x1|
ysign(x1) + |x1|

1/ρζ2(t, x)



 ,

= |x1|
−1/ρ










y(−k1|x1|

ysign(x1) + x2)

−k2|x1|
ysign(x1)



+




yζ1(t, x)

|x1|
1/ρζ2(t, x)










,

= |x1|
−1/ρ







A
︷ ︸︸ ︷


−yk1 y

−k2 0





ξ
︷ ︸︸ ︷


|x1|

ysign(x1)

x2



+

ζ
︷ ︸︸ ︷


0

|x1|
1/ρζ2(t, x)



+

B2

︷ ︸︸ ︷


yζ1(t, x)

0











,

= |x1|
−1/ρ (Aξ + ζ + B2) ,

6Now the trajectories will not necessarily be confined to origin rather they will be bounded
by Ω.
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where B1 is arbitrary given name. Hence we have,

ξ = |x1|
−1/ρ (Aξ + ζ + B2) ,

ξT = |x1|
−1/ρ

(
ξTAT + ζT + BT

2

)
. (4.34 )

The total time derivative of Eq. 4.6 along the closed loop system trajectories

Eq. 4.4 and using Eq. 4.34, is given as:

V̇ (t, x) = |x1|
− 1

ρ

[
ξTATPξ + ξTPAξ + ζTPξ + ξTPζ +BT

2 Pξ + ξTPB2

]
,

The use of results obtained in the proof of Theorem 4.5, the above equation can

be rephrased as,

V̇ (t, x) = |x1|
− 1

ρ

[
−ξQpξ + BT

2 Pξ + ξTPB2

]
. (4.35 )

The terms BT
2 Pξ and ξTPB2 can further be simplified as,

BT
2 Pξ =

[

yζ1(t, x) 0
]




1/y P12

P12 P22








|x1|

ysign(x1)

x2



 ,

=
[

yζ1(t, x) 0
]





1
y
|x1|

ysign(x1) + x2P12

P12|x1|
ysign(x1) + x2P22



 ,

= yζ1(t, x)
[
1
y
|x1|

ysign(x1) + x2P12

]

,

= ζ1(t, x)
[

|x1|
ysign(x1) + yx2P12

]

,

= ζ1(t, x)ξ
T




1

yP12



 . (4.36 )

Using Eq. 4.36 and the fact that BT
2 Pξ is a scalar, so it is equal to its transpose,

we can further rephrase Eq. 4.35 as,

V̇ (t, x) = − |x1|
− 1

ρ

[
ξTQpξ − 2BT

2 Pξ
]
,

= − |x1|
− 1

ρ



ξTQpξ − 2ζ1ξ
T




1

yP12







 . (4.37 )

The use of inequality,

ζ1ξ
T




1

yP12



 ≤ ζ1 ‖ξ‖2 η ≤ (α1 + α2 ‖ξ‖2) η ‖ξ‖2 ,
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which can directly be followed from Eq. 4.33, transforms Eq. 4.37 to the following

form.

V̇ (t, x) ≤ − |x1|
− 1

ρ

[
ξTQpξ − 2(α1 + α2 ‖ξ‖2)η ‖ξ‖2

]
.

Now using Eq. 4.10 with the fact that Qp is symmetric and positive definite, we

get,

V̇ (t, x) ≤ − |x1|
− 1

ρ

[
λminQp ‖ξ‖

2
2 − 2(α1 + α2 ‖ξ‖2)η ‖ξ‖2

]
.

≤ − |x1|
− 1

ρ

[
g ‖ξ‖22 − 2α1η ‖ξ‖2

]
,

≤ −ϑ [g ‖ξ‖2 − 2α1η] , (4.38 )

where,

g = (λmin(Qp)− 2α2η) ,

and

ϑ =

√

V M(.)

λMmax(P )

If we let ‖ξ‖2 = κ ‖ξ‖2 + (1− κ) ‖ξ‖2, then Eq. 4.38 can be represented as:

V̇ (t, x) ≤ −ϑ [g (κ ‖ξ‖2 + (1− κ) ‖ξ‖2)− 2α1η] , (4.39 )

Case 1. α1 = 0

In this case V̇ (t, x) (Eq. 4.39), with the use of Eq. 4.10, takes the following math-

ematical representation.

V̇ (t, x) ≤ −ϑg

√

V (.)

λmaxP

≤ −ZV y(.),

Z =
λmin(Qp)− 2α2η

λymax(P )
.

This will be negative definite if and only if λmin(Qp) ≥ 2α2η and with this condi-

tion the differential inequality shows the usual exponential convergence properties.

Moreover, the convergence time T 1s can easily be determined using the procedure

in the proof of Theorem 4.3.

T 1s = ρ
λymax(P )

λmin(Qp)− 2α2η
V

1

ρ

0 .
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Case 2. α1 6= 0

In this case for V̇ (.) to be negative definite we need,

2α2η ≤ λmin(Qp),

2α1η ≤ g(1− κ) ‖ξ‖2 ,

or

‖ξ‖2 ≥
2α1η

g(1− κ)
= µ. (4.40 )

Now using the identity in Eq. 4.10 and Eq. 4.40
√

V (.)

