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Abstract

In the last few decades, cancer has become one of the leading causes of death in the

human race. A significant loss of the p53 protein, an anti-tumor agent, is observed

in early cancerous cells (in around 50% of cancer cases). The p53 protein is being

studied widely due to its pivotal role as a potential drug target. The induction

of small molecules based drug Nutlin is by far the most prominent technique to

revive and maintain wild-type p53 to the desired levels. The current research work

proposes a systems theory-based novel drug dosage design for the p53 pathway.

The pathway is taken as a dynamic system represented by ordinary differential

equations (ODEs). Using control engineering practices, the system analysis and

subsequent controller design are performed for the re-activation of wild-type p53.

For this purpose, two control strategies are adopted. In the first strategy, the

attractor point analysis is carried out to select a suitable domain of attraction. A

two-loop negative feedback control strategy is devised to drag the system trajecto-

ries to the attractor point. An integrated framework is constituted to incorporate

the pharmacokinetic effects of Nutlin in the cancerous cells. In the second con-

trol strategy, a sliding mode control (SMC) based robust non-linear technique is

presented for the drug dosage design of a control-oriented p53 model. The control

input generated by the conventional SMC is discontinuous, however, depending on

the physical nature of the system, the drug infusion needs to be continuous. There-

fore, to obtain a smooth control signal, a dynamic SMC (DSMC) is designed. To

make the model-based control design possible, the unknown states of the system

are estimated using equivalent control based, reduced-order sliding mode observer

(SMO). The robustness of the proposed technique is assessed by introducing in-

put disturbance measurement noise, and parametric uncertainty in the system.

The effectiveness of the proposed control scheme is witnessed by performing in

silico trials, revealing that the sustained level of p53 can be achieved by controlled

drug administration. Moreover, a comparative quantitative analysis shows that

both controllers yield similar performance. However, DSMC consumes less control

energy.
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Chapter 1

Introduction

In the last few decades, cancer has become one of the leading causes of death

in the human race. According to the American Cancer Society, “cancer is the

second most common cause of death in USA [1]”. Cancer is mainly developed

as a consequence of oncogenes activation and inactivation of tumor suppressors.

It has been observed that around 50% cancer cases contain either mutations or

inactivation of the tumor suppressor protein: p53. In recent years p53 has become

a mainstream target in anti-tumor drug development [2].

After the discovery of the p53 protein in 1979 by Arnold J. Levine, scientists have

invested a considerable amount of effort in exploring the protein. The p53 protein

attains the significance due to its role in cancer suppression and its ability to re-

spond to various stresses which are toxic for the genome. In its wild-type state, p53

induces responses like DNA repair mechanism, senescence, cell cycle arrest, and

cell death [3]. Whenever the cell gets endangered by stresses (e.g., radioactivity or

DNA damage), p53 activates multiple downstream targets to ensure the healthy

functioning of the cell. In fact, whenever the genome’s integrity is questioned, p53

plays its role to preserve it, hence named “guardian of the genome” [4].

Owing to the contradicting role p53 plays in the progression of cancer, i.e., guardian

and killer, scientists faced difficulties in understanding the true functionality and

potential of this protein. The first three decades of research on p53 revealed its

1
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realization as tumor suppressor protein, its function as a transcription factor and

metabolic pathway regulator. In the fourth decade of its discovery, it is established

that this tumor suppressor protein is non-functional in various cancers and hence

the researchers are exploring p53 signaling pathway based drugs to fight cancer [5].

The subsequent sections investigate the role of p53 in cancer suppression and ex-

plore target-able interactions, which can become the basis for chemotherapy drug

development.

1.1 The Fight Against Cancer

“Cancer” is a disease, in which cells are able to divide uncontrollably. Environmen-

tal, as well as genetic factors, are responsible for causing cancer. The incidence of

cancer has been extensively increased since the birth of the industrial revolution.

The prominent cause of cancer is DNA damage, which enables cells to bypass the

cell cycle checkpoints and proliferate. The DNA can be damaged due to various

reasons including, but not limited to, tobacco smoke, alcohol consumption, X-rays

and ultraviolet radiation exposure, radiotherapy and to some extent infections [6].

Most commonly, cancer is treated with surgery, by removing cancerous tissues

from the effective area of the patient. However, this procedure is only plausible in

easily target-able areas and can cause severe discomfort or further implications.

Furthermore, during surgery, unintended loss of healthy cells is inevitable.

The second most common treatment method is radiotherapy, in which X-rays

are used to destroy cancerous cells. Although radiotherapy removes the need

for surgery, sometimes the emitted radiations itself lead to cancer development.

Chemotherapy is another such treatment strategies (usually used as adjunctive

therapy), in which anti-tumor agents target rapidly growing cells. However, rapidly

growing normal cells such as hair follicles are also neutralized as a consequence.

Apart from that it also causes fatigue, nausea, hair loss, and vomiting. Further-

more, pertaining to the inherent resistance in the cancerous cells against these

agents, cancer can return at a later stage.
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The side effects associated with current treatment methods demand a change

in the perspective towards cancer therapy. Recently, the focus in therapeutic

drug development is shifting towards agents targeting the pathways involved in

cancer development. There is vast research being carried out in investigating the

protein-protein interactions (PPIs) for the treatment of cancers. The medicinal

chemistry and drug-discovery communities have grown interest in studying PPIs,

as they provide greater control in modulating cellular response in comparison with

the conventional drug targets. The difficulty arises due to the dynamic nature

of protein interactions. Furthermore, the interaction sites are usually large, flat

and sometimes hydrophobic, complicating the access of binding pockets. In the

subsequent sections, protein-protein interactions in the p53 pathway (one of the

most important pathways related to cancer) are explored and the drug-able targets

are looked into.

1.2 Role of p53 in Cancer Suppression

p53 is a tumor suppressor protein that plays an important role in preserving the

integrity of the genome. In normal cells with no mutations, p53 is missing or sup-

pressed, hence maintains a low-level [7]. However, it becomes activated in response

to stresses or DNA damage, hence expressed in high levels. These stresses can al-

ter the normal functionality of the cell cycle, or make a normal cell cancerous by

introducing mutations in the genome [8]. Besides this, p53 acts as a transcription

factor for more than 30 known genes involved in DNA repair, cell cycle control,

differentiation, senescence, and apoptosis.

The cell progression of damaged cells is stopped at G1-S phase and G2-M phase

checkpoints of the cell cycle. p53 along with CDK pathway controls the cell

progression at G1 to S phase and controls the G2 to M phase progression with

help of CDK protein pathway [9]. Normally p53 resides inside the nucleus to

scan the DNA for any damage. If any DNA damage is detected, the p53 level

rises. Depending upon the severity of the damage, p53 can initiate one of the



Introduction 4

Figure 1.1: Diverse cellular outcomes mediated by p53 in response to multiple
stresses. [5]

three responses i.e DNA repair, senescence, and apoptosis. In the subsequent

subsection, we explore the mechanisms to repair the cell by p53.

1.2.1 p53 Repair Mechanisms

At every passing moment, a cell is facing multiple stresses or mutagens of different

kinds, e.g, chemicals, and radiations, etc, having a greater impact on disrupting

the homeostasis of a normal cell. These stresses act as activating agents for p53.

The DNA damage is one of the prominent stresses, inducing active cellular p53.

Figure 1.1 identifies some of the responses mediated by p53. It is evident that

p53 acts as a single common node, which acts upon multiple stresses to generate

various responses accordingly. There is a consensus upon the fact that the nature

of p53 response is proportionate to the stress signal. Mild stresses attempt to

repair the damage caused by it, while severe stresses induce extreme responses,

i.e., senescence and apoptosis. Hence, whenever DNA damage is detected, the p53

protein gets activated and its concentration is increased accordingly. p53 responds

in following three ways in response to stresses, by activating several hundred genes

involved in DAN repair, senescence, and apoptosis.
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1.2.1.1 DNA Repair

The DNA is damaged due to multiple intrinsic and extrinsic stresses. The most

common reason is the radiation exposure of normal cells due to radiotherapy, Ul-

traviolet (UV) radiations and gamma (γ) radiations. The stress causes damage to

DNA in the form of single-strand breaks (SSBs) and double-strand breaks (DSBs).

Hence, whenever DNA is slightly damaged, various downstream repairing proteins

get activated, which repair the DNA and cell cycle process continues.

1.2.1.2 Cell Cycle Arrest

If DNA is beyond repair then the cell remains at the G1-S phase checkpoint and

the p53 ensures that the cell does not divide. These cells exit to a quiescent stage,

known as G0 phase, where they are metabolically active but cannot proliferate any

further. The cell cycle does not allow the cell to go to the next phase, hence cell

growth is stopped unless the damage is repaired at any stage, then the cell cycle

resumes its normal course.

1.2.1.3 Apoptosis

If DNA damage is severe then the self-destructing proteins are activated, which

destroy the damaged cells. p53 induced apoptosis is a result of the transcription

of genes, inducing pro-apoptotic proteins (PUMA and NOXA), which inhibit the

function of anti-apoptotic proteins of the Bcl family [10]. It is worth mentioning

that chemotherapy is the same process only done manually.

1.2.2 p53 as a Target Gene

The most frequent cause in sustained tumor cell division is the inactivation of

tumor suppressor protein p53. Multiple factors induce inactivation of p53 protein,

including a mutation in genes and interaction with an over-expressed p53 inhibitor:



Introduction 6

Murine double minute 2 (MDM2) [11]. Overexpression of MDM2 leads to rapid

degradation in the level of p53 and it limits the tumor suppressor functionality of

p53. Therefore, compounds which attempt to revive the p53 protein, or inhibit the

MDM2 protein are being investigated to act as therapeutic agents against cancer

[5]. In the subsequent section, we first investigate the protein-protein interactions

of p53 and MDM2 and then explore possible ways to revive p53.

1.3 Regulation of p53

In the cells, for the conservation of energy and materials, the proteins are pro-

duced whenever necessary, and eliminated after performing their functions. This

process is called regulation. The under activation of p53 may lead to cancer while

the overexpression of p53 can accelerate the aging process by excessive apoptosis.

The critical role of p53 in regulating numerous cellular processes demands precise

control of its level and activity. It has been conclusively demonstrated that the

function of p53 is determined by the cellular level of the p53 protein. Under nor-

mal unstressed conditions, the p53 is very unstable, having a half-life of around 5

to 30 minutes [12]. Hence, under normal circumstances, the concentration of p53

is maintained at a low steady-state level. The level of p53 protein is undetectable

due to continuous degradation by the proteasome. Conversely, p53 is sensitive to

different stresses such as mutations in DNA caused by UV or γ irradiations. p53 is

activated at a very early stage of DNA breaks through ATM (Ataxia-telangiectasia-

mutated) or ATR (ataxia telangiectasia and Rad3-related) pathways, depending

upon the type of DNA damage. Double strand break activates p53 through the

ATM pathway and the single-strand break initiates regulation of p53 by the ATR

pathway.

Activated p53 acts as a transcription factor. It expresses hundreds of genes de-

pending upon the type and intensity of stress [13]. These transcribed genes are

involved in cell cycle arrest (by inhibiting CDK-cyclin complex) and inactivation

of p53 by a feedback loop (through transcription of MDM2 and MDMX) [14].

MDM2 and MDMX have similar structure and function, hence from now on only
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the MDM2 will be considered. In most of the cancers, an over-expression of pro-

tein MDM2 is observed, which acts as a cellular antagonist for p53, reducing its

level and limiting the anti-tumor function. In human cancers, the over-expression

of MDM2 is attributed to the gene amplification. On average, 7% of human

cancers contained MDM2 gene amplification, however in a certain type of tu-

mors more than 80% cases contained MDM2 gene amplification [11]. Some other

causes of MDM2 over-expression can be increased transcription, or translation and

single-nucleotide polymorphism. In the next subsection, we further investigate the

interactions between p53 and MDM2 proteins.

1.3.1 p53-MDM2 Interaction

It is required to tightly regulate and stabilize the cellular levels of p53 protein under

unstressed conditions. The MDM2 protein is the primary negative regulator of p53

[15]. The MDM2 inhibits the functionality of p53 in three ways;

• MDM2 binds to p53, acts as its E3 ligase and initiates proteasomal degra-

dation

• MDM2 inhibits the binding of p53 to the targeted DNA, blocking the p53

transcriptional activity.

• MDM2 initiates the p53 export out of the nucleus, limiting the access to its

targeted DNA, further minimizing its role as a transcriptional factor.

p53 and MDM2 constitute an auto-regulatory feedback loop for mutual regulation.

While activation of p53 causes transcription of MDM2 mRNA, which in turn, in-

creases the level of MDM2 protein [15]. The MDM2 protein serves as an E3 ligase,

which is responsible for the destruction of p53 through the ubiquitination process

[16]. Moreover, MDM2 limits the severe implications due to p53-mediated phys-

iological activity in response to non-lethal stresses. The p53-MDM2 interactions

to regulate the level of p53 are depicted in Figure 1.2.
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Figure 1.2: The auto-regulatory loop of MDM2 and p53 [15], the ↓ symbol
represents activation and ⊥ symbol shows inhibition of a protein.

p53 is attached to MDM2 at its designated binding site, where MDM2 attaches

a phosphate ion along with p53 to initiate its degradation by proteasome [17].

MDM2 is transcribed and up-regulated by p53, forming a feedback loop. The

negative feedback loop ensures a lower concentration of p53 in normal cells [18].

The MDM2 blocks the transcriptional activity of p53 and stimulates inhibition in

the nucleus and cytoplasm. MDM2 is also auto-regulated through ubiquitination

and proteasomal degradation [17].

1.3.2 Revival of p53

In many tumors, overexpression of MDM2 is the reason for reduced levels of p53,

which prevents DNA damage repair, cell cycle arrest, and apoptosis. Thus, in-

hibiting the protein-protein interaction between p53 and MDM2 can activate and

restore the levels of wild-type p53, which in turn, can restore the normal cell

functionality through p53 mediated responses [19]. Hence, due to the same rea-

son, MDM2 is becoming a mainstream therapeutic target in the cancerous cells

[18, 20]. A continuous search is ongoing to find some agents that directly target

MDM2, and re-activate wild-type p53.

MDM2 inhibits p53 functionality through different mechanisms by directly inter-

acting with it. The p53 protein binds with MDM2 through hydrophobic residues

at designated binding pockets [15]. It is revealed from the structure of p53 that
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some small non-peptide molecules can mimic the binding pattern between p53

and MDM2. These molecules can prevent the protein-protein interaction amongst

p53 and MDM2 leading to increased accumulation of p53. Blocking the protein-

protein interaction through such molecule inhibitors is emerging as a promising

therapeutic strategy for human cancer retaining wild-type p53 [21].

1.3.3 Small Molecular Inhibitors of MDM2-p53

Efficient development for such small molecules depends on our understanding of

the structural biology of p53-MDM2 interactions. The search for highly potent,

non-toxic and non-peptide molecules has been proven to be far more complicated

than originally anticipated. The discovery of p53 binding pocket structure on the

surface of MDM2 served as the basis towards the development of such molecules.

Kussie, et. al. observed that only three amino acid residues i.e Phe19, Trp23, and

Leu26 are vital for the p53 to bind firmly in the binding pocket of MDM2 [22].

After an intense effort by the scientific communities, numerous small molecule

inhibitors have been reported in recent years. The most widely studied MDM2

inhibitors are Nutlins (Nutlin-2, Nutlin-3a, RG7112), spiro-oxindoles (Mi-773) and

pyrrolidines (RO5503781). Many of these inhibitors have already completed suc-

cessful preclinical and clinical trials, either as monotherapy or in conjunction with

classical chemotherapeutic agents i.e. cytarabine and doxorubicin. All of these

small molecule inhibitors disrupt the interaction of MDM2 and p53, by binding at

Phe19, Trp23, and Leu26 residues [15].

Amongst these inhibitors, Nutlins were the first small molecule inhibitors discov-

ered by Vassilev et al. in 2004 [23] by a structure-based screening of the available

libraries of the chemical compounds. Nutlin family is the first MDM2 inhibitor to

be synthesized and advanced into human clinical trials. It binds to the N-terminal

pocket of MDM2, precisely where p53 binds, with a higher affinity, without cre-

ating genotoxicity [18]. The cocrystal structure of the interaction of Nutlin and

MDM2 are depicted in Figure 1.3. Nutlin-3a is highly potent and is reported to
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A B

Figure 1.3: Crystal structure of protein-protein interactions. (A) Interaction
of MDM2 with p53, p53 utilizes mainly three residues i.e Phe19, Trp23, and
Leu26 to interact with the hydrophobic pocket in MDM2. (B) Superposition of
both the complexes i.e. p53-MDM2 complex and Nutlin-MDM2 complex. [15]

have restored wild-type p53 functionality, and also inhibit cell growth in a dose-

dependent manner, while some other variants of Nutlin have effectively treated

tumors with dysfunctional or mutant p53 [24]. Nutlin-3a is orally bio-available,

and the preclinical data shows that at 100 to 200 mg/kg oral administration twice

a day in some tumor cell lines containing MDM2 gene amplification, inhibits tumor

growth without any toxicity. An improved version of Nutlin-3a named RG7112

was developed as a result of optimizing original Nutlin-3a, to improve the potency

and MDM2 binding. Henceforth, we will only describe these variants as Nutlin.

