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Abstract

In this dissertation, the orthogonal and non orthogonal stagnation point flows for

different types of fluids have been investigated. We analyze the heat and mass

transfer effects on magnetohydrodynamics (MHD) orthogonal stagnation point

flow in viscoelastic fluid with Cattaneo-Christov heat flux model. Furthermore

MHD orthogonal stagnation point flow of Williamson fluid over a stretching cylin-

der with variable thermal conductivity and homogeneous/heterogeneous reaction

is studied. The MHD oblique stagnation point flow of nanofluid over a convective

stretching surface has also been presented. To model the system of partial differen-

tial equations, different emerging laws of Physics are used. To convert the system

of partial differential equations into the ordinary differential equations, some suit-

able transformations named as the similarity transformations are utilized. Further,

the system of ordinary differential equations is tackled by the classical shooting

method to obtain the numerical solution of the proposed problems. Tables are

constructed and graphs are plotted to observe the trend of those parameters for

which the significant effects are observed. To validate the numerical solution, the

MATLAB built-in function bvp4c is also implemented. An excellent agreement is

observed in the results obtained by two different ways i. e. shooting method and

built-in function bvp4c. A comparison with the previously available literature in

limiting cases is also performed to strengthen the reliability of the code. It is ana-

lyzed that in case of the non orthogonal stagnation point flows for the Newtonian

fluid, the point of zero skin friction along the wall undergoes a shift in the position

with the variations in the magnetic parameter, angle of incidence and sretching

ratio parameter.
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Chapter 1

Introduction

1.1 Introduction

This Chapter contains some basic study related to the non-Newtonian and New-

tonian fluids over different type of geometries. A discussion related to the heat

transfer mechanism is made in accordance with the Fourier’s and non-Fourier’s law

over cylinder and stretching sheet. A brief history and importance of boundary

layer rheology for an upper-convected Maxwell fluid, nanofluid, stagnation point

and magnetohydrodynamic flow is presented.

1.2 History

In nature, heat transfer in a fluid has a significant effect which happens due to

difference in temperature within body or between two bodies. Many researchers

have worth seeing contributions in this regard like [1–8]. In various practical situa-

tions, Fourier’s model provides the basis to analyze the heat transfer phenomenon.

But its major drawback is that energy equation in its parabolic form which pro-

duces an initial disturbance that can alter the whole system. To counter this

shortcoming, Cattaneo [9] amalgamated the thermal relaxation time within the

classical Fourier’s law in order to get the hyperbolic energy equation. By intro-

ducing thermal relaxation time rather than diffusion in Fourier’s law, heat transfer

in the pattern of waves with limited speed is observed. In order to obtain invari-

ant formulation of the material, Christov [10] modified the Cattaneo law with

1



2

the amalgamation of thermal relaxation time for the Oldroyd’s upper-convected

derivatives. The study of thermal convection in the Cattaneo-Christov model was

carried by Straughan [11]. For the incompressible fluid, Tibullo and Zampoli [12]

explained the uniqueness of Cattaneo-Christov heat flux model. Han et al. [13]

inspected the coupled flow and heat transfer phenomenon in an upper-convected

Maxwell (UCM) fluid over a stretching sheet by employing Cattaneo-Christov

heat flux model. Khan et al. [14] analyzed the UCM fluid combined with heat

transfer effects over an exponentially stretching surface by taking into account the

Cattaneo-Christov heat flux model.

The Maxwell fluid has received a prominent consideration of researchers in the

recent era. The main advantage of Maxwell fluid is that it incorporates the relax-

ation time for the viscoelastic fluid in the boundary layer flow. Choi et al. [15]

explored the flow of Maxwell fluid in a channel, in which, by increasing the Debo-

rah number, the viscoelasticity influenced the velocity profile in the same pattern

as that of inertia in a Newtonian fluid with a constant Reynolds number. The

MHD UCM fluid in relevance with the boundary-layer flow over a porous channel

was studied by Abbas et al. [16], in which they considered the mutual effects of

viscoelasticity, inertia and applied magnetic field to yield an analytical solution.

The impact of MHD and thermal radiation on the Maxwell fluid over a stretching

sheet was analyzed by Aliakbar et al. [17]. According to their observation, a boost

in the magnetic parameter and elasticity number caused an enhancement in the

heat transfer rate from the stretching sheet to the fluid. Mustafa [18] considered

an UCM fluid for rotational type of flow and analysis of transfer of heat by em-

ploying the Cattaneo-Christov heat flux model. Kumaria and Nath [19] examined

the MHD stagnation-point mixed convection flow of an UCM fluid. Kumaria and

Nath [19] concluded that with an increment in the elasticity number, reduction

in the surface heat transfer, surface velocity gradient and displacement thickness

was experienced. Sadeghy et al. [20] explored the stagnation point flow of an

UCM fluid wherein they negate the previously well-established prediction about

the stagnation point flow of viscoelastic fluids, which stated that the velocity

within the boundary layer may outrun from the layer that exists outside. Hayat

et al. [21] explored the stagnation point flow of an UCM fluid for the process of

mass transfer. The effect on the stagnation point flow of an UCM fluid for heat

transfer on a stretching sheet was scrutinized by Hayat et al. [22]. Hayat et al.

[23] discussed the stagnation point flow and heat flux in the Cattaneo-Christov
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model over a nonlinear stretching surface of the variable thickness along with the

homogeneous -heterogeneous reactions in Maxwell fluid having variable thermal

conductivity.

Mass transfer phenomenon is the mechanism of mass transition from one domain

to another. Many scientific mechanisms and disciplines containing atoms and

molecule-transportation are based on this phenomenon. The water vaporization,

separation of chemicals during distillation procedure and by using natural or ar-

tificial sources, diffusion of industrial pollution in rivers and oceans are examples

of the process of mass transfer. Kendoush [24] investigated the effects of mass

and heat transfer over solid surfaces near the stagnation region. Mass and heat

transfer impacts on the magnetic flow for a linear stretching sheet was investi-

gated by Liu [25]. Cortell [26] studied different phenomenon of chemical reaction

over mass transfer of two categories of viscoelastic fluids over a porous stretching

sheet. Sui et al. [27] recently investigated the upper-convected Maxwell nanofluid

in accordance with the boundary layer flow of mass and heat transfer by using

the double-diffusion Cattaneoe-Christov model with boundary slip condition for

linear stretching sheet.

Heat transfer analysis over a stretching cylinder is one of the current research top-

ics among researchers by virtue of its extensive applications in many engineering

processes. Usually, the thermal conductivity is taken as constant. Heat is trans-

ferred due to difference in temperature. If there is a large temperature difference,

then assumption of constant thermal conductivity will lead to a noticeable error.

Thus, to minimize this type of error, it is necessary to deal with a temperature

dependent variable thermal conductivity within the energy boundary layer region.

Hussain et al. [28] inspected the effect of hydromagnetodynamics Jeffrey fluid

flow on heat transfer along with the variable thermal conductivity. They used the

inclined magnetic field on peristaltic flow and obtained the solution analytically

using the perturbation method. Lin et al. [29] presented the numerical solution of

unsteady pseudo-plastic nanoliquid within a thin film flow over a linearly stretch-

ing surface. They inspected the repercussion of viscous dissipation and variable

thermal conductivity along with four different types of nanoparticles. The influ-

ence of variable thermal condutivity on an exponentially stretching sheet for a

third grade fluid using the inclined magnetic field was explored by Hayat et al.
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[30]. In another research article, Hayat et al. [31] documented the significance

of variable thermal conductivity and mixed convection with heat source and sink

on the viscoelastic nanofluid over a stretching cylinder. Si et al. [32] explored

numerically the laminar film condensation of non-Newtonian pseudo-plastic fluid

on an isothermal vertical plate with a variable thermal conductivity. Malik et

al. [33] inspected the heat transfer phenomenon of Williamson fluid with heat

generation/absorption and variable thermal conductivity passing over a stretching

cylinder. They examined that an enlargement in the parameter of thermal con-

ductivity intensifies the temperature. The references [34–37] include some recent

work relevent to the variable thermal conductivity.

An extensive literature can be found regarding the non-Newtonian fluid flow over

a stretching cylinder by virtue of its engineering and industrial applications such

as metallurgical processes, extraction of petroleum, pipe industry and many oth-

ers. Numerous models have been proposed to analyze the pseudo-plastic fluids e.g.

Carreaus model, Power law model, Ellis model, Cross model and Williamson fluid

model. A variable viscosity of larger range is considered in the Williamson fluid

model. Williamson [38] introduced a model that describes the pseudo-plastic mate-

rials and fluid flow experimentally. Malik and Salahuddin [39] used the Williamson

fluid model along with the effect of magnetohydrodynamics over a stretching cylin-

der. Solutions are achieved by the shooting method for the fluid flow. Malik et al.

[40] addressed the heat transfer analysis of Williamson fluid past a stretching cylin-

der with homogeneous/heterogeneous reaction by using the Keller box method. In

another article, Salahuddin et al. [41] numerically investigated the hydromagneto-

dynamics flow for Williamson fluid with Cattaneo-Christov heat flux model over a

non-linear stretching surface. Explicit finite difference method is employed for the

numerical solutions. Hayat et al. [42] offered an overview of the literature about

the MHD boundary layer flow of Williamson fluid with Ohmic dissipation and

thermal radiation. They noticed the decreasing pattern of Weissenberg number

on velocity profile. A list of references concerning Williamson fluid can be found

in [43–45].

A phase is claimed to be a uniform state of a system which has no observable

boundary. In chemical reactions, the homogeneous reactions are categorized as

a single phase reactions whereas the heterogeneous reactions are categorized as
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multiphase reactions. Chemical reaction rate is enhanced by adding suitable cat-

alyst in the reactant having lesser activation energy. Recently, a very hot area of

research among the scientists in chemical reactions is the amalgamation of hetero-

geneous and homogeneous reactions and their complicated interactions. Hayat et

al. [46] examined the Jeffrey fluid flow along with the homogeneous-heterogeneous

reaction by adopting the Cattaneo-Christov heat flux model. They concluded that

the concentration of molecules upturns with a raise in the Schmidt number. In an-

other article, Hayat et al. [47] scrutinized a solution of Oldroyd-B fluid with MHD

and homogeneous/heterogenenous reaction using the Cattaneo-Christov heat flux

model. Reddy et al. [48] analyzed the effect of homogeneous/heterogenenous re-

action on MHD and non-linear thermal radiation between rotating plates. They

employed the shooting technique for solving the problem. Homogeneous/hetero-

genenous reaction in magneto-nanofluid in a permeable shrinking surface was in-

spected by Mansur et al. [49]. During the equivalent process of the diffusion

coefficients and auto catalyst of the reactants, homogeneous-heterogenenous re-

action in a viscous nanofluid flow past over a stretching sheet was analyzed by

Kameswaran et al. [50]. Solutions for flow and heat transfer are computed nu-

merically by the shooting method [51–55] integrated with Runge-Kutta method of

order four.

The flow surrounded by a stagnation point has attained a considerable atten-

tion among considerable researchers in the course of the previous few decades by

virtue of its extensive usage at industrial level, e.g. heat ex-changers situated in an

unelevated-velocity profile, nuclear reactors cooling all along emergency restrain,

electronic devices cooling by fans, solar central receivers unprotected to wind cur-

rents and several hydrodynamic processes. Initially Hiemenz [56] proposed the

concept of the stagnation point flow. According to his theory, the stagnation

point flow describes the motion of fluid particles which are adjacent to the stag-

nation region of a solid surface for both fixed and moving bodies. Idea of Hiemenz

was further extended by Homann [57] by considering stagnation point flow for the

three dimensional case. The two dimensional stagnation point flow striking on an

immovable plane with an arbitrary angle of incidence was investigated by several

authors [58–60]. An exact similarity solution of the Navier Stokes equations by

considering 2-dimensional stagnation point flow for a viscous fluid striking non or-

thogonally above a stretching sheet was given by Lok et al. [61]. The idea of Lok

was further extended by Singh et al. [62] for the porous media. Recently, Dash
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et al. [63] provided the numerical solution of the stagnation-point boundary layer

flow over a stretching/shrinking sheet. Mabood et al. [64] proposed the heat and

mass transfer analysis for the stagnation point magnetic flow of nanofluid combined

with viscous dissipation, radiation and chemically reactive properties for porous

medium. Stagnation point flow with heterogeneous and homogeneous reactions for

Cattaneo-Christov heat flux model was investigated by Hayat et al. [65], in which

they detected that the bigger values of the thermal relaxation time exhibit a decay

in the temperature distribution. M. Turkyilmazoglu [5] examined the stagnation

point flow along with the slip effects on the magnetohydrodynamics Jeffrey fluid

and heat transfer over deformable surfaces. The oblique stagnation point flow of

a viscoelastic fluid above a stretching surface was evaluated by Labropulu et al.

[66]. Mahapatra and Gupta. [67] analyzed the stagnation point flow towards a

stretching sheet with heat transfer. Recently electrically conducting and viscous

fluid with the existance of a uniform magnetic field over a stretching/shrinking

surface in the context of a non orthogonal stagnation point flow is explored by

Lok et al. [68].

Heat transfer plays a key role in processes like gas turbines, thermal energy stor-

age, nuclear plants etc. The transfer of heat in a stagnation point fluid flow over

a horizontally stretching sheet having a linear velocity was studied by Chiam [69].