λmax(P )
≥ µ

V (.) ≥ λmax(P )µ
2. (4.41 )

The inequality in Eq. 4.41 justifies the manifold Ω, described in Figure 4.3.
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Figure 4.3: Description of the Manifold (Ω)

Evaluation of Eq. 4.39 at the boundary of the manifold Ω (‖ξ‖2 = µ), gives:

V̇ (t, x) ≤ −ϑ [gκ ‖ξ‖2 + g(1− κ) ‖ξ‖2 − 2α1η] ,

≤ −ϑ [gκ ‖ξ‖2 + g(1− κ)µ− 2α1η] ,

≤ −ϑ

[

gκ ‖ξ‖2 + g(1− κ)
2α1η

g(1− κ)
− 2α1η

]

,

≤ −ϑ [gκ ‖ξ‖2] ,

≤ − (λmin(Qp)− 2α2η)κ
V y(x)

λymax(P )
. (4.42 )
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In determining/extracting an expression for T 2s from the above equation, it is

important to note that in this case the convergence/settling time does not mean

convergence to the origin i.e., V (T 2s, x) 6= 07. The trajectories will rather converge

to a manifold Ω i.e., V (T 2s, x) → Ω8. Keeping in consideration the above guide-

lines, the expression for T 2s is worked out following the procedure in the proof of

Theorem 1.

Remark 4.8. The stability of dynamical systems subjected to non-vanishing per-

turbations is termed as uniform ultimate boundedness and bounds will be de-

pendent upon (will be a function of) the terms which define that non-vanishing

perturbation.

Remark 4.9. Once again it may be noticed, from the above proof, that the stability

bounds and convergence/reaching/settling time are presented as functions of the

controller parameters.

The upcoming sections explore the effectiveness of the SSTA, using the suggested

analytical representations for its gains, when it is brought into the loop for the

process control of UCG. The SSTA is meant to uphold a maximum calorific value

of the product gases.

4.4 Control of the process of Underground Coal

Gasification

The process of Underground Coal Gasification (UCG), as the name suggests, con-

sumes the coal, way below the earth surface, for useful energy production. A visual

of the process is depicted in Figure 4.4.

The UCG reactor is formed by boring two application specific wells, one for injec-

tion of air to initiate combustion called the injection well and a production well

7Because origin is not any more the equilibrium point.
8T 2s indicate the time taken by system trajectories to reach the manifold Ω.
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Figure 4.4: Underground Coal Gasification Reactor

used for collecting the product gases, from the earth surface to the coal mines. A

link, either pneumatic or by horizontal drilling, between the injection well and the

production well completes the reactor.

The process of UCG is initiated by igniting the coal through heaters lowered al-

ready into the coal reactor and fresh air injected through the injection well. The

ignited coal then goes through the pyrolysis reaction to produce char. The sur-

plus oxidants (air/oxygen) and steam (H2O), injected through injection well, goes

through a chemical reaction with char, called the gasification reaction, resulting

in production of the all important and useful synthesis gas9. The synthesis gas

or syn gas can be utilized as a chemical feedstock [63, 64]. It can also be used

as fuel for combined cycle turbine’s (CCT) operation, to produce electricity (see

Figure 4.5).

Oxidants

Air + Steam
Ignition

Pyrolysis 
Reaction

Char Gasification 
Reaction

CCT

Chemical 
feedstock

Electricity

Useful 
Chemicals

Syn Gas Mixture of 
CO & H2

Figure 4.5: A Snapshot of the UCG process

9A mixture of carbon mono oxide (CO) and hydrogen (H2).
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The UCG reactor is modeled mathematically, including the two species/phases:

gas phase/specie and solid phase/specie. A further subdivision is that the solid

phase constitute two species namely coal and char, where as the gas phase is

comprised of eight gases including Hydrogen (H2), Carbon Dioxide (CO2), Carbon

Monoxide (CO), Steam (H2O), Nitrogen (N2), Methane (CH4), Oxygen (O2) and

higher hydrocarbons (Tar). In [65], a one dimensional time domain mathematical

representation of the UCG process is presented based on the early research (see

[66] and [67]). A generalized but descriptive state space representation of the UCG

process is given in Eq. 4.43.

ẋ1 =Mcoal

3∑

j=1

acoal,jrj,

ẋ2 =Mchar

3∑

j=1

achar,jrj,

ẋ3 =
1

Cs

[ht (T − x3)−Hs] ,

ẋi =
3∑

j=1

agas,jrj − βxi, where i = 4, 5, 6, 7, 8,

ẋ9 =
3∑

j=1

aH2O,jrj − βx9 +
a

L
u+

ζ

L
,

ẋ10 =
3∑

j=1

aO2,jrj − βx10 +
b

L
u,

ẋ11 = −βx11 +
c

L
u,

h = mfCOHa +mfH2
Hb +mfCH4

Hc, (4.43 )

where u ∈ ℜ is the input of the UCG reactor and represent the flow rate of the

inlet gases (a mixture of O2, H2O and N2) while h is output of the UCG process

and represent the calorific value of the gases collected at the production well.

The inflow of water from the contiguous aquifers disturb the gasification reaction

as they bring down the temperature of the reactor. Hence, this is treated as an
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Figure 4.6: The profile of water influx w.r.t time

input disturbance and is denoted by ζ(t, x) ∈ ℜ. A profile of water influx from

the surrounding aquifers, having an upper bound l = 3× 10−5 moles/cm2Sec. is

presented in Figure 4.6. The description of states and other parameters of Eq. 4.43

is given in Table 4.1 and Table 4.2 respectively.