One of the advantages associated with Nutlin is its independence of p53 and auto-

ubiquitination of MDM2, leaving no room for p53 to bind. These molecules were

subjected to different experiments and the results confirm the accumulation of

p53. Experimental results on mice ensure suppression of tumor growth in nearly

90% of cases. The available preclinical data confirms that Nutlin has a therapeutic

potential to treat human cancer [15]. In the current study, Nutlin will be used as

the inhibiting agent for the p53-MDM2 complex and henceforth, will be referred

to as the drug.

The drug development is a costly process ranging from hundreds of thousand dol-

lars to billions of dollars for every new drug [25]. Fortunately, with improved

computational powers, the research community is able to accelerate and improve
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the accuracy of the drug development process. It is now practical to use the in

silico mathematical models in improving the process [26], wherein, the models

characterize the dynamics and the control principles are applied to better under-

stand the biological network and hence, aid the drug dosage design.

1.4 Research Objectives

Keeping in view the importance of a sustained cellular level of p53, it is desired

to suppress the MDM2 interaction with p53. The current study aims to develop a

therapeutic strategy to disrupt this interaction in cancerous cells. Based on this

conviction, we aim to:

• Develop a control-oriented mathematical model to represent the complex

interactions of the p53 pathway.

• Design a model-based robust control system to revive the p53 concentration

level by proper drug dosage administration.

• Design an estimator to recover the unmeasurable state variables, which are

required to achieve the above objective.

1.5 Thesis Contributions

The major contribution of the thesis is the development of a model-based nonlinear

control system design for the p53 pathway system. The following are the individual

contributions that lead to this objective.

• Development of a control-oriented mathematical model, based on the two

generic models from literature [24, 27]. The developed model has the ca-

pability to incorporate the design of the drug intervention in the control

systems paradigm.
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• Model-based controller development for the drug dosage design in order to

reactivate p53:

(a) Application of Lyapunov based control design to drag the system tra-

jectories to an attractor point, representing a healthy state of the cell.

(b) Design of the sliding mode control (SMC) based robust nonlinear con-

trol technique to achieve the desired cellular level of p53.

(c) Design of a modified control based on dynamic sliding mode control

(DSMC), in order to obtain a smooth and continuous control signal.

• Estimation of the unknown system states by employing an equivalent control

based, reduced-order sliding mode observer (SMO). Unknown system states

are required in the development of a model-based control system, discussed

above.

1.6 Thesis Organization

In this chapter, an introduction to the cancer disease along with the importance of

the p53 pathway as an anti-tumor agent is presented. The protein-protein inter-

action of p53/MDM2 is investigated, and it is established that the overexpression

of MDM2 is the main hurdle in the normal functionality of p53 in cancerous cells.

It is shown that small molecule-based drugs are the foremost therapeutic agents

to inhibit their interaction. Hence, there is a strong need to use computational

frameworks to regulate drug dose administration.

Chapter 2 accounts for the literature review relating to the mathematical modeling

and control of biological systems. Numerous mathematical models of the p53

pathway are reviewed to select a feasible control-oriented model. It has been

observed that there is always a trade-off between computational complexity and

accuracy of the mathematical model. Some earlier research carried out in the field

of systems biology and feedback controller design for biological systems, in general,

and specifically for the cancer control is discussed. The complexities involved in
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the implementation of the biological feedback control systems are discussed along

with the discussion of the two most popular implementation strategies.

Chapter 3 is dedicated to explaining the non-linear, control-oriented mathematical

model of the p53 pathway. The Physiological Based Kinetic (PBK) model for

the drug Nutlin is also presented. The chapter also describes the controllability

analysis of the p53 pathway model.

Chapter 4 presents a Lyapunov based controller design for the p53 revival. In this

chapter, a two-loop negative feedback control strategy is devised to drag the system

trajectories to the desired attractor point and to regulate the cellular concentration

of Nutlin, respectively. The simulation results are presented to assess the efficacy

of the proposed control scheme.

In Chapter 5 a sliding mode control (SMC) based robust non-linear technique is

presented for the drug design of the control-oriented p53 model. Another variant

of SMC i.e. dynamic sliding mode control (DSMC) is also designed to reduce

the chattering and obtain a smooth control signal. In order to ensure the overall

stability of the system, the boundedness of the zero-dynamics is also proved. To

make the model-based control design possible, the unknown states of the system

are estimated using equivalent control based, reduced-order sliding mode observer

(SMO). The robustness of the proposed technique is assessed by introducing input

disturbance, measurement noise and parametric uncertainty in the system. The

effectiveness of the proposed control scheme is witnessed by performing in-silico

trials.

Finally, the thesis is summarized in Chapter 6. This chapter presents the conclu-

sive remarks and set the direction for future work emanating from the course of

current research work.



Chapter 2

Literature Review

Anti-tumor drug development is proving to be an important component of ther-

apeutic interventions, along with classical techniques, i.e surgery, and radiation

therapy. Effective drug development is only possible through a better understand-

ing of complex nonlinear interactions in the biological networks, mediating the

drug actions. The computational frameworks provide useful tools to better un-

derstand the network topology, create a new hypothesis and explore the areas for

which we lack complete understanding. Both the mathematical modeling and con-

secutive simulation studies act as the basis for studying the nonlinear dynamics

in-depth and to define effective control mechanisms.

“Systems Biology” provides tools to understand the underlying principles govern-

ing the dynamics of a biological system. It allows us to investigate the dynamic

features of a specific protein regulatory network or a signaling pathway. The

approaches based on mathematical modeling provide a significant insight on the

operation of a regulatory network. Generally, the networks are represented by a

diagram, which depicts the static behavior of the system. However, these diagrams

lack the capability to express the dynamic behavior of the system along with the

working logic. Hence, merely drawing interconnections of genes and proteins is

not sufficient, systems biology requires a system-level understanding, acquired in

the following steps [28]:

14
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• An essential first step is to recognize the structure of the system (represented

as gene regulatory network or cell signaling pathways etc.) and transform

the interconnections in the form of a static picture.

• The system dynamics (behavior of a system over time) are understood and

modeled with some valid approximations.

• The control method of the system along with the potential drug targets are

identified.

• Lastly, the system is evaluated and redesigned to attain the required features.

In summary, the main objective of systems biology is to handle these pathways as

a system, model and simulate the underlying biochemical interactions in order to

better characterize the cell function and disease mechanisms. Hence, mathematical

modeling proves to be a significant asset in characterizing the range of dynamic

behaviors expressed by the known components.

This chapter is mainly focused upon a comprehensive review of computational

modeling methods and control system design for biological systems. Numerous

mathematical models of the p53 pathway are reviewed to select a feasible control-

oriented model. The literature survey is carried out to learn about the existing

control design techniques for the cancer suppression, followed up with the discus-

sion on the implementation strategies for the biological feedback control systems.

Lastly, based on the literature survey, a gap analysis is presented.

2.1 Mathematical Modeling of p53 Pathway

In general, cellular dynamics are categorized as inter-cellular and intra-cellular.

The inter-cellular dynamics represent the interactions of genes and proteins within

the context of a cell, and the intracellular dynamics examines the interactions of

cell in the context of tissues, organs and the organism as a whole. This text in-

vestigates the mathematical modeling in the context of cell signaling, where the
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molecular interactions affect the concentration of proteins etc. The underlying

mechanism includes nonlinear dynamic interactions, positive and negative feed-

back loops, time delays and crosstalk between different pathways. The dynamic

nature of these pathways and the feedback regulation strategies, enable us to use

the same tools that have been in practice by engineers to develop control systems

for years.

A more detailed discussion on modeling preliminaries for biological systems is

presented in Appendix A.1, which lays down the basic laws and principals on which

the development of mathematical models, presented in the upcoming sections is

based upon. The dynamic behavior of a regulatory network is determined by,

whether it is constituted of positive or negative feedback loops or the combination

of both. The study of feedback loops in biological systems leads us to investigate

the feedback loops involved in defining the dynamic behavior of the p53 pathway.

A detailed discussion on the feedback loops in the biological system and their

role in producing diverse dynamic behaviors is provided in Appendix A.2. The

subsequent sections focus upon the dynamic response patterns generated by the

p53 pathway, and the efforts to model the pathway in order to achieve the desired

response patterns.

2.1.1 p53 Dynamic Response

The cells have a complete molecular signaling mechanism which receives stimuli

(signal) from the environment or from other cells, interprets the signal and re-

sponds to it accordingly. The information contained in the cellular structure is

insufficient to characterize the complete behavior of the p53 pathway. The dynam-

ics of the pathway are to be incorporated as well. The true function of a pathway

can be determined by systematically varying the input, to study the response. For

the p53 pathway, there have been multiple studies, which provide an artificial dose

to observe the p53 response. It has been observed that p53 has rather complex

dynamic behavior in response to similar or different signals. The DNA damage

causes p53 concentration to fluctuate regularly within a cell, which shows that
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Figure 2.1: Multiple dynamic responses displayed by p53 [29].

appropriate p53 dynamic response is mandatory to restrict tumor development

[29].

The complex feedback interactions of the p53 pathway govern its dynamic re-

sponse. Initial studies were aimed at measuring the dynamics at the cell popu-

lation level [30]. However, later on, it was realized that measuring the dynamics

in the population may hide the actual behavior expressed by single cells. Hence

analyzing the fluorescence-tagged protein reveals the hidden dynamics of an in-

dividual cell [31]. Microscopic advancements reveal complex nonlinear dynamics

expressed by p53 [32]. The Negative feedback loop among p53 and MDM2 opens

the possibility for oscillatory behavior [33].

Variation in the parameters of the MDM2-p53 loop can elicit multiple dynamic pat-

terns such as damped oscillations, sustained oscillations, impulses, digital pulses,

and bio-modality [13]. Figure 2.1 shows all possible outcomes of p53 for multiple

types of DNA damage. ATM, ATR, and WIP1 pathways are not discussed further

to avoid unnecessary complexities. Depending on the stimulus, the p53-MDM2

loop can exhibit multiple dynamic response patterns. Broadly, these patterns are

either oscillatory or sustained [13]. For less extensive DNA damage, the p53 path-

way is reported to go into oscillations. The oscillations in the p53 pathway initiate

further downstream targets that repair the cell by DNA repair, cell cycle arrest or

senescence [24, 31].
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Figure 2.2: Pulses increase with increased intensity of DNA damage [31].

2.1.1.1 p53 Oscillatory Response

p53 invokes different dynamic patterns in response to diverse stress signals. The

amplitude, frequency and pulse width of p53 may alter gene expression or control

differentiation. Lahav et al. [32], demonstrated through experiments that the

DNA damage in the case of γ irradiation forces p53 to express constant frequency

and amplitude pulses. This, in turn, leads to cell cycle arrest. The status of the

DNA is verified after each pulse of approximately six hours. In case the DNA is

repaired, the oscillatory p53 dies out and resumes the blocked cell cycle process

[31].

The oscillatory response by p53 induces proteins involved in responses like cell cycle

arrest and DNA repair [31]. The number of pulses increases with the increased

intensity of DNA damage, as depicted in Figure 2.2. The greater number of

continuous pulses of p53 activates genes that cause senescence [32]. Generally, the

oscillatory behavior delays gene expression, so that after recovery, cells can again

undergo division.

2.1.1.2 Sustained p53 Response

The sustained p53 response is initiated due to extensive DNA damage. The am-

plitude and width of the response are directly dependent upon the extent of the

damage. UV radiations produce a single pulse of p53, whose amplitude and width

are dependent upon dose. Sustained p53 response expresses genes that induce

senescence and leads to irreversible cell fate i.e. cell death [32]. Figure 2.3 depicts
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Figure 2.3: Probability of entering senescence for the pulsed and sustained
p53 [32].

the probability of entering senescence for pulsating as well as sustained p53. It

can be seen that pulsed p53 provides extra time for DNA recovery. On the other

hand, it is evident that sustained p53 does not provide adequate time for DNA to

repair, and kills the cell immediately. Hence, in summary, γ-irradiations produce

an oscillatory response, which leads to DNA repair mechanism or cell cycle arrest,

and the UV radiations produce a single prolonged pulse, which leads to apoptosis.

2.1.2 Effect of Nutlin on p53 Dynamics

The effect of Nutlin on p53 dynamics is evaluated, first through a computational

model and then by the experimental results by Purvis et al. in [34]. First, the cell is

exposed to γ-irradiations, which cause DNA breaks and in response p53 expresses

a series of pulses having fixed amplitude and frequency. In the second step, a

specific pattern of Nutlin dose is introduced, which results in the transformation

of p53 pulses to a sustained response (a single pulse) having the same amplitude a

as the peak amplitude of original pulses, as shown by Figure 2.4. Although both

the responses have the same peak amplitude, the accumulative content of p53 will

be much higher in the case of sustained response, which in turn leads to senescence

or apoptosis.
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Figure 2.4: Nutlin perturbed pulsating p53 to produce a sustained response
[34].

The main findings from the above studies are that the p53 function is directly de-

pendent upon its pattern of cellular dynamics. Secondly, we can alter the p53 dy-

namics through controlled drug administration of Nutlin. Various computational

models are developed in literature with respect to achieving the above discussed

dynamic patterns. These models can be then used to design a system that opti-

mizes the drug administration to achieve the desired response. In the subsequent

section, a literature review of previously developed mathematical models is pre-

sented, in order to search for a feasible, control-oriented and computationally less

expensive model.

2.1.3 Existing Mathematical models of p53 pathway

The efforts to model the p53 pathway are mainly focused upon the interactions

between P53 and MDM2 governing its responses [35]. To investigate the con-

struction and deconstruction mechanism of p53, numerous mathematical models

have been developed in literature including continuous-time differential equations,

discrete-time differential equations, delayed differential equations, and stochastic

models [36]. Every modeling approach has been devised by keeping certain as-

pects in view. For example, the time delay models focus on the time taken by

the production of protein in response to a promoter in real cells. The stochastic

models consider quantized protein levels, the probability of instantaneous effects

is taken almost zero. Some of the previous mathematical models are discussed in

the next section.
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Early models were built on the assumption that the p53 pathway undergoes

damped oscillations in response to IR. An ordinary differential equation (ODE)

based model was built by Lev Bar-Or et al. [30], this model considers negative

feedback between p53 and MDM2 which is responsible for oscillations. This model

considers coupled differential equations to emulate time delay between a promoter

and the production of proteins. Many other researchers also explored the origin of

the oscillations in the MDM2 and p53 level in response to IR [36–39]. The papers

in [40], [41] and [42] introduced large time delays to model sustained oscillations.

These models do not incorporate damped oscillation. Tyson et. al. in [33] used

the time delay model with negative feedback to generate damped oscillations.

The effect of DNA damage on p53 pulses has been modeled by multiple researchers.

Various mathematical models use different scenarios to create pulsating behavior.

The model by Ciliberto et al. [39] displayed digital pulses in response to irradiation

levels. The parameter set chosen in this model express limit cycles. The time in

which the response stays in limit cycles is controlled by the extent of DNA damage.

Tyson et al. [33] used the time delay model with negative feedback to generate

damped oscillations.

Ma et al. [38] proposed a stochastic model to focus on stochastic effects on cell

fate due to ionizing radiation (IR). The model proposes a three-module structure

to investigate the p53 pulse generation due to a double-strand break (DSB). The

DSBs stimulate DNA repair mechanism, ATM activation, and a p53-MDM2 feed-

back loop. The model uses implicit time delays by considering MDM2 mRNA and

intermediate forms of MDM2.

Lipniacki et al. [43] proposed a hybrid model, which quantitatively analyzed the

experimental data. They explored thethe p53-MDM2 negative loop and positive

feedback loop involving PTEN, PIP3 and Akt. The DNA repair mechanism is built

by considering variable duration in limit cycles with the help of Hopf bifurcation.

Later on, they extended their work in [24] to incorporate pharmacokinetics of

drug Nutlin. They demonstrated in-silico that at a lower level the dose-splitting
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is ineffective, however at a higher dose level the p53 threshold is exceeded, which

can induce apoptosis.

