
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Single Phase Analysis of MHD

Convective Heat Transport in

Nanofluids Using Finite

Difference Method
by

Abid Kamran
A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Mathematics

2020

www.cust.edu.pk
www.cust.edu.pk
abidkamrankhattak@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Single Phase Analysis of MHD Convective Heat

Transport in Nanofluids Using Finite Difference

Method

By

Abid Kamran

(DMT143003)

Dr. Bengisen Pekmen, Geridönmez,

TED University, Kolej Çankaya, Ankara, Turkey.
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Abstract

The present dissertation is an effort to explore the heat and mass transfer in New-

tonian and non-Newtonian nanofluids flowing in various physical domains. The

non-Newtonian nanofluid models of Casson and micropolar fluids are utilized to

highlight the thermal transport in such fluids. Homogeneous single model and

Buongiorno nanofluid models are used in the study to analyze the fluid flow and

heat transfer in nanofluids. Water and kerosene oil are used as the base fluids in

homogeneous single phase model and the nanoparticles used are alumina, single

and multiwalled carbon nanotubes. Impact of magnetic field on the fluid flow and

heat transfer is observed. The application of magnetic field is responsible for the

heat dissipation in fluid for which the Joule heating effect is made a part of the

mathematical modeling of the problems. The mathematical modeling is carried

out using the continuity, linear momentum, energy and the concentration equa-

tions. The impact of microrotating structures has been made a part of the study.

For the micropolar nanofluid model an additional angular momentum equation is

used to observe the effect of microstructures present within the fluid. These mi-

crostructures can move independently and rotate irrespective of the motion of the

fluid. Microstructures give rise to an additional viscosity factor called the rota-

tion viscosity. They are also responsible for the stress tensor to be antisymmetric,

the impact of which can be observed in the momentum equation. To account for

the induced magnetic field effects the Maxwell equations of electromagnetism are

included. Other aspects of the study involves the impact of the shape effects of

the nanoparticles, velocity slip and convective boundary conditions. The mathe-

matical models are transformed into ordinary differential equations (ODEs). The

system of ODEs are solved by an efficient finite difference scheme of Keller box.

The validity of Matlab code for Keller box method is acclaimed by its comparison

with the already published work. The numerical results are analyzed by variation

in the pertinent physical parameters appearing in the nondimentionalized ODEs

using graphs and table of values.



Symbols

N angular velocity

b body force

κB Boltzmann constant

NB Brownian motion parameter

Br Brinkman number

Bi Biot number

bF body force due to free convection

DB Brownian diffusion coefficient
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deformation rate

β dynamic plastic viscosity parameter

µ dynamic viscosity

Ng dimensionless entropy generation

Ec Eckert number

σel electric conductivity
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qw heat flux at the wall

q heat flux across any surface

Ha Hartmann number

I identity tensor

ν kinematic viscosity
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µe magnetic permeability
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qm mass flux

Dm mass diffusion coefficient
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κ∗ rotation viscosity
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R Real gas constant
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τ shear stress

v0 suction velocity

γ spin gradient viscosity

σ surface tension

φ solid volume fraction

Cp specific heat

Sc Schmidt number

Cf skin friction coefficient

V0 suction parameter

Sh Sherwood number

τw shear stress at the surface

DT thermal diffusion coefficient

κ thermal conductivity

βT thermal expansion coefficient

hT thermal slip parameter

α
′

thermal diffusivity

ωT thermal boundary layer thickness

λE thermal relaxation time

NT thermophoresis
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γ0 velocity slip parameter

ω velocity boundary layer thickness

V velocity vector

u x-component of velocity field

py yield stress
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Chapter 1

Introduction

This chapter is structured in a manner to explain the motivation, objectives and

approach adopted to carry the present study. The importance of heat transfer in

many industrial and commercial areas is hidden to no researcher working in the

field. Recently, an urge to improve the heat transfer process in such systems has

greatly increased. Different approaches have been used to find ways to enhance

the heat transfer rate in heat transport processes. Of the different ways, one way

to increase the conductivity of the system is by increasing the surface area of the

assembly carrying the fluid to provide greater contact of the fluid with the surface

but this approach is not feasible in systems which have size constraints. Another

approach developed recently is engineering of fluid containing nanomaterials. This

approach has gathered immense attention in recent times. Both experimental and

numerical aspect have been adopted to study its contribution to thermal heat

transfer. Based on this theme, the details are given in the subsequent sections.