Name Description Unit

x1 Coal Density g/cm3

x2 Char Density g/cm3

x3 Solid Temperature K

x4 Concentration of CO Moles/cm3

x5 Concentration of CO2 Moles/cm3

x6 Concentration of H2 Moles/cm3

x7 Concentration of CH4 Moles/cm3

x8 Concentration of Tar Moles/cm3

x9 Concentration of H2O Moles/cm3

x10 Concentration of O2 Moles/cm3

x11 Concentration of N2 Moles/cm3

Table 4.1: Description of states
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Name Description Unit

Mc Molecular Weight of c
Specie where c Represents
Coal or Char

g/mole

ai.j Stoichiometric Coefficient
of ith Specie in jth Chemical
Reaction

-

rj Reaction Rates (j = 1, 2, 3)

r1 = 5
ρcoal
Mcoal

exp

(
−6039

Ts

)

r2 =
1

1
rc2

+ 1
rm2

r3 =
1

1
rc3

+ 1
kymH2O

-

Cs Total Solid Phase Heat Ca-
pacity

Cal/K.cm3

ht Convective Heat Transfer
Coefficient

Cal/sec.K.cm3

T Ignition Temperature K
Hs Solid Phase Heat Source Cal/Sec.cm3

L Length of the Reactor cm
mfi Mole Fraction of ith Gas(

mfi =
xi∑
11

i=4
xi

) -

Hi Heat of Combustion of ith

Gas
KJ/Mole

u Flow Rate of Inlet Gases Moles/cm2Sec
h Calorific Value of the Prod-

uct Gas
KJ/Mole

Table 4.2: Description of parameters

4.4.1 Control Problem

The input of the UCG process is the flow rate (moles) of the injected gas mixture

and hence the process is very sensitive to these. Figure 4.7 depicts the response of

the UCG process to a constant input (constant flow rate of oxidants at the injection
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side) (u = 2 × 10−4moles/cm2sec). It may be noticed that the calorific value of

the gases at the production side attains a maximum value of 113.831KJ/mol in

approximately 20, 000 secs and then starts declining thereafter. A logical reason

for this decline is the leftover moles of the injected gas mixture. Thus, an automatic

control system is required to manipulate the flow rate of injected gas mixture such

that the decline in calorific value of the product gas is avoided.
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Figure 4.7: Open loop response of the system w.r.t time

In addition, there is also a limitation on the flow rate of injected gases, imposed

by hardware (compressors). Thus, the designed automatic control must perform

manipulation of flow rate u such that it stays well within the limitations presented

in Eq. 4.44.

0 < u ≤ 3× 10−4. (4.44 )

4.4.2 Simulation Results

According to the results and findings in Section 4.3, if the parameter β is chosen to

be 0.8 and γ = 3 then βγ > 2 and hence the center of the ellipse will be in the first

quadrant i.e., χc = 1 and ψc = 0.09 (See Eq. 4.30). The smoothening parameter

ρ is selected as the smallest possible value i.e., ρ = 3, such that smoothening is
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provided and the closed loop dynamics are faster. With these values the controller

gains, at ellipse center, are calculated as k1 = 0.15 and k2 = 10∗−5 using Eq. 4.32.

The simulations are then performed with these controller parameters, summarized

in Table 4.3.

Parameter Value

β 0.80

ρ 3

γ 3

χc 1

ψc 0.09

k1 0.15

k2 10−4

Table 4.3: Simulation parameters

Notice that χ and ψ are chosen to be the center points of the ellipse (Eq. 4.29).

The computer simulations are performed with MATLAB/SIMULINK for the SSTA

with the above parameters and are compared with the simulation results of a con-

ventional First Order Sliding Mode (FOSM) control.

First of all a constant flow rate of the inlet gas mixture (u = 2×10−4moles/cm2sec)

is injected till 20, 000 secs. The constant flow rate builds up sufficient calorific

value of the product gases and helps eradication of the actuator (compressor)

saturation when the loop is closed with SSTA or FOSM after 20, 000 sec.

Figure 4.8(a) demonstrate the calorific value of the product gas mixture collected

at the production side for both the SSTA and FOSM. It may be observed that the

desired calorific value (113.831KJ/mol) of the product gas mixture is maintained

by both SSTA and FOSM. However, a closer look of both (see the zoomed images
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in Figures 4.8(b) and 4.8(c)) reveal the robustness and smoothness of SSTA. In

Figure 4.8(c) it may be noticed that the performance of FOSM is degraded by the

input disturbance (water influx Figure 4.6).
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Figure 4.8: (a) Calorific value maintained by SSTA and FOSM controller. (b)
Zoomed view of calorific value attained by SSTA. (c) Zoomed view of calorific

value attained by FOSM controller

Figures 4.9(a) and 4.9(b) show the profile of the flow rate of inlet gas mixture at

the injection well (control input) governed by FOSM control and SSTA respec-

tively. These Figures draw a clear graded boundary between the performance of

SSTA and FOSM control. SSTA may be classified as better for following reasons.
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Figure 4.9: a) Molar Flow Rate (moles/cm2Sec) (control input) produced by
FOSM b) Molar Flow Rate produced by SSTA

The control effort (flow rate of the inlet gas mixture) produced by the SSTA is

Smooth (no chattering) when compared with the high frequency oscillations in

case of the FOSM control. In addition, the flow rate produced by the FOSM

control disrupts the compressor limitation (constraint on the flow rate of the in-

let gas mixture, see Eq. 4.44), when the water influx ζ (Figure 4.6) touches its

peak value at approximately 33, 000 secs. Whereas, the flow rate of the inlet gas

mixture, produced by the SSTA, cope with the water influx without violating the

compressor limitation.

82



−5

0

5
x 10

−4

F
O
S
M

a

2 2.5 3 3.5 4 4.5 5

x 10
4

−5

0

5
x 10

−4

Time (Sec)

S
S
T
A

b
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The switching manifolds being reached by the FOSM and SSTA are shown in

Figures 4.10(a) and 4.10(b) respectively. As mentioned earlier, the FOSM control

causes saturation of the compressor (see Figure 4.9(a)) which in turn causes a

noticeable effect of the water influx in the switching manifold. On the other hand,

the switching manifold enforced by the SSTA is unaffected by the water influx

and stays almost at 0 KJ/mol (with sliding accuracy of 10−9 [14]), for the whole

operation.
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4.5 Summary

In this chapter the analytic expressions are proposed for the gains and convergence

time of the SSTA for nominal as well as the perturbed system. These objectives are

achieved via the introduction of a family of quadratic strict Lyapunov functions.