The model proposed by Hunziker et al. [27] investigated the negative feedback loop

of p53 and MDM2. The effect of various stresses is modeled, and it is demonstrated

that the p53 acts as a single node, capable to produce multiple oscillatory responses

and transcribes various genes. This model offers a simplistic approach that allows

control-oriented analysis and drug dosage design, yet it includes all the major

characteristics of the p53 pathway. Hence, we have chosen this model in order

to implement a control strategy to regulate p53 through drug Nutlin. In the

subsequent section, some evidence of the recent application of control for the

cancer is presented.

2.2 Application of Control Theory in the Cancer

Control

“Systems biology” has long been used to understand, and to predict the behavior of

biological systems through computational models. Recently, systems biology along

with the control theory have been considered as a great tool for a more precise

therapeutic intervention in complex biological networks. Nevertheless, some note-

worthy developments have been made in drug delivery of cardiovascular systems

[44–46], blood pressure control [47, 48], anesthesia drug delivery [49, 50], diabetes

control [51], Parkinson’s Tremor [52] and HIV/AIDS control [53, 54]. The cur-

rent advancements in control of biological systems also explore the possibility of

controller design for cancer treatment.

The application of control theory in cancer treatment is a fairly new subject.

The main objective in the cancer treatment is remission of cancerous cells within

minimum time while maintaining the health profile of a patient. The traditional

treatment techniques, such as chemotherapy, radiotherapy, and surgical procedures

are one way around, but these procedures may reduce the quality of life of the
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patient [55]. The current research trend is shifting towards the in-silico methods

for analysis and control. There is a strong need to use these in-silico models to

implement drug design using control theory.

In the traditional techniques, the amount of administered drug is of utmost impor-

tance for the survival of patients, because the therapy does not only kill cancerous

cells but also affects healthy human tissues. Hence, to improve the efficacy of the

above-mentioned techniques, the dosage of cancer therapy is carefully controlled

in order to kill a maximum number of tumor cells, whilst causing minimum dam-

age to healthy tissues. In literature, multiple control strategies are implemented

(mostly upon the tumor growth models) to optimize drug therapy. The most no-

table work in this regard is by de Pillis et al. [56], in which they constructed an

ODE based tumor growth model, containing the number of the tumor, healthy

and immune cells as state variables. They later included a time-varying drug term

and applied bang-bang type optimal control to adjust the amount of drug that

minimizes the tumor cells, while maintaining healthy and immune cells above a

required level [57]. This work is later extended by [58], in which they applied a

linear time-varying (LTV) approximations based optimal control strategy, which

simplifies the controller design and also provides globally valid results.

A state-dependent Riccati equation (SDRE) based optimal control is applied to the

above-mentioned model in [59], with the aim to reduce the administrated drug.

SDRE permits to consider the specific conditions of the patients by assigning

state-dependent weighting matrices in the cost function. Later on, [60] appended

Kalman filter with SDRE to estimate the unknown state, associated with the

population of tumor cells. In [61] a model reference adaptive control (MRAC) is

compounded with the existing SDRE approach to preserve the benefits of both

the techniques. The proposed algorithm handles the unmodeled dynamics and

parametric uncertainties in the model. The scheme works in two steps: firstly,

a reference patient (with known mathematical model) is stabilized by applying

the SDRE approach, secondly, the proposed algorithm is applied on an unknown

patient to adapt the drug administration of the reference patient.
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The above-discussed control design techniques are mainly applied to the macro-

scopic level. However, after the discovery of small molecule chemotherapy drugs,

that can directly target the protein-protein interactions, the current research trend

is shifting towards utilizing control techniques in drug dosage design at the cellular

level. In the literature, a couple of model-based control techniques are explored

for the p53 pathway. In our previous work [62], we designed a simple proportional

type control to obtain the desired normalized concentrations of p53 and MDM2

proteins. In [63], a mathematical model consisting of 11 states for the p53 and

relating pathways is exploited to design flatness based control for maintaining the

desired level of active p53.

From the drug-manipulation viewpoint, it is evident that a drug dose will be

constructed by the contribution of the state variable. The controller action is based

on different mathematical operations being performed on the variables, namely

addition, subtraction, scalar multiplication, integration, and differentiation. The

physical realization of these operations becomes important when implementing

the proposed closed-loop control system for drug delivery in the human body. The

following section discusses the possibilities regarding the implementation of the

proposed feedback control schemes.

2.3 Feedback Control Implementation

The realization of a feedback control system demands high-quality sensing, ade-

quate computational power, and accurate actuating components. This becomes

more challenging when we are dealing with biological systems. Engineers and

experimental biologists have tackled this challenge in two ways;

• in silico feedback control

• in vivo feedback control

illustrated in Figures 2.5(a) and 2.5(b) respectively. Each of the techniques are

discussed in the subsequent sections.
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(a) In silico feedback control (b) In vivo feedback control

Figure 2.5: Feedback control implementation techniques

2.3.1 in silico Control Implementation

The in silico control implementation considers the molecular circuitry of a cell or

population of cells as the process ”P” to be controlled, and the controller “C” is

implemented on a computer, outside the body, as depicted in Figure 2.5(a). For

the real-time implementation, techniques like microscopy [64, 65] , flow cytometry

[66] and rapid immunoassay [67] enable fast measurements of protein concentra-

tion in patients. Methods like immunomagnetic- electrochemiluminescent require

seconds to collect samples from the patient’s serum and minutes to complete the

measurement process. The sampling period between intervals can be set according

to the therapeutic requirements.

The measured data “y” is compared with the desired data “u” in silico and the

control input computed by the controller serves as the dose for targeted cells. The

interface between computer and cells is achieved by biological transducers that

are capable of responding to input in either light or chemical form. The control

scheme proposed in Section 4.1, for p53 protein revival, can be implemented in this

manner, provided all the state measurements are available. The implementation

becomes more challenging for the inner loop controller as it requires at every

instant the measurement for the drug Nutlin inside the cell. A better way to

tackle this problem is to implement the controller inside the cellular structure,

discussed in the following section.
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(a) Genetic implementation (b) Stochastic simulation

Figure 2.6: Genetic Implementation of a logic gate inverter

2.3.2 in vivo Control Implementation

Synthetic biology enables engineers to program living cells to serve as therapeutic

agents to cure genetic disease. Engineered bio-systems are built with a bottom-

up approach of synthesizing small parts that constitute functional modules, and

composition of these modules build systems [68, 69]. The in vivo feedback control

employs synthetic biology to control the cellular behavior by assembling molecular

circuits in cells [70]. Both the process and controller are realized within cells with

the help of biomolecular processes, as depicted in Figure 2.5(b).

With the help of genetic circuits and synthetic sensors, any feedback control sys-

tem can be implemented into cells. The transcription of a gene is initiated and

regulated by transcription factors (TF). The binding sites of TF can be used in

designing synthetic systems [71]. For example, a basic logic gate inverter can be

constructed from genetic material as shown in Figure 2.6(a). The genetic circuit

is composed of a promoter and gene which transcribes green fluorescent protein

(GFP). Cells containing this circuit glow green whenever input protein TetR is

unavailable in the cell [72]. There are a number of regulators that control the rate

of gene transcription by binding to separate gene promoter regions. Many logic

gates have also been constructed with these DNA-binding proteins [73].

Genetic implementation of negative feedback has been achieved by either increased

degradation of mRNA [74] or suppression of the translation process by making use

of mRNA binding proteins [75]. Chemical reactions are employed to construct and
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implement integral feedback control [76] and nonlinear quasi sliding mode (QSM)

control [77]. However, all of these techniques require rigorous theoretical analysis

to ensure stability, reliability, and robustness. We, therefore, propose a hybrid

method for the biological implementation of the controller, proposed in Section

4.1. The nonlinear outer loop Lyapunov controller will be embedded inside a

digital computer (in silico) and the inner loop PID controller will be synthesized

by biological circuits (in vivo). The control scheme proposed in Section 5.2 can

be implemented in silico, by employing the control inside a computer.

Based on the above discussion on modeling and control of p53 pathway, the found

shortcomings (the current study aims to address) are presented in the subsequent

section.

2.4 Gap Analysis

In the literature, there has been extensive work on p53 mathematical modeling,

and a number of models have been developed based upon mainly either time-delay

approach or differential equation approach. Most of the previous research is fo-

cused on the analysis of these mathematical models and lacks their utilization

for drug design purposes. The use of these models in drug design can speed up

the process by providing a better understanding of drug interactions with targets.

From the control design perspective, there has not been much consideration for

control-oriented modeling. Hence, it is required to obtain a model that would sup-

port the administration of the drug in a prescribed manner. Two factors should

be considered while selecting a feasible mathematical model for the p53 pathway:

model accuracy and ease of control design. The accuracy of the model increases

the complexity, which can make the control design difficult. As the controller

expressions are derived from the model, therefore, the model-based controller re-

quires a computationally less expensive mathematical model. Furthermore, for

more complicated mathematical models the parameter search is difficult. In this

research, we have chosen the model proposed in [27] which offers a simplistic
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approach that allows control-oriented analysis and drug dosage design. We will

develop a control-oriented mathematical model based upon this existing model.

The complex dynamics, multiple interactions, nonlinear behavior and the nature

of uncertainty in biological systems make the control design challenging. Usu-

ally, the process for measurement of the parameters is either very cumbersome

or expensive, hence the mathematical models of bio-systems are not always pre-

cise. Another issue with the most biological models is that they are not defined

in any formal mechanism, which further complicates the control design. Hence,

there is a strong need to design a sophisticated control system, which accounts

for all the physical issues, that could arise in a biological feedback control system

i.e., parametric uncertainties, external disturbances, unmeasurable state variables,

and measurement noise. The control techniques presented in [62, 63] are not in-

herently robust and are based upon certain assumptions, which may not be the

case in actual scenarios. In this research, we aim to design such a control system

that is neither too complicated nor is operating under such assumptions that limit

the practicality of the feedback control in real systems.

2.5 Summary

This chapter accounts for the literature review related to the mathematical model-

ing and control of the p53 pathway. Numerous mathematical models are developed

in the literature, trying to capture the dynamics of the p53 pathway. Here, a com-

prehensive literature review of the existing mathematical models is presented, in

the search for a feasible control-oriented model. In the biological systems, it is

of importance that all the parameter values are available. Secondly, it has been

observed that there is always a trade-off between computational complexity and

accuracy of the mathematical model. Therefore, a compromise is made between

both the requirements and a model by Hunziker et al. [27] is selected. This model

is relatively simple and at the same time captures all the fundamental dynamical

properties of the p53 pathway.
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The suitability of the controller design for biological processes is motivated through

a review of the existing biological feedback controller design. Lastly, the complex-

ities involved in the implementation of the biological feedback control systems are

discussed. The next chapter describes the selected mathematical model and the

associated parameters in detail, accompanied by the controllability analysis.



Chapter 3

Mathematical Model of p53

Pathway

Before designing a control system, it is desired to choose a feasible, computation-

ally less expensive and control-oriented model. The mathematical model presented

in [27] allows a control-oriented drug dosage design. The model offers a simplistic

approach yet adequately preserves the fundamental dynamical properties of the

p53-MDM loop. The subsequent section describes the mathematical model of the

p53 pathway.

3.1 Hunziker et al. Mathematical Model

The ordinary differential equation (ODE) based model, presented by Hunziker et

al. in [27] investigated a positive feedback loop of p53-Mdm2 mRNA and negative

feedback loop between p53 and Mdm2, to produce oscillations in the response.

The effect of different stresses on the p53 response is also investigated. The model

offers a simplistic approach yet adequately preserves the fundamental dynamical

properties of the p53-MDM loop, and allows control-oriented drug dosage design.

The interactions between Mdm2 and p53 protein are represented by a schematic

diagram shown in Figure 3.1.

30
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Figure 3.1: Schematic model of p53 pathway dynamics, representing the com-
ponents and interactions that correspond to each of the state in the mathemat-

ical model (3.1)

In the current research work, we provide a modified version of the Hunziker’s

model, in which we incorporate a new term for the clinical trial drug Nutlin 3a in

order to investigate its proper dosage and p53 response. The Mdm2 and Nutlin

complex is introduced in the dynamic equation of Mdm2. The single cellular

dynamics of the p53 pathway is characterized by an ODE-based mathematical

model, presented in state space form by

ẋ1 = σp − αx1 − kfx1x3 + kbx4 + γx4,

ẋ2 = ktx
2
1 − βx2,

ẋ3 = ktlx2 − kfx1x3 + kbx4 + δx4 − γx3 − km(u− ζ)x3,

ẋ4 = kfx1x3 − kbx4 − δx4 − γx4. (3.1)

Where x1 is concentration of p53 protein, x2 is Mdm2 mRNA, x3 is concentration

of Mdm2 protein and x4 is the concentration of Mdm2-p53 protein complex. All

of these concentrations are measured in nM . The control input u to the system is

the concentration of the anti-tumor drug “Nutlin”, measured in mg/kg (Note: x3

is positive by physical nature, and takes part as control gain) and the concerned

output is x1 (concentration of p53 protein).
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The parameters and rate constants being used in the p53 model are listed and

described in Table 3.1. Here, the Greek letters (α, β, γ and δ) represent the

degradation rates. The parameter α models all the processes that result in Mdm2

independent deactivation of the p53 protein, leading to a reduced active p53 con-

centration in the nucleus. Whereas, the parameter δ represents the Mdm2 depen-

dent p53 deactivation. The parameter β is the degradation rate of Mdm2 mRNA

and γ is the Mdm2 protein degradation, due to the auto-ubiquitination process.

Table 3.1: Definition of model parameters and kinetic rate constants [27]

Parameter Definition Value

σp Production rate of p53 1000 nM.hr−1

α Mdm2 independent deactivation/ 0.1 hr−1

degradation of p53

δ Mdm2 dependent deactivation/ 11 hr−1

degradation of p53

kt Transcription of Mdm2 0.03 nM−1.hr−1

ktl Translation of Mdm2 1.4 hr−1

β Degradation rate of Mdm2 mRNA 0.6 hr−1

γ Mdm2 degradation/deactivation 0.2 hr−1

kb Dissociation of Mdm2-p53 7.2 hr−1

km Nutlin rate constant 200 hr−1

kD = kb/kf Dissociation constant of Mdm2-p53 1.44 nM

The subscripted letters represent the production rates, such as the parameter σp

models the synthesis of p53 protein, which is assumed to be produced at a constant

rate. The rate constant kt describes the transcription of Mdm2 mRNA, whereas

the subsequent translation to Mdm2 protein is described by the rate constant

ktl. The rate constants kf and kb describe the Mdm2-p53 complex formation and

breakup, respectively.

Many of these parameters are fixed using data from the literature, e.g., the Mdm2

independent degradation rate of p53 α is taken as 0.1 hr−1. The degradation rate

is taken small as p53 does not degrade in 120 min in the absence of Mdm2 [78],
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the value α = 0.1 hr−1 corresponds to a half life of 7.5 hrs. The Mdm2 dependent

half life of p53 is measured to be less than 15 minutes [78]. Therefore, γ is taken

in the range of 1−20 hr−1, corresponding to a half life of 2−40 minutes. The half

life of the Mdm2 mRNA is measured to be one to two hours [79]. Therefore, the

degradation rate of Mdm2 mRNA is fixed as β = 0.6 hr−1, which corresponds to

a half life of around one hour. The dissociation constant of Mdm2-p53 is reported

to be in between 0.2− 700nM [80, 81], the dissociation of Mdm2-p53 is taken as

kb = 7.2 hr−1 and from the relation kD = kb/kf , the Mdm2-p53 association is

taken as kf = 5.1428 nM−1 hr−1, which implies that kD = 1.44 nM . The levels

of p53 and Mdm2 in the cells are used to constrain the values of σp, γ, kt and ktl

as presented in Table 3.1.

The nonlinear model presented in (3.1) can be written in control affine form i.e.

ẋ = f(x) + g(x)(u+ ζ), (3.2)

where x ∈ R4 is the state vector, f, g ∈ R4 are smooth vector fields. The vector

fields f(x) and g(x) are given as

f(x) =


σp − αx1 − kfx1x3 + kbx4 + γx4

ktx
2
1 − βx2

ktlx2 − kfx1x3 + kbx4 + δx4 − γx3
kfx1x3 − kbx4 − δx4 − γx4

 ,

g(x) =


0

0

−kmx3
0

 .

Here, ζ is the input disturbance, faced by cellular structure due to intrinsic noise,

unwanted interference from neighboring pathways and environmental stresses. It

appears with the same vector g as the input u, hence ζ is assumed to be a matched

disturbance. The disturbance satisfies the following assumption:
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Assumption 1. Consider ζ to be a matched disturbance (bounded by ||ζ|| ≤ ζ0

and ζ0 ∈ R+), which is sufficiently smooth i.e. ζ̇ is continuous and bounded i.e.

ζ̇(t) ≤ ψ(t), ||ψ(t)|| ≤ ψ0 where ψ(t) is a smooth function and ψ0 ∈ R+.