1.1 Motivation

With the development of the industrial era, a primary concern of diverse industrial

processes is to devise ways of increasing heat dissipation through the surface so as

to cool down the entire system. The conventional methods such as increasing the

1
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area available comes with a drawback that an undesirable increase in the surface

area of the system is required. Therefore, new and improved ways are the need

of the hour to serve the purpose. In the search of finding ways to achieve the

target, a revolutionary material engineered is the “nanofluids”-heat transfer fluid

containing suspensions of the nanoparticles. The advent of the nanofluids has had

a revolutionary impact on the heat transfer processes as a minute amount of the

nanoparticles added to the conventional fluids improve the system’s heat transfer

ability significantly. Nanofluids are receiving monumental attention as it is being

used in many applications of heat transfer processes such as heat exchangers, solar

collectors, automotive industry, nuclear reactors etc [1, 2].

1.2 Nanofluid Engineering

Nanofluids are a modification in the conventional fluids by the addition of a very

small proportion of nanosized particles with size in the range 1-100 nm. Nanofluids

have attracted immense attention because of great heat transfer capabilities. For

instance, small amount of the nanoparticles such as copper Cu or carbon nanotubes

(CNT) to the conventionally poor thermal conducting fluids such as ethylene glycol

(EG) improved the thermal conductivity by 40% to 150% [3]. Two methods have

been adopted for the preparation of nanofluids [3]. A two step process, in which

production of powdered nanoparticles is carried out by inert gas condensation

or by chemical vapors deposition. Then, as a second step, dispersal of that dry

powder in working fluid by ultrasonic agitation or by the addition of surfactants.

In single step process, the vaporization of nanofluid material containing dispersed

nanoparticles in vacuum conditions is carried out. The advantage of this method

is that the chances of nanoparticles agglomeration are minimum. Among the base

fluids used for the preparation of nanofluids, water is reported the most commonly

used base fluid [2]. The other frequently used working fluids are ethylene glycol

and also the combination of water and ethylene glycol. Among the nanoparticles

aluminum oxide Al2O3 is the most commonly used nanoparticles [2]. Also, carbon

nanotubes (CNTs) have also been used frequently. Other famous nanoparticles
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used are ferrous oxide Fe3O4, copper Cu, silver Ag, titanium oxide TiO2, silicon

dioxide SiO2 etc. Studies have shown that the multiwalled carbon nanotubes

(MWCNTs) are the most effective in increasing the thermal conductivity of the

conventional fluid [2].

1.3 Mathematical Approach

Theoretically, various mathematical models have been proposed by many researchers

on the basis of experimental results. Among these nanofluid models, two widely

used are the single and two phase models [4] . Generically, a nanofluid is a two-

phase fluid but by making use of suitable suppositions it can be presumed as a

homogeneous composite because of the ultra-fine size of the solid additives dis-

persed easily in the fluid. Thermal balance is found between the nanoparticles

and the host fluid with no slip mechanisms prevailing among them. In two phase

models, classical theory of solid-liquid mixture is applied. The nanoparticles and

base fluid are assumed to have different velocities and temperatures and the slip

factors are made as source terms in the momentum and energy equations.

Making use of these models, many researchers have carried out numerous work

which has many interesting findings. Choi and Eastman [5] wrote their break-

through paper on nanofluid in 1995 in which they introduced a new family of

fluids engineered by adding nanoparticles to the orthodox fluids. Nanoparticles

used were of spherically shaped carbon element and the base fluid used was water.

A measure of the fact that heat transfer capabilities of thermal processes enhanced

for nanofluid as compared to the conventional fluids was established by You et al.

[6] and Vassallo et al. [7]. They determined that even very small proportion of

nanoparticles addition to the conventional fluid resulted in big improvement in the

heat conduction of the fluid. Recently, Moldoveanu [8] conducted an experiment

on an aqueous solution of two types of oxide nanomaterial to explore its ther-

mal conductivity. The preparation of nanofluids was carried out using ultrasonic

vibrations for one hour. Thermal conductivity augmented with the temperature
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and nanoparticles concentration upgradations. In an another study, Loni et al. [9]

investigated the thermal performance of three different types of working fluids, the

alumina-oil, silica-oil and alumina-thermal oil, in cylindrical solar cavity receivers.

The findings of the study mentioned that the cavity heat and thermal efficiency are

comparable for both the alumina-oil and silica-oil based nanofluids. The average

thermal efficiency of alumina-thermal oil was the highest amongst the other work-

ing fluids. Minea et al. [10] computationally studied the thermal conductivity in

the shear thinning fluids using power-law model. On the basis of the numerical re-

sults, correlations were proposed in regard of heat transport rate dependent on the

Reynolds number, Prandtl number and pipe location. Sheikholeslami et al. [11]

pondered on the MHD convective heat transport in alumina-water nanofluid flow

in a permeable medium. Different shaped alumina nanparticles were used in their

study and the mathematical model was solved by finite element technique. The

conclusion declared that the Nusselt number increased with the rise in Richardson

and radiation numbers but decreased for an augmentation in Hartmann number.