Further Guo et al. [70] presented a detailed theory for heat transfer enhancement,

in which they established the relationship with heat sources between conduction

and convection. The heat transfer problem for a general viscous fluid in a shrink-

ing/stretching sheet along with the convective boundary condition at the wall was

explored by Yao et al. [71].

Magnetohydrodynamics is the theory of the magnetic properties of fluids which

are electrically conducting. Magnetohydrodynamics oblique stagnation point flow

was investigated by Grosan et al. [72], in which they reached the conclusion that

the magnetic parameter brings a change in the location of the point of zero skin

friction with the wall. Furthermore Singh et al. [73] extended the idea of Grosan

et al. [72] with the conclusion that the behavior of boundary layer affects the

position of the stagnation point. Nadeem et al. [74] examined the joint effects

of partial slip and hydromagnetodynamics on obliquely colliding fluid past over

a stretching surface. Oblique stagnation-point flow in addition to MHD over a

stretching/shrinking surface was figure out by Lok et al. [75].
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Fluids together with the nanoparticles are known as nanofluids. In 1995, Choi

and Eastman [76] presented the revolutionary idea that the thermal conductivity

of fluids can be amplified by saturating the fluid with the nanoparticles. This work

gave a new approach to many engineering problems like cancer therapy, coolants of

nuclear reactors, safety problems emerging in nuclear reactors and safer surgeries.

According to Wang and Mujumdar [77], the enhancement of heat transfer depends

on the quantity of nanoparticles, particle-shape and material type. Buongiorno

[78] presented a model, explaining the phenomenon of heat transfer within nanoflu-

ids. The study of nanoparticles along with the natural convection phenomenon

in a porous medium past over a vertical flat plate in addition to the Brownian

motion and thermophoresis effects was scrutinized by Nield and Kuznestov [79].

The dilemma of the boundary layer nanofluid which arises due to the stretching of

a surface was studied by Khan and Pop [80]. Thermal radiation and slip effects on

stagnation point flow of hydromagnetodynamics for a nanofluid over a stretching

sheet was studied by Haq et al. [81]. Moreover Nadeem et al. [82] examined

the oblique stagnation point flow of a Casson nanofluid model in addition to the

convective boundary conditions.

1.3 Thesis outline

The thesis is comprised of seven chapters. The basic governing laws and numerical

technique to deal with the system of differential equations are dicussed in Chap-

ter 2.

In Chapter 3, MHD stagnation point flow and heat transfer in viscoelastic fluid

with Cattaneo-Christov heat flux model is discussed. This chapter is accepted in

an international journal , “Neural Computing & Applications”

(http : //doi.org/10.1007/s00521− 017− 2902− 2) in 2017.

Chapter 4 is focused on the study of the effects of chemical reaction on stag-

nation point flow with mass and heat transfer in magneto UCM fluid employed

with Cattaneo-Christov heat flux model. This chapter is submitted for possible
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publication in “Romanian Journal of Mathematics and Computer Science”.

Chapter 5 consists of an investigation on MHD stagnation point flow of Williamson

fluid over a stretching cylinder with variable thermal conductivity and homoge-

neous/heterogeneous reaction. This chapter is published in “Communications in

Theoratical Physics”, volume 67, pages 688-696, 2017.

Chapter 6 examines the MHD oblique stagnation point flow of nanofluid over a

convective stretching surface. This chapter is published in “Journal of Computa-

tional and Theoretical Nanoscience”, volume 14, pages 1724-1734(11), 2017.

The conclusion of the thesis has been made in Chapter 7.



Chapter 2

Basic Governing Laws and

Solution Methodology

2.1 Fundamental Laws

2.1.1 Law of Conservation of Mass

The continuity equation or law of conservation of mass is written as

∂ρ

∂t
+∇ · (ρV) = 0. (2.1)

For incompressible fluids, the above equation can be expressed in the following

way

∇ ·V = 0. (2.2)

2.1.2 Law of Conservation of Momentum

The mathematical expression for the law of momentum is

ρ
DV

Dt
= ∇ · τ + ρb. (2.3)

The Cauchy stress tensor for an incompressible flow is τ = −pI + S in which D
Dt

is

the material time derivative, S the extra stress tensor, I the identity tensor and b

9
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the body force. The Cauchy stress tensor and the velocity field are

τ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.4)

and iVi = i [u(x, y, z), iv(x, y, z), iw(x, y, z)] i, (2.5)

where σxx, σyy and σzz are the i normal stresses,i τxy,i τxz, i τyx, i τyz, i τzx and i

τzy i stand for the shear stresses and the velocity components along the x,i y and

z-directions are u,i v i and wi respectively. Eq. (2.3) in the scalar form gets the

following shape

iρi

(
∂iu

∂it
+ iui

∂u

∂x
+ ivi

∂u

∂y
+ iwi

∂u

∂z

)
i = i

∂(σxx)

∂x
+i
∂(τxy)

∂y
+i
∂(τxz)

∂z
+iρbx, (2.6)

iρi

(
∂v

∂t
+ iu

∂v

∂x
+ iv

∂v

∂y
+ iw

∂v

∂z

)
= i

∂(τyx)

∂x
+ i

∂(σyy)

∂y
+ i

∂(τyz)

∂z
+ iρby, (2.7)

iρi

(
∂w

∂t
+ iu

∂w

∂x
+ iv

∂w

∂y
+ iw

∂w

∂z

)
= i

∂(τzx)

∂x
+ i

∂(τzy)

∂y
+ i

∂(σzz)

∂z
+ iρbz, (2.8)

where ibx, iby and ibz show the components of body force along the ix, iy and

z-axes, irespectively. The above equations for the two-dimensional flow become

iρi

(
∂u

∂t
+ iu

∂u

∂x
+ iv

∂u

∂y

)
= i

∂(σxx)

∂x
+ i

∂(τxy)

∂y
+ iρbx, (2.9)

iρi

(
∂v

∂t
+ iu

∂v

∂x
+ iv

∂v

∂y

)
= i

∂(τyx)

∂x
+ i

∂(σyy)

∂y
+ iρby. (2.10)

2.1.3 Equation of Heat Transfer

By employing the first law of thermodynamics, the heat transfer equation is

ρ
dε

dt
= τ : L−∇ · q + ρrh, (2.11)

where iε = icpT is the internal energy, T the temperature, q = i− k∇T denotes

the heat flux, L = ∇V the velocity gradient, τ : L = trace(τL) =
∑
i,j

τijLij and rh

the radiative heating. The above equation in the absence of radiative heating is

ρcp
dT

dt
= τ : ∇V + k∇2T. (2.12)
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2.1.4 Mass Transfer with Chemical Reaction

“ According to [83], the general equation of mass transfer when accompanied by a

chemical reaction is an unsteady-state mass transport equation, that incorporates

not only diffusion but also the convective mass transport and chemical reaction

contributions. In the two dimensional form, the equation for mass transfer can be

written as follows:

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
+Ri, (2.13)

where

u
∂C

∂x
+ v

∂C

∂y
, (2.14)

is the convective mass transport contribution and

D

(
∂2C

∂x2
+
∂2C

∂y2

)
, (2.15)

is the molecular diffusion contribution, Ri is the chemical reaction contribution,

and D is the diffusion coefficient of the liquid.”

2.1.5 Boundary Layer Equation of Upper-convected Maxwell

Fluid

It is a non-Newtonian fluid model and a simple subclass of the rate type fluids

which elaborates the features of linear viscoelastic fluids having only the relaxation

time. Example includes polymer solutions of low molecular weight. The extra

stress tensor S for a Maxwell fluid is(
1 + λ1

D

Dt

)
S = µA1, (2.16)

in which λ1 is the relaxation time, D
Dt

the covariant differentiation, µ denotes the

kinematic viscosity and A1 the first Rivlin i- iErickson tensor. The first Rivlin i-

iErickson tensor can be defined as

A1 = i∇V + (∇V)′ , (2.17)
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where ′ (prime) denotes the matrix transpose. Here

A1 =


2∂u
∂x

∂u
∂y

+ ∂v
∂x

∂u
∂z

+ ∂w
∂x

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z

 . (2.18)

The covariant derivative for a tensor S of rank two, a vector a2 and a scalar b2 are

expressed by

DS

Dt
=
∂S

∂t
+ (V · ∇) S− S (∇V)′ − (∇V) S, (2.19)

Da2

Dt
=
∂a2

∂t
+ (V · ∇) a2 − (∇V) a2, (2.20)

Db2
Dt

=
∂b2
∂t

+ (V · ∇) b2. (2.21)

Multiplying equation of motion for Maxwell fluid by
(
1 + λ1

D
Dt

)
, we have

iρi

(
1 + iλ1

D

Dt

)
i
DV

Dt
= i− i

(
1 + iλ1

D

Dt

)
i∇p+ i

(
1 + iλ1i

D

Dt

)
i (∇ · S) .

(2.22)

Applying
D

Dt
(∇·) = ∇ · D

Dt
, (2.23)

and invoking the expression for S, we have

iρi

(
1 + iλ1

D

Dt

)
i
DV

Dt
= i− i

(
1 + iλ1

D

Dt

)
i∇p+∇ · i

(
1 + iλ1i

D

Dt

)
S. (2.24)

By utilizing the Eq. (2.16) and ignoring the pressure gradient, the above equation

takes the following form:

iρi

(
1 + iλ1

D

Dt

)
i
DV

Dt
= µ∇ · A1. (2.25)

The component form of the two-dimensional steady flow of Maxwell fluid can be

represented by the following expressions:

u
∂u

∂x
+ v

∂u

∂y
+ λ1

(
u2
∂2u

∂x2
+ v2

∂2u

∂y2
+ 2uv

∂2u

∂x∂y

)
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.26)

u
∂v

∂x
+ v

∂v

∂y
+ λ1

(
u2
∂2v

∂x2
+ v2

∂2v

∂y2
+ 2uv

∂2v

∂x∂y

)
= ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (2.27)
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2.1.6 Boundary Layer Equation of Williamson Fluid

The momentum equation for Williamson fluid is described as follows:

ρ
DV

Dt
= ∇ ·T0 + ρb. (2.28)

The Cauchy stress tensor T0 for an incompressible flow is −pI + S in which iI

is the i identity i tensor, τ i the extra stress i tensor i and D
Dt

the material time

derivative. iThe extra stress tensor is

τ =

[
µ∞ +

µ0 − µ∞
1− Γṙ

]
A1. (2.29)

Here µ∞, µ0,Γ, A1, ṙ correspond to the viscosity at infinity, viscosity at zero, pos-

itive time constant, first Rivlin-Erickson tensor and shear rate. The shear rate is

defined as:

ṙ =

√
χ

2
, (2.30)

where

χ =
trace(A2

1)

2
. (2.31)

By considering µ∞ = 0 and Γṙ < 1, we get the form

τ =

[
µ0

1− Γṙ

]
A1. (2.32)

Apply the binomial expansion upto first order.

τ = µ0 [1 + Γṙ]A1, (2.33)

where

ṙ =

√√√√[(∂v
∂r

)2

+
v2

r2
+

1

2

(
∂v

∂x
+
∂u

∂r

)]
, (2.34)

τrr = 2µ0 [1 + Γṙ]

(
∂v

∂r

)
, (2.35)

τrx = µ0 [1 + Γṙ]

(
∂v

∂x
+
∂u

∂r

)
, (2.36)

τθθ = 2µ0 [1 + Γṙ]
(v
r

)
, (2.37)

τxr = µ0 [1 + Γṙ]

(
∂v

∂x
+
∂u

∂r

)
. (2.38)
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The component form becomes:

∂(rv)

∂r
+
∂(ru)

∂x
= 0, (2.39)

u
∂u

∂x
+ v

∂u

∂r
=

1

r

∂

∂r
(rτrr) +

1

r

∂

∂θ
(τrθ) +

∂

∂x
(τrx) , (2.40)

u
∂u

∂x
+ v

∂u

∂r
=

1

r

∂

∂r
(rτrx) +

1

r

∂

∂θ
(τθx) +

∂

∂x
(τxx) , (2.41)

where u(r, x) and v(r, x) represent the velocity components along and normal

to the flow direction. In the absence of the pressure gradiant, boundary layer

approximation becomes:

∂(rv)

∂r
+
∂(ru)

∂x
= 0, (2.42)

u.
∂u

∂x
+ .v

∂u

∂r
= ν

[
1

r

∂u

∂r
+
∂2u

∂r2
+

Γ√
2r

(
∂u

∂r

)2

+
√

2Γ
∂u

∂r

∂2u

∂r2

]
. (2.43)

2.1.7 Fourier’s Law

The Fourier’s law for heat transfer is stated as follows:

q = −kdT
dx

, (2.44)

where q denotes the heat flux and dT
dx

the temperature gradient. The negative sign

is used due to the flow of heat in the direction of motion of the negative gradient

temperature.

2.1.8 Cattaneo-Christov Law

According to Christov [10], material invariant form of the balance law for the

internal energy is:

ρcp

(
∂T

∂t
+ V · ∇T

)
= −∇ · q. (2.45)

The heat flux q satisfies the following relation:

q + iλ2i

[
∂q

∂t
+ V · i∇q− q · i∇V + (∇ · iV)q

]
= i− iki∇T. (2.46)
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The continuity equation for the incompressible fluid implies ∇·V = 0, which when

used in Eq. (2.46) yields the following:

q + iλ2

[
∂q

∂t
+ iV · i∇q− iq · i∇V

]
= i− iiki∇T. (2.47)

Eliminating q from Eqs. (2.47) and (2.45), we get:

u.
∂T

∂x
+ v.