Recent techniques, such as microscopy, flow cytometry, rapid immunoassay and

immunomagnetic-electrochemiluminescent (ECL) are used for the rapid measure-

ments of p53 and Mdm2 concentrations using patient’s serum [64, 66, 67]. Ac-

cordingly, the measurement vector ym is given by

ym = [x1 x3]
T . (3.3)

3.2 Nutlin PBK Dynamics

To investigate the in vivo treatments of Nutlin, the extra-cellular dosage concen-

tration and dynamics are defined by [24] with the help of Physiological Based

Kinetic (PBK) model. Puszyński et al., explored the pharmacokinetics data in

mice to investigate the effect of Nutlin oral delivery. They considered a uni com-

partmental model, which includes the extra-cellular and intra-cellular portions of

a cell. The total extra-cellular concentration of Nutlin, denoted by Ntot is defined

by;

Ntot = Nb +Ne, (3.4)

where Nb is the concentration of the blood plasma bound Nutlin. The Nutlin-

plasma binding data is fitted to the following equilibrium equation,

Nb = Bmax
KaNe

1 +KaNe

, (3.5)

where Bmax represents the concentration of total plasma protein binding sites, and

the constant Ka denotes the equilibrium association constant [82]. The second

portion of Ntot is the extra-cellular concentration of free Nutlin, denoted by Ne.

The concentration of Ne is relatively small due to substantial binding of Nutlin



Mathematical Model of p53 Pathway 35

with plasma. The extra-cellular free Nutlin concentration can be articulated in

terms of Ntot as;

Ne =
−(1 +KaBmax −KaNtot) +

√
(1 +KaBmax −KaNtot)2 + 4KaNtot

2Ka

. (3.6)

“N ′′e is the available concentration, to be imported inside the cell. The concen-

tration of the intra-cellular Nutlin, denoted by NUT is described by the following

equation;

d

dt
NUT = i1Ne + kd3 MDMi − kmNUT MDMa − e1NUT (3.7)

where MDMi represents the inactive form of MDM (due to binding with Nutlin),

NUT MDMa represents the active MDM present in MDM-Nutlin complex. The

constants kd3 and km are the dissociation and association rate constants of Nutlin

and MDM, respectively. The pharmacokinetic effects for Nutlin are incorporated

in the following equation

d

dt
Ntot = poralD δ1e

−δ1(t−t0) − δ2Ne, Ntot(t0) = 0, (3.8)

where poral describes conversion from mg Kg−1 to moles per distribution volume,

D is the drug dosage (in mg Kg−1) and t0 is the initial time for drug delivery [24].

In the current research, the effect of Nutlin dose on the p53 pathway is simulated

by integrating Hunziker et al., and Puszyński et al. models. The p53 dynamics

are taken from Hunziker et al., and Nutlin PBK dynamics from Puszyński et al.,

reintegrated into Mdm2 rate equation in (3.1), where Nutlin is added as a sink

term kmu. The model parameters used in the PBK model are presented in Table

3.2 with the associated units and their meaning. It is worth mentioning that

to integrate both models, the units are kept consistent. Hence, the parameters

derived from [24] are converted from sec to hr and from M to nM .

To achieve the required performance characteristics discussed earlier, we will need

to design a controller. Before the application of control to complex bio-systems,

like one we are dealing with, investigation for applicability of control design is
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Table 3.2: Definition of kinetic rate constants for Nutlin PBK model [24]

Name Definition Value

Bmax concentration of plasma protein binding sites 286× 10−3 nM

Ka equilibrium association constant in plasma 0.085× 10−3 nM

poral dose conversion factor for oral delivery 7.5nM/mg/Kg

δ1 Production rate of p53 0.719 hr−1

δ2 elimination rate constant 19.44 hr−1

i1 rate of Nutlin intracellular import 457.2 molec (hr nM)−1

kd3 Nutlin-Mdm2 dissociation rate 720 hr−1

e1 rate of Nutlin cell export 1.8 hr−1

required. The test of a system for the ability to achieve desired control performance

is called “controllability analysis”. The next section highlights the controllability

analysis for the p53 network model.

3.3 Controllability Analysis

Linear, as well as nonlinear approaches, are used to test controllability of a system.

In most cases the linear test is sufficient. The nonlinear systems can be linearized

for application of linear approaches. But in many cases, linear approaches are not

conclusive as was in our case. Hence, a Lie algebra based nonlinear controllability

analysis approach is applied.

Consider a nonlinear system of the form,

ẋ = f(x) + g(x)u, (3.9)

with f and g some smooth vector fields on Rn. The lie bracket of f and g is

another vector field [83], written as

[f, g] = ∇g f −∇f g, (3.10)
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where ∇g and ∇f are gradients of g and frespectively.

Generally the lie bracket of f and g is written as adfg (where ad represents the

“adjoint”), and the repeated Lie brackets are defined as

ad0fg = g,

adifg = [f, adi−1f g], i = 1, 2 . . . n. (3.11)

A lie bracket of two vector fields f and g is defined as;

adfg(x) = [f, g](x)

=
∂g

∂x
(x)f(x)− ∂f

∂x
(x)g(x), (3.12)

where, ∂g/∂x and ∂f/∂x are Jacobian matrices of g and f respectively.

According to Lie algebra, the nonlinear system (3.9) is controllable, if for any x0,

the controllability Jacobian matrix

Jc = [g(x), adfg(x), .............., adn−1f g(x)], (3.13)

have linearly independent columns, or the matrix have full rank.

Application of Lie algebra based controllability analysis defined in (3.13) to the

p53 model (3.2) with n = 4, the Jacobian controllability matrix Jc becomes;

Jc = [g(x) ad1fg(x) ad2fg(x) ad3fg(x)]. (3.14)

By using f and g matrices from (3.2), the Jc can be found. For example, ad1fg can

be computed as;

∂ g(x)

∂x
=


0 0 0 0

0 0 0 0

0 0 −km 0

0 0 0 0

 ,
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∂ f(x)

∂x
=


−kf x3 − α 0 −kf x1 kb + γ

2 kt x1 −β 0 0

−kf x3 ktl −kf x1 − γ kb + δ

kf x3 0 kf x1 −kb − δ − γ

 ,

and

∂ g(x)

∂x
f =


0

0

−km (−kf x1 x3 + δ x4 − γ x3 + kb x4 + ktl x2)

0

 ,

also,

∂ f(x)

∂x
g =


kf x1 km x3

0

−km x3 (−kf x1 − γ)

−kf x1 km x3

 .

Hence, the ad1fg = [f g] = ∂g/∂x f − ∂f/∂x g turns out to be,

ad1fg =


−kf x1 km x3

0

−km (−kf x1 x3 + δ x4 − γ x3 + kb x4 + ktl x2) + (−kf x1 − γ) km x3

kf x1km x3

 ,

Similarly, ad2fg and ad3fg can be computed as;

ad2fg = [f ad1fg], (3.15)

ad3fg = [f ad2fg]. (3.16)
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After substituting the parameter values from 3.1, the Lie Algebra based control-

lability matrix Jc becomes;

Jc =



0 −1.34x3x1

−48.85x4x1 −
3.75x2x1 +

x3(−1342.27−
9.93x4 +

x1(−9.66+6.90x1))

−542.3x24 − 5637.5x2 − 7.89x2x1 −
0.16x31 + x23(−6903.03 + (−51.08−
71x1)x1) + x4(−73288.− 41.7x2 +
806.168x1 + x3(38.7− 51.08x3 +

153.2x1)) + x3(−19462.9 +
x1(20531.2 + (−403.8− 35.5x1)x1))

0 0 0.0805362x3x
2
1

x1(4.39728x4x1 − 0.828364x23x1 +
0.338252x2x1 + x3(241.609 +

1.7879x4 + (1.03086−
0.828364x1)x1))

−200x3
−4.75x4−

0.36x2

2.11x2 +x4(86.45−
24.42x1) +
((−48.85−
6.90x3)x3 −

1.87x2 − 0.01x1)x1

−180.7c2 − 73288.x3 − 13806.1x23 +
x4(−26002.8 + (−542.3−

102.1x3)x3 − 13.9x2)− 1891.4x2 −
21.9x1 + (x4(−886.9− 376.9x3) +
x3(7.3 + x3(203.6 + 35.5x3)−
28.9x2)− 114.8x2)x1 + (0.06−

125.6x4 + 71x23 − 9.6x2)x21 − 0.1x31

0 1.3x3x1

48.8x4x1 +
3.7x2x1 +

x3(1342.2 + 9.9x4 +
(24.2− 6.9x1)x1)

542.3c2 + 5637.5x2 + x4(73288.+
41.7x2 + x3(177.7 + 51x3 −

153.2x1)− 7.3x1) + 69.3x2x1 +
0.1x31 + x23(6903.03 + x1(−24.1 +

71x1)) + x3(48724.4 +
x1(−20269.3 + x1(253.3 + 35.5x1)))



By looking at above controllability matrix, it is evident that no row or column

are linearly dependent upon each other. Hence, the final controllability matrix Jc

is full rank and it can be concluded that the considered mathematical model is

controllable.

The drug development is a costly and laborious process and needs improvements

in the accuracy too. Now due to available computing power, the in silico methods

are quite useful and can cost-effectively improve the overall development process.

The problem discussed in the previous chapter can be modeled in the control

systems paradigm, where the input to the system is the concentration of the drug

Nutlin and the relevant output is the p53 protein. It can be rightfully assumed

that for a cancerous cell p53 level should be relatively high and the Mdm2 level

should be reasonably low, which constitutes the control problem to be addressed

in the subsequent chapter.



Lyapunov Based Control Design 40

3.4 Summary

This chapter presented the selected control-oriented mathematical model for the

p53 pathway, along with the parameters and their definitions. To incorporate the

in vivo effects of the drug Nutlin, a PBK model is presented. Lastly, the controlla-

bility analysis is performed, which ensures that the current system is controllable.

For the design of a control system, multiple formats are used, mainly categorized

as linear and non-linear control design. Every scheme has its merits and demerits

depending upon the structure of the system and controller. Linear techniques can

be applied to nonlinear systems after linearizing the model. However, linear con-

trol techniques perform better only in the vicinity of an equilibrium point. Owing

to the fact that the current system is a complex nonlinear system so it is appro-

priate to use a non-linear control technique to achieve better results in the global

sense. In the subsequent chapters, two state of the art nonlinear techniques are

employed to design a control system for the selected p53 model, in order to obtain

a desired constant level of the p53 protein.



Chapter 4

Lyapunov Based Control Design

Lyapunov theory, introduced by the Russian mathematician Alexandr Mikhailovich

Lyapunov in late 19th century, has proven to be a most useful approach in studying

the stability of nonlinear systems. Lyapunov’s direct method is a mathematical

tool to analyze the stability of an equilibrium point. The method is based upon the

fact that if the total energy of a system continuously dissipates, then the system

should eventually settle down on an equilibrium point.

In system analysis, we assume that some kind of control function is already de-

signed. However, in some problems, it is desired to find a control law for the given

plant. For an autonomous system

ẋ = f(x, u), (4.1)

where x ∈ Rn is the state vector and control input u ∈ Rm, consider a candidate

control Lyapunov function (CLF) V (x), having the time derivative as V̇ (x) <

−W (x) ∈ R+. The aim of the feedback control design is to find a control law(
u = α(x)

)
that makes this candidate a real Lyapunov function. The control law

u is chosen such that it ensures that the close loop system’s equilibrium point x = 0

is globally asymptotically stable [83, 84]. The control design for the p53 pathway

based on Lyapunov’s Direct Method is discussed in the subsequent section.

41
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Figure 4.1: Block diagram of negative feedback control for Nutlin PBK dosage.

4.1 Lyapunov Based Control of p53 Pathway

For the production of a sustained p53 response, a two-loop negative feedback

strategy shown in Figure 4.1, is employed. The outer loop comprises the main

controller for the p53-MDM2 pathway. This nonlinear, Lyapunov based controller

determines the required amount of Nutlin in order to revive p53 protein. This

required amount of Nutlin is termed as a reference dosage or nref . Since our

goal is to reduce MDM2 as much as possible, so as to give some space to p53 for

growth. Physiologically, it implies that the reference dosage of Nutlin required

is determined by the nonlinear controller with the use of actual concentrations

or states of the system. This gives the reference Nutlin dosage which should be

present in the cell.

However, to maintain reference dosage in the cell, a negative feedback inner loop

is devised for the PBK dynamics of Nutlin. In the cascaded control arrangement,

both the loops are running simultaneously, where the reference dosage is being

generated by the outer loop and the inner loop tracks this reference dosage keeping

in view the cellular dynamics of the drug. The inner loop should be fast as

compared to the outer loop so that the reference value of the inner loop can be

considered relatively constant. The proportional, integral, and derivative (PID)

controller is a relatively simple and fast controller with ease of implementation,

especially if it is implemented in-vivo, as discussed in Section 2.3.1. Hence, a PID

controller is implemented in the inner loop to provide a dosage which is a function

of the error between the reference dosage (generated by the outer loop control)

and the Nutlin present in the cell.
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4.1.1 Selection of Attractor Point

The model of p53 as given by (3.1) can be employed to determine the equilibrium

point or an attractor point in the four-dimensional state space consisting of the

concentrations of p53, Messenger RNA, MDM2, and p53-MDM2 complex. To

determine an attractor point, equations in the model (3.1) are solved with their

left-hand sides made zero. Suppose we represent the p53 system model (3.1) by a

set of nonlinear differential equations

ẋ = f(x, u), (4.2)

where f is a 4 × 1 nonlinear vector function, u is the control input and x is the

4× 1 state vector. The equation 4.2 is numerically solved in MATLAB to find an

equilibrium point x∗, that satisfies

0 = f(x∗, u∗). (4.3)

Since it will be a system of four nonlinear equations, there will be more than one

solution. We will go for an attractor or equilibrium point that fulfills the following

conditions:

• The attractor point should be stable.

• It should consist of high p53 and low MDM2 concentration.

The stability of an attractor point can be determined by looking at the eigenvalues

of the Jacobian of (3.1) with respect to states evaluated at the equilibrium point.

If the real part of all eigenvalues is negative, then the equilibrium point is said

to be asymptotically stable. The purpose of choosing an equilibrium point with
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a higher concentration of p53 and a lower concentration of MDM2 is to aim for a

healthy cell.

In the absence of any control input, the physical system has only one equilibrium

point, i.e.,

x0 = [17.6 15.5 18.3 90.7]T . (4.4)

This equilibrium point represents the steady-state of the cancerous cells. The

eigenvalues of the system for the above equilibrium point are as follows: −198.58,

−5.4500, and −0.3200± 1.1800i, which clearly shows that the system is stable for

this equilibrium point. However, in the presence of control input, there are various

equilibrium points depending upon the value of the input.

Using above conditions, the following attractor is found suitable:

x∗ = [64.0169 211.3598 4.9701 90.318]T , (4.5)

where u∗ = 197.1297. The eigenvalues for this attractor point are found to be:

−3.9756× 104, −35.87,−7.82 and −0.60. It can be seen that all of the real eigen-

values are negative, hence, representing a stable system.

Once this equilibrium point is determined, then it would be desirable to drive

the system (3.1) to this equilibrium point in order to revive p53. The subsequent

sections further explain the procedure followed to design the control.

4.1.2 Control Design Procedure

In order to derive the system trajectories towards the equilibrium point (4.5), we

need to determine how far is the system from this equilibrium point in the four-

dimensional state space. From the system consisting of (3.1), the system states at
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any given time t can be defined as

x(t) = [x1 x2 x3 x4]
T . (4.6)

The output of the closed loop system is complete state vector x(t), which is fed

back to the nonlinear controller. In order to make the model-based control design

possible, the following assumptions are considered for the p53 model.

1. All of the state variables are assumed to be measurable,

2. The inter-cellular concentration of Nutlin is available.

4.1.2.1 Outer-loop Design

The difference between actual state vector x(t) and the desired state vector xdes

is the error to be minimized. Here, xdes is equal to the attractor point x∗, defined

previously in (4.5). The control objective is to derive the system trajectories to

this desired equilibrium point from arbitrary initial trajectories, i.e.

e = x(t)− xdes, (4.7)

Substituting x(t) and xdes (from (4.6) and (4.5)) into (4.7) gives

e =


e1

e2

e3

e4

 =


x1 − 64.0169

x2 − 211.3598

x3 − 4.9701

x4 − 90.318

 .