The analytic expressions of the convergence time reveals the importance of the

smoothening parameter ρ. The SSTA converges to the origin in finite time, when

it is under the effect some bounded vanishing perturbations and ensures uniform

ultimate boundedness when the perturbations are non-vanishing.

This analysis can be used for many purposes, it gives the freedom to design the

gains of the controller for ensuring a desired performance. The estimate of the con-

vergence time can be subjected to some optimization framework to further improve

the performance. Also, this analysis can be useful for structural improvement of

the SSTA.

The SSTA with the proposed analytic expressions, is applied to the process of

UCG. This is a highly nonlinear process with numerous model uncertainties. The

simulation results reflect the effectiveness of the algorithm in terms of robustness

and performance.
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Chapter 5

IMPROVEMENTS TO INTEGRAL SLIDING

MODE CONTROL

“Good behavior towards people is equivalent to wisdom, to request politely is half

of knowledge, and to ascribe to sound policies is half of ones livelihood.”

Hazrat Umar R.A.

A splendid feature of Sliding Mode Control (SMC) is the existence of sliding

modes , established after the reaching phase has been accomplished. The sliding

modes are invariant with respect to uncertainties/disturbances and offer param-

eter invariance due to order reduction of the dynamics. On the other hand, in

reaching phase the system dynamics are sensitive to disturbances/uncertainties.

In [8, 68, 49] an SMC algorithm, known as the Integral Sliding Mode Control

(ISMC), was proposed with the fascination of reaching phase elimination.

In ISMC the existence of sliding modes from the very beginning was established in

an extended state space using an integral manifold as a surface. The extended state

space eliminated the reaching phase to enhance robustness but also eradicated the

order reduction property and hence any varying parameters in the nominal system1

(see Chapter 3 for details) may seriously degrade the closed loop performance

[50, 51]. In addition, the chattering phenomenon, though reduced to some extent,

is still evident.

1The system can be treated as a nominal one because the uncertainties and disturbances has
been abolished from the initial time instant.
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The ISMC operates under the action of a control input, which is an algebraic sum

of a continuous and a discontinuous component. In this chapter, a smooth discon-

tinuous control component is presented, in order to generate a continuous control

signal. This enabled the algorithm to be used for practical purposes, especially in

a multi loop scheme in which an inner loop equipped with a PID controller takes

command from an ISMC controller in the outer loop. The discontinuous compo-

nent of the controller provides robustness against uncertainties and disturbances

which enters the system through input channel, known as matched. To deal with

the possible performance degradation due to parametric variations, a Linear Pa-

rameter Varying (LPV) based gain scheduling controller [69, 45, 46, 70, 71, 72]

is used as the continuous part of the ISMC algorithm. In addition to providing

parameter invariance, the LPV based gain scheduling controllers, by the virtue

of LPV form2, facilitated the construction of global linear controllers directly for

nonlinear systems [73, 74].

The rest of this chapter is organized as follow. Section 5.1 gives a brief intro-

duction to the problem statement. Also how this problem is handled for a SISO

nonlinear/linear system, is given in this section. Section 5.2 explores the math-

ematical setup for the stability analysis and design of Smooth ISMC (SISMC).

The design of a novel parameter dependent integral manifold is given in this sec-

tion. In addition, the controller design framework, with a smooth discontinuous

control component to provide robustness against uncertainties and disturbances of

matched nature and an LPV based gain scheduling controller as continuous part

for retaining parameter invariance, is carried out in this section. The section is

concluded by rigorously stating the propositions in the form of a theorem and its

proof. In Section 5.3 the proposed hybrid (LPV + Smooth ISMC) technique is

2In LPV form the system is not linearized about any operating point (equilibrium) rather it
appears to be linear in the state variables and the coefficients vary with a signal known as the
scheduling signal. The difference with time varying linear systems is that the scheduling signal
can be measured and/or estimated.
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applied to a laboratory test bench Ball on a Beam Balancer (BBB). The exper-

imental results provided in this section validate the proposed algorithm in terms

of robustness and performance.

5.1 Problem Formulation

Consider a SISO dynamical system, in the state space form.

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

.

.

.

ẋn = f(t, x) + bg(t, x) + bu(t, x), (5.1 )

Where x ∈ ℜn is the state vector, g(t, x) : ℜ×ℜn → ℜ is the matched disturbance

bounded by the non-negative constant η i.e., |g(t, x)| < η, u(t, x) : ℜ × ℜn → ℜ

is the control input and b ∈ ℜ is the constant input channel. The term f(t, x) :

ℜ × ℜn → ℜ is a linear or nonlinear function of states, which may have time or

state dependent parameter/s.

The following assumptions are vital in formulation and development of the algo-

rithm.

Assumption 4. The disturbance g(.) is norm bounded i.e.,

g(t, x) ≤ η, ∀x and t (5.2 )

Assumption 5. The possible nonlinearity and/or parametric variations in the

function f(t, x) can be formulated as an LPV problem to get f(t, ρ, x) in such

a way that f(t, ρ, x) is linear in states (x) and depends affinely on scheduling

parameter ρ [75, 76].
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As mentioned earlier the ISMC being famous for reaching phase elimination, gener-

ates a control input u(t, x) which is the algebraic sum of a continuous part u0(t, x)

and a discontinuous part u1(t, x) i.e., u(t, x) = u0(t, x) + u1(t, x). Then based on

assumption 1 and the fact that u1(t, x) = 0 on the surface (as we will see later),

the dynamics during sliding can be represented as given in Eq. 5.3.

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

.

.

.