∂T

∂y
+ λ2

(
(u∂u

∂x
+ v ∂u

∂y
)∂T
∂x

+ (u ∂v
∂x

+ v ∂v
∂y

)∂T
∂y

+u2 ∂
2T
∂x2

+ v2 ∂
2T
∂y2

+ 2uv ∂2T
∂x∂y

)
= α

∂2T

∂y2
. (2.48)

2.2 Solution Methodology

We have used two different techniques to deal with the nonlinear ordinary differ-

ential equations. The shooting method and a built-in MATLAB function bvp4c.

2.2.1 Shooting Method with RK Scheme

Amongst many numerical schemes to solve the boundary value problems, the

shooting method [84] is an appropriate method in which the initial point is shot

by retrieving a profile set which assures the trajectory of a profile by changing

the initial slope. The targetted value, i.e., the terminal value is achieved by con-

sidering different initial guesses because guess is essential for all unknown values

as there are not enough initial conditions for the initial value problem. “To learn

the mechanism of the method [85], consider the following second order non-linear

boundary value problem

iy′′(x)i = if (x, y, y′(x)) i (2.49)

subject to the boundary conditions

y (0) = 0, y (L) = A. (2.50)
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By denoting y by y1 and y′1 by y2, Eq. (2.49) can be written as the following

system of first order equations.

y′1 = y2, y1(0) = 0,

y′2 = f (x, y1, y2) , y1(L) = A.

 (2.51)

Denote the missing initial condition y2(0) by s, to have

y′1 = y2, y1(0) = 0,

y′2 = f (x, y1, y2) , y2(0) = s.

 (2.52)

Now the problem is to find s such that the solution of the IVP (2.52) satisfies the

boundary condition y(L) = A. In other words, if the solutions of the initial value

problem (2.52) are denoted by y1 (x, s) and y2 (x, s), one should search for that

value of s which is an approximate root of the equation.

y1 (L, s)− A = φ (s) = 0. (2.53)

To find an approximate root of the Eq. (2.53) by the Newton’s method, the

iteration formula is given by

sn+1 = sn −
φ (sn)

d (φ (sn)) /ds
, (2.54)

or

sn+1 = sn −
y1 (L, sn)− A
dy1 (L, sn) /ds

. (2.55)

To find the derivative of y1 with respect of s, differentiate (2.52) with respect to

s. For simplification, use the following notations,

dy1
ds

= y3,
dy2
ds

= y4. (2.56)

This process results in the following IVP.

y′3 = y4, y3(0) = 0,

y′4 =
∂f

∂y1
y3 +

∂f

∂y2
y4, y4(0) = 1.

 (2.57)

Now, solving the IVP Eq. (2.57), the value of y3 at L can be computed. This

value is actually the derivative of y1 with respect of s computed at L. Setting the
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value of y3 (L, s) in Eq. (2.55), the modified value of s can be achieved. This new

value of s is used to solve the Eq. (2.52) and the process is repeated until the

value of s is within a described degree of accuracy.”

Example

Let us consider the boundary value problem having order four.

y′′′′ − 2yy′′ = 0, (2.58)

with boundary condition

y (0) = 1, iy′i (0) = 0, iy (1) = i0, iy′i (1) = 0. (2.59)

To convert Eq. (2.58) into a system of first order equations, the following notations

have been introduced.

y = iy1, y′i = y2, y′′i = y3, y′′′i = y4. (2.60)

The given BVP, is then converted to the following form.

y′1i = iy2, y1 (0) i = 1,

y′2i = iy3, y2 (0) i = 0,

y′3i = iy4, iy1 (1) = 0,

y′4 = 2y1y3, y2 (1) = 0.


(2.61)

Denote the missing initial conditions iy3(0) and iy4(0) by s and t respectively, to

have the following IVP

y′1i = y2, y1 (0) i = 1,

y′2i = y3, y2 (0) i = 0,

y′3i = y4, y3 (0) = s,

y′4 = 2y1y3, y4 (0) = t.


(2.62)

Now, solving the above IVP by using the RK-4 method over the interval [0,1].

The solution obtained by the RK-4 is then analyzed for y(1) and y′(1). If these

solutions meet the boundary condition given in Eq. (2.59), then the problem is

solved. However, usually this does not happen in the first go. So we have to refine

the initial guesses iteratively. For this purpose we use the Newton’s method to
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solve the following system of nonlinear algebraic equations,

y1 (x, s, t) = 0,

y2 (x, s, t) = 0,

 . (2.63)

The iterative scheme for the Newton’s method for the system of non-linear equa-

tions (2.62), is given by

[
sn+1

tn+1

]
=

[
sn

tn

]
−

[
∂
∂s
y1 (1, sn, tn) ∂

∂t
y1 (1, sn, tn)

∂
∂s
y2 (1, sn, tn) ∂

∂t
y2 (1, sn, tn)

]−1 [
y1 (1, sn, tn)

y2 (1, sn, tn)

]
(2.64)

For simplification, use the following notations,

∂y1
∂s
≡ y5,

∂y2
∂s
≡ y6,

∂y3
∂s
≡ y7,

∂y4
∂s
≡ y8,

∂y1
∂t
≡ y9,

∂y2
∂t
≡ y10,

∂y3
∂t
≡ y11,

∂y4
∂t
≡ y12,

 . (2.65)

To find the Jacobian matrix, differentiating the system of Eqs. (2.62) first with

respect to s and then with respect to t and using the new notations, we get

y′5 = y6, y5 (0) = 0,

y′6 = y7, y6 (0) = 0,

y′7 = y8, y7 (0) = 1,

y′8 = 2 (y1y7 + y3y5) , y8 (0) i = 0,

y′9 = y10, y9 (0) i = 0,

y′10 = y11, y10 (0) = 0,

y′11 = y12, y11 (0) = 0,

y′12 = 2 (y1y11 + y3y9) , y1 (0) = 1.



(2.66)

Solve the above system of equations (2.66) by the RK-4 method and put the

computed values of y5, y9, y6 and y10 in (2.64). This gives new modified initial

guesses. This procedure is repeated until we achieved the solutions with required

accuracy. The result obtained by the shooting method, can be graphed as follows.
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Figure 2.1: Solution of example

2.2.2 bvp4c

It is a MATLAB built-in function [86], which can be used to solve the system of

nonlinear boundary value problems. Three-stage Lobatto IIIa formula embedded

with a finite difference scheme plays a key role in the construction of the built-in

coding process of bvp4c. Basically it is a collocation formula, C-1 continuous solu-

tion is provided by the collocation polynomial and it is a fourth order accurate in

[a,b]. The residual of the continuous solution depends on the error control and the

mesh selection. The following Matlab syntax is used for it: sol = bvp4c(@odefun,

@bcfun, solinit, options)



Chapter 3

MHD Stagnation Point Flow and

Heat Transfer in Viscoelastic

Fluid with Cattaneo-Christov

Heat Flux Model

3.1 Introduction

This chapter presents an energy transfer analysis of the stagnation point cou-

pled flow of an UCM fluid over a stretching sheet along with the magnetic effects

and slip condition along the boundary. The recently proposed Cattaneo-Christov

model [10] is employed in the energy equation to investigate the effects of thermal

relaxation time. Similarity transformations play a pivotal role for obtaining the or-

dinary differential equations from the mathematically modeled partial differential

equations. Numerical solution of the system of ODEs is achieved by the classical

shooting method embeded with Runge-Kutta method of order four. The dominant

effects of stretching ratio parameter, elasticity number, heat flux relaxation time,

Magnetic parameter, slip coefficient and Prandtl number on the velocity and tem-

perature profiles are examined graphically and numerically. It is perceived that

temperature boosts up with an increment in the thermal relaxation time.

20
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3.2 Mathematical Model

Figure 3.1: Geometry of the model.

Consider steady, two-dimensional, incompressible and laminar stagnation point

flow of a viscoelastic fluid over a semi infinite plate. A fixed temperature Tw

which is sustained at the plate and the ambient fluid temperature T∞ are shown

in Fig. 3.1. Magnetic field having a strength of B0 is exerted normally to the

direction of flow. As we considered limited magnetic Reynolds number thats why

the electric field is vanished and also an induced magnetic field is overlooked.

Further first order velocity slip condition is assumed at the wall. The heat flux

model introduced by Cattaneo-Christov is taken into consideration. By using

standard boundary layer approximations, the partial differential equations for the

continuity, momentum and temperature flow [5], [13] and [21] are:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

ui
∂u

∂x
+ vi

∂u

∂y
+ iλ1i

(
u2i

∂2u

∂x2
+ iv2

∂2u

∂y2
+ i2uvi

∂2u

∂x∂y

)
= ν

∂2u

∂y2
+ ue

due
dx

+
σB2

0

ρ

(
ue − u− λ1v

∂u

∂y

)
, (3.2)

ρcpV · ∇T = −∇ · q. (3.3)
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The corresponding velocity slip boundary conditions [27] are:

u = ax+ λ0
2− σv
σv

∂u

∂y
, v = i0, T = Tw at y = 0,

ue(x) = cx, T → T∞ as y →∞.

 (3.4)

The heat flux q satisfies the following relation [10]:

q + λ2

[
∂q

∂t
+ iV · i∇qi− iq · i∇V + i(∇ · iV)iq

]
= i− ki∇T, (3.5)

where V = (u, v) is the velocity vector of the Maxwell fluid. If we choose λ2 = 0,

Eq. (3.5) corresponds to Fourier’s law. Continuity equation for the incompressible

fluid implies ∇ ·V = 0, which when used in Eq. (3.5) yields the following:

q + iλ2i

[
∂q

∂t
+ iV · i∇q− iq · i∇V

]
= i− ki∇T· (3.6)

Eliminating q from Eqs. (3.3) and (3.6), we get:

ui
∂T

∂x
+ vi

∂T

∂y
+ iλ2

(
(ui∂u

∂x
+ vi∂u

∂y
)∂T
∂x

+ (ui ∂v
∂x

+ vi∂v
∂y

)∂T
∂y

+u2 ∂
2T
∂x2

+ v2 ∂
2T
∂y2

+ 2uv ∂2T
∂x∂y

)
= iαi

∂2T

∂y2
. (3.7)

Introducing the following dimensionless variables:

η =

√
a

ν
y, iψ = i

√
aν ixf(η), θ (η) =

T − T∞
Tw − T∞

. (3.8)

After simplification we come forth with the following ordinary differential equa-

tions:

f ′′′ + ff ′′ − f ′2 + β
(
2ff ′f ′′ − f 2f ′′′

)
+M(e− f ′ + βff ′′) + e2 = 0, (3.9)

1

Pr
iθ′′ + fθ′ − iγ

(
ff ′θ′ + if 2θ′′

)
= 0. (3.10)

The reconstructed boundary conditions of Eq. (3.4) are:

f ′ (0) = 1 + bf ′′ (0) , if (0) = 0, iθ (0) = 1,

f ′ (∞) = e, iθ (∞) = 0.
(3.11)
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Different dimensionless parameters appearing in Eqs. (3.9)-(3.11) are defined as:

β = λ1a, γ = λ2a, e =
c

a
, M =

σB2
0

aρ
, Pr =

ν

α
=
µcp
k
, b = λ0

2− σv
σv

√
a

ν
.

(3.12)

The skin friction coefficient Cf and Nusselt number Nu are described as:

Cf =
τw

ρ(ax)2
, Nu =

xqw
α(Tw − T∞)

. (3.13)

Here the wall shear stress i τw i and the heat flux iqw i are defined as:

τw = µ(1 + β)

(
∂u

∂y

)
y=0

, qw = −α
(
∂T

∂y

)
y=0

. (3.14)

The dimensionless form of drag coefficient and rate of heat transfer is:

Re1/2x Cf = (1 + β)f ′′(0), Re−1/2x Nux = −θ′(0). (3.15)

3.3 Numerical Solution

The resulting nonlinear system of ordinary differential Eqs. (3.9) and (3.10) sub-

ject to the conditions (3.11) have been explored numerically with the aid of shoot-

ing method [85] for various values of the concerned parameters. On account of

number of computational experiments, as there is no significant difference in the

results after η = 7 so we are taking [0, 7] for the domain of the problem rather

than [0, ∞). We have chosen the following nomenclature to remodel the bound-

ary value problem into the initial value problem comprising of five single order

ordinary differential equations.

if = iy1, f
′ = iy2, f

′′ = iy3, θ = iy4, θ
′ = iy5. (3.16)

The coupled nonlinear momentum and heat equations are transformed into the

following pattern along with initial conditions.
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y′1 = y2, iy1(0) = 0

y′2 = y3, iy2(0) = 1 + by3(0)

y′3 =
[−y1y3(1 + 2βy2) + y22 −M(e− y2 + βy1y3)− e2]

1− βy21
, iy3(0) = s

y′4 = y5, iy4(0) = 1

y′5 =
Pry1y5(γy2 − 1)

1− γPry21
. iy5(0) = t


(3.17)

We apply the Runge-Kutta method having order four to solve the above initial

value problem. We adopted Newton’s method for the refining of the missing values

of s and t so that we come across the following yardstick.

max i{|y2(7)− e|, i|y4(7)− 0|} < iε,

where iε > 0 i is a tiny positive real constant. A threshold ε = 10−5 is adopted

for computation of all the numerical results.