Further references are cited in [12–14] for reader’s interest.

1.4 Non-Newtonian Base Fluids

As mentioned earlier, in a large number of studies, water or EG is used as the

working fluid. Then, studies can be found in which the two base fluids water and

EG are mixed together to work as a base fluid. Of course, all of this is done to

somehow increase the conduction ability of the working fluid. These fluids behave

like Newtonian fluids but there are instances where the working fluids may not

exhibit properties pertaining to Newtonian fluid. Recently, there are instance seen

in which such working fluid are used as base fluid. For example, Sodium alginate

has been used as base fluid in many applications of science and engineering. It is

derived from seaweed made up of blocks of mannuronic acid and guluronic acid.

In food industry, sodium alginate is used as thickening, emulsifying and stabilizing

agents [15]. Alginate modifications make it suitable for its use in drug delivery

systems and biomedical devices [16]. Some other applications are cited in [17, 18].
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Sodium alginate is treated as viscoplastic shear thinning fluid for which Casson

model is used to study its heat transfer properties. Casson fluid is discussed under

the class of non-Newtonian fluids. Shortcomings of the Bingham fluid model is

countered by this model as it explains the nonlinear behaviour seen once the yield

stress is achieved. Casson fluid model successfully explains the physical behaviour

of many fluids used in science and industry. For instance, in chocolate manufac-

turing industry, the quality of chocolate products depend on the viscosity of the

chocolate. Chocolate shows a shear thinning behaviour which is explained best

by the Casson fluid model [19]. Blood when flowing at moderate shear stresses

behaves like a Casson fluid [20]. It is observed experimentally that the drilling

oils also behave like Casson fluid [21]. Similarly, toothpaste, tomato ketchups and

many other examples can be given which behave like Casson fluid.

Then, there are instances where the working fluid may have microstructures which

can rotate independently irrespective of the motion of base fluid. These fluids are

classified as micropolar fluid. Such microstructure are found in liquid crystals,

animal bloods, polymers etc [22]. The mathematical explanation of the presence

of such structures require asymmetric definition of the coupled stress tensor and

the inclusion of the angular momentum equation along with the mass, momen-

tum and energy equations. The mathematical equations along with the boundary

conditions of micropolar fluid flow were defined by Eringen [23]. Since then, the

Eringen’s theory has been extensively used by many authors while studying the

properties of micropolar fluids. Tiwari and Das approach [24] which is basically

single phase model with experimentally defined correlations, was used by Swalmeh

et al. [25] in the study on the flow of CuO and Al2O3-water based nanofluid around

a solid sphere. The numerical approach used by the authors was the Keller box

method [26]. The obtained numerical results showed that CuO nanofluid had ex-

cellence over Al2O3 nanofluid in terms of heat transfer rate for growing values of

the microrotating parameter. Izadi et al. [27] established the shooting method so-

lutions for a biocovective flow of microrotating fluid past a sheet that is stretched.

It was noted that a greater rotation viscosity tended to reduce the angular velocity.
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1.5 Magnetic Field Impact on Nanofluids

Of the many ways of enhancing thermal conductivity in nanofluids, one useful

method is by the influence of external magnetic field. A group of researchers,

Crainic et al. [28], was the first one to successfully apply the magnetic field

to obtain new nanocomposites mixtures. These mixtures were an amalgam of

magnetic and nonmagnetic materials which contained the desired properties for

the use in applications such as radars, magnetic levitation trains, electric engine

motors and kinetic energy accumulators. Hong et al. [29] witnessed that when

the external magnetic field is applied to 0.01-0.02% wt. of Fe2O3 nanoparticles

in water improves its thermal conductivity. The physical reason was that in the

presence of magnetic field, Fe2O3 nanoparticles formed connected networks which

got oriented to some extent toward the field direction and the induction of more

physical contacts led to an upgrade in the heat conduction. Wensel et al. [30]

and Hong et al. [31] used sodium dodecylbenzene sulfonate (NaDDBS) which

when added to a solution containing single walled carbon nanotubes (SWCNTs)

made SWCNTs positively charged. Then, the negatively charged metal oxides were

added to the solution mantained at a pH 7 which got aggregated with the positively

charged SWCNTs. Results showed that in such scenario, thermal conductivity

improved by 10% for the nanofluid with 0.017% wt. SWCNTs and MgO, 0.17%

wt. NADDBS. Wensel et al. [30] showed that when external magnetic field was

applied, the thermal conductivity increased by 35% to that in the absence of

magnetic field. Shima et al. [32] inverted the polarity of the solvents containing

magnetite nanoparticles to prepare stabilized nanofluids. It was reported that

the existence of a controlled magnetic field significantly augmented the ratio of

viscosity and thermal conductivity.