ẋn = f(t, ρ, x) + bu0(t, x). (5.3 )

The function f(t, ρ, x) is now linear in state variables (x1(t), x2(t), x3(t)......xn(t))

and depends affinely on the parameter ρ. Moreover ρ is upper bounded by ρ and

lower bounded by ρ i.e., ρ ≤ ρ ≤ ρ.

The clear dependence of the dynamics in Eq. 5.3 on the parameter ρ reveals the

fact that a simple state feedback linear controller or a robust H∞ with the pre-

defined gains/weights, for steering these sliding mode dynamics to an equilibrium,

will not be able to perform well for all the values of ρ [71].

5.2 LPV Based Integral Sliding Mode Control

Algorithm

The hybrid algorithm, carrying the parameter invariance property of LPV based

gain scheduling controller and the robustness properties of ISMC, is developed as

follows.
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5.2.1 Design of Integral Manifold

The integral manifold S, for the ISMC given in [50], is of the form

S = S0 + Z, (5.4 )

where S0 =
n∑

i=1

cixi with cn = 1, is the linear combination of states and appears

as a Hurwitz and monic polynomial while Z is the integral part of the manifold

which will be defined in the subsequent paragraphs.

Taking the total time derivative of Eq. 5.4 along the trajectories of Eq. 5.1 with

f(t, x) formulated as f(t, ρ, x)3.

Ṡ =
n−1∑

i=1

cixi+1 + ẋn + Ż. (5.5 )

Equating Eq. 5.5 for Ż (in steady state i.e., Ṡ = 0), gives the following expression

for Ż,

Ż = −
n−1∑

i=1

cixi+1 − f(t, ρ, x)− bu0(t, ρ, x). (5.6 )

The expression for Ż makes the integral manifold (Eq. 5.4) dependent upon the

parameter ρ and hence a gain scheduling controller is an obvious choice to be used

as the continuous part of the controller i.e., u0(.) is required to be a function of ρ

e.g., u0(t, ρ, x).

5.2.2 Design of Discontinuous part

The discontinuous part of the controller may be a first order or a second order

SMC [68]. Loading Eq. 5.5 with Ż given in Eq. 5.6,

Ṡ = b(g(t, x) + u1(t, x)). (5.7 )

Taking a smooth first order SMC as the discontinuous term:

u1(t, x) = −K|S|κsign(b)sign(S), (5.8 )

3f(t, ρ, x) is linear in state variables x and affinely depend upon the scheduling parameter ρ.
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where |S|κ is the smoothening term and the constant κ is defined as:

κ =







−1/2, if 0 < S < 1

0, if S = 0

1/2, if S < 0 or S ≥ 1.

(5.9 )

The existence of sliding modes in the integral manifold can usually be computed

using a Lyapunov function candidate,

V (t, x) =
1

2
S2.

Taking the total time derivative of V (t, x), with u1(t, x) given in Eq. 5.8, we have:

V̇ (t, x) = Sb(g(t, x)−K|S|κsign(b)sign(S)),

≤ Sb(η −K|S|κsign(b)sign(S)),

≤ Sbη −K |S|κ+1 |b| .

So if the positive non-zero constant K is chosen such that K > η then the fact

that |S|κ+1 ≥ S and |b| ≥ b, reveals that V̇ (t, x) ≤ 0 (semi-negative definite). This

ensures the existence of sliding modes in the integral manifold.

5.2.3 Design of Continuous Part

The ISMC begins with the already established sliding modes and the dynamics

during sliding represented by Eq. 5.3 while the discontinuous part u1(t, x) (see

Eq. 5.8) keeps the dynamics thereafter. However, it is still needed to find an

appropriate continuous part u0(t, ρ, x) to steer the dynamics (Eq. 5.3) to an equi-

librium. In this regard, representing Eq. 5.3 in the following the standard state

space form.

ẋ(t) = A(ρ)x(t) + Bu0(t, ρ, x), (5.10 )

where A(ρ) ∈ ℜn×n is a parameter dependent system matrix, x(t) ∈ ℜn is the

state vector and B ∈ ℜn is the input matrix.
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Remark 5.1. The continuous part (u0(t, ρ, x)) of the Smooth ISMC (SISMC) is to

be designed as a gain scheduling controller in order to stabilize the dynamics in

Eq. 5.10 for any value of parameter (ρ ≤ ρ ≤ ρ).

Assumption 6. The current value of the parameter ρ is available/measurable/ob-

servable.

The introduction of gain scheduling state feedback controller u0(t, ρ, x) =M(ρ)x(t),

where M(ρ) ∈ ℜn is the parameter dependent gain matrix, gives the following

closed loop dynamics.

ẋ(t) = (A(ρ) + BM(ρ))x(t),

= Acl(ρ)x(t). (5.11 )

Where Acl(ρ) is the closed loop parameter dependent system matrix. The closed

loop dynamics in Eq. 5.11 will be stable if there exists a common, symmetric and

positive definite matrix P such that the following inequality is satisfied for all the

values of the parameter ρ [77, 78].

PAT
cl(ρ) + Acl(ρ)P < 0,

PAT (ρ) + A(ρ)P + PMT (ρ)BT + BM(ρ)P < 0. (5.12 )

Note that ρ ∈ co(ρ, ρ) which mean that Eq. 5.11 represent a polytopic system and

Eq. 5.12 represent the infinite number of LMIs [79]. So, despite solving the infinite

LMIs for a common P , it is worthy to solve them only at the vertices of the convex

hull.