3.4 Results and Discussions

In this chapter we utilized the UCM fluid with Cattaneo-Christov heat flux model

to explore the boundary layer flow and heat transfer above a stretching plate along

with the velocity slip boundary condition. Although we have achieved almost the

same numerical results for different quantities of interest by two different tech-

niques, nevertheless for more gratification, a limiting case comparison is made

with the some published work of same kind to validate our MATLAB code. To

handle it, a reproduction of the numerical results of the skin friction for the models

investigated by Sadeghy et al. [20] and Abel et al. [87]. An impressively cred-

ible agreement of our obtained numerical results is observed for the Sadeghy et

al. and Abel et al. can be seen in Table 3.1. Table 3.2 presents the values of

skin friction and Nusselt number for different emerging parameters. Temperature

gradient at the sheet shows increasing behavior for the stretching ratio parameter,

Prandtl number and thermal relaxation time, while it depicts inverse behavior for

elasticity number, slip coefficient and magnetic parameter. Similarly skin friction

seems to have an increasing trend for elasticity number and magnetic parameter
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and decreasing for slip coefficient and stretching ratio parameter.

A relation between upper-convected Maxwell and Newtonian fluid models is set up

by an elastic term. Heat transfer and fluid flow are influenced by elastic force. Figs.

3.2 and 3.3 depict the impact of elasticity number β on velocity and temperature

profile. Viscoelastic fluid turns into Newtonian fluid by ignoring the effects of

elastic force β. With an increment in the value of β, the elastic forces strengthen

up. By enhancement in β, velocity profile shows decreasing and temperature

distribution possesses an increasing flow patterns in the viscous fluid. It is because

of the fact that a raise in the elasticity number leads to the powerful viscous

force that opposes the mobility of the fluid and as a consequence the velocity

displays decreasing pattern. Figs. 3.4 and 3.5 illustrate the impact of the magnetic

parameter M over velocity and energy boundary layer flow. Magnetic field is

adjusted along normal to the fluid flow direction. It is realized that magnetic

field prevents the motion of the fluid and enhances the temperature distribution.

Figs. 3.6 and 3.7 present the slip effects on velocity and temperature profile.

Velocity exhibits the decreasing phenomenon for increment in the value of b and

converse for the temperature profile. Figs. 3.8 and 3.9 show the effect of stretching

ratio e over velocity and temperature distribution. With an increment in the

stretching ratio, we experienced an enhancement in velocity profile and decrement

in the thermal boundary layer. When e < 1, the stretching sheet velocity ax is

larger than the velocity of the far stream cx. Fig. 3.10 portrays the aftermath of

thermal relaxation time γ on energy profile. The energy pattern shows decreasing

behavior for enhancement in the thermal relaxation time. If we consider γ =

0 then the current model converts into Fourier’s Law. It is noticed that the

temperature observed in Fourier’s model is comparably higher than the Cattaneo-

Christov heat flux model. Fig. 3.11 shows that with the enlargement in Prandtl

number Pr, the energy boundary layer comes to be thinner, because Prandtl

number is experienced an opposite connection with the thermal diffusivity. All

the calculations are performed in hpi5 mechine with 4GB ram, it takes 1.561

seconds to plot a single graph.
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Table 3.1: Comparison of numerical values of −f ′′(0) with those of Sadeghy
[20] and Abel [87] for M = e = γ = b = 0 and Pr = 1.

−f ′′(0)
β Sadeghy et al. [20] Abel et al. [87] Present
0.0 1.0000 0.999962 1.0001725
0.2 1.0549 1.051948 1.0519731
0.4 1.10084 1.101850 1.1019446
0.6 1.0015016 1.150163 1.1501584
0.8 1.19872 1.196692 1.1967224
1.2 - 1.285257 1.2853239
1.6 - 1.368641 1.3673413
2.0 - 1.447617 1.4463152

Table 3.2: Numerical values of -(1 + β)if ′′i(0) and -.θ′.(0)i for different pa-
rameters.

e Pr γ β b M Shooting bvp4c
–(1 + β)f ′′(0) −θ′(0) –(1 + β)f ′′(0) −θ′(0)

0.1 1 0.1 0.1 0.1 0.05 0.968554 0.575354 0.968554 0.575354
0.2 0.915324 0.602832 0.915324 0.602832
0.3 0.845289 0.630777 0.845289 0.630777
0.1 0.5 0.968554 0.368480 0.968554 0.368480

1.5 0.968554 0.744492 0.968554 0.744492
2.5 0.968554 1.017927 0.968554 1.017927
1 0.2 0.968554 0.583098 0.968554 0.583098

0.4 0.968554 0.599482 0.968554 0.599482
0.5 0.968554 0.608089 0.968554 0.608089

0.2 1.077807 0.600289 1.077807 0.600288
0.4 1.305184 0.585631 1.305184 0.585631
0.8 1.790399 0.561494 1.790399 0.561494

0.2 1.554512 0.540975 1.554512 0.540975
0.5 1.134616 0.498868 1.134616 0.498868
0.9 0.848754 0.463693 0.848754 0.463693

0.5 0.933687 0.424693 0.933687 0.424693
1 1.002469 0.395878 1.002469 0.395878
1.5 1.054939 0.375867 1.054939 0.375867
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Figure 3.2: Influence of β on f ′(η).

Figure 3.3: Influence of β on θ(η).
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Figure 3.4: Impact of M on f ′(η).

Figure 3.5: Influence of M on θ.
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Figure 3.6: Impact of b on f ′(η).

Figure 3.7: Influence of b on θ.
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Figure 3.8: Effect of e on f ′(η).

Figure 3.9: Effect of e on θ.
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Figure 3.10: Effect of γ on θ.

Figure 3.11: Effect of Pr on θ.
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3.5 Concluding Remarks

The present model addresses the magnetic effects in the stagnation point flow on

UCM fluid along with the Cattaneo-Christov heat flux model. To solve the system

of coupled ordinary differential equations, we adopted the shooting method. To

strengthen the code, we also employed the MATLAB built-in function bvp4c. The

main observations are summarised as follows:

� By increasing the magnetic field intensity, velocity profile exhibits a decreas-

ing pattern and an opposite behavior is seen in the energy boundary layer.

� A boost in the elasticity number and slip coefficients causes the decrease in

the velocity phenomenon and an reverse expression is observed in the energy

profile.

� An intensification in the stretching ratio parameter results a decrease in the

wall shear stress and an enrichmentt in the Nusselt number.

� By increasing the thermal relaxation time, temperature raises up.



Chapter 4

Effects of Chemical Reaction on

Stagnation Point Flow with Mass

and Heat Transfer in Magneto

UCM Fluid Employed with

Cattaneo-Christov Heat Flux

Model

4.1 Introduction

The present chapter addresses the influence of the magnetic field on the Cattaneo-

Christov heat flux in the presence of stagnation point flow towards a linear stretch-

ing surface and transfer of mass analysis along with the chemical reaction proper-

ties. Upper convected Maxwell fluid is taken to confront the analysis and modeling.

Similarity transformations play a pivotal role for obtaining the ordinary differ-

ential equations from the mathematically modeled partial differential equations.

The shooting method involving the Runge-Kutta method embedded with order

four plays the main role to capture the numerical solution of the system of ODEs.

The effects of stretching ratio parameter, elasticity number, Schmidt number, heat

flux relaxation time, chemical reaction, magnetic parameter and Prandtl number

33
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over temperature, velocity and concentration profiles are scrutinized graphically

and numerically.

4.2 Mathematical Model

Consider the two-dimensional, incompressible and steady stagnation point flow of

an UCM fluid over a semi-infinite plate. The plate is assumed to have a constant

temperature Tw at stretching sheet as described in Fig. 4.1. Magnetic force having

a strength of B0 is exerted normally to the direction of flow. As we have considered

only the small magnetic Reynolds number, thats why the electric and induced

magnetic fields are not under discussion. To study the effects of heat flux, we adopt

the model introduced by Cattaneo-Christov [10]. By using standard boundary

layer approximations, the equations for the continuity, momentum, temperature

and concentration flow are described as:

Figure 4.1: Geometry of the model.
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∂u

∂x
+
∂v

∂y
= 0, (4.1)

ui
∂u

∂x
+ vi

∂u

∂y
+ iλ1

(
u2i

∂2u

∂x2
+ i2uv

∂2u

∂x∂y
+ iv2

∂2u

∂y2

)
= ue

due
dx

+ ν
∂2u

∂y2

+
σB2

0

ρ

(
ue − u− λ1v

∂u

∂y

)
, (4.2)

ρcpV · ∇T = −∇ · q, (4.3)

ui
∂C

∂x
+ iv

∂C

∂y
= iDi

∂2C

∂y2
−Ki(C − C∞). (4.4)

The boundary conditions are set as follows:

u = ax, iv = 0, iT = Tw, iC = Cw at iy = 0,

uei(x) = cx, iT → T∞, iC → C∞ as iy →∞.
(4.5)

The heat flux q satisfies the following relationship:

q + λ2

[
∂q

∂t
+ iV · i∇iq + i(∇ · iV)q− iq · i∇iV

]
= i− ki∇T, (4.6)

where V = (u, v) is the velocity vector of the Maxwell fluid. If we choose λ2 = 0,

Eq. (4.6) corresponds to Fourier’s law. Continuity equation for the incompressible

fluid implies ∇·V = 0, which when used in Eq. (4.6) yields the following relation:

q + λ2

[
∂q

∂t
− iq · i∇iV + iV · i∇q

]
= i− ki∇T. (4.7)

Eliminating q from Eqs. (4.3) and (4.7), we get:

ui
∂T

∂x
+ vi

∂T

∂y
+ iλ2

(
(ui∂u

∂x
+ vi∂u

∂y
)∂T
∂x

+ (ui ∂v
∂x

+ vi∂v
∂y

)∂T
∂y

+u2 ∂
2T
∂x2

+ v2 ∂
2T
∂y2

+ 2uv ∂2T
∂x∂y

)
= iαi

∂2T

∂y2
. (4.8)

To convert the PDEs to ODEs, introducing the following dimensionless variables

[13], [64]:

η =

√
a

ν
y, iψ =

√
aν ixf(η), iθ (η) =

T − T∞
Tw − T∞

, iφ (η) =
C − C∞
Cw − C∞

. (4.9)

After simplification, we come forth with the following ordinary differential equa-

tions:
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f ′′′ + ff ′′ − f ′2 + β
(
2ff ′f ′′ − f 2f ′′′

)
+M(e− f ′ + βff ′′) + e2 = 0, (4.10)

1

Pr
θ′′i+ fθ′ − γi

(
ff ′θ′ + f 2θ′′i

)
= 0, (4.11)

φ′′ + Scfφ′ − Scγ1φ = 0. (4.12)

The transformed boundary conditions (4.5) are:

f (0) = 0, iθ (0) = 1, if ′ (0) = 1, iφ (0) = 1

f ′ (∞) = e, iθ (∞) = 0, iφ (∞) = 0
(4.13)

Different dimensionless parameters appearing in Eqs. (4.10)-(4.12) are defined as:

β = λ1a, γ = λ2a, e =
c

a
, M =

σB2
0

aρ
, Pr =

ν

α
=
µcp
k
, Sc =

ν

D
, γ1 =

K

a
.

(4.14)

The rates of energy transfer Nu and mass transfer Sh are defined as:

Nu = xqw
α(Tw−T∞)

, Sh = xjw
D(Cw−C∞)

. (4.15)

Here the the heat flux qw and mass flux jw are defined as:

qw = −α
(
∂T
∂y

)
y=0

, jw = −D
(
∂C
∂y

)
y=0

. (4.16)

The dimensionless form of Nusselt and Sherwood numbers is:

Re
−1/2
x Nux = −θ′(0), Re

−1/2
z Shz = −φ′(0). (4.17)

4.3 Numerical Solution

The nonlinear system of ordinary differential Eqs. (4.10) − (4.12) subject to the

condition (4.13) explored numerically with the help of shooting method [85] for

different values of the concerned physical parameters. As there is no significant

difference in the results after η = ηmax because of the analysis of the computational

experiments so we are taking into account [0, ηmax] as the boundary of the problem

instead of [0, ∞). Here ηmax is different for different combinations of the physical

parameters. We have chosen the following nomenclature to remodel the boundary

value problem into the initial value problem consisting of seven first order ordinary
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differential equations.

f = y1, if
′ = y2, if

′′ = y3, iθ = y4, iθ
′ = y5, iφ = y6, iφ

′ = y7. (4.18)

The coupled nonlinear momentum, heat and concentration equations are trans-

formed into the subsequent system of seven first order differential equations in

conjunction with the initial conditions.

y′1i = iy2, y1(0) = 0,

y′2i = iy3, y2(0) = 1,

y′3i = i
[−y1y3(1 + 2βy2) + y22 −M(e− y2 + βy1y3)− e2]

1− βy21
, y3(0) = s,

y′4i = iy5, y4(0) = 1,

y′5i = i
Pry1y5(γy2 − 1)

1− γPry21
. y5(0) = t,

y′6i = iy7, y6(0) = 1,

y′7i = iSc(−y1y7 + γ1y6), y7(0) = v.