1.6 A Review of Convective Heat Transport

Convective heat transport is a fundamental phenomenon in diverse fields of engi-

neering and science with widespread applications in geophysics, heat exchangers,
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solar collectors, electronic cooling, nuclear engineering and many other [33]. A

primary concern of such processes is to have efficient thermal dissipation system

for the removal and transport of heat energy. Use of nanofluids has served this

purpose for over two decades and still a lot of research is being carried out to even

better the achievements that have been made till now. Experimental study on nat-

ural convective flows are few and far between due to the difficulty in preparation of

nanofluids and handling of the parameters. Putra et al. [34] made an experimen-

tal work on natural convective flow of an Al2O3 and CuO nanofluid with water

as a base fluid inside a cylinder which is heated and cooled form both ends. They

found that nanomaterial concentration augmentation in nanofluid diminished the

natural convective heat transport characterized by a decrease in Nusselt number.

Benos et al. [35] used the matched asymptotic expansions to observe the con-

vective phenomenon in the nanofluid flowing in a shallow horizontal cavity taking

into account the MHD and internal heat generation effects. Sithole et al. [36] nu-

merically observed the entropy generation in a non-Newtonian fluid flowing over a

convectively heated stretching sheet with nonlinear thermal radiation and viscous

dissipation effects. Hashemi et al. [37] adopted the Galerkin finite element method

to observe the thermal transport in water based CuO micropolar nanofluid using

the KKL model. For further reading, see [12, 13, 38–40].

A free surface exists at the liquid-liquid and liquid-gas interface. This free surface

contains energy of which surface tension is one of the contributing factor. The

surface tension is often a function of temperature difference prevailing at the sur-

face and a region with high temperature has a low surface tension. This makes the

liquid to move from a point of low surface tension to the point of high surface ten-

sion. The resulting convection is named as Marangoni convection. Scientists knew

of this convection for many years but the popularity of this phenomenon came to

the surface in recent past as space technology has shown great progress where the

thermo-capillary effect is a major cause of motion in nonuniformly heated fluids
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[41]. The introduction of nanoparticles to the conventional fluids is a contribut-

ing factor which results in Marangoni convection. The phenomenon of Marangoni

convection in nanofluids has been explored by many scientists and researchers

these days. Homotopic solutions of the Cu-water nanofluid model subject to the

Marangoni convection were established by Lin and Zheng [42]. Mahanthesh and

Gireesha [43] investigated the suspension of dust particles in the magneto-Casson

nanofluid. In the study, working fluid’s surface tension was assumed a linear func-

tion of its temperature. They concluded that the presence of dust particles in the

nanofluid were responsible for the enhancement in heat transfer rate.

1.7 Objectives of the Thesis

Focus of the thesis revolves around the mathematical exploration of heat trans-

port in nanofluids. This phenomena has been investigated in the convective flow

and heat transport in the fluid. Assumption is made that the working fluid is

significantly electrically conductive so that the concept of magnetohydrodynamics

can be utilized. Owing to the fact that many engineering applications sees most of

the heat transfer near the surface, boundary layer theory has been adopted. Heat

transfer rate is measured by calculating the Nusselt number at the boundary. Clas-

sical homogeneous single phase nanofluid model and Buongiorno nanofluid model

have been utilized to achieve this objective for various configurations. Besides the

measurement of heat transfer rate, skin friction coefficient has also been calculated.

This helped in analyzing the drag force imposed by the nanofluids on the walls of

the boundary abounding it. One subsidiary purpose was to examine numerically

the nanoparticles and base fluids for their impact on heat transfer in channels

and stretching sheet like geometry. Although such investigations can be found in

abundance in literature but there is still the strive for improvement. Physical pa-

rameters arising in the nondimensional equations also influence the heat transfer.

In the present study, the coupling impact of physical parameters has also been

observed and deductions have been made on the basis of the obtained numerical

results.
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1.8 Structure of the Thesis

In the light of the brief discussion in the preceding paragraphs, the present thesis

is further structured in the following manner.