Theorem 5.2. With u1(t, x) given in Eq. 5.8, if the inequality in Eq. 5.12 is

satisfied with a common symmetric and positive definite matrix P at the vertices

of the convex hull co(ρ, ρ) then the dynamics in Eq. 5.1 will exhibit convergent

sliding modes. Moreover, if the following LMI,

L⊗ P +N ⊗ Acl(ρ)P +NT ⊗ (Acl(ρ)P )
T < 0, (5.13 )
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is satisfied for a symmetric and positive definite matrix P then Eq. 5.3 will be

D-stable and will have poles in the D-region defined by the matrices L and N .

Proof. The first part of the theorem has already been proved but is mentioned here

for the sake of completeness. Taking a positive definite and radially unbounded

Lyapunov function candidate,

V (t, x) =
1

2
S2.

The total time derivative of V (.) along the trajectories of Eq. 5.1 and using equa-

tions 5.4, 5.6, 5.7 and 5.8, we have,

V̇ (t, x) = Sb (g(t) + u1(t)) ,

≤ Sb (η + u1(t)) ,

≤ Sb (η −K|S|κsign(b)sign(S)) ,

≤ Sbη −K|S|κ+1 |b| .

As S ≤ |S|κ+1, b ≤ |b| and η < K, so

V̇ (t, x) ≤ −
∣
∣Sbη − k|S|κ+1 |b|

∣
∣ ≤ 0, (5.14 )

which confirms the existence of sliding modes.

For the proof of second part, solving the LMI in Eq. 5.13, at the vertices of the

convex hull, for a common symmetric and positive definite matrix P . In addition,

let v be the left eigenvector of Acl(ρ) corresponding to eigen value λ, then:

vHAcl(ρ) = λvH ,

and by congruence transformation the inequality (Eq. 5.13) is presented as:

(I ⊗ vH)[L⊗ P +N ⊗ Acl(ρ)P...

+NT ⊗ (Acl(ρ)P )
T ](I ⊗ v) < 0,

L⊗ vHPv +N ⊗ vHAcl(ρ)Pv...

+NT ⊗ vHPAT
cl(ρ)v < 0,

L+ λN + λ∗NT < 0, (5.15 )
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where λ∗ represent the complex conjugate of eigen value λ. The inequality in

Eq. 5.15, defines the sufficient condition for the eigen values of Acl(ρ) to be in the

LMI region characterized by L and N [79].

The algebraic expression for the scheduled gain M(ρ) can be found directly by

evaluating Eq. 5.13 at the vertices.

L⊗ P +N ⊗ (A(ρ) + BM(ρ))P...

+NT ⊗ ((A(ρ) + BM(ρ))P )T < 0, (5.16 )

whereM(ρ) is the scheduled controller gain for the system characterized by vertex

ρ. The inequality in Eq. 5.16 is nonlinear in the variables M(ρ) and P . In order

to make it linear a new variable ψ(ρ) =M(ρ)P is introduced.

L⊗ P +N ⊗ (A(ρ)P +Bψ(ρ))...

+NT ⊗ ((A(ρ)P + Bψ(ρ))T < 0. (5.17 )

Solution of Eq. 5.17 for P and ψ(ρ) gives M(ρ) = ψ(ρ)P−1. Similarly the gain

M(ρ) can be found from Eq. 5.17 using the same P .

The final scheduled controller gain M(ρ) can be obtained from the algebraically

weighted convex combination of M(ρ) and M(ρ).

M(ρ) = r1M(ρ) + r2M(ρ),

where r1 and r2 are constants weighting functions such that they ensure the convex

combination of M(ρ) and M(ρ) i.e.,

r1 + r2 = 1.

These constants has the following mathematical representations.

r1 =
ρ− ρ

ρ− ρ
,

r2 =
ρ− ρ

ρ− ρ
.

In the next section the proposed algorithm is applied to the laboratory test bench,

Ball on a Beam Balancer (BBB). BBB system has inherent nonlinearity in control
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input. The conventional linear approximations of this system fails due to prac-

tically invalid assumption of input being small enough. The proposed algorithm

does not actually linearize the system during sliding rather, by the virtue of LPV

form, makes it look linear, in state variables, for controller design purposes.

5.3 Ball On A Beam Balancer

Figure 5.1: Experimental Test Bench

The Ball on a Beam balancer is considered as an important test bench in the field

of control engineering because of the wider spectrum in the form of nonlinearity

and inherent open loop instability. The major task of this test bench is to control

the position of a stainless steel ball on a metallic beam.

5.3.1 Physical Description

The Ball on a Beam Balancer is comprised of a metallic beam, a gear assembly

and a DC servo motor. The left most end of the metallic beam is fixed while

the right most end can be stimulated for up and down motion by means of the

DC servo motor and the gear assembly. The position of the ball on the metallic

beam is measured through voltage variations, created by the ball movement, across

the metallic beam. The angular position of the spindle of the DC servo motor

is measured by an absolute potentiometer. The control signal generated by an

interfaced computer is given to DC servo motor via a power amplifier.
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5.3.2 Mathematical Description

The simplified mathematical model of the Ball on a Beam Balancer is reported as

two coupled systems (see for details [80] and www.quanser.com) i.e., the dynamics

of a DC servo motor,

θ̈l(t) = −
Beq

Jeq
θ̇l(t) +

γ

Jeq
V (t), (5.18 )

and the dynamics of ball moving over the beam.

ẍ(t) =
5rg

7L
sin(θl). (5.19 )

It may be observed that the controller has to put effects on the DC servo motor in

order to control the ball position (see only θl appearing in Eq. 5.19). The variables

and parameters in Eq. 5.19 and Eq. 5.18 are listed in Table 5.1.

5.3.3 Problem Description

The control objective is to operate the DC Servo motor in such a way that the

ball is robustly kept at the beam center. This is accomplished by two feedback

loops and hence two different controllers as shown in Figure 5.2.