This e belongs to R4, taken as a measure of the cell on how far it is from p53

revival. Ideally, we would like this measure to be driven to zero so that the p53 in

the cell gets active. This driving of the cell will be achieved by the recommended

dosage of Nutlin in the cell termed as nref . The mechanism for the computation

of this variable is elaborated next.
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The half of square of the Euclidean norm can be taken as Lyapunov candidate

function:

E =
1

2
eT e. (4.8)

Using Lyapunov theory, it is known that the system (3.1) will reach the desired

equilibrium i.e., xdes, if the derivative of E is negative. The derivative of E can be

figured as

Ė = eT ė, (4.9)

which comes out to be

Ė = e1ẋ1 + e2ẋ2 + e3ẋ3 + e4ẋ4 (4.10)

= e1(σp − αx1 − kfx1x3 + kbx4 + γx4) + e2(ktx
2
1 − βx2) +

e3(ktlx2 − kfx1x3 + kbx4 + δx4 − γx3 − kmux3) +

e4(kfx1x3 − kbx4 − δx4 − γx4)

For Ė to be negative definite, the reference dosage or the control is chosen as;

nref =
k1e1

2 + k2e2
2 + k3e3

2 + k4e4
2 + %

x3 km e3 + kε
, (4.11)

where ki ∈ R and % is given as,

% = σp e1 + ktl e3 x2 − α e1 x1 +
(
− kf (e1 + e3)x1 − γ e3

)
x3 +(

(δ + kb) e3 + e1 (γ + kb)
)
x4 + (ktx

2
1 − βx2) e2 −(

γ x4 − (δ + kb)x4 − kf x1 x3
)
e4.

This choice of nref makes Ė < 0, which confirms the error convergence to zero.

The expression of the control input nref in (4.11), is the function of state errors

defined in (4.7). It is assumed that the system is away from its desired state

initially, so that the denominator does not become zero. Moreover, a term kε is
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added to the denominator of (4.11). where ε is a very small number i.e |ε| → 0 used

in the simulations to avoid singularity, which can come due to the error e3 in the

denominator of (4.11). Very small error e3 along with the ε makes the denominator

of (4.11) too small, in turn making nref huge. To avoid this problem, the coefficient

k ∈ R+ can be tuned during the in silico trials. If we had any performance issues,

then we could have used exponential stability argument to determine nref .

Owing to the presence of e3 in the expression for nref , the system can be taken

arbitrarily close to the desired point, i.e in a ball of small radius around the

equilibrium point. Once the system is in the ball then the control is made equal

to u∗ to make it go to the equilibrium point.

4.1.2.2 Inner-loop Design

To maintain nref in the cell, a negative feedback loop is devised for the PBK

dynamics of Nutlin, defined previously by Equations (3.8) and (3.7). The dosage

given to the patient should be a function of the error which comprises of the differ-

ence between the desired Nutlin concentration and the actual Nutlin concentration

present in the cell, as determined by the PBK dynamics stated in (3.8). The error

is defined as

en = nref − n, (4.12)

where nref is the command generated by the outer loop controller and n is the

actual amount of Nutlin present in the cell. On this error, a PID controller is tuned,

so that the error goes to a very small value in minimum time. The mathematical

expression for the control input (Nutlin dosage D), derived from a PID controller

implemented in parallel form is given as:

D = Kpen +Ki

∫
endt+Kd

d

dt
en, (4.13)

where Kp, Ki and Kd are the proportional, integral and derivative gains of PID

controller respectively. The control variable D is composed of three individual
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Figure 4.2: Structure of PID control with derivative filter for the p53 system

terms: the proportional term (proportional to the error), the integral term (pro-

portional to the integral of the error) and derivative term (proportional to the

derivative of the error). The controller in (4.13) can be represented in transfer

function form as:

C(s) = Kp +
Ki

s
+Kd s. (4.14)

The proportional control strives to reduce the error en, but mere proportional con-

trol is always left with a constant steady-state error. Increasing the proportional

gain further increases the oscillations and overshoot of the response. The integral

action makes sure that the output is in good agreement with the set-point (nref )

in steady-state. The Proportional Integral (PI) control is used to minimize the

error between nref and n, the objective is to achieve a zero steady-state error.

Increasing the integral gain makes the response faster, but also introduces oscil-

lations in the response. The purpose of the derivative control is to improve the

overall stability of the inner closed loop. The derivative control term is used to get

a smooth response (by minimizing the oscillations) and to speed up the response

of the inner loop.

The addition of the derivative term makes the controller transfer function proper.

Due to that, any high-frequency signal component in the reference causes the

control input to be unreasonably large. Therefore, the controller in (4.14) can
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not be implemented in practice. The problem highlighted above can be solved by

filtering the derivative action by a first-order low pass filter [85]. The modified

structure of the controller (shown in Figure 4.2) can be represented by the following

transfer function:

C(s) = Kp +
Ki

s
+Kd

N s

s+N
, (4.15)

where N is the filter coefficient, which sets the location of the pole in the deriva-

tive filter. The coefficient N should be selected such that it filters out the high-

frequency components in the reference, without affecting the dominant dynamics

of the controller. The subsequent section illustrates the obtained simulation results

for the discussed control strategy.

4.1.3 Results and Discussions

The effectiveness of the proposed control scheme is evaluated by the closed loop

simulation tests shown in Figs. 4.3(a) to 4.3(d). The initial value of states is cho-

sen to be x0 = [x10 x20 x30 x40]
T = [17 300 8 115]T , which represents the

cancerous state of a cell [27]. The desired state values, representing an operating

point for a healthy cell are defined in (4.5). The design coefficient for the outer

loop k, is selected as

k = 80, (4.16)

and the following set of design parameters are chosen for the inner loop PID

controller (by trial and error approach),

Kp = 68.3, Ki = 34.5, Kd = 22.1, N = 15.3, (4.17)

such that the desired performance specifications are met. It is evident from the

simulation results that the concentrations of all the state variables are reaching

their desired equilibrium values successfully. The steady state error for all the
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Figure 4.3: Comparison of desired and obtained concentrations of the p53
pathway system states

state variables is less than 0.5%, except for x1, which maintains the steady state

value within 1.5% error, nonetheless satisfying the desired design criteria. The

convergence time for all the state variables is within two hours, which is reasonable

for a slow process like the one we are dealing with. However, this may be further

reduced by tuning the gain of controllers as per therapeutic requirement.

The control effort presented in Figure 4.4 drags x0 to xdes. Figure 4.4 also presents

a comparison between reference Nutlin nref , generated by the Lyapunov controller

and the actual Nutlin within a cell n, produced by the inner loop PID controller.

Keeping in view the PBK dynamics of the drug, the PID controller ensures that

the Nutlin inside the cell successfully tracks the reference dosage, as can be seen

in Figure 4.4. After passing the initial bump, Nutlin remains around 200 mg/kg

which is in accordance with the experimental results conducted by [82, 86, 87],
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Figure 4.4: Comparison of reference Nutlin nref , generated by Lyapunov
controller and actual Nutlin within a cell n, provided by PID controller

where they used intravenous and oral drug delivery in the range of 10 to 400

mg/kg in a various range of intervals. A small downward bump in Nutlin dosage

can be seen initially, but after the state x3 is in the vicinity of x3des, i.e., ||e3|| < 1,

u takes on the equilibrium input value u∗ thereafter.

The control input for the Nutlin PBK dynamics in the inner loop is presented

in Figure 4.5. The initial high value is due to the fast inner loop control action.

Nevertheless, this can be reduced as per requirements by tuning the PID gains

accordingly.

In order to test the robustness performance of the controller, the system is sub-

jected to a vanishing input disturbance ζ (discussed later in Section 5.5). The

simulation results are presented in Figure 4.6. By looking at these results, it is

evident that states do not stay at the desired level when the system is subjected

to disturbance. It show that the current controller does not perform well in case

of disturbances. This technique lacks the capability to handle inaccuracies in the

model and external disturbances, which are inevitable in the physical systems.

Hence, we require a controller that effectively handles the uncertainties.
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Figure 4.5: Control input provided by PID controller to the PBK dynamics
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Figure 4.6: Robustness performance of the controller for disturbance ζ
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Moreover, the above-mentioned technique is based on certain assumptions. Therein,

all the state variables and the input drug are considered to be measurable, which is

not the case in actual scenarios. Despite the fact that the measurement techniques

have largely improved, achieving real-time measurement of the drug concentration

inside the cell remains a challenge. Another limitation of this approach is the

dependency on the equilibrium point. According to the literature, the required

amount of p53 in healthy cells is way more than depicted by the equilibrium point.

There is essentially a trade-off between choosing an equilibrium point and having

the desired amount of p53 in the cell.

4.2 Summary

In this chapter, the integrated model is used to achieve a drug dosage strategy for

the reactivation of wild-type p53. The problem is defined in the control system

paradigm where a two-loop feedback control strategy is employed to drag the

system trajectories to the attractor point. The outer loop comprises a Lyapunov

based nonlinear controller, which determines the required amount of Nutlin i.e

the reference dosage. In order to maintain the reference dosage inside the cell, a

PID based inner loop controller is devised for the PBK dynamics of Nutlin. The

simulation results show that the trajectories are successfully moved to the desired

point asymptotically.

The assumptions and limitations of the discussed technique demand for a sophis-

ticated control strategy, which accounts for all the physical issues. Hence, the

next chapter presents a sliding mode control based robust technique for the p53

pathway controller design.



Chapter 5

Sliding Mode Controller-Observer

Design

The limited control over the selection of the equilibrium point makes it difficult to

target for a specific amount of p53 concentration. In the following control strate-

gies, the dependency on the equilibrium point, faced by the previous technique, is

removed. The control problem is focused upon directly targeting the level of p53

protein. Furthermore, the issues mentioned for Lyapunov control in the previous

chapter demand a more sophisticated control strategy, which is capable of deliv-

ering the required performance characteristics, keeping in view all the practical

considerations. In the subsequent sections, two variants of a state of the art con-

trol technique, Sliding Mode Control (SMC), are employed to design a feedback

control system for the p53 pathway. The main issues accompanied by SMC, i.e.

chattering and discontinuous control input are handled by employing a modified

algorithm based on the theory of dynamic sliding mode control (DSMC). The

robustness of the proposed scheme is accessed by introducing parametric uncer-

tainties, measurement noise, and an input disturbance. Moreover, a quantitative

comparison is also made between the DSMC and the conventional SMC. The sub-

sequent section presents the basic theory of the SMC technique, which serves as

the basis for the SMC based control design for the p53 pathway system.

54
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5.1 Sliding Mode Control

The theory of variable structure control (VSC) was first proposed by Emelyanov

and his co-researchers in the early 1950’s [88]. The switching control law designed

by VSC showed fruitful results in comparison to the existing feedback techniques

at that time. Over the years, the sliding mode control (SMC) has proven to be

a preferred choice of control design for nonlinear systems operating under the

uncertainty conditions. The major advantages include insensitivity to parameter

variations and disturbances, which eliminates the need for exact modeling. The

discontinuous control action can be easily implemented through pulse width mod-

ulation (PWM) switching devices [89, 90]. Owing to these attractive properties,

SMC has proven to be a favorable choice in the wide range of engineering ap-

plications including electric drives, robotics, ground, and air vehicles and process

control.

The basic idea of the SMC is to specify a function of the system states, and design

a controller to regulate this function to zero, which in turn will make the system to

behave in accordance with the selected parameters. This function is termed as the

switching manifold (in the literature it is also called a switching surface, sliding

surface or hyperplane). The controller strives to bring the system dynamics to

this manifold with the help of a discontinuous control law [89].

The SMC is established in two phases, known as “Reaching phase” and “Sliding

phase” [91]. In the reaching phase, the discontinuous control law drives the system

dynamics towards the predefined sliding surface. When the system reaches on the

sliding surface, the structure of the feedback loop is adaptively altered and the

same control law slides the system states towards an equilibrium point along the

manifold, this phase is known as “sliding phase” [89]. During the sliding phase,

the constrained motion of the SMC is termed as “sliding mode”. If some n-

dimensional system has m-dimensional control input, then the system in sliding

mode evolves with n − m states. This order reduction provides invariance to

parametric variations and external disturbances. Besides, the complexity of the

system is also reduced, due to the decoupling of system motion into independent
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components with lower dimension. The subsequent section includes the design

strategy of SMC.

5.1.1 Sliding Mode Control Design Procedure

Consider a nonlinear control affine system

ẋ = f(x, t) +B(x, t)u (5.1)

where x ∈ Rn is the system states vector, f ∈ Rn is a nonlinear function of the

states, B ∈ Rn×m is the input matrix and u ∈ Rm is the input vector. A set of

switching surfaces S is defined as

S = {x ∈ Rn : s(x) = [s1(x), . . . , sm(x)]T} (5.2)

then the traditional SMC design procedure can be partitioned into sub problems

of lower dimensions.

5.1.1.1 Switching Surface Design

The switching surface is designed, by keeping in view the desired close loop dy-

namical properties of the system. The “sliding mode”, which is the “motion of

the system as it slides along the surface” [92] is defined by

s(x) = Gx = 0, (5.3)

where G is an m× n matrix of gradients of sliding variables i.e. G = ∂s
∂x

.

Sliding surface design is usually application-specific, e.g. in robotics, the sliding

surface is generally S = Cx, where C is the gain matrix and x is the state vector.

It can also be designed as an error surface e.g. S = r− y, where r is the reference
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value and y is the controlled output. Moreover, for the systems in canonical form,

the surface is chosen as a Hurwitz polynomial, where the surface is a linear function

of state variables.

5.1.1.2 Existence of Sliding Mode

This step ensures that the system states converges on the switching surface in finite

time. Once the system has acquired the sliding motion, the designed controller

should be capable to keep the system in sliding motion in the presence of modeling

inaccuracies and external disturbances. This is ensured by setting a condition on

the control law known as “ reachability condition”. General approach is to perform

stability analysis in presence of uncertainties. Consider a quadratic type candidate

Lyapunov function

V (x) =
1

2
sT (x) s(x), (5.4)

then the first order time derivative becomes

V̇ (x) =
1

2
ṡT (x) s(x). (5.5)

The switching surface is made attractive if the controller ensures the reachability

condition i.e.

ṡT (x) s(x) < 0. (5.6)

The above condition guarantees the asymptotic convergence of system states to the

sliding manifold. However, if the finite time convergence is required, reachability

condition is modified to the so-called η-reachability condition [93]

ṡT (x) s(x) ≤ −η |s(x)|, (5.7)

where η is a positive constant, which ensures that V̇ remains negative definite.

The inequality in (5.7) guarantees that sliding mode is enforced after a finite time
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interval ts [94], defined by

ts ≤
2
√
V (0)

η
. (5.8)

Hence, the control u, that satisfies the condition in (5.7) will drive the sliding

variable s(x) to zero in finite time defined by ts, and will strive to keep it that way

thereafter.

Generally the control law is selected as

u = ueq + ud, (5.9)

where ueq is the equivalent control term, taken as a function of system states,

found by solving ṡ = Gf + GB ueq = 0, such that it cancels out all the known

terms in expression of ṡ, implying that

ueq(x) = −
[
G(x)B(x)

]−1
G(x) f(x). (5.10)

Moreover, ud in (5.9) is the discontinuous term, usually taken as ud = −Msign(s),

where M ∈ R+. The discontinuous term ensures finite time convergence to the

chosen sliding surface, in presence uncertainties. Moreover, sliding mode is insen-

sitive to external disturbances if it satisfies the so-called “matching condition”.

The matching condition is satisfied if the disturbance acts exactly in the input

channel, or we can say that the disturbance is in the range space of input matrix

B.

5.2 Sliding Mode Control of p53 Pathway

The SMC, due to its inherent properties like robustness against model imperfec-

tions and order reduction, has been widely used for a variety of nonlinear systems.

It tries to bring the system dynamics to a manifold, known as switching surface.

This predefined manifold is achieved with the help of a discontinuous control law
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[89]. The sliding surface is independent of the modeling uncertainties and distur-

bances, hence provides the robustness property. In contrast to the Lyapunov based

control, which offers asymptotic convergence of the error dynamics, the SMC, due

to the inclusion of a discontinuous switching term, ensures finite-time convergence

towards the sliding manifold. The next sections illustrate the SMC based, control

design procedure for the p53 pathway system.

5.2.1 Problem Formulation

It is desired to design such a control system that maintains the level of the p53

protein at a desired level i.e x1d. The control problem has to be solved in the pres-

ence of modeling inaccuracies, measurement noise, and external disturbances. The

variation in certain model parameters and a matched input disturbance ζ is in-

cluded in the model. Therefore the control problem can be rephrased as to achieve

a desired constant level of x1, i.e x1 → x1d, in the presence of parametric uncer-

tainties, measurement noise and the input disturbance ζ, while utilizing minimum

control input. The maximum allowed control input (drug dosage) is 400mg/kg.

Due to the fact that all state measurements are unavailable, the control design

becomes more challenging.