(4.19)

We apply the Runge-Kutta method of order four to solve the above initial value

problem. We adopted Newton’s method for the refining of the missing values of

s, t and u so that we meet the following yardstick.

max{|y2(ηmax)− e|, |y4(ηmax)− 0|, |y6(ηmax)− 0|} < ε,

where ε > 0 is a small positive real constant. A threshold ε = 10−5 is adopted for

computation of all the numerical results.

Although we have achieved almost the same numerical results for different quan-

tities of interest by two different techniques i.e. built-in MATLAB function bvp4c

and shooting method, nevertheless for more reliability, a limiting case comparison

is made with the some published work of same kind to validate our MATLAB code.

To handle it, a reproduction of the numerical results of the Sherwood number for

the models investigated by Hayat et al. [21]. An impressively credible agreement

of our obtained numerical results is observed for the Hayat et al. [21] can be seen

in Table 4.1.
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4.4 Results and Discussions

In this chapter, we utilized an UCM fluid along with Cattaneo Christov heat flux

model to explore the boundary layer flow and heat transfer above a stretching

plate. Table 4.2 presents the values of -f ′′(0), Nusselt and Sherwood numbers for

involved rheological parameters. Temperature gradient at the sheet shows increas-

ing behavior for thermal relaxation time and Prandtl number, while it depicts

inverse behavior for Deborah number and magnetic parameter. Similarly Sher-

wood number seems to have an increasing trend for Schmidt number and chemical

reaction parameter and decreasing for Deborah number and magnetic parame-

ter. Sherwood number is more important in mass transfer phenomenon because it

is a ratio of the convectived mass transfer and the diffusive mass transportion rate.

A relation between upper-convected Maxwell and Newtonian fluid models is set

up by an elastic term. Heat transfer and fluid flow are influenced by elastic force.

Figs. 4.2 and 4.3 depict the impact of Deborah number β over velocity and temper-

ature profiles. An UCM fluid turns into Newtonian fluid by ignoring the effects of

elastic force β. As while enlargement in the value of β, the elastic forces strengthen

up. By enhancement in β, velocity profile shows decreasing and temperature dis-

tribution possesses an increasing flow patterns in the viscous fluid. Its reason is

because that a boost in the Deborah number leads to the powerful viscous force

that opposes the mobility of the fluid, so as a result the velocity displays decreas-

ing pattern. Figs. 4.4 and 4.5 interpret the significance of magnetic parameter M

over velocity and temperature boundary layer flow. Magnetic field is considered

along perpendicular to the fluid flow. It is noticed that magnetic field counters the

fluid motion and enhances the temperature distribution. Figs. 4.6 and 4.7 show

the effect of stretching ratio e on velocity and temperature distribution. While en-

hancement in the stretching ratio, we experienced a growth in the velocity profile

and decrement in the thermal boundary layer. When e < 1, the stretching sheet

velocity ax is larger than the velocity of the far stream cx. Fig. 4.8 portrays the

consequence of thermal relaxation time γ over temperature behavior. Thermal

profile shows decreasing behavior for enhancement in the thermal relaxation time.

If we consider γ = 0 then the current model converts into Fourier’s Law. It is no-

ticed that the temperature observed in Fourier’s model is comparably higher than

the Cattaneo-Christov heat flux model. Fig. 4.9 shows that with the increment

in the Prandtl number Pr, the energy boundary layer becomes thinner, because
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the thermal diffusivity has an inverse relationship with the Prandtl number Pr.

Figs. 4.10 and 4.11 depict the influence of mass transfer rate Sc and chemical re-

action parameter γ1 over a concentration pattern. Both have a decreasing pattern

for mass transfer analysis. Here with the increase in the Schmidt number Sc, we

experienced decrement in the the boundary layer thickness and concentration pro-

file. The reason is because the mass diffusion is influenced by Schmidt number Sc

and decrease in mass diffusion corresponds to an increase in Schmidt number Sc

and hence we experienced reduction in the concentration profile. The case γ1 = 0

corresponds to no chemical reaction in the system. As reaction rate parameter

increases with the increase in chemical reaction parameter γ1, so we encounter

decrement in concentration phenomenon.

Table 4.1: Comparison of numerical values of −φ′(0) with those of [21] for
γ = Pr = 0 and Sc = γ1 = 1.

e M β −φ′(0)

Present [21]

0 1 0.2 1.150920 1.15092

0.2 1.167867 1.16815

0.4 1.186720 1.18727

0.7 1.219928 1.22675

0.2 0 1.181313 1.18142

0.3 1.179825 1.17980

0.7 1.173969 1.17385

1.2 1.163457 1.16351

1.5 0 1.160593 1.15680

1 0 1.171696 1.17169

0.4 1.164136 1.16524

0.7 1.161626 1.15125

1 1.153619 1.15505
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Table 4.2: Numerical values of -f ′′(0), -θ′(0) and -φ′(0) for different parameters
by taking e = 0.2.

bvp4c Shooting

β M γ Sc γ1 Pr -f ′′(0) -θ′(0) -φ′(0) -f ′′(0) -θ′(0) -φ′(0)

0.0 0.5 0.5 0.2 0.2 0.2 1.076823 0.236582 0.307043 1.076823 0.236582 0.307043

0.3 1.156529 0.249362 0.316204 1.156529 0.249362 0.316204

0.8 1.291645 0.239933 0.308038 1.291645 0.239933 0.308038

0.1 0.25 1.026474 0.255240 0.321103 1.026474 0.234653 0.305257

0.5 1.103648 0.252611 0.318909 1.103648 0.234144 0.305357

0.75 1.175937 0.231302 0.303291 1.175937 0.231302 0.303291

0.5 0.1 1.103648 0.232959 0.305358 1.103648 0.232959 0.305358

0.2 1.103648 0.233084 0.305358 1.103648 0.233084 0.305358

0.5 1.103648 0.234145 0.305358 1.103648 0.234145 0.305358

0.5 1.103648 0.234145 0.505602 1.103648 0.234145 0.505602

0.7 1.103648 0.234145 0.612554 1.103648 0.234145 0.612554

1.5 1.103648 0.234145 0.944495 1.103648 0.234145 0.944495

0.2 0.5 1.103648 0.234145 0.392578 1.103648 0.234145 0.392578

0.7 1.103648 0.234145 0.441754 1.103648 0.234145 0.441754

1 1.103648 0.234145 0.506724 1.103648 0.234145 0.506724

0.2 1.103648 0.234145 0.506724 1.103648 0.234145 0.506724

0.3 1.103648 0.296890 0.506724 1.103648 0.296890 0.506724

0.5 1.103648 0.411819 0.506724 1.103648 0.411819 0.506724
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Figure 4.2: Impact of β on f ′(η).

Figure 4.3: Impact of β on θ(η).
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Figure 4.4: Impact of M on f ′(η).

Figure 4.5: Impact of M on θ.
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Figure 4.6: Effect of e on f ′(η).

Figure 4.7: Effect of e on θ.
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Figure 4.8: Effect of γ on θ.

Figure 4.9: Effect of Pr on θ.
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Figure 4.10: Impact of γ1 on φ(η).

Figure 4.11: Impact of Sc on φ(η).
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4.5 Concluding Remarks

The present model addresses the magnetic field effects on the stagnation point

flow for an UCM fluid along with the Cattaneo-Christov heat flux model. Mass

transfer and chemical reaction effects are also considered. As our main concern is

to collect a solution of the system of ordinary differential equations, so we adopted

a shooting method. To strengthen the results we also employed MATLAB built-in

function bvp4c. A comparison is also made with the previous published work. The

main observations are summarised as follows:

� By increasing the magnetic field intensity, velocity profile exhibits a decreas-

ing pattern and an opposite behavior is seen in the energy boundary layer.

� A rise of the values of the Deborah number exhibits a decrease in the velocity

phenomenon and an opposite response is noticed in the energy pattern.

� Energy profile reduces with an increment in the heat flux relaxation time.

� Concentration profile portrays a decreasing pattern for the chemical reaction

parameter and mass transfer rate.



Chapter 5

MHD Stagnation Point Flow of

Williamson Fluid Over a

Stretching Cylinder with Variable

Thermal Conductivity and

Homogeneous/Heterogeneous

Reaction

5.1 Introduction

The present study reveals the consequence of homogeneous/hetereogeneous reac-

tion on the stagnation point flow of Williamson fluid with the additions of mag-

netohydrodynamics and heat generation/absorption coefficient over a stretching

cylinder. Further the influences of variable thermal conductivity and thermal

stratification are also studied. Similarity transformations play a pivotal role for

obtaining the ordinary differential equations from the mathematically modeled

partial differential equations. The system of non-linear coupled ordinary differen-

tial equations is then solved with the aid of shooting technique. The MATLAB

shooting code is validated by comparison with the previously published article.

Results are further strengthened by comparing with the built-in MATLAB func-

tion bvp4c. The effects of leading parameters are deliberated graphically for the

47
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temperature, velocity and concentration profiles. Energy transfer rate and drag

coefficient for the various parameters are investigated with the help of tables.

5.2 Model of the Problem

Figure 5.1: Geometry of the Problem.

We considered stagnation point hydromagnetodynamics flow of Williamson fluid

under the combined effect of heterogeneous/homogeneous reaction and heat gen-

eration/absorption over a linearly stretching cylinder along x−axis. Mangetic field

owning to have a strength B0 is exerted normally to the direction of flow as shown

in Fig. 5.1. As our supposition is small Reynolds number, thats why ignored

induced magnetic field in the mathematical modelling. Further a variable thermal

conductivity and the effect of thermal stratification at boundary layer flow are

also incorporated. In this case, energy far away from the sheet iT∞i is comparably

less than the temperature at the sheet Tw. The relationship between homogeneous

and heterogeneous reactions is expressed by the following equation.

A1 + 2B1 → 3B1, rate = l1a1b
2
1 , (5.1)

A→ B1, rate = lsa1, (5.2)

where l1, ls are rate constants and a1, b1 denote concentrations of the chemical

species A1, B1 respectively. Further considered that there occurs negligibe change

in temperature for both the reactions. By taking into account all the considerations

represented above and employing boundary layer approximations, the equations

of the rheological system becomes
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∂ (rv)

∂r
+
∂ (ru)

∂x
= 0, (5.3)

v
∂u

∂r
+ u

∂u

∂x
= ue

due
dx

+ υ

[
∂2u

∂r2
+

1

r

∂u

∂r
+
√

2Γ
∂u

∂r

∂2u

∂r2
+

Γ√
2r

(
∂u

∂r

)2
]

− σB2
0

ρ
(u− ue) , (5.4)

u
∂T

∂x
+ v

∂T

∂r
=

1

r

∂

∂r

(
αr
∂T

∂r

)
+
Q (T − T∞)

ρcp
, (5.5)

v
∂a1
∂r

+ u
∂a1
∂x

= DA1

(
∂2a1
∂r2

+
1

r

∂a1
∂r

)
− l1a1b21, (5.6)

v
∂b1
∂r

+ u
∂b1
∂x

= DB1

(
∂2b1
∂r2

+
1

r

∂b1
∂r

)
+ l1a1b

2
1, (5.7)

subject to the boundary conditions

Uw(z) =
U0x

l
, v = 0, T = Tw = T0 +

sx

l
, DA1

∂a1
∂r

= lsa1,

DB1

∂b1
∂r

= −lsa1 at r = R,

u = ue →
V0x

l
, T → T∞ = T0 +

tx

l
, a1 → a1∞, b1 → b1∞ as r →∞.


(5.8)

Using the following transformations

η =

√
U0

νl

(
r2 −R2

2R

)
, ψ =

√
νU0

l
Rxf (η) , u =

U0x

l
f ′ (η) ,

v = −
√
νU0

l

R

r
f (η) , θ (η) =

T − T∞
Tw − T0

, m (η) =
a1
a1 0

, n (η) =
b1
a1 0

.

 (5.9)

In Eq. (5.5), α is variable thermal conductivity that is defined as

α = α∞ (1 + εθ(η)) . (5.10)

Satisfaction of Eq. (5.3) is straightforward, however Eqs. (5.4), (5.5), (5.6) and

(5.7) turn into the following non-dimensional form
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(1 + 2ηγ3) f
′′′ + ff ′′ − f ′2 + 2γ3f

′′ +
3

2
(1 + 2ηγ3)

1/2 γ3λf
′′2+

λ (1 + 2ηγ3)
3/2 f ′′f ′′′ + e2 −M (f ′ − e) = 0, (5.11)

(1 + εθ) ((1 + 2ηγ3) θ
′′ + γ3θ

′) + Pr (fθ′ − f ′ (θ + φ1)) + ε (1 + 2ηγ3) θ
′2+

Prβ1θ = 0, (5.12)

(1 + 2ηγ3)m
′′ + 2γ3m

′ + Scfm′ − ScL1mn
2 = 0, (5.13)

δ1 (1 + 2ηγ3)n
′′ + 2γ3δ1n

′ + Scfn′ + ScL1mn
2 = 0. (5.14)

The transformed boundary conditions are:

f(0) = 0, if ′(0) = 1, im′ (0) = Lsm (0) ,

θ′ (0) i = 1− φ1, δ1n
′ (0) = −Lsn (0) at iη = i0,

f ′(∞)→ e, m (∞)→ 1, iθi (∞)→ 0, n (∞)→ 1, as η →∞.