Chapter 2 Terminologies and solution methodology

Chapter 2 contains details related to the terminologies and defini-

tions that are necessary in the context of the work carried out in the

next chapters. Single and Buongiorno nanofluid model alongwith

the BL theory have been discussed in detail. Also, the governing

laws and their mathematical equations are described in detail. The

mathematical procedure of Keller box method is discussed via solv-

ing a fourth order BVP using the method. Numerical solution is

compared to the exact solution to validate the KBM procedure.

Chapter 3 Convectively heated boundary impact on heat transfer in MHD

Casson nanofluid

In this chapter, consideration is given to a magnetohydrodyanam-

ical flow of Casson nanofluid over a sheet horizontally stretched.

The stretching surface is convectively heated and slip takes place

at the surface of the sheet. Joule heating effects are also considered

and the energy dissipation is evaluated numerically by entropy gen-

eration taking place in the system. Buongiorno nanofluid model is

considered which accounts the Brownian motion and thermophore-

sis effects. The nondimensionalized seventh order coupled system

of nonlinear ODEs is solved by KBM. The numerical results are

interpreted in the forms of graphs and tables. The contents of this

chapter are published in “Results in Physics”, vol. 7, pp. 3037-

3048, 2017.
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Chapter 4 Induced magnetic field effect on free convective flow and heat trans-

fer in micropolar nanofluid

Chapter 4 presents a discussion on the affect of induced magnetic

field on the buoyancy driven flow of micropolar nanofluid contain-

ing CNTs between two plates parallel to each other with upper

plate nonconducting and lower plate conducting. The upper plate

is provided a constant heating while heat flux is applied at the

lower plate. Applying the assumptions on the governing equations

of momentum, angular momentum, Maxwell’s equation of induc-

tion and the energy equation lead to a linear coupled eight order

system. The resulting system is computationally handled by KBM.

Graphical results are used to gain an insight of the pertinent pa-

rameters’ influence on the flow features that arise in the system

of linear equations. This chapter’s contents are published in“AIP

Advances”, vol. 8, pp. 105130, 2018.

Chapter 5 Marangoni convective flow and heat transfer in MHD micropolar

alumina-water nanofluid

Boundary layer analysis of Marangoni convective flow of an Al2O3-

water micropolar nanofluid influenced by external magnetic field is

carried out in Chapter 5. In the study, Cattaneo-Christov heat flux

model is utilized to account for the heat transfer in the nanofluid

flow. Four different shaped nanoparticles sphere, tetrahedron, col-

umn and lamina are used to ponder upon the heat transport mech-

anism in the flow. The ninth order coupled system is managed

numerically by KBM and the influential parameter effects are ob-

served via graphs. This chapter’s content are published in“Journal

of Nanofluids” vol. 8, pp. 1133-1146, 2019.
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Chapter 6 Jeffery-Hamel flow and heat transport in non- Newtonian nanofluid

between nonparallel plates.

Chapter 6, is an exploration of the thermal and mass transfer char-

acteristics of non-Newtonian channel flow of a nanofluid flowing

between two deviating/converging walls. There exists a magnetic

field across the walls for which the Joule heating effect is examined.

The impact of the presence of microstructures inside the nanofluids

is examined for the heat transport and flow characteristics of the

nanofluid. Eringen’s theory is used for the modeling of micropo-

lar fluids along with the Navier-Stokes equations of fluid dynamics.

Buongiorno’s nanofluid model assumptions have been incorporated

to mathematical model describing the nanofluids. A numerical so-

lution to the model is achieved using the KBM.

Chapter 7 Conclusions

The summary of the work carried out in the thesis is given in the

concluding Chapter 7.



Chapter 2

Terminologies and Solution

Methodology

2.1 Fluid

Fluid is defined as a substance that continuously deforms when a tangential shear

stress is applied to it, however small the stress may be, fluid will deform on con-

trary to solids which tend to resist the applied shear stress. The reason for this

continuous deformation is the presence of greater inter-molecular distances be-

tween the molecules of liquids as compared to that of solids. Fluid is categorized

as Newtonain/non-Newtonian depending on the deformation rate.

Deformation rate shows a linear behaviour to the applied shear stress in New-

tonian fluids. Mathematically, Newtonian fluids are expressed as:

τxy = µ
∂u

∂y
. (2.1)

The fluids in which relation (2.1) doesn’t hold are called non-Newtonian fluids.

Non-Newtonian fluids are further classified on the basis of the relation of shear

stress and deformation rate. Some of the non-Newtonain fluids of interest are

discussed here.