5.2.2 Outline of the Design Procedure

A generic procedure to design an SMC based control system is outlined below;

1. The sliding variable s is selected, such that the establishment of sliding mode

leads to the desired properties. In an arbitrary finite dimensional system

having n state variables, i.e. x ∈ Rn, sliding mode is established when s(x)

and ṡ(x) have opposite signs.

2. A discontinuous control is selected to enforce the sliding mode, i.e. such that

s(x) and ṡ(x) have opposite signs.
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3. Analysis of stability of the zero dynamics.

The complete schematic for the feedback control systems is depicted in Figure

5.1. The controller computes the control input u, depending upon the difference

between x1 and x1d. The measurement time for the available states is quite small

as compared to the characteristics time for the proteins, therefore the dynamics

of sensors are ignored. Moreover, the actuator dynamics are also not considered.

5.2.3 Selection of the Sliding Variable

The design procedure for the selection of sliding variable s consists of two steps:

First the variable x3 is handled as a fictitious control, represented by a state

function x3f , defined by

x3f =
1

kfx1

(
σp − αx1 + (kb + γ)x4 + k(x1 − x1d)

)
, (5.11)

substituting x3 = x3f in (3.1), yields

ẋ1 = −k(x1 − x1d), (5.12)

The solution of (5.12) is given as

x1(t) = x1d +
(
x1(0)− x1d

)
e−kt. (5.13)

For a positive value of k, x1 → x1d asymptotically.

The second step employs selection of the real control u such that

x3 = x3f . (5.14)

Therefore, the sliding surface is chosen to be the error between x3 and x3f i.e,

s = x3 − x3f , (5.15)
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Figure 5.1: Sliding mode control implementation scheme-I

and the control input is chosen to be a discontinuous function

u = Msign(s), M > 0. (5.16)

The problem in (5.14) is solved should sliding mode occur on s = 0.

5.2.4 Existence of Sliding Mode

The existence of sliding mode can be analyzed by taking a positive definite Lya-

punov function

V =
1

2
s2 > 0. (5.17)

The time derivative of the Lyapunov function in (5.17) is found to be

V̇ = sṡ. (5.18)

The original system includes parameter variations and external disturbance. To

find stability of the original system we consider the time derivative of the perturbed

sliding variable i.e., ṡ = ẋ3 − ˙x3f . The expressions ẋ3 and ˙x3f can be found from

(3.2) and (5.11), respectively.
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Consequently (5.18) takes the following form

V̇ = s
(
θ(x, t) + υ(x, t)− kmx3Msign(s) + kmx3ζ

)
,

= s − kmx3M |s|+ θ(x, t) + s υ(x, t) + s kmx3ζ,

≤ −Mx̄3km|s|+ |s|Θ + |s|Υ + |s|x̄3kmζ0,

≤ −|s|
(
Mx̄3km −Θ−Υ− x̄3kmζ0

)
. (5.19)

Where ||θ(x, t)|| ≤ Θ ∈ R+ contains the nominal model parameters and ||υ(x, t)|| ≤

Υ ∈ R+ accommodates the parametric uncertainties. The mathematical expres-

sions for θ and Υ are given as

θ(x, t) =
(
ktlx2 − kfx1x3 + (kb + δ)x4 − γx3

)
−(

1

x21

(
(kb + γ)(x1ẋ4 − x4ẋ1)− (σp − kx1d)ẋ1

))
,

Υ(x, t) =
1

x21

(
∆γ(x1ẋ4 − x4ẋ1)−

(σp − kx1d)(∆γx4 −∆kfx1x3)

)
.

It is pertinent to mention that x3 always satisfies the condition x3 > x̄3 > 0. If

the condition M ≥ (τ + Θ + Υ + x̄3kmζ0)/(x̄3km) holds, where τ ∈ R+, then time

derivative of Lyapunov function becomes

V̇ ≤ −τ
√

2V , (5.20)

The inequality in (5.20) guarantees that sliding mode(s = 0) is enforced after a

finite time interval ts [94], characterized by

ts ≤
√

2V s(0)

τ
. (5.21)

After the establishment of sliding mode, x3 = x3f and eventually x1 = x1d. Hence,

the control (5.16), satisfying condition in (5.20) will drive the sliding variable s to

zero in finite time, and will strive to keep it that way thereafter.
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5.2.5 Stability of the Zero Dynamics

It is mandatory to check stability of zero dynamics after sliding mode has been

established. The relative degree r of sliding variable is equal to 1, as u appears

in ṡ. Therefore the system exhibits zero dynamics involving states x2, x3 and x4.

Under sliding mode, s = 0 ⇒ x3 = x3f , and x1 = x1d. Now the zero dynamics is

governed by

ẋ2 = kt x
2
1d − β x2, (5.22)

ẋ4 = kf x1d x3f − (kb + δ + γ)x4,

= kfx1d

( 1

kfx1d

(
σp − αx1d + (kb + γ)x4

))
− (kb + δ + γ)x4,

= (σp − αx1d)− γ x4. (5.23)

Equations (5.22) and (5.23) are first order linear differential equations, therefore,

the boundedness of zero dynamics is observed analytically for x2 and x4. The

solutions of the ODEs are given by

x2(t) =
(
x2(0)−Θz

)
e−βt + Θz, (5.24)

x4(t) =
(
x4(0)− ξ

)
e−γt + ξ, (5.25)

where Θz, ξ ∈ R+ are given by

Θz =
kt x

2
1d

β
,

ξ =
σp − αx1d

γ
.

It is obvious from (5.24) and (5.26), that x2 and x4 are bounded.

The control law (5.16) directly depends upon variables x1, x3 and x4. The measure-

ments of only x1 and x3 are available, hence there is a need to design an observer

to estimate the unknown state x4. The discussion regarding state observer will be

presented in Section 5.2.6. Figure 5.1 illustrates the overall implementation scheme
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of the sliding mode controller in conjunction with the reduced-order sliding mode

observer.

It is worth mentioning that we don’t need x2 in the control explicitly, but to enforce

sliding mode, x2 must be available. Sliding mode existence condition is based on

inequality (5.19), therefore it is sufficient to know an upper estimate x2max only.

It demonstrates the robustness of sliding mode with respect to unknown state x2.

5.2.6 Sliding Mode Observer

The state estimation using sliding modes has been conducted for several years. A

sliding mode observer (SMO) is based upon the same design theory and reasoning

as the sliding mode controllers. An SMO guarantees finite time convergence by the

introduction of the sliding mode through a discontinuous output injection term.

This injection term induces the sliding mode on the known output error variables.

Subsequently, the remaining observer states converge to the actual states according

to the equivalent value of the injection in sliding mode [95, 96].

As ideal sliding mode does not exist in practice, hence the trajectories undergo

chattering around the manifold. In sliding mode, the discontinuous input can be

considered as a combination of an equivalent control term (average value of the

discontinuous control) and a high-frequency switching term. When the discontin-

uous input is passed through a low pass filter, for which the cutoff frequency (fc)

holds the following properties:

1. fc is less than that of the switching frequency,

2. fc is greater than the maximum frequency of the system dynamics,

then the high-frequency component is eliminated and remaining is the equivalent

control term which is a continuous state function [97]. In other words, the filter

should have a sufficiently small time constant (Tc), which allows for the slow

components of the motion (equivalent control component) to pass, and should be

large enough to block high-frequency components.
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Implementation of the control discussed in Section 5.2 requires variable x4, which

can be found by using a reduced order state observer. The observer eliminates

the need to estimate the state variables which are readily available. The control

input u (5.16) is a function of states x1, x3 and x4. The unknown state variable

x4 can be estimated by enforcing sliding mode on the error term x̃1, equal to the

difference between its real value x1 and the estimate x̂1. The SMO equation is

defined in terms of the time derivative of x̂1, taken as

ˆ̇x1 = σp − αx1 − kfx1x3 + µsign(x̃1), (5.26)

where

x̃1 = x1 − x̂1, (5.27)

The error dynamics of the SMO is obtained by computing the time derivative of

x̃1, given by

˜̇x1 = ẋ1 − ˆ̇x1,

= (kb + γ)x4 − µsign(x̃1). (5.28)

The sliding mode with x̃1 = 0 is established in finite time, if µ > |(kb+γ)x4max|. In

the perspective of SMO, the sign(x̃1) term is the input, which enforces the sliding

mode. The equivalent value of this term can be found after replacing x̃1 = ˜̇x1 = 0

in (5.28). Then sliding mode equation is defined by equivalent control [90]

(
µsign(x̃1)

)
eq

= (kb + γ)x4, (5.29)

which can be obtained by a low pass filter, having the signal µsign(x̃1) as its input

and z as its output. The transfer function of the first order low pass filter can be

presented as;

z =
µsign(x̃1)

τs+ 1
,
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which can be written as;

τ ż + z = µsign(x̃1),

hence, the output of the filter is the equivalent control part, under the following

ideal condition;

lim
z→0

z =
(
µsign(x̃1)

)
eq
.

Eventually x4 can be obtained as

x4 =
z

(kb + γ)
. (5.30)

Figure 5.1 illustrates the overall implementation scheme of the SMC in conjunction

with the reduced-order SMO.

Although the discontinuous control u in (5.16) provides robustness against mod-

eling uncertainties, but the modeling imperfections can result in an unwanted

high-frequency motion, called chattering. In the subsequent section, this issue

is further discussed and a modification in the existing technique is proposed to

suppress the chattering.

5.2.7 The Chattering Problem

In an ideal sliding mode, the control oscillates with infinite frequency and the

states reach at s = 0 in a finite time. Whereas, ideal systems do not exist in prac-

tice, therefore, in the real sliding mode, the trajectories merely reach the vicinity

of s = 0 and undergo vibrations with finite frequency, usually referred to as the

“chattering phenomenon”, depicted in Figure 5.2. During this high-frequency mo-

tion, the system is unable to maintain its trajectories on the switching manifold,

rather they cross it. The chattering is mainly caused by the imperfections in
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Figure 5.2: The chattering phenomenon [92].

switching devices and inherent delays. This involves fast switching of the discon-

tinuous control implementation, which may excite the unmodeled dynamics. The

chattering also leads to high wear and tear of the mechanical components being

used as actuators for the plant. Moreover, chattering may lead to lower control

accuracy.

In many practical control systems, it is desired to avoid the chattering phenomenon

by rather providing a continuous/smooth control signal. The requirement of

smoothness in control input and the limitations in actuators for biological con-

trol processes limit the application of discontinuous SMC. The inherent properties

associated with the SMC (i.e., robustness and parameter invariance) can still be

exploited by modifying the discontinuous controller. Therefore, many procedures

have been evolved in order to reduce or eliminate the chattering, see for example

[98]. However, there is generally a trade-off between the chattering reduction and

the robustness properties of SMC. Keeping that in mind, many variants of SMC

are introduced, one of them is the dynamic sliding mode control (DSMC). In the

subsequent section, we discuss the modified control strategy in order to obtain a

continuous and smooth control input.

5.3 Dynamic Sliding Mode Control

The smoothness of the control law is an important requirement for controller real-

ization in silico due to the physical nature of the biological actuators. Moreover,
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overshooting and instantaneous error correction by SMC is typically not applica-

ble in fairly slow biological systems. The requirement of smoothness in control

input has limited the application of discontinuous SMC in biological control. The

inherent properties associated with the SMC (i.e., robustness and parameter in-

variance) can still be exploited by shifting the discontinuous sign function in the

time derivative of the control input. Accordingly, a continuous control input can

be acquired and the chattering phenomenon can be sufficiently reduced [99]. The

design procedure for DSMC is elaborated in the subsequent section.

5.3.1 Control Design Methodology

Consider a nonlinear system as

ẋi = xi+1, i = 1, 2, 3, . . . , n− 1,

ẋn = f(x) + g(x)u+ d(t), (5.31)

y = xi.

Where x ∈ Rn is the states vector, y is the output, f(x) and g(x) are some known

smooth functions, and d(t) is an uncertainty with |d(t)| ≤ D0, |ḋ(t)| ≤ D. The

tracking error and the switching function are respectively defined as

e = y − yr, (5.32)

s = αe+ ė, (5.33)

where yd is the desired output and α ∈ R+. The sliding motion i.e. s = ṡ = 0 is

governed by ė = −α e. The positive values of the control parameter α guarantees

that e → 0 when t → ∞, moreover, the rate of convergence is also governed by

choice of c. Subsequently, the time derivative of the switching surface becomes

ṡ = αė+ ë = f(x) + g(x)u+ d(t) + ÿd + αė (5.34)
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The desired trajectory tracking for the output is achieved with the choice of sliding

function proposed in (5.33). A new dynamic sliding manifold σ is defined in terms

of the sliding manifold s. i.e.

σ = ṡ+ λs, (5.35)

which can be considered as a filtered version of s. Here, the gain λ ∈ R+, ensures

a vanishing tracking error i.e. σ = 0 =⇒ ṡ = −λs, hence, e→ 0 and ė→ 0.

5.3.2 Stability Analysis

Consider a quadratic type candidate Lyapunov function of the form

V (σ) =
1

2
σ2 > 0, ∀σ 6= 0. (5.36)

then the first order time derivative becomes

V̇ (σ) = σ̇σ. (5.37)

For asymptotic stability, the reaching condition must be satisfied, i.e., V̇ (σ) < 0,

for σ 6= 0. Moreover, the finite time convergence of the sliding surface can be

achieved if V̇ satisfies η-reachability condition [93] i.e.,

V̇ (σ) = σ̇ σ ≤ −η |σ|, (5.38)

where η is a positive constant, which ensures that V̇ (σ) remains negative definite.

The inequality in (5.38) guarantees that sliding mode is enforced after a finite time

interval ts [94], defined by

ts ≤
2
√
V (0)

η
. (5.39)

Hence, the control u, that satisfies the condition in (5.38) will drive the sliding

variable σ to zero in finite time defined by ts, and will strive to keep it at sliding
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surface thereafter. The corresponding control law can be selected in the form of

derivative of input u i.e.,

u̇ = ν = ηsign(σ). (5.40)

It is evident that the switching term only effects the first time derivative of the the

control input. The injection of the input to the system is done after an integra-

tion, which leads to continuous and smooth control input, hence, the chattering

phenomenon is suppressed.

5.4 DSMC Control Algorithm for p53 Pathway

As the control input cannot be discontinuous so the discontinuous sign function

is shifted in the time derivative of the control input. The modified technique is

inspired by dynamic sliding mode control (DSMC), which provides a continuous

control input along with the inherent properties of SMC. A new sliding variable is

proposed, which shifts the discontinuous function (5.16) into the first order time

derivative of the control input. The desired trajectory tracking for the output is

achieved with the choice of sliding function proposed in (5.15).

A new sliding manifold σ is defined in terms of the sliding manifold s. i.e.

σ = ṡ+ λs, (5.41)

where s is given by (5.15), and ṡ is defined by

ṡ = θ(x, t) + υ(x, t)− kmx3Msign(s)− kmx3ζ. (5.42)

The dynamics of the sliding mode (σ = 0) is governed by

ṡ+ λs = 0, (5.43)

where λ > 0 defines convergence rate of s.
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Figure 5.3: Control implementation scheme-II

The tracking error vanishes under the sliding mode i.e. σ = 0 =⇒ s = 0, then

x3 = x3f , and x1 = x1d. This new sliding surface can be considered as a filtered

version of s, with u̇ = ν, where

ν = κsign(σ). (5.44)

The complete implementation scheme with the modified controller is presented in

Figure 5.3.

5.4.1 Existence of Sliding Mode

The existence of the sliding mode for the modified control design is also analyzed

by taking a positive definite Lyapunov function

V (σ) =
1

2
σ2 > 0, (5.45)

The time derivative of the Lyapunov function (5.45) is computed as

V̇ = σσ̇. (5.46)
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By considering the parametric perturbations and the disturbance, the time deriva-

tive of sliding variable can be found from (3.2) and (5.41). Consequently (5.46)

takes the following form

V̇ = σ
(
Ω(x, t, u)− km x3(u̇− ζ̇) + Ψ(x, t)

)
,

V̇ = −κ km x3σ sign(σ) + σΩ(x, t, u) + σ km x3ζ̇ + σΨ(x, t),

V̇ ≤ −κ km x̄3|σ|+ |σ|Ω0 + |σ| kmx̄3ψ0 + |σ|Ψ0,

V̇ ≤ −|σ|
(
κ km x̄3 − Ω0 − km x̄3ψ0 −Ψ0

)
. (5.47)

Where the function ||Ω(x, t, u)|| ≤ Ω0 ∈ R+ contains the nominal model parame-

ters and is defined as

Ω(x, t, u) =
S1 − S2 x1 ẋ1 − S3 x1

2 − S4 x1
2

kf x13

S1 = −N x1(2 kt x1 ẋ1 − β x2) + (Ox4 + 2 k x1des − 2σ) ẋ1
2

S2 = O ẋ4 + x1
2 x3 kf

2 + λN

S3 = kf x1 (P + λQ) +
(
− kf (δ + kb)x1 + λ (γ + kb)

)
ẋ4

S4 = (γ + kb)
(
kf (x1 ẋ3 + ẋ1 x3)− (kb + δ + σ)ẋ4

)
where,

N = k x1des − (kb + γ)x4 − σ

O = −2 (γ + kb)

P = (km u+ kf x1 + γ) ẋ3 − ktl ẋ2

Q = kf x1x3 − (δ + kb)x4 + (km u+ γ)x3 − ktl x2

and ||Ψ(x, t)|| ≤ Ψ0 ∈ R+ accommodates the parametric uncertainties.