 (5.15)

Different dimensionless parameters appearing in Eqs. (5.11)-(5.15), are defined as

δ1 =
DB1

DA1

, P r =
ν

α∞
, γ3 =

√
νl

U0R2
, L1 =

la21l1
U0

, Ls =
ls
DA1

√
νl

U0

,

Sc =
ν

DA1

, λ =
ΓU

3/2
0 x√

2νl3/2
,M =

σB2
0 l

U0ρ
, e =

V0
U0

, φ1 =
t

s
, β1 =

Ql

ρcpU0

.

 (5.16)

Assume that diffusion coefficient of chemical species A1 and B1 are of analogous

magnitude leads us to suppose that DA1 and DB1 are identical provided that

δ1 = 1. Thus, we have

m(η) + n(η) = 1. (5.17)

Using Eq. 17, Eqs. (13) and (14) take the form

(1 + 2ηγ3)m
′′ + 2γ3m

′ + Scfm′ − ScLsm(1−m)2 = 0. (5.18)

The boundary conditions for Eq. (18) are then converted to the form

m′ (0) = Lsm (0) , m (∞)→ 1. (5.19)

Drag coefficient and energy transfer rate in the dimensional form are

Cf =
2τw
ρu2w

, Nu =
xqw

α (Tw − T0)
, (5.20)



51

where τw and qw are the shear stress and surface heat flux given by

τw = µ

(
∂u

∂r
+

Γ√
2

(
∂u

∂r

)2
)
r=R

, qw = −α
(
∂T

∂r

)
r=R

. (5.21)

The dimensionless form of drag coefficient and energy transfer rate is as follows

Cf
√
Re

2
= f ′′ (0) +

λ

2
f ′′2 (0) , NuRe−1/2 = −θ′ (0) , (5.22)

where Re = U0x2

νl
.

5.3 Solution Methodology

A classical numerical technique i.e. the shooting method [85] is used to get the

solution of the system of non-linear ordinary differential equations obtained from

the partial differential equations. To solve the system (5.11), (5.12) and (5.18)

with the respective boundary conditions, first we have to convert it into a system

of first order ordinary differential equations. Afterwards, the missing conditions

ι1, ι2 and ι3 are gussed initially and then refined iteratively by Newtons iterative

scheme subject to the tolerance of 10−6. For numerical computations, the largest

value of η has been taken as η = 8 instead of η → ∞ because for η > 8, the so-

lutions are found settled asymptotically. The results are further strengthened by

using bvp4c, a built-in MATLAB function. For first order initial value problem,

we denote f by y1, θ by y4 and m by y6 to have the following equations.

y′1 = y2 iy1 (0) = i0,

y′2 = y3 iy2 (0) = i1,

y′3 =
(y22−y1y3−2γ3y3−3/2(1+2ηγ3)

1/2γ3λy23−e2+M(y2−e)
(1+2ηγ3)+λ(1+2ηγ3)

3/2y3
iy3 (0) = iι1,

y′4 = y5 iy4 (0) = i1− φ1,

y′5 =
−[Pr(y1y5−y2(y4+φ1))+(1+εy4)γ3y5+ε(1+2ηγ3)y25+Prβ1y4]

(1+εy4)(1+2ηγ3)
iy5 (0) = iι2,

y′6 = y7 iy6 (0) = iι3,

y′7 = ScLy6(1−y6)2−Scy1y7−2γ3y7
(1+2ηγ3)

i y7 (0) = iLy6 (0).


(5.23)

The initial value problem (5.23) is solved numerically by Runga-Kutta method of
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order four. Newton iterative scheme helps us to refine the missing slopes until the

following stoping criteria is met

max {|y2 (8)− e| , |y4 (8)− 0| , |y6 (8)− 1|} < ε. (5.24)

For the sake of verification of the code, a comparison with some published articles

is presented in Table 5.1, where a very accurate analogy in the results can be seen.

5.4 Results and Discussions

Numerical solutions of the obtained system of ordinary differential equations along

with the affiliated boundary conditions are acquired by applying shooting method.

The results are verified by built-in function of MATLAB bvp4c. The numerical

results of Nusselt number and drag coefficient for distinct magnitude of various pa-

rameters are enumerated in Table 5.2. It is noticeable from the table that friction

factor upturns for the augmentation in the magnetic parameter M and curvature

parameter γ3. A reverse behaviour is noticed in case of dimensionless Weissenberg

number λ and stretching ratio parameter e as both have decreasing tendency for

the skin friction coefficient. A rise in the quantities of curvature parameter γ3,

magnetic parameter M and Weissenberg number λ, depreciates the local Nusselt

number while an increment in the stretching ratio parameter e, boosts the rate of

heat transfer in fluid.

In Table 5.3, the effect of thermal conductivity parameter ε, Prandtl number Pr,

thermal stratification parameter φ1 and heat generation/absorption parameter β1

on heat transfer rate are presented. It is detected from the table that rise in

thermal conductivity reduces the rate of heat transfer and as a consequence the

temperature increases. On the other hand Nusselt number enhances for the in-

creasing magnitudes of Prandtl number Pr, thermal stratification parameter φ1

and heat absorption/generation parameter β1.

The effects of curvature parameter γ3, dimensionless Weissenberg number λ, mag-

netic parameter M and stretching ratio parameter e on velocity profile are dis-

played through Figs. (5.2) − (5.5). In Fig. 5.2, values of velocity function f ′(η)
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and the boundary layer thickness surge by enhancing γ3. The hike in γ3 implies

reduction in radius of cylinder and hence the speed of the fluid gets faster. Fig.

5.3 elucidates the behaviour of Weissenberg number over velocity pattern. Veloc-

ity reduces slightly when λ is raised. As Weissenberg number λ is the fraction of

relaxation time and specific process time, intensification in relaxation time leads

to enhansement the resistance of the fluid and resultantly velocity will reduce. In

Fig. 5.4, influence of magnetic parameter M on velocity phenomenon is displayed

which shows the reduction in speed together with the boundary layer thickness of

the fluid for access in M . It happens due to the retarding force called as Lorentz

force which actually is a resistive force. Response of stretching ratio parameter e

on velocity distribution is demonstrated in Fig. 5.5. As the values of e increases,

the velocity and the boundary layer thickness increase.

Figs. (5.6) − (5.12) show the effect of variation of different parameters on tem-

perature profile. Fig. 5.6 demonstrates the effect of heat generation/absorption

coefficient. As expected temperature increases with the increment of heat genera-

tion. Same effect is seen for the thermal conductivity parameter ε. It is observed

from Fig. 5.7 that energy is enhanced for the increasing value of thermal con-

ductivity parameter. Consequence of curvature parameter γ3 on thermal profile

is depicted in Fig. 5.8. A raise in curvature parameter will reduce the radius of

the cylinder which causes low resistance to the fluid flow but due to the smaller

diameter, the resistive force between the fluid and wall of the cylinder is enhanced

and consequently the temperature increases near the wall as depicted in Fig. 5.8.

Further, Fig. 5.9 is portrayed to scrutinize the consequence of magnetic param-

eter M on dimensionless temperature. Magnetic parameter outturns a resistive

force in the fluid motion due to Lorentz force. This frictional force enhances the

temperature of the fluid. Variation of velocity stretching ratio parameter e over

temperature profile is illustrated in Fig. 5.10. As we know that e is the ratio of

far away velocity to the surface velocity and it is also obvious that surface veloc-

ity is always greater than ambient velocity, so increase in stretching ratio implies

reduction in temperature distribution. Fig. 5.11 is plotted to portray the be-

haviour of temperature profile due to variation in thermal stratification parameter

φ1. Enhancement in thermal stratification yields higher density of the fluid in the

lower region and lower in upper region. So the temperature differences between

the cylinder and ambient fluid deliberately reduce and this effect is clearly elabo-

rated through Fig. 5.11. Fig. 5.12 indicates that the fluid temperature becomes
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Table 5.1: Comparison of skin friction coefficient with the previously published
work for various values of e when γ3 = 0, λ = 0, M = 0, θ = 0, m = 0 for f ′′(0).

e [88] [89] [90] Present
0.1 -0.9694 -0.9694 -0.9764 -0.96965
0.2 -0.9181 -0.9181 -0.9216 -0.91816
0.5 -0.6673 -0.6673 -0.6677 -0.66726
2.0 2.0175 2.0176 2.0179 2.01750
3.0 4.7293 4.7296 4.7297 4.72928

less for increasing values of Pr. It is contemplated that raising the Prandtl num-

ber exhibits a decrement in the thermal diffusivity and consequently the thermal

boundary layer which eventually upturns the rate of heat transfer.

Figs. (5.13)− (5.16) are plotted to analyze the behaviour of concentration profile

subject to variation of different parameters. Fig. 5.13 shows the increasing effect

of curvature parameter on concentration. An increment in curvature certainly

reduces the radius of cylinder and hence more fluid is expected to flow which will

enhance the mass transfer. Figs. 5.14 and 5.15 portray the impact of strength of

homogeneous/heterogeneous reaction over a concentration profile. It is observed

that both L1 and LS have decreasing behaviour but the boundary layer thickness

is increased. Impact of Schmidt number Sc on mass distribution is shown in

Fig. 5.16. Accession of mass concentration is noted for raising mass transfer

rate. The rate of mass transfer is actually the ratio of momentum diffusivity

to mass diffusivity. Increase in Schmidt number will enhance the momentum

diffusivity which resultantly raises the mass distribution. Fig. 5.17 is portrayed

to see the influence of Weissenberg number λ on temperature distribution. A

minor increase in temperature distribution is noticed for an increasing value of

Weissenberg number.
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Table 5.2: Numerical values of Nusselt number and skin friction coefficient for
various values of the parameters when ε = 0.2, Pr = 0.72, β1 = 0.1 and φ1=0.3.

1
2
Cf
√
Re NuRe−1/2

γ3 λ e M shooting bvp4c shooting bvp4c
0.3 0.2 0.2 0.6 1.1526747 1.1526747 1.5712269 1.5712269
0.4 1.1823723 1.1823723 1.5510129 1.5510129
0.5 1.2114766 1.2114766 1.5322437 1.5322437
0.6 1.2400468 1.2400468 1.5147575 1.5147575

0.1 1.1831704 1.1831704 1.5796490 1.5796490
0.3 1.1184246 1.1184246 1.5610308 1.5610308
0.4 1.0781184 1.0781184 1.5478376 1.5478376

0.3 1.0519457 1.0519457 1.6222916 1.6222916
0.4 0.9381452 0.9381452 1.6677485 1.6677485
0.5 0.8117330 0.8117330 1.7097891 1.7097891

0.7 1.1788977 1.1788977 1.5648360 1.5648360
0.8 1.2043781 1.2043781 1.5586461 1.5586461
0.9 1.2291690 1.2291690 1.5526430 1.5526430

Table 5.3: Numerical values of the Nusselt number for various values of pa-
rameters when γ3 = 0.3, λ = 0.2 and e = 0.2, M = 0.6.

NuRe−1/2

ε Pr φ1 β1 shooting bvp4c
0.3 1.5019247 1.5019247
0.4 1.4396866 1.4396866
0.5 1.3834405 1.3834405

1.5 1.0055952 1.0055952
2.0 1.2148101 1.2148101
2.5 1.4014374 1.4014374

0.4 1.5846098 1.5846098
0.5 1.5986938 1.5986938
0.6 1.6135129 1.6135129

0.2 1.5640025 1.5640025
0.3 1.5777877 1.5777877
0.4 1.6324602 1.6324608
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Figure 5.2: Impact of γ3 on f ′.

Figure 5.3: Impact of λ on f ′.
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Figure 5.4: Impact of M on f ′.

Figure 5.5: Impact of e on f ′.
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Figure 5.6: Impact of β1 on θ.

Figure 5.7: Impact of ε on θ.
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Figure 5.8: Impact of γ3 on θ.

Figure 5.9: Impact of M on θ.
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Figure 5.10: Impact of e on θ.

Figure 5.11: Impact of φ1 on θ.
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Figure 5.12: Impact of Pr on θ.

Figure 5.13: Impact of γ3 on m(η).
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Figure 5.14: Impact of L1 on m(η).

5.5 Concluding Remarks

In the present chapter, we have numerically investigated the effect of the stag-

nation point flow of Williamson fluid over a stretching cylinder along with the

response of homogenous/heterogenous reaction, magnetohydrodynamics and vari-

able thermal conductivity. To solve the system of coupled ordinary non linear

differential equations, we adopted the shooting method. To strengthen the results

we also employed the built-in MATLAB function bvp4c. The main observations

are summarised as follows:

• The strength of homogenous and heterogenous reactions shows a decreasing

effect on the concentration distribution.

• The temperature field is a growing function of the thermal conductivity and

heat generation coefficient.

• Prandtl number and thermal stratification have the tendency to increase to

temperature gradient on wall.
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Figure 5.15: Reaction of Ls on m(η).

Figure 5.16: Reaction of Sc on m(η).
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Figure 5.17: Reaction of λ on θ(η).

• Enhancing the values of the magnetic parameter boosts the temperature and

its boundary layer thickness as well.

• Mass distribution is an intensifying function of Schmidt number Sc.

• A decline in the velocity and rise in the temperature profile is observed via

Weissenberg number λ.

• The speed and the skin friction coefficient both rises up for the enhancement

in the curvature parameter γ3.