12
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2.1.1 Casson Fluid

Casson fluid belongs to the class of non-Newtonian fluids. It comes under the class

of fluids which manifest a shear thinning behaviour after a certain yield stress

is achieved. At a zero stress rate, it has an infinite viscosity but the viscosity

becomes zero when shear stress is raised to an infinite level. Casson fluid model

is mathematically explained by the relation [44, 45]:

τij =

2
(
µB + py√

2π

)
eij, π ≥ πc,

2
(
µB + py√

2πc

)
eij, π < πc.

(2.2)

Here, eij is the (i, j)th of the strain rate, π is the product of the deformation

rate with itself i.e. π = eijeji and the critical value of this product is πc. Casson

fluid model successfully explains the behaviour of many fluids used in science

and industry. For instance, in chocolate manufacturing industry, the quality of

chocolate products depends on the viscosity of the chocolate. Chocolate shows a

shear thinning behaviour which is explained best by the Casson fluid model [19].

Blood when flowing at moderate shear stresses behaves like a Casson fluid [20].

2.1.2 Micropolar Fluid

Micropolar fluids are categorized as non-Newtonian fluids because in these fluids

the Newton’s law of viscosity does not hold. There is an additional factor of

rotation viscosity along with the dynamic viscosity of the fluid. The feature of

these microstructures that their motion is independent of the flow results in a

unsymmetrical stress tensor. In such fluids, shear stress is related to deformation

rate by the relation:

τxy = (µ+ κ∗)
∂u

∂y
, (2.3)

where κ∗ represents the rotation viscosity, a term associated to the resistance of

fluid due to the presence of micro-rotating particles present in the constituent
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fluid. Some examples of micropolar fluids are liquid crystals and animal blood

[22].

2.1.3 Nanofluids

Fluids containing nanosized particles with the size ranging from 1 nm-100 nm are

called as nanofluids. Nanofluids are engineered to enhance the heat transfer ability

of the conventional fluids used in heat transport processes. The nanoparticles are

fine pulverable form of metals and their oxides, carbides, ceramics and ceramic

oxides, which have high thermal conductivity. The commonly used base fluids

are water, ethylene glycol, kerosene oil etc. To study the working mechanism of

nanofluids, it is important to study the heat transfer phenomenon.

2.2 Heat Transfer

Heat is transferred in a medium via:

• conduction

• convection

• radiation

Conductive heat transport in a medium takes place by exchange of kinetic en-

ergy between the neighboring molecules. It usually takes place in solids where the

molecules are closely packed together. In liquids, thermal transport by the con-

vection is dominated over the conduction. In convection, the transfer of thermal

energy is resultant due to molecules movement under the influence of temperature

differences. Natural convection is resulted when temperature gradient is present

with in the fluid while the forced convection takes place by the way of some exter-

nal force generating the flow. In the mixed convection, both natural and forced
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convections collectively transfer heat in the fluid. Then, there is Marangoni con-

vection which takes place at the surface of liquid-liquid or liquid-gas interface. The

surface at the interface has an energy due to the presence of surface tension gradi-

ents. Due to these gradients, fluid migrates from a higher surface tension potential

to a lower surface tension potential. The surface tension gradients depend upon

the temperature and concentration differences present with in the fluid. In heat

transfer by thermal radiation, heat is transferred by the electromagnetic waves

without the requirement of any medium.

2.3 Differential Operators in Cartesian Coordi-

nate System

In the context of present study, some important operators are defined here.

“Nabla Operator”:

The Nabla operator in index form is:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

“Gradient of a scalar field f”:

∇f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
.

“Divergence of a vector field V = [u, v, w]”:

∇ ·V =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
.

“Curl of vector field”:

∇×V = i

(
∂w

∂y
− ∂v

∂z

)
+ j

(
∂u

∂z
− ∂w

∂x

)
+ k

(
∂v

∂x
− ∂u

∂y

)
.
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“Laplacian of a scalar field f”:

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

“Laplacian of a vector field”:

∇2V = i∇2u+ j∇2v + k∇2w.

‘ ‘Operator V · ∇”:

V · ∇ = u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

2.4 Differential Operators in Cylindrical Coor-

dinate System

“Nabla Operator”:

∇ = er
∂

∂r
+ eΘ

1

r

∂

∂Θ
+ ez

∂

∂z
.

“Gradient of a scalar field f”:

∇f = er
∂f

∂r
+ eΘ

1

r

∂f

∂Θ
+ ez

∂f

∂z
.