The outer loop, which serves as a guide for the inner loop, is equipped with the

proposed hybrid Smooth Integral Sliding Mode Control (SISMC) algorithm, which

Entity Notation Value Unit
Beam Length L 41 cm
Lever Arm Offset r 2.5 cm
Servo Gear Angle θl ±60 deg
Moment of Inertia Jeq 2.084× 10−3 kg.m2

Back EMF Constant C1 7.68× 10−3 V.Sec/rad
Damping co-efficient Beq 8.40× 10−2 -
Torque per unit voltage γ 0.1285 N.m/volt
Control Voltage V - V olts
Gravitation Constant g 9.81 m/sec2

Ball Position x −0.2 to 0.2 m

Table 5.1: Physical Specifications
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SISMC PID Motor a sin(θl)
xd Ex θd Eθ V θl

Potentiometer
−

x

Position Sensor

−

Figure 5.2: Control Configuration for Ball on a Beam Balancer

takes into account the error/difference between the desired and current position of

the ball on the metallic beam and generates an output which actually becomes a

desired angle/reference for the inner loop (DC servo motor). A PID controller in

the inner loop takes this reference angle from the SISMC and provides a controlled

voltage to the DC servo motor such that θl = θd which implies x = xd.

Remark 5.3. The smoothness of SISMC implies that the continuous PID will not be

destabilized/detracted due to any discontinuity/chattering in the reference angle,

which would be the case if the ISMC was not smooth.

The main problem in designing a linear controller for the system in Eq. 5.19 is

that sin(θl) cannot be approximated equivalent to θl because the variations in θl

are not small (see Table 5.1)4.

In this work the nonlinearity in control input is handled such that the system

appears linear in state variables and control input. Let us define a scheduling

parameter ρ = sin(θl)/(θl+ ǫ), where ǫ→ 0. Figure 5.3 shows a plot of ρ for range

of θl given in Table 5.1.

With the above description of ρ and for a constant a = 5rg/7L, the dynamics of

the ball (see Eq. 5.19) can be represented as:

ẍ(t) = aρθl,

4Linear approximation failed due to certain physical characteristics.
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with the corresponding state space,

ẋ1 = x2,

ẋ2 = aρθl.

Figure 5.3: Scheduling Parameter

5.3.4 Experimental Results

The experimental results are presented with the formulas, values and softwares

given in Table 5.2.

The ball position being controlled by the SISMC is shown in Figure 5.4. It may

be observed that the ball position is maintained at the center of the metallic

beam by the combination of SISMC and PID, in less than 10 seconds. The

robustness of the SISMC may also be observed from this figure. The ball has been

disturbed (perturbed from the center) at around 11th second and 30th second of

the experiment. In both the cases the ball effectively comes back to the center

of the beam. The zoomed view in this figure (Figure 5.4) shows the accuracy of

the SISMC algorithm. It may also be noticed that the negative values on position

axis are just for differentiating the left and right side of the metallic beam with

respect to its center.
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Notation Value/Range
S S0 + Z
S0 ė+ Ce
Z −

∫
(aρu0 + Cė)dt

e xd − x
ρ 1
ρ 0.78

M(ρ)
[
20 10

]

M(ρ)
[
−20 −10

]

u0 M(ρ)
[
e ė

]T

u1 −K |S|κ Sign(S)Sign(ρ)
θd u0 + u1
K 0.4
C 0.5

MATLAB/Simulink 7.10
Visual Studio 2008

Quanser Real Time Control QuaRC
Mathematica 10
Step Time 0.001 Sec

Table 5.2: Controller Parameters and Software Specifications

In Figure 5.5 the control effort (θd) (which is reference for the inner loop i.e.,

DC servo motor) produced by the SISMC and the corresponding motor angle

(θl) (angular position of the spindle), are shown. The controller is effectively

responding to any change in ball position, keeping the ball at the beam center

and importantly without causing any saturation to the DC motor. In Figure 5.6

the controlled voltage (V (t)) produced by the PID controller, such that θl tracks

θd, is shown. It may be observed that the smoothness of the SISMC leaves the

performance of the PID un-affected5.

5A discontinuity in the sliding mode controller will cause chattering in θd. Due to this
discontinuity the performance of the continuous PID controller may degrade to a huge extent.
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Figure 5.7 shows the integral manifold (S) achieved by the SISMC. The initial short

reaching phase is solely due to the hardware calibration and achieving pin point

accurate initial condition for the integral term. However, the proposed SISMC is

effective enough to compensate this short reaching phase. The zoomed portion in

this figure show that the algorithm’s sliding accuracy is almost 10−4, which is very

near to an ideal sliding definition.
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Figure 5.7: Sliding Surface

5.4 Summary

The reaching phase elimination property of the ISMC, good for robustness and

performance, subtracts a useful advantage of order reduction from this algorithm.

As a result the performance of the sliding mode dynamics may be sensitive to

parametric variations. This problem is addressed via modification to the integral

manifold and using an LPV based gain scheduling controller as the continuous

part of the controller. The continuous controller, addresses the problem of perfor-

mance degradation due to parametric variations, operates in combination with a

discontinuous controller. The discontinuous part of the controller, will provide ro-

bustness against bounded matched disturbances and uncertainties, and will keep
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the dynamics on the integral manifold. In addition, the discontinuous part of

the proposed ISMC algorithm is made smooth in order to produce a chattering

free controller action. The experimental results obtained from the laboratory test

bench, ball on a beam balancer, show the effectiveness of the proposed strategy.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

“Twenty years from now you will be more disappointed by the things that you

didn’t do than by the ones you did do. So throw off the bowlines. Sail away from

the safe harbor. Catch the trade winds in your sails. Explore. Dream. Discover.”