The sliding mode can be enforced and reachability condition (V̇ ≤ 0) can be

achieved by selecting a discontinuous controller gain κ ≥ (ε + Ω0 − km x̄3ψ0 +

Ψ0)/(km x̄3), where ε ∈ R+.
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The time derivative of V becomes

V̇ ≤ −
√

2V ε, (5.48)

and the system trajectories will converge to the desired state within finite time ts,

defined by

ts ≤
√

2V σ(0)

ε
. (5.49)

The new sliding variable σ (5.41), associated with the DSMC, requires the states

x2 and x4. The estimation of the x4 has been discussed in Section 5.2.6, whereas,

the reconstruction of x2 is discussed in the subsequent section.

5.4.2 Sliding Mode Observer

Figure 5.3 represents the complete implementation scheme for the modified con-

troller accompanied by the observer. The estimation of x2 is carried out in a

similar way as the reconstruction of x4 has been performed. Here, the sliding

mode is enforced in the manifold x̃3 = x3− x̂3. The structure of the reduced order

SMO is

ˆ̇x3 = (kb + δ) x4 − kfx1x3 − (γ + kmu)x3 + ϑsign(x̃3). (5.50)

It is worth mentioning that x4 is used instead of x̂4 (estimated in Section 5.2.6) in

(5.50). By selecting a suitable discontinuous gain µ, it has been ensured that x4 is

already estimated during the estimation of x2. From (5.26) it can be seen that the

system trajectories reach the sliding manifold x̃1 = 0 in finite time ts1, which is

inversely proportional to the discontinuous gain µ [94]. Afterwards, x4 is estimated

by simply applying a low pass filter, as in (5.30). Similarly, the system trajectories

in (5.50) reach the sliding manifold x̃3 = 0 in finite time ts2, depending upon the

discontinuous gain ϑ. The discontinuous gain µ >> ϑ =⇒ ts1 << ts2, hence,
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the sliding manifold x̃1 = 0 is achieved much faster than the manifold x̃3 = 0.

Consequently, during the estimation of the x2, the state x4 is already estimated.

Now, the error dynamics of the SMO is obtained by computing the time derivative

of x̃3, which is given by

˜̇x3 = ẋ3 − ˆ̇x3,

= ktlx2 − ϑsign(x̃3). (5.51)

The sliding mode is established if ϑ > ktl||x2||, and the sliding mode equation is

defined in terms of the equivalent control

(
ϑsign(x̃3)

)
eq

= ktlx2,

which can be obtained by employing a low pass filter, characterized by

τ ż2 + z2 = ϑsign(x̃3),

lim
z2→0

z2 =
(
ϑsign(x̃3)

)
eq
. (5.52)

Consequently, x2 is determined as

x2 =
z2
ktl
. (5.53)

It is worth mentioning that there is no need to estimate x2 if ṡ is obtained by a

differentiator.

5.5 Results and Discussions

In this section, a thorough simulation analysis for the sliding mode controller and

observer pair is described for the regulation of p53 protein. Moreover, a comparison

between the conventional SMC and DSMC techniques is also presented. It is worth

mentioning that for a fair comparison between both techniques, the discontinuous

gains (M and κ) are kept identical. Furthermore, the design parameter λ in the
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case of DSMC is chosen such that the s in (5.43) converges in minimum time. For

simulations of SMC and DSMC, the design parameters are selected as

M = 90, κ = 10, λ = 100.

Moreover, the design parameters for SMO are chosen as

µ = 2000, ϑ = 50.

The challenges faced while implementation of these feedback control techniques

for biological systems are catered by a rigorous simulation analysis in presence of

the practical issues.

A major challenge while developing computational models for complex biological

systems is the existence of multiple free parameters. The dynamic behavior of the

model is often highly dependent upon these parameters. Although high accuracy

methods for discovering interactions are well developed, accurate methods for mea-

surement of parameters are still limited [100]. Traditionally these parameters are

estimated using regression techniques, by optimizing the consensus between avail-

able data and the model. The parameters estimated using in-vitro measurements

can lead towards inaccuracies due to differences in in-vitro and in-vivo conditions.

Moreover, the amount of measured data is usually limited due to expensive and

time-consuming techniques. Consequently, these approaches often yield paramet-

ric uncertainties. For the p53 model discussed in [27], most of the parameters

mentioned in Table 3.1 are constrained however, the parameters kf , δ and γ can

vary in accordance with the the environmental conditions, application of different

stresses, and due to cell-cell variability. In order to study the robustness property

of the sliding mode control for the p53 pathway, 20% parametric uncertainties

are introduced in the nominal parameters. The uncertain parameters are listed in

Table 5.1. It is worth mentioning that the controller and estimator contain the

nominal system parameters.

A matched input disturbance ζ is also considered to test robustness. Here, ζ
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is the disturbance, faced by cellular structure due to intrinsic noise, unwanted

interference from neighboring pathways, undesirable signals from neighboring cells

and environmental stresses [101]. All the above effects are lumped together to form

a single disturbance, which indicates the loss in the amount of the drug Nutlin. Due

to the fact that the exact function of disturbance is unknown, a hypothetical profile

is assumed. This profile follows the time profile of a typical drug concentration

in the human body (in the blood) following an oral delivery [102]. The time

profile for the vanishing disturbance is shown in Figure 5.4. Moreover, the effect

of measurement noise has also been incorporated. It is assumed that both the

measurements from the sensors i.e., x1 and x3 are noisy, and the average error in

each measurement is 1%. In this regard, an additive white Gaussian noise (AWGN)

with zero mean and a variance of 1×10−4 is added in each measurement of the p53

plant. The robustness of the proposed control scheme is assessed by introducing

parametric uncertainties, external disturbance and sensor noise simultaneously.

According to different studies conducted on cancerous cells in literature, it is

well noted that in normal healthy cells concentration of p53 (x1) is around 400

nanomoles (nM). In cancerous cells, p53 is prohibited to raise its level so it remains

in a lower concentration state. In the simulations x1 is initialized for a case of

cancerous cell i.e 17nM [27], and desired concentration of p53 (x1d) is set to 400

nM in the controller. It is also evident from the literature that sustained p53

concentration is possible only if MDM2 concentration is kept low. The designed

controller strategy ensures a sustained high level of p53 (Figure 5.5) and lower

concentration of MDM2 (Figure 5.6). It is evident from Figure 5.5 that an excellent

tracking behavior of the output (p53) is obtained, level of the p53 protein rises

quickly after application of controller and maintains its desired value at steady

Table 5.1: Parameters subjected to variations

Parameter Nominal Value Actual Value Unit

γ 0.2 0.24 hr−1

δ 11 13.2 hr−1

kf 5.1428 6.168 nM−1hr−1
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Figure 5.4: Time profile of the disturbance
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Figure 5.5: Output of the p53 pathway for both controllers

state. The results show that by the action of the chemotherapy drug Nutlin,

MDM2 is blocked to interact with p53. Therefore, the p53 protein is able to raise

its concentration to the desired level.

Figure 5.5 compares the simulation results for x1, obtained from both SMC and



Sliding Mode Controller-Observer Design 78

0 1 2 3 4 5
0

2

4

6

8

10

12

Figure 5.6: Concentration of MDM2 for both controller

DSMC. As can be seen in Figure, x1 reaches the desired value in 45 minutes for

SMC, whereas, it takes 60 minutes to reach for DSMC. It is worth mentioning

that these results are far superior as compared to the results obtained through

Lyapunov based technique, presented in Chapter 4, Figure 4.3. Where the settling

time for p53 was about 2 hours.

Figure 5.6 represents the concentration of MDM2, and compare the simulation

results obtained by SMC and DSMC. It is observed that MDM2 is quite smooth in

the case of DSMC as compared to the SMC, due to the effect of continuous control.

The continuous control introduces a small overshoot in the output and slightly

increases the settling time, but that all comes with the advantage of chattering

reduction in the system. The corresponding tracking error (e = x1 − x1d) in the

case of SMC and DSMC is depicted in Figure 5.7.

The control action by the ideal sliding mode is not suitable for real-time ap-

plications due to excessive chattering. One solution is to approximate the sign

function with a saturation function, named as “the boundary layer solution”. The

idea is to replace the discontinuous switching action with a continuous function
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Figure 5.7: Tracking Error e for SMC and DSMC
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Figure 5.8: Control Input (Nutlin) comparison for both controllers
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Figure 5.9: Sliding Surface in case of SMC
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Figure 5.10: Sliding Surface in case of DSMC

i.e., tanh(s/w), where w defines the width of the boundary. After the replace-

ment, the system trajectories are confined to the vicinity of the sliding surface

rather exactly at s = 0, as was the case in ideal sliding mode. The major problem

with this approach is that it is not guaranteed that the trajectories converge to

zero. Hence, it can be said that the robustness of the SMC is compromised. This

issue can be resolved by taking a very small width of the layer, which will retain

the robustness performance of the controller as well as a pure discontinuous input

can be avoided. for the SMC, we have chosen the width of the boundary layer as
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w = 0.02.

Figure 5.8 compares the discontinuous control input generated by first-order SMC

and the control input provided by the modified control, which is smooth as com-

pared to its counterpart. The smoothness of input is attributed to the use of the

discontinuous term in first-order time derivative of the control input. It can be

observed that the control effort remains under 90 mg/kg for SMC and 85 mg/kg

for DSMC, which is in accordance with the upper bound i.e 400 mg/kg, which is

obtained by carrying out experiments by the authors in [82]. One of the design

objectives in controlled dosage administration is to reduce the amount of total ad-

ministered drug. By looking at the above drug profiles and the profile generated

by the Lyapunov based control in Figure 4.4 (which remains around 200 mg/kg),

it can be easily concluded that the control effort is much reduced in the case of

the sliding mode techniques.

The sliding variables s and σ, for the conventional SMC and the DSMC, are shown

in Figures 5.9 and 5.10 respectively. In the reaching phase (s 6= 0), the controller

drags x3 towards x3f and during the sliding motion (s = 0), the design of s keeps

the tracking error e zero, consequently the output x1 attains its desired value x1d.

The chattering phenomenon can also be seen in the zoomed version of Figures 5.9

and 5.10.

A quantitative analysis is also carried out to evaluate and compare the performance

of DSMC with the conventional SMC. The performance criteria to measure the

error i.e. root-mean-square error (RMSE), is computed by

RMSE =

√√√√ 1

Ns

Ns∑
i=1

e2(i), (5.54)

where Ns is the number of total time samples. Since the aim of the model-based

control design is to track a desired level of p53 protein, the error function in RMSE

is expressed as

e(i) = x1(i)− x1d(i). (5.55)
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Table 5.2: RMSE and Pavg of different controllers

Controller RMSE (nM) Pavg (mg/kg)2

SMC 56.3273 6.030× 103

DSMC 62.9805 4.286× 103
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Figure 5.11: Reconstruction of state x4 in case of control scheme I

Furthermore, the average power of the both control signals, defined by

Pavg =
1

Ns

Ns∑
i=1

u2(i) (5.56)

evaluates the control effort efficiency. The RMSE and Pavg for both the controllers

are given in Table 5.2. The comparison shows that conventional SMC has slightly

better tracking performance than DSMC, but that comes at the cost of higher

control energy consumption and discontinuous control input.

In order to study the estimation performance of the observer, it is required to

initialize plant and observer using different initial conditions. Figure 5.11 depicts

comparison of original state (x4) with the estimated one (x̂4) in case of control

scheme I (Conventional SMC). It can be noted that after an initial deviation, x̂4

coincides with the original state for all future time. Due to the high-frequency
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Figure 5.12: Reconstruction of state x4 in case of control scheme II
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Figure 5.13: Reconstruction of state x2

oscillations in control input, a large chattering is visible in the MDM2 protein

(Figure 5.6) as well as in the estimate of x4 (Figure 5.11).

Figure 5.12 represents the comparison of the original state (x4) with the estimated

state (x̂4) in the case of the control scheme II (DSMC). The chattering reduction in
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control input and states enhances the reconstruction performance of the observer,

as can be seen in the estimate of x4 in Figure 5.12. After a negligible initial

deviation, the estimate converges to the original value quickly and remains intact

for all future time. Figure 5.13 depicts comparison of original state (x2) with the

estimated one (x̂2) in case of the modified observer for control scheme II (DSMC).

It is evident that the estimate converges to the original estimates in a finite time

and stays alongside afterward.

5.6 Summary

This chapter has addressed a sliding mode control (SMC) based robust non-linear

technique for the drug dosage design of the control-oriented p53 model. In the

control problem, the drug Nutlin is considered as the control input to revive p53

protein to the desired concentration level. Simulation tests are performed to evalu-

ate the effectiveness of the control scheme, which shows promising results but with

the issue of undesirable high-frequency chattering. Hence, another variant of SMC

i.e. dynamic sliding mode control (DSMC) is also designed to reduce chattering

and obtain a smooth control signal. The modified control leads to a decent trajec-

tory tracking while guaranteeing smooth control actions. Furthermore, to make

the model-based control design possible, the unknown states of the system are esti-

mated using equivalent control based, reduced-order sliding mode observer (SMO).

The robustness of the proposed scheme is accessed by introducing parametric un-

certainties, measurement noise, and an input disturbance. The effectiveness of the

proposed control scheme is witnessed by performing in-silico trials, which show

that the SMC based techniques successfully maintain the desired concentration

levels in the presence of uncertainties. Moreover, a quantitative comparison is also

made between the DSMC and the conventional SMC, which shows that the DSMC

consumes lesser control energy for similar tracking performance.



Chapter 6

Conclusion and Future Work

In this chapter, a summary of the research work carried out is presented. Moreover,

some future research avenues are explored to further enhance the performance of

the proposed scheme.

6.1 Conclusion

In recent years the p53 pathway has gained a lot of importance, equally among

scientists and biologists, due to its possible role as a drug target for cancer. The

current research work demonstrates a system-oriented framework for devising a

dosage design strategy for the p53 pathway. In the current research, a novel drug

dosage design is accomplished for obtaining the desired level of p53 concentration.

To accomplish this task, two control strategies have been devised. The first strat-

egy is based on Lyapunov control and the second strategy is based on the theory

of sliding mode control.

In the first strategy, a control-oriented mathematical model is considered with

the addition of PBK dynamics for small molecule drug Nutlin. The integrated

model is used to achieve a drug dosage strategy for reactivation of wild-type p53.

The problem is defined in the control system paradigm where two loop feedback

control strategy is employed to produce a sustained response of p53. The outer loop

85
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comprises of the p53-Mdm2 pathway and its nonlinear controller. The nonlinear

controller determines the required amount of Nutlin i.e reference dosage. However,

to maintain reference dosage in the cell, a negative feedback inner loop is devised

for the PBK dynamics of Nutlin. The PID control provides a dosage which is a

function of the error between the reference and the Nutlin present in the cell. It is

shown by in-silico trials that sustained response of p53 can be achieved by proper

drug administration. The obtained dosage remains within suitable limits.

In the second control strategy, an SMC based robust nonlinear technique is pre-

sented for the re-activation of wild-type p53 protein. The small molecules based

drug Nutlin is considered as the control input to revive p53 protein to the desired

concentration level. Simulation tests are performed to evaluate the effectiveness

of the control scheme, which shows promising results but with the issue of un-

desirable high-frequency chattering. For smooth control actions and chattering

reduction, a modified control technique based on the theory of dynamic sliding

mode is presented. The modified control leads to decent trajectory tracking while

guaranteeing smooth control actions.

For the estimation of the unmeasured system states, a reduced-order sliding mode

observer is employed. The robustness of the proposed scheme is accessed by in-

troducing parametric uncertainties, measurement noise, and an input disturbance.

Moreover, quantitative analysis for the conventional SMC and DSMC is performed

by considering the root mean square error (RMSE) of the output and the average

power (Pavg) of the control input. The comparison reveals that the conventional

SMC gives slightly better tracking performance than DSMC, but that comes at

the cost of higher control energy consumption and a discontinuous control input.