“Divergence of a vector field” :

∇ · V =
1

r

∂ru

∂r
+

1

r

∂v

∂Θ
+
∂w

∂z
.

“Curl of vector field” :

∇×V = er

(
1

r

∂w

∂Θ
− ∂v

∂z

)
+ eΘ

(
∂u

∂z
− ∂w

∂r

)
+ ez

(
1

r

∂rv

∂r
− 1

r

∂u

∂Θ

)
.
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“Laplacian of a scalar field f”:

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂Θ2
+
∂2f

∂z2
.

“Laplacian of a vector field”:

∇2V = er∇2u+ eΘ∇2v + ez∇2w.

“Operator V · ∇”:

V · ∇ = u
∂

∂r
+
v

r

∂

∂Θ
+ w

∂

∂z
.

2.5 The Substantial Derivative

In any physical process, which involve change in some physical property with

respect to time and space, substantial derivative comes into play. The substantial

derivative is represented by D
Dt

and is defined as:

D(∗)
Dt

=
∂(∗)
∂t

+ V · ∇(∗). (2.4)

In Eq. (2.4), the term on the left hand side is called the total rate of change. On

the right hand side, the first term represents the change with respect to time, also

called as local rate of change. The second term gives the change of some property

at a particular position in space, also called as the convective rate of change.

2.6 The Governing Equations

To analyze the heat transfer process in nanofluids mathematically, conservation

equations of state are defined as follows:

Mass equation[46]:

Mass equation is also known as the continuity equation. “The mathematical form
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of law of conservation of mass which states that the total rate of change in mass

of a system equals zero” is given as:

∂ρ

∂t
+∇ · ρV = 0. (2.5)

Here, ρ is considered constant if the fluid is incompressible.

Momentum equation [46]:

Momentum equation is basically the mathematical form of “Newton’s second law

of motion”. For fluid flow, the “Newton’s second law of motion states that the rate

of change of momentum within a fluid element equals the external forces acting on

it”. The external forces are divided into surface and body forces. The forces that

act normally along tangential stresses constitutes the surface forces while the body

forces act at every point of the fluid element. Magnetic field and bouyancy are

some of the examples of body forces. Mathematically, momentum law is defined

as:

ρ
DV

Dt
= ∇ · (−pI + µA) + B, (2.6)

where, A = ∇V + (∇V)∗. In Eq. (2.6 ) , p represents the pressure forces,A gives

the tensor form of the tangential forces and B are the body forces acting on the

fluid element.

Energy equation [46]:

The balance of energy in a fluid element is represented mathematically by the en-

ergy equation. The underlying principle for energy conservation comes for the first

law of thermodynamics that states “the rate of change of internal energy of a sys-

tem equals the rate of heat addition plus the rate of work done ”. Mathematically,

we have:

DT

Dt
= α′∇2T + (τ · ∇)V, (2.7)

where, α′ = κ
ρCp

is thermal diffusivity. On the right hand side of Eq. (2.7),

the 1st term is the heat source term which comes from Fourier’s law [47]. The
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mathematical form of the law is given by:

q = −κ∇T.

(τ · ∇)V represents the work done by the viscous force on the fluid element. In

addition to the surface forces doing work on the fluid element, there are pressure

forces acting at the surface and body forces like the magnetic field doing work on

the body.

Concentration equation [48]:

Analogous to the conservation of energy, the conservation of mass law states “the

rate of change of mass with in a system equals the rate of mass added to the system

plus the mass generated inside the system”. In the absence of mass consumption

or production, the conservation of nanoparticles equation is given as :

DC

Dt
= Dm∇2C. (2.8)

2.7 Cattaneo-Christov Heat Flux Model

Fourier’s concept of heat conduction remained valid for a century. A shortcom-

ing of the Fourier’s interpretation of heat transport was that a disturbance in the

temperature gradient at the boundary is felt instantly through the medium which

means that heat energy travels at an infinite speed which is not possible physi-

cally. This drawback of Fourier’s law was addressed by Cattaneo [47]. Cattaneo’s

modification to the Fourier’s law is given as:

(
1 + λ0

∂

∂t

)
q = −κ∇T.

Here, λ0 is termed as thermal relaxation time. It is the time lag involved in

achieving the steady state solution once a temperature gradient is applied across

a volume element.

Cattaneo’s modification addressed the drawback of the Fourier’s law but resulted
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in a coupled system to be solved in order to get knowledge about the energy dis-

tribution in the system. Christov [47], further modified the Cattaneo’s concept by

considering a material Oldroyds’ upper-convected derivative instead of the ordi-

nary time derivative. With the help of this modification, a single energy equation

was achieved. Hence, in terms of Christov’s theory the heat conduction law is

written as:

q + λ0

(
∂q

∂t
+ V · ∇q− q · ∇V + (∇ ·V)q

)
= −κ∇T.ThismodelofheattransferhasbeenextensivelyusedinChapter5ofthepresentstudy.