H. Jackson Browne.

This chapter summarizes the idea contained in the thesis. A discussion on possible

future research directions is also initiated for the community working on sliding

mode control theory and applications.

6.1 Featured Highlights

Sliding Mode Control (SMC), powered by the application of a discontinuous con-

troller and the existence of sliding motion, is composed of two phases, reaching

phase and sliding phase. The SMC provided guaranteed robustness, against un-

certainties and disturbances, for a huge variety of control problems. In addition, it

offers order reduction and hence parameter invariance, in the reaching phase. How-

ever, the SMC do possess some inherent limitations. The most pronounced one is

the existence of very high frequency oscillations, during sliding phase, termed as

chattering. The other problems include the sensitivity to the uncertainties and

disturbances in the reaching phase and the relative degree requirement.

The problem of chattering is well addressed by the use of Higher Order Sliding

Mode (HOSM) control such as Super Twisting Algorithm (STA) and Real Twisting

Algorithm (RTA). The STA and RTA are reported very sensitive to the un-modeled

fast dynamics of the underlying system due to which chattering may appear sooner

102



or later in the closed loop. The introduction of Smooth Sliding Mode (SSM)

control, such as Smooth STA (SSTA) and Smooth RTA (SRTA), coped with this

problem at the cost of robustness. The SSTA however, is robustified with the

use of a second order sliding modes based disturbance observer. In addition, the

performance of the algorithm is not parameterized in terms of its parameters.

The sensitivity to disturbances in the reaching phase is effectively coped with

using the Integral Sliding Mode (ISM) control. The ISM control, by the virtue

of a new type of sliding manifold known as the integral manifold, eliminated the

reaching phase out of the SMC at the cost of no order reduction in the sliding

phase. The fact of no order reduction, in general, eliminated the property of

parameter invariance. This may cause performance degradation in the closed loop.

In addition, the control input of ISM control algorithm is an algebraic sum of a

discontinuous and a continuous controller. The discontinuous term in usually the

conventional sliding mode controller which will cause chattering effects, though

reduced, but still limit its use in sensitive applications.

The performance based analysis and design of the Smooth Sliding Mode Control

(SSMC) algorithms has been presented in this thesis. The continuous nature of the

SSMC algorithms, make them a safe controller design paradigm, especially when

the system to be controlled is very sensitive and the performance and robustness

is under critical consideration.

The smooth (continuous) Higher Order Sliding Modes (HOSM) based on Super

Twisting Algorithm (STA), is parameterized, in terms of performance and robust-

ness. The parametrization of the algorithm carries with itself various advantages

such as: Structural improvements can be made, performance can be set in terms

of controller parameters and also explores the effects of different controller param-

eters on the robustness and performance of the closed loop system. In addition,

the analytical expressions for the gains of SSTA gives a best starting point for
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further design iterations. The proposed analytical expressions for the controller

gains, guarantee robustness without employing a disturbance observer.

The proposed design of the SSTA is tested against the process control of the Un-

derground Coal Gasification (UCG) process, which is a highly complex nonlinear

system.

The thesis also contains a modified Integral Sliding Mode Control (ISMC), equipped

with a Linear Parameter Varying (LPV) based gain scheduling controller as its

continuous part. The proposed ISMC, by the virtue of continuous gain schedul-

ing controller cope with any possible performance degradation in the presence of

parametric variations. In addition, the smoothening effects are incorporated in the

design of the discontinuous part, that is why we call it Smooth ISMC (SISMC).

The incorporated smoothening effect in the overall algorithm allow using it in any

sensitive application because of the continuous controller action (no chattering).

One such situation is a multi loop scheme, especially when a continuous inner loop

controller gets signal from an outer loop controller. In contrast, the incorporated

LPV form give liberty of designing global linear controllers for the the systems

which may not be possible to be linearized by conventional means.

The proposed SISMC is experimentally tested on a bench Ball on a Beam Balancer

(BBB). The BBB is composed of two coupled nonlinear systems, such as the ball

rolling over a metallic beam and a servo DC motor which gyrates the metallic

beam. The input from the DC servo motor appears nonlinear to the beam. More

importantly this input can not be linearized by the conventional means. The

proposed SISMC not only cope with the problem of linearization but also produces

a response in stabilizing the ball over the beam.

104



6.2 Future Research Directions

The research work in this thesis focuses on the “Smoothness” of Sliding Mode

Controllers and their “Performance” in closed loop. However, the proposed

work can be extended from theoretical as well as from application perspectives.

In theoretical point of view the possible extension are listed below.

• Structural improvements can be made to the existing Smooth Sliding Mode

Control Algorithms.

• The analysis can be extended to the theory to Multi-Input-Multi-Output

(MIMO) sliding modes.

• MIMO integral sliding modes with more than one parameters may be devel-

oped.

• The SISMC algorithm may be researched for the case when the varying

parameters are not available/measurable e.g., incorporating an LPV observer

in the control loop.

• A general theory of rubustified LPV compensation may be developed based

on integral sliding mode control.

• Modifications can be proposed in these algorithms for a variety of system

classes such as under actuated system and non-holonomic systems.

• The Smooth Super Twisting Algorithm (SSTA) with the proposed parametriza-

tion can be subjected to some optimization routine for performance improve-

ment and optimality.

Some possible application perspectives may be as follows:
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• Robust LPV estimation of thermally de-rated torque of a Hybrid Electric

Vehicle (HEV) drive may be carried out with the hybrid SISMC.

• Control of a two wheeled robot, which offers the type of motion similar to the

ball on a beam balancer presented in this thesis, may be another engineering

test bench.

• The take-off and landing control problem of Unmanned Ariel Vehicle (UAV),

with inherent parametric variations, can be an obvious and challenging

benchmark for the proposed SISMC.
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