Chapter 6

MHD Oblique Stagnation Point

Flow of Nanofluid Over a

Convective Stretching Surface

6.1 Introduction

The present chapter demonstrates the analysis of the non-orthogonal flow of elec-

trically conducting nanofluid past a stretching surface with the existence of uni-

formly applied magnetic field. To sustain this heat transfer mechanism via hot

fluid, we have considered the convective boundary conditions at the lower sur-

face of the stretching sheet. Similarity transformations play a pivotal role for the

obtaining the ordinary differential equations from the mathematically modeled

partial differential equations. Transformed system is tackled numerically by the

shooting method. Moreover, the Matlab built-in routine bvp4c is implemented to

validate and strengthen the numerical results which were obtained by the shoot-

ing method. The effect of different physical parameters e.g. non-orthogonality

parameter, Brownian motion, Hartmann number, thermophoresis parameter, etc.

is analyzed through graphs and tables. To analyze the fluid flow behavior, heat

and mass transfer at the surface of the sheet, we calculate the numerical values for

the Nusselt number, skin friction coefficient and Sherwood number. Flow behavior

of nanofluid is analyzed through the stream lines for both the orthogonal and the

non-orthogonal cases.

65
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6.2 Mathematical Model

Consider an incompressible, two-dimensional and steady stagnation point flow of

Figure 6.1: Physical description of the problem

an electrically conducting MHD nanofluid along a stretching surface. The Carte-

sian coordinate system (x, y) is adjusted in such a way that sheet is placed along

the x-axis and fluid is confined in y > 0. To provide heat in the internal system, we

have considered the convective boundary conditions with convective heat transfer

coefficient h. Since we have considered the non-orthogonal flow, therefore fluid is

impinging at the surface with an arbitrary angle of incidence γ2 and the free stream

velocity of the fluid is taken as ũ = ax̃ sin γ2 + bỹ cos γ2. Two forces opposite in

direction but equal in magnitude are applied along the x-axis, as shown in Figure

6.1. Further, we assume that the surface has convective fluid temperature Tf and

uniform inviscid temperature T∞ with Tf > T∞. The rheological equations of the

flow are modeled as:

∂ũ

∂x̃
+
∂ṽ

∂ỹ
= 0, (6.1)

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
+

1

ρ

∂p̃

∂x̃
= ν∇̃2ũ− σB2

o

ρ
ũ, (6.2)

ũ
∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ
+

1

ρ

∂p̃

∂ỹ
= ν∇̃2ṽ, (6.3)

ũ
∂T̃

∂x̃
+ ṽ

∂T̃

∂ỹ
= α∇̃2T̃ +

(ρc)p
(ρc)f

[
DB∇̃C̃.i∇̃T̃ +

DT

T∞
∇̃T̃ .∇̃iT̃

]
, (6.4)

ũ
∂C̃

∂x̃
+ ṽ

∂C̃

∂ỹ
= DB∇̃2C̃ +

DT

T∞
∇̃2T̃ , (6.5)
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where the boundary conditions

ũ = iũw = cx̃, ṽi = 0,−ki∂T̃
∂ỹ

= ihi(Tf − iT̃ ), C̃ = Cw at ỹ = 0,

ũ = ax̃ sin γ2 + bỹ cos γ2, ṽ = −aỹ sin γ2, T̃ = T∞, C̃ = C∞ as ỹ →∞.
(6.6)

In the above discussion, a, b and c are positive constants having dimensions of

1/time.

Now using the non-dimensional variables

x = x̃

√
c

ν
, iy = ỹ

√
c

ν
, iu =

1√
νc
ũ, iv =

1√
νc
ṽ

p =
1

ρνc
p̃, iT =

T̃ − T∞
Tf − T∞

, iC =
C̃ − C∞
Cw − C∞

,

(6.7)

the flow equations (1)− (5) take the following form,

∂u

∂x
+
∂v

∂y
= 0, (6.8)

u
∂u

∂x
+ v

∂u

∂y
+

1

ρ

∂p

∂x
= ∇2u− σB2

o

cρ
u, (6.9)

u
∂v

∂x
+ v

∂v

∂y
+

1

ρ

∂p

∂y
= ∇2v, (6.10)

Pr

[
u
∂T

∂x
+ v

∂T

∂y

]
= ∇2T + Pr [Nb∇C.∇T +Nt∇T.∇T ] , (6.11)

Sc

[
u
∂C

∂x
+ v

∂C

∂y

]
= ∇2C +

Nt

Nb
∇2T. (6.12)

Different dimensionless parameter appearing in Eqs. (6.8)− (6.12) are defined as

e =
a

c
, Pr =

ν

α
, Nt =

Dt

T∞

(ρc)p
(ρc)f

Tf − T ∞
ν

,M2 =
σB2

o

cρ
,

Nb = DB
(ρc)p
(ρc)f

Cw − C∞
ν

, r2 =
h

k

√
ν

c
, Sc =

ν

DB

.

(6.13)

Stream function ψ is given by

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (6.14)
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Substituting Eq. (6.13) into Eqs. (6.8)− (6.12) and cancellation of pressure from

the aforementioned equations using pxy = pyx yields

∇4ψ +
∂ψ

∂x

∂ (∇2ψ)

∂y
− ∂ψ

∂y

(
∂ (∇2ψ)

∂x

)
−M2∂

2ψ

∂y2
= 0, (6.15)

Pr

[
∂ψ

∂y

∂T

∂x
− ∂ψ

∂ix

∂T

∂y

]
= ∇2T + Pr [Nb∇C.∇T +Nt∇T.∇T ] , (6.16)

Sc
∂ψ

∂y

[
∂C

∂x
− ∂ψ

∂x

∂C

∂y

]
= ∇2C +

(
Nt

Nb

)
∇2T. (6.17)

The associated boundary conditions will take the following form

ψ = 0,
∂ψ

∂y
= x,

∂T

∂y
= −h

k

√
ν

c
(1− T ) , C = 1 at y = 0

ψ = exysinγ2 +
1

2
y2r1 cos γ2, T = 0, C = 0 as y →∞,

(6.18)

where r1 = b
c

represents the secondary stretching parameter in normal direction.

Our main motive is to confront the solutions of Eqs. (6.15) − (6.17). For this

purpose, consider the following relationship

ψ(x, y) = xif(y) + ig(y), iT = iθ(y), iC = iφ(y), (6.19)

The tangential and normal components of the flow are represented by the functions

f(y) and g(y). Substituting Eq. (6.18) in Eqs. (6.15) − (6.17) and simplifying,

subsequently we attain the ordinary differential equations in the following form:

f ′′′ + fif ′′ − f ′2 −M2f ′ + c1 = 0, (6.20)

g′′′i+ fig′′i− f ′g′ − iM2g′ + c2 = 0, (6.21)

θ′′ + Pri
[
fiθ′ +Nbiφ′θ′ +Nti (θ′)

2
]

= 0, (6.22)

φ′′ + Scifφ′ + i

(
Nt

Nb

)
θ′′ = 0. (6.23)

The associated boundary conditions are as follows;

f(0) = 0, if ′(0) = 1, if ′(∞) = esinγ2,

g(0) = 0, ig′(0) = 0, ig′′(∞) = r1 cos γ2,

θ′(0) = −r2 (1− θ(0)) , iθ(∞) = 0, iφ(0) = 1, iφ(∞) = 0.

 (6.24)

In Eqs. (6.20)−(6.23), c1, c2 are constants of integration. To evaluate the constants
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from Eqs. (6.20) and (6.21), we have taken the limit y → i∞ in Eq. (6.20)

and utilizing the boundary condition f ′(∞) = e sin γ2, we get c1 = e2 sin2 γ2.

After solving the boundary layer Eq. (6.20), we get f(y) = ey sin γ2 + A as

y → i∞, where A = A(γ2, e,M) is a constant. Taking the limit y → i∞ in

Eq. (6.21) and utilizing the boundary condition at infinity g′′∞ = r1 cos γ2, we get

c2 = −Ar1 cos(γ2). Thus Eqs. (6.20)− (6.23) become

f ′′′ + fif ′′ − f ′2 −M2f ′ + e2 sin2 γ2 +M2e sin γ2 = 0, (6.25)

g′′′ + fig′′ − f ′g′ −M2g′ − Ar1 cos γ2 = 0, (6.26)

θ′′ + Pri
[
fθ′ +Nbiφ′θ′ +Nti (θ′)

2
]

= 0, (6.27)

φ′′ + Scfφ′ +

(
Nt

Nb

)
θ′′ = 0. (6.28)

For an obvious simplification, introduce the following substitution

g(y) = r1h(y) cos γ2. (6.29)

By using Eq. (6.29) in Eq. (6.26), we get

h′′′ + fih′′ − f ′ih′ −Mh′ − A = 0, (6.30)

with the associated boundary conditions:

h(0)i = 0, h′(0) = 0, h′′(∞) = 1. (6.31)

The concerned physical quantities are the local heat flux, skin friction coefficient

and the local mass diffusion flux, which is written in dimensionless form as [82],

[91]:

τw =

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)
, qw = −

(
∂T

∂y

)
y=0

, qm = −
(
∂C

∂y

)
y=0

. (6.32)

In the present case above quantities take the following arrangement [82], [91]:

τw = x [f ′′(0) + r1h
′′(0) cos γ2] , qw = −θ′(0), qm = −φ′(0). (6.33)
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The stream lines and the curve u = 0 converge at the stagnation point τw = 0.

We can get the stagnation point location xs by using the relationship:

xs = −r1h
′′(0) cos γ2
f ′′(0)

. (6.34)

6.3 Numerical Solution

The resulting nonlinear system of ordinary differential equations (6.25), (6.27), (6.28)

and (6.30) subject to the conditions (6.24) and (6.31) have been examined numer-

ically through the shooting method [85] for various values of the parameters. On

account of number of computational experiments, as there is no significant differ-

ence in the results after y = 7 so we are taking [0, 7] for the domain of the problem

rather than [0, ∞).

f ′1 = f2, f1 (0) = 0

f ′2 = f3, f2 (0) = 1

f ′3 = f 2
2 − f1f3 +M2f2 −M2 (e sin γ2)− (e sin γ2)

2 , f3 (0) = s

h′1 = h2, h1 (0) = 0

h′2 = h3, h2 (0) = 0

h′3 = f2h2 − f1h3 +M2h2 + A, h3 (0) = t

θ′1 = θ2, θ1 (0) = u

θ′2 = −Pr
[
f1θ2 +Nbθ2φ2 +Ntθ22

]
, θ2 (0) = −r2 (1− θ1 (0))

φ′1 = φ2, φ1 (0) = 1

φ′2 =

[
−Scf1φ2 +

PrNt

Nb

(
f1θ2 +Nbθ2φ2 +Ntθ22

)]
. φ2 (0) = k


(6.35)

We apply the Runge-Kutta method of order four to solve the above mentioned

system of initial value problem. We adopted Newton’s method for the refining of

the missing values of s, t, u and k so that we meet the following yardstick.

max{|f2(7)− e sin γ2|, |h3(7)− 1|, |θ1(7)|, |φ1(7)|} < ε,

where ε > 0 is a small positive real constant. A threshold ε = 10−6 is adopted for

computation of all the numerical results.
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6.4 Results and Discussions

Our main interest is to analyze the influnces of variation of different physical pa-

rameters of the current MHD nanofluid model. Tables (6.1)− (6.4) are portrayed

for looking into the numerical values of the heat flux, drag coefficient and mass

tansfer rate for various concerned physical parameters. It can be observed from

Table 6.1 that our obtained numerical results are established a best numeric rela-

tion with the accessable previously publish articles. It is noticed from Table 6.2

that the drag coefficient tangential component h′′(0) and drag coefficient f ′′(0)

increases with an enhancing values of e. Table 6.3 is presented to investigate the

leverages of angle of incidence on drag coefficient, mass and heat flux over the

stretching convective surface. It has been observed that when γ2 is increased,

tangential component of the drag coefficient increases and normal component of

the drag coefficient decreases but it has not a significant effect on both local heat

and mass fluxes. To investigate the effect of Pr,Nt, r2, Nb,, Sc and M by consid-

ering γ2 and e fixed over local heat flux, Table 6.4 is presented. Greater values

of Prandtl number Pr and Biot number r2 lead to an increment in the values of

−θ′(0), it is due to the fact that heat transfers from the sheet towards fluid because

of (Tf > T∞). It is also noticed that the surface heat flux downturns for greater

values of Nt, iSc and Nb, while Pr and r are kept constant. It is evident that

local mass flux shows increasing phenomenon with an enhancement in Nb and

Sc because of high concentration from surface to the fluid. At the end, we find

out that we experienced a decrement in the local mass flux while increasing the

quantities of the parameters like thermophoresis parameter Nt, Prandtl number

iPr and Biot number r.

To portray a physical significance of the flow problem, results are plotted in Figs.

(6.2) − (6.26) for each velocity profile, temperature distribution, concentration

phenomenon and stream lines. Fig. 6.2 illustrates the dimensionless velocity

profiles f ′(y) for angle of incidence γ2 = π/4 and diverse values of e. As it is

viewed from Fig. 6.2 that with an increase in stretching ratio e, velocity profile

shows the increasing behavior. Furthermore for e > 1/ sin γ2, a boundary layer

pattern of flow is viewed. It means with an hike in e, boundary layer width

downturns. This happens for the sake of a locked entries of c with e > 1/ sin γ2 act

the part of surged acceleration for the external stream becuase of an increment in

the straining motion surrounded by the stagnation-point. This prompt to irrigate
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of the boundary layer when an enhancement in e is considered. Here also observed

from Fig. 6.2 that the flow originates an inverted boundary layer arrangement for

e < 1/ sin γ2 owing to the stretching velocity of the sheet excels the stagnation

velocity at the external stream.