Hence, it can be concluded that the required p53 response can be achieved by

proper administration of Nutlin dosage. Feedback control being a generic approach

can be applied to other similar pathways as well to obtain required therapeutic

drug dosage. Moreover, the proposed control method can complement existing

chemotherapy treatments and can become a valuable asset in targeted cell therapy.
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6.2 Future Work

A number of potential avenues can be explored in the future, based upon the

contributions and results of the current study. The following are some of the

proposed future directions.

1. The efficacy of the proposed control scheme with the support of biological

data is highly desirable. We encourage experimental biologists to apply

discussed methods (in the light of discussed implementation schemes) to

test the potential of the proposed scheme.

2. According to the established theories, p53 responds in two ways, either per-

forming oscillatory behavior or maintaining its constant concentration. The

current study targets the sustained behavior, and successfully demonstrate

that by blocking the p53-MDM2 complex we can achieve a sustained re-

sponse of p53. However, the mere application of the Nutlin through feedback

controller is not sufficient to obtain the oscillatory response, as dissociation

of the p53-Mdm2 complex is required. Hence, an alternate scheme can be

proposed to obtain the oscillatory response.

3. The mathematical model can be improved to account for cell-cell variability

and a comprehensive study can be performed to include the effect of cross-

talk between related pathways.

4. Living organisms have the ability to develop resistance against any foreign

intrusion due to their inherent biological robustness. Through their adap-

tation property, the robust biological systems have the ability to cope with

environmental changes. Moreover, with the passage of time systems develop

a relative insensitivity to some kinetic parameters, providing structural sta-

bility. The robustness is also enforced by the redundancy in the system,

acquired through functioning at different independent levels. Therefore, we

can account for this issue as well while designing drugs.
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5. In this research, we have focused on mono-therapy to obtain the desired

results. It can be extended to combination therapy in future work to achieve

higher response rates and to better cope with drug resistance problems.

Moreover, combinational strategies can be explored to target both the wild-

type and mutant p53 at the same time.

6. The proposed estimator scheme is based upon the equivalent control method,

hence the robustness against uncertainties is not guaranteed. Although the

accompanied robust SMC is capable to cater for small estimation errors, but

larger magnitudes of disturbance may cause degradation in the performance.

Hence, a robust estimator strategy can be adopted in the future.

7. In the current research, a hypothetical profile is assumed for the external

disturbance. However, a disturbance estimator can be constructed to better

cope with the effects of the disturbance.
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Ausserlechner, J. M. Adams, and A. Strasser, “p53-and drug-induced apop-

totic responses mediated by bh3-only proteins puma and noxa,” Science, vol.

302, no. 5647, pp. 1036–1038, 2003.

[11] J. Momand, D. Jung, S. Wilczynski, and J. Niland, “The mdm2 gene am-

plification database,” Nucleic acids research, vol. 26, no. 15, pp. 3453–3459,

1998.

[12] U. M. Moll and O. Petrenko, “The mdm2-p53 interaction,” Molecular cancer

research, vol. 1, no. 14, pp. 1001–1008, 2003.

[13] T. Sun and J. Cui, “Dynamics of p53 in response to dna damage: Math-

ematical modeling and perspective,” Progress in Biophysics and Molecular

Biology, vol. 119, pp. 175–182, 2015.

[14] R. Zhao, K. Gish, M. Murphy, Y. Yin, D. Notterman, W. H. Hoffman,

E. Tom, D. H. Mack, and A. J. Levine, “Analysis of p53-regulated gene

expression patterns using oligonucleotide arrays.” Genes Dev., vol. 14, pp.

981–993, 2000.

[15] S. Wang, Y. Zhao, A. Aguilar, D. Bernard, and C.-Y. Yang, “Targeting the

mdm2–p53 protein–protein interaction for new cancer therapy: progress and

challenges,” Cold Spring Harbor perspectives in medicine, pp. 262–269, 2017.

[16] G. L. Bond, W. Hu, and A. J. Levine, “Mdm2 is a central node in the p53

pathway: 12 years and counting,” Current cancer drug targets, vol. 5, no. 1,

pp. 3–8, 2005.

[17] S. Fang, J. P. Jensen, R. L. Ludwig, K. H. Vousden, and A. M. Weissman,

“Mdm2 is a ring finger-dependent ubiquitin protein ligase for itself and p53,”

Journal of Biological Chemistry, vol. 275, no. 12, pp. 8945–8951, 2000.

[18] A. Burgess, K. M. Chia, S. Haupt, D. Thomas, Y. Haupt, and E. Lim,

“Clinical overview of mdm2/x-targeted therapies,” Frontiers in oncology,

vol. 6, pp. 10–17, 2016.



Bibliography 91

[19] D. Spiegelberg, A. C. Mortensen, S. Lundsten, C. J. Brown, D. P. Lane, and

M. Nestor, “The mdm2/mdmx-p53 antagonist pm2 radiosensitizes wild-type

p53 tumors,” Cancer research, vol. 78, no. 17, pp. 5084–5093, 2018.

[20] S. Shangary and S. Wang, “Small-molecule inhibitors of the mdm2-p53

protein-protein interaction to reactivate p53 function: a novel approach for

cancer therapy,” Annual review of pharmacology and toxicology, vol. 49, pp.

223–241, 2009.

[21] S. He, G. Dong, S. Wu, K. Fang, Z. Miao, W. Wang, and C. Sheng, “Small

molecules simultaneously inhibiting p53-murine double minute 2 (mdm2)

interaction and histone deacetylases (hdacs): Discovery of novel multitar-

geting antitumor agents,” Journal of medicinal chemistry, vol. 61, no. 16,

pp. 7245–7260, 2018.

[22] P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine,

and N. P. Pavletich, “Structure of the mdm2 oncoprotein bound to the p53

tumor suppressor transactivation domain,” Science, vol. 274, no. 5289, pp.

948–953, 1996.

[23] L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic,

N. Kong, U. Kammlott, C. Lukacs, C. Klein et al., “In vivo activation of the

p53 pathway by small-molecule antagonists of mdm2,” Science, vol. 303, no.

5659, pp. 844–848, 2004.

[24] K. Puszynski, A. Gandolfi, and A. d’Onofrio, “The pharmacodynamics of the

p53-mdm2 targeting drug nutlin: The role of gene-switching noise,” PLOS

Comput Biol, vol. 10, no. 12, pp. 391–404, 2014.

[25] D. S. M. Steven M. Paul and Christopher, “How to improve r & d produc-

tivity: the pharmaceutical industry’s grand challenge,” Nature, vol. 9, pp.

203–214, 2010.

[26] G. B. Leenders and J. A. Tuszynski, “Stochastic and deterministic models

of cellular p53 regulation,” Frontiers in oncology, vol. 3, pp. 64–69, 2013.



Bibliography 92

[27] A. Hunziker, M. H. Jensen, and S. Krishna, “Stress-specific response of the

p53-mdm2 feedback loop,” BMC systems biology, vol. 4, no. 1, pp. 94–99,

2010.

[28] H. Kitano, “Systems biology: a brief overview,” Science, vol. 295, no. 5560,

pp. 1662–1664, 2002.

[29] T. Sun and J. Cui, “Dynamics of p53 in response to dna damage: Math-

ematical modeling and perspective,” Progress in biophysics and molecular

biology, vol. 119, no. 2, pp. 175–182, 2015.

[30] R. L. Bar-Or, R. Maya, L. A. Segel, U. Alon, A. J. Levine, and M. Oren,

“Generation of oscillations by the p53-mdm2 feedback loop: a theoretical

and experimental study,” Proceedings of the National Academy of Sciences,

vol. 97, no. 21, pp. 11 250–11 255, 2000.

[31] G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B.

Elowitz, and U. Alon, “Dynamics of the p53-mdm2 feedback loop in indi-

vidual cells,” Nature genetics, vol. 36, no. 2, pp. 147–150, 2004.

[32] J. E. Purvis, K. W. Karhohs, C. Mock, E. Batchelor, A. Loewer, and G. La-

hav, “p53 dynamics control cell fate,” Science, vol. 336, no. 6087, pp. 1440–

1444, 2012.

[33] J. J. Tyson, K. C. Chen, and B. Novak, “Sniffers, buzzers, toggles and

blinkers: dynamics of regulatory and signaling pathways in the cell,” Current

opinion in cell biology, vol. 15, no. 2, pp. 221–231, 2003.

[34] J. E. Purvis, K. W. Karhohs, C. Mock, E. Batchelor, A. Loewer, and G. La-

hav, “p53 dynamics control cell fate,” Science, vol. 336, no. 6087, pp. 1440–

1444, 2012.

[35] E. Batchelor and A. Loewer, “Recent progress and open challenges in model-

ing p53 dynamics in single cells,” Current opinion in systems biology, vol. 3,

pp. 54–59, 2017.



Bibliography 93

[36] N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel,

T. Yarnitzky, Y. Liron, P. Polak, G. Lahav et al., “Oscillations and vari-

ability in the p53 system,” Molecular systems biology, vol. 2, no. 1, pp.

1250–1255, 2006.

[37] G. Lahav, N. Rosenfeld, A. Sigal, N. Geva-Zatorsky, A. J. Levine, M. B.

Elowitz, and U. Alon, “Dynamics of the p53-mdm2 feedback loop in indi-

vidual cells,” Nature genetics, vol. 36, no. 2, pp. 147–150, 2004.

[38] L. Ma, J. Wagner, J. J. Rice, W. Hu, A. J. Levine, and G. A. Stolovitzky, “A

plausible model for the digital response of p53 to dna damage,” Proceedings

of the National Academy of Sciences of the United States of America, vol.

102, no. 40, pp. 14 266–14 271, 2005.

[39] A. Ciliberto, B. Novák, and J. J. Tyson, “Steady states and oscillations in

the p53/mdm2 network,” Cell cycle, vol. 4, no. 3, pp. 488–493, 2005.

[40] N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel,

T. Yarnitzky, Y. Liron, P. Polak, G. Lahav et al., “Oscillations and vari-

ability in the p53 system,” Molecular systems biology, vol. 2, no. 1, pp.

1250–1255, 2006.

[41] X. Cai and Z.-M. Yuan, “Stochastic modeling and simulation of the p53-

mdm2/mdmx loop,” Journal of Computational Biology, vol. 16, no. 7, pp.

917–933, 2009.

[42] G. Tiana, M. Jensen, and K. Sneppen, “Time delay as a key to apoptosis

induction in the p53 network,” The European Physical Journal B-Condensed

Matter and Complex Systems, vol. 29, no. 1, pp. 135–140, 2002.
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Appendix A

Mathematical Modeling of

Biological Systems

A cell is a basic building block of tissues, organs, and an entire organism. Living

organisms have evolved to protect their inner environment by constraining certain

variables within the limit. This phenomenon is known as homeostasis, which can

be achieved by coordinated physiological processes known as regulatory networks,

employing complex nonlinear interactions of genes and proteins. The subsequent

section investigates the mathematical modeling in the context of cell signaling in

biological systems.

A.1 Modeling Preliminaries

A pathway or regulating networks can be described as the combination of bio-

chemical reactions. If we denote chemical species by capital letter e.g. Xi, the

pathway can be described by following mathematical scheme

K1X1 +K2X2 + · · ·+KnXn k1−−−−−→ . . . , (A.1)

where Ki ∈ R+ is the stoichiometric coefficient associated with a reactant species

Xi, and ki ∈ R+ is the rate constant which determines the speed of a reaction. The

100
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+ sign represents a combination of different species and the right arrow represents

a transformation.

The modeling technique for the signaling pathway depends on properties of the

system under consideration and requirement for any specific questions to be an-

swered by the model. Although there are various modeling methods, broadly char-

acterized as deterministic and stochastic, we will focus on the most widespread

deterministic method: ordinary differential equations (ODEs). The ODEs describe

the time evolution of molecular species in their concentration levels. Consider a

system having n states, it can be represented by ODEs as;

dxi
dt

= fi(x1, x2, . . . . . . , xn), (A.2)

where, fi is a nonlinear function consisting of rate equations, based upon the

reaction kinetics. The variable xi represents the concentration of ith protein or

protein complex. In a molecular regulatory network, for a time varying chemical

species x having concentration [x], the ODE is constituted by subtracting the sum

of the reaction rates consuming x, from the sum of the reaction rates producing

x, i.e.

d[x]

dt
=
∑

fproduction −
∑

fconsumption. (A.3)

Usually, the species in any regulatory network maintains themselves at steady

state to achieve homeostasis. At the steady state, d[x]
dt

= 0, hence the total rate

of formation and removal are balanced i.e.
∑
fproduction =

∑
fconsumption. There

are various modeling mechanisms for the reaction kinetics, including Law of Mass

Action, Michaelis Menten kinetics and Hill equation. In this research, we will focus

our attention to the Law of Mass Action based ODE formulation. According to

the Law of Mass Action, “the rate of a reaction is proportional to the product

of the concentrations of the reacting substances”. It takes into account the fact

that the speed of any reaction is proportional to the probability of collision of the

reactants.
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Figure A.1: A Ligand-Receptor interaction [103]

The ligand-receptor interaction shown in Figure A.1 is a basic phenomenon in the

signaling networks. As every drug is initially a ligand that effectively binds with

its target site. Therefore, ligand-receptor interaction can be taken as an example

to demonstrate the interaction of the drug Nutlin to the protein MDM2. Further-

more, It can illustrate the ODE modeling by the Law of Mass Action. When the

extracellular ligand (L) binds to the receptor (R) on the cell membrane, a ligand-

receptor complex (LRC) is formed, with a kinetic rate constant kon. Similarly, the

dissociation of the complex can also take place with the rate constant koff .

The ligand-receptor process is schematically represented as

L + R
kon−−⇀↽−−
koff

LRC, (A.4)

where, the double sided arrows represent a reversible reaction. Traditionally, a [ ]

symbol denotes the concentration of the components, however, for simplicity we

will denote the concentrations with the lowercase letters i.e., l = [L], r = [R],

and lrc = [LRC]. Subsequently, the concentration change over time is represented

by the differential equations for the ligand, receptor and the complex:

d l

dt
= koff lrc− kon l r,

d r

dt
= koff lrc− kon l r,

d lrc

dt
= kon l r − koff lrc. (A.5)

Where, k′s are constants of proportionality in the application of the Law of Mass



Appendices 103

Action. Here, kon and koff are forward and backward rate constants respectively.

For example the first equation for l, describes that the concentration l is consti-

tuted by the production rate proportional to lrc and the removal rate proportional

to l r. Here, the ‘+’ sign represents the production and the negative sign represents

a removal of the substance. The model presented in (A.5), is a starting point in the

analysis of the biological systems in silico. In the subsequent section, we explore

a complicated mechanism of the signaling pathways: feedback loops. These loops

play a significant role in defining the possible behavior of the pathways.

A.2 Feedback Loops in Regulatory Networks

Feedback loops play a significant role in attaining the stability of biological or-

ganisms. They occur when a protein is involved in auto-regulation, i.e when it

represses or down-regulates its own activity, either directly or indirectly. The

dynamic behavior of a regulatory network is determined by, whether it is consti-

tuted of positive or negative feedback loops. The diversity in dynamic behaviors

includes homeostasis, multi-stability, and stable oscillations. Subsequent para-

graphs explain the role of feedback loops in generating these versatile dynamical

behaviors [104].

1. “Homeostasis” or mono-stability is described as restoring equilibrium con-

dition in presence of environmental disturbances. The auto-regulation is

involved in achieving the homeostasis in biological mechanisms. It has been

demonstrated that the negative feedback loop helps to attain stability by

limiting the concentration range of certain network components.

2. “Mono-stability” is achieved when a system toggles between two discrete

and distinct steady states. It has been shown that the positive feedback

loops result in a multi-stable system. The positive feedback loops can be

either in direct form: transcription factor is involved in activation of its own

transcription or indirect form: two transcription factors mutually repress

each other.
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Figure A.2: Gene regulatory network containing both the positive and nega-
tive feedback loops.

3. “Oscillations” are the periodic patterns expressed by the concentration of

a protein. Usually, oscillations are the outcome of the interaction of both

the positive and negative feedback loops, although in some cases negative

feedback loop alone is seen to be sufficient to cause oscillatory behaviors.

The positive feedback causes bi-stability and the negative feedback shifts

between these stable system states alternatively, leading to oscillations in

system response.

Figure A.2 presents a gene network containing both the positive and negative

feedback loops. The protein R enhances the production of X, but in turn, X

inhibits and degrades the R, hence forming a negative feedback loop. On the

other hand, R promotes the conversion of E to EP, which activates R, hence

forming a positive feedback loop. Whenever the protein R rises its level, X inhibits

it, at the same time E promotes it, hence the phenomenon of oscillation takes

place. Tyson et al. in [33], performed simulations through a mathematical model

and demonstrated that this combination of positive and negative feedback loop

generates an oscillatory response.
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