Similarly, Fig. 6.3 depicts the distribution of f ′(y)i for ei = 0.4 and varying

quantities of γ2. In Fig. 6.3, by looking into detail that when e < 1/ sin γ2, the

dimensionless velocity f ′(y) enhances by an increment in γ2. Figs. 6.4 and 6.5

present the effects of changes in e on h′′(y) for constant values of e and γ2. It

can be determined from Figs. 6.4 and 6.5 that near the vicinity of the surface,

h′′(y) provides a slightly increasing behavior while h′′(y) switches its behavior af-

ter y = 1. Fig. 6.6 shows the decreasing behaviour of horizontal velocity profile,

while increasing the magnetic parameter M . The effects of variation of emerg-

ing physical parameters like e, γ2, Pr, Sc, Nt, Nb and r2 over the temperature

distribution θ(y) are considered in Figs. (6.7) − (6.14). It is observed from Figs.

6.7 and 6.8 that the energy at a point downturns for the increasing values of e

and γ2 for constant values of e. From Fig. 6.9, we notice that with an upturns

in the Prandtl number Pr, temperature pattern decreases. The surface heat flux

increases as with the increasing values of Pr, the thermal boundary layer thickness

potrays a decreasing pattern. Figs. (6.10) − (6.14) reflect that the energy profile

θ(y) shows a boosting role for an enhancement in the Schmidt number iSc, Biot

number r2, Brownian motion iNb, thermophoresis parameter iNt and magnetic

parameter Mi. We observe that the Prandtl number enhances with an increment

in the kinematic viscosity of the base fluid and decreases for increment in the

thermal diffusivity of the nanofluid. Thermophoresis parameter Nt enhances with

an boost in the energy profile of the convective fluid at the wall and effective heat

capacity of the nanofluid, while it declines for an increment in the kinematic vis-

cosity of the base fluid and ambient temperature.

The concentration profile φ(y) is influenced by the physical parameters e, γ2, M ,

Sc, Nb, Nt and r2 as shown in Figs. (6.15)− (6.21). After extensive analysis, we

find that with the increase in the parameters r, Nt and M , the nanoparticle con-

centration profile φ(y) increases, while concentration profile φ(y) shows decreasing

behavior for the various values of each of the physical parameters e, γ2, Sc and Nb.

Brownian motion parameter Nb raises up with enhancement in the concentration

of the nanoparticles at the stretching surface and effective heat capacity of the
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nanofluid while downturns for an upturn in the kinematic viscosity of the base

fluid.

Figs (6.22)− (6.26) depict the stream line patterns of the non-orthogonal stagna-

tion point flows for the parameters e, γ2, r1 and M . All calculations of stream

lines are made for ψ = −4,−3,−2,−1, 0, 1, 2, 3, 4. Stagnation point locations are

also expressed in Figs. Stream line patterns due to variations in e are enlisted in

Figs (6.22) − (6.24). We notice that with the increase in stretching parameter e,

stagnation point location is moved to the right side for the favourable flow con-

fined in the region 0 < γ2 < π/2. We have chosen Nt = 0.2, Nb = 0.5, e = 0.1,

Pr = 1, r2 = 1, Sc = 1, r1 = 1 and M = 0.1 for Fig. 25 and γ2 = π/4 for

Fig. 6.26. Fig. 6.25 depicts the influence of the variation in the angle of incidence

and corresponding stagnation point. Fig. 6.26 depicts the variations of secondary

stretching parameter in normal direction and corresponding stagnation point val-

ues. It is noticed in Fig. 6.26 that when r1 is positive, the fluid is impinging from

right side at the wall. Same kind of behavior for stream line is plotted in Fig. 6.26,

while for negative values of r1 it is determined that the fluid is impinging from left

side at the wall and for r1 = 0, it is observed that fluid is impinging orthogonally

at the wall. It is realized that with the increase in secondary stretching parameter

in normal direction, angle of incidence decreases.

Table 6.1: Numerical values of f ′′(0) and h′′(0) for Nt = 0.2, Nb = 0.5,
γ2 = π/2, Pr = 1, r2 = 0.1, Sc = 1, M = 0 and r1 = 1.

f ′′(0) h′′(0)

e Present Ref. [82] Ref. [61] Present Ref. [82] Ref. [61]

Shooting bvp4c Shooting bvp4c

0.1 -0.96939 -0.96939 -0.96938 -0.96938 0.25390 0.25391 0.26341 0.26278

0.3 -0.84942 -0.84901 -0.84937 -0.84937 0.60627 0.59938 0.60631 0.60573

0.8 -0.29938 -0.24509 -0.29937 -0.29937 0.93473 0.75510 0.93472 0.93430

1 0.0 0.0 0.0 0.0 0.99912 1.00533 1 1

2 2.01750 2.01832 2.01750 2.01750 1.16322 1.14289 1.16522 1.16489

3 4.72928 4.85888 4.72928 4.72928 1.23435 1.30427 1.23465 1.23438
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Table 6.2: Numerical values of f ′′(0), h′′(0), -θ′(0) and -φ′(0) for Nt = 0.2,
Nb = 0.5, γ2 = π/4, Pr = 1, r2 = 0.5, Sc = 1, M = 0 and r1 = 1.

Shooting bvp4c

e A f ′′(0) h ′′(0) −θ′(0) −φ′(0) f ′′(0) h ′′(0) −θ′(0) −φ′(0)
0.1 0.84454 -0.98072 0.15487 0.23527 0.54176 -0.98072 0.15491 0.23527 0.54176

0.3 0.62473 -0.91066 0.48819 0.24155 0.57691 -0.91066 0.48819 0.24155 0.57691

0.7 0.33282 -0.67251 0.77920 0.25372 0.64593 -0.67227 0.77546 0.25374 0.64571

1 0.17431 -0.42431 0.89648 0.26186 0.69422 -0.40759 0.88512 0.26333 0.68384

1.3 0.04443 -0.12572 0.97569 0.26916 0.73972 -0.07033 0.76781 0.27359 0.70605

1.5 -0.03161 0.09854 1.01631 0.27362 0.76868 0.098759 1.02217 0.27366 0.76852

1.9 -0.16426 0.33799 0.13214 0.26896 0.71336 0.60214 1.08374 0.281745 0.82358

Table 6.3: Numerical values of -f ′′(0), h′′(0), -θ′(0) and -φ′(0) for Nt = 0.2,
Nb = 0.5, e = 0.1, Pr = 1, r2 = 0.5, Sc = 1, M = 0, and r1 = 1.

Shooting bvp4c

γ2 A −f ′′(0) h′′(0) −θ′(0) −φ′(0) −f ′′(0) h′′(0) −θ′(0) −φ′(0)
π/15 0.94884 0.99568 -0.23079 0.23324 0.53032 0.99481 -0.25590 0.23351 0.53044

π/12 0.93715 0.99442 -0.15122 0.23343 0.53143 0.99385 -0.19511 0.23356 0.53199

π/6 0.88526 0.98762 0.05616 0.23440 0.53688 0.98719 0.03213 0.23449 0.53724

π/4 0.84453 0.98072 0.15487 0.23527 0.54176 0.98072 0.15491 0.23527 0.54176

π/3 0.81425 0.97480 0.21244 0.23595 0.54559 0.97480 0.21245 0.23595 0.54559

π/2 0.79170 0.96940 0.25390 0.23653 0.54886 0.96939 0.253907 0.23653 0.54886
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Table 6.4: Numerical values of r2, Nt, Nb, Pr, Sc and M for r1 = 1, γ2 = π/4,
and e = 0.1.

shooting bvp4c

r2 Nt Nb Pr Sc M −θ′(0) −φ′(0) −θ′(0) −φ′(0)

0.1 0.2 0.5 1 1 0.5 0.08152 0.55954 0.08152 0.55954

0.3 0.17753 0.53694 0.17753 0.53694

0.5 0.23158 0.52433 0.23158 0.52433

0.1 0.4 0.5 1 1 0.5 0.08134 0.54042 0.08134 0.54042

0.6 0.08115 0.52156 0.08115 0.52156

0.1 0.2 0.1 1 1 0.5 0.08450 0.47016 0.08450 0.47016

0.3 0.08309 0.54456 0.08309 0.54456

0.5 0.08152 0.55954 0.081517 0.55954

0.1 0.2 0.5 2 1 0.5 0.08563 0.55739 0.08563 0.55739

2.5 0.08658 0.55692 0.08658 0.55692

0.1 0.2 0.5 1 2 0.5 0.08044 0.88630 0.08044 0.88630

2.5 0.08013 1.01974 0.08013 1.01974

0.1 0.2 0.5 1 1 1 0.08040 0.51915 0.080402 0.51915

2 0.04631 0.52432 0.07757 0.43636

Figure 6.2: Consequence of e on f ′(y).



76

Figure 6.3: Consequence of γ2 on f ′(y).

Figure 6.4: Consequence of e on h′′(y).
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Figure 6.5: Consequence of γ2 on h′′(y).

Figure 6.6: Consequence of M on f ′.
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Figure 6.7: Consequence of e on θ.

Figure 6.8: Consequence of γ2 on θ.
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Figure 6.9: Consequence of Pr on θ.

Figure 6.10: Consequence of Sc on θ.
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Figure 6.11: Consequence of Nt on θ.

Figure 6.12: Consequence of Nb on θ.
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Figure 6.13: Consequence of r2 on θ.

Figure 6.14: Consequence of M on θ.
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Figure 6.15: Impact of r2 on φ.

Figure 6.16: Impact of e on φ.
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Figure 6.17: Impact of γ2 on φ.

Figure 6.18: Consequence of Nt on φ.
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Figure 6.19: Consequence of Nb on φ.

Figure 6.20: Impact of Sc on φ.
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Figure 6.21: Impact of M on φ.

Figure 6.22: Stream lines for e = 0.1.
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Figure 6.23: Stream lines for e = 0.4.

Figure 6.24: Stream lines patterns for e = 1.
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Figure 6.25: Stream lines patterns for γ2.

Figure 6.26: Stream lines patterns for r1.
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6.5 Concluding Remarks

In the present chapter, the oblique stagnation point along with nanofluid flow for

the heat and mass transfer over a linearly stretching sheet in the presence of MHD

is addressed. The main points are summarized as follows.

• It is analyzed that the point of zero skin friction along the wall undergoes a

shift in the position with the variations in the parameters M,γ2 and e .

• Nusselt number undergoes the increasing behavior for Biot and Prandtl num-

bers and decreasing for Magnetic, thermophoresis, Brownian motion and

Schmidt number.

• Sherwood number shows an increasing behavior for the Brownian motion

and Schmidt number and decreasing profile for Biot, Prandtl, Magnetic and

thermophoresis parameters.



Chapter 7

Conclusion

In this dissertation, an analysis of the orthogonal and non orthogonal stagnation

point flows for Newtonain, upper convected Maxwell and Williamson fluids over

different types of geometries is presented. Partial differential equations are formed

by using the law of conservation of mass, Newtons second law of motion and the

second law of thermo dynamics. Similarity transformations played a pivotal role

for obtaining the ordinary differential equations from the mathematically modeled

partial differential equations. In all the cases, these system of differential equations

are solved numerically by the classical shooting method together with the RK-4

scheme. Numerical results are further supported by a built-in MATLAB function

bvp4c. In all the chapters, results are compared with the previously published

articles in limiting cases. The main findings of the thesis are as follows:

� For the upper-convected Maxwell, Newtonian and Williamson fluids, it is

observed that with an increase in the magnetic field intensity, velocity profile

exhibits a decreasing pattern and an opposite behavior is seen in the thermal

boundary layer.

� In case of the upper-convected Maxwell fluid, an increase in the elasticity

number and slip coefficients causes a decrease in the velocity phenomenon

and an opposite behavior is observed in the temperature profile.

� An enhancement in the stretching ratio parameter results a decrease in the

wall shear stress and an increment in the Nusselt number for all the fluid

models which are discusssed in this dissertation.
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� By increasing the thermal relaxation time, the temperature profile raises up

in an UCM fluid as discussed in Chapter number 3.

� The temperature profile reduces in an UCM fluid with an increase in the

heat flux relaxation time.

� Concentration profile shows a decreasing pattern for the Schmidt number of

an UCM fluid & Newtonian fluids.

� The strength of the homogenous and heterogenous reactions shows a decreas-

ing effect on the concentration distribution in the Willaimson fluid illustrated

in Chapter number 5.

� The temperature profile portrays a decreasing pattern in the case of upper-

convected Maxwell, Newtonian and Williamson fluids for the increasing val-

ues of Prandtl number.

� Speed as well as the skin friction coefficient increases with an enhancement

in the curvature parameter in the Willaimson fluid.

� It is analyzed in Chapter number 6 that in case of the non orthogonal stag-

nation point flows for the Newtonian fluid, the point of zero skin friction

along the wall undergoes a shift in the position with the variations in the

magnetic parameter M , angle of incidence γ2 and stretching ratio parameter

e.
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