2.8 Body Forces

Body forces are the forces that act on the whole volume of the fluid element. For

example, mangetic force, bouyancy force etc. In fluid mechanics, body forces are

added to the momentum equation as a source term. Such forces play a signifcant

role as they affect the fluid characteristics pertaining to the flow.

2.8.1 Magnetohydrodynamics

A constant feature of the present thesis is the application of magnetic field on the

flow of the fluid. As discussed in the introduction section, external magnetic field

affects the heat conduction abilities of nanofluids. This feature makes it useful

to discuss it in our heat transfer analysis. MHD [49] works on the notion “that

electrical current is produced when an electrically conducting fluid passes through

a magnetic field”. Maxwell’s electromagnetism equations when used to model the

mathematical form of MHD, under certain assumptions reduce to Lorentz forces,

added as body force in the momentum equation as:

bm = J×B, (2.9)
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where

J = (σel)f (E +∇×B). (2.10)

If the fluid has strong magnetic conductance or the fluid flow is at a high rate

that is flow is highly inertial, then the induced magnetic field is generated thus

magnetic induction equation comes into picture which is defined as:

∂B

∂t
= ∇× (V×B) + µe∇2B. (2.11)

2.8.2 Natural Convection

Natural convection occurs in the fluid where there exists temperature differences.

The temperature differences affect the relative buoyancy of the fluid as the density

of the fluid is disturbed due to the thermal imbalances inside it. In convective

transport due to the buoyancy forces, free convection is taken as body force given

mathematically as:

bF = ρfgeβT (T − T0). (2.12)

Here, bF represents the Boussinesq approximation of the bouyancy force in which

the density alone is a function of temperature. Density of the fluid varies linearly

with temperature under this assumption.

2.9 Single Phase Nanofluid Models

Nanofluid inherently is a two-phase fluid but for numerical simulation some as-

sumptions are made in a way that the nanofluid can be considered as a single

phase model. Single phase models can be classified as homogeneous, dispersion

and Buongiorno models.
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2.9.1 Homogeneous Single Phase Model

In this thesis, a homogeneous single phase model approach [50] is adopted in

Chapter 4 and 5. Throughout the thesis, fluid considered is steady that is the

fluid properties don’t change over time and incompressible which means that the

fluid’s density is constant. The particles are supposed to be ultrafine which are

homogeneously dispersed inside the base fluid. Also, there is no relative velocity

between the fluid particles and nanoparticles. The nanoparticles and the base

fluids are in thermal equilibrium. The governing equations defined in (2.5)-(2.7)

for incompressible fluid, the homogeneous single phase model takes the form:

∇ ·V = 0, (2.13)

ρnf
DV

Dt
= ∇ · (−pI + µnfA) + b, (2.14)

DT

Dt
= α′nf∇2T + (τ · ∇)V. (2.15)

Here, the physical quantities appearing in the above equations with subscript “nf”,

“f” and “p” representing the nanofluids, base fluids and nanoparticles respectively.

The correlations between the physical properties of nanofluid and base fluids are

defined as [14]:

µnf =
µf

(1− φ)2.5
, (2.16)

ρnf = ρpφ+ (1− φ)ρf , (2.17)

(ρCp)nf = (ρCp)pφ+ (1− φ)(ρCp)f , (2.18)

(σel)nf
(σel)f

= 1 +
3
(

(σel)p
(σel)f

− 1
)
φ(

(σel)p
(σel)f

+ 2
)
−
(

(σel)p
(σel)f

− 1
)
φ
, (2.19)

α′nf =
κnf

(ρCp)nf
,

νnf =
µnf
ρnf

.
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Here, σel is the electrical conductivity and Cp is the specific heat per unit mass.

Hamilton–Crosser model [51] is utilized to define the thermal conductivity κnf of

nanofluids in the following manner:

κnf
κf

= 1 +
κp + (m− 1) (κf − φ(κf − κp))
κp + (m− 1)κf + φ(κf − κp)

. (2.20)

The thermophysical properties of the base fluid and nanoparticles are given in

Table 2.1.

Table 2.1: Thermophysical properties of the nanofluid.

Cp(J/kg K) ρ(kg/m3) κ(W/mK) σel(C/m
3)

Al2O3 765 3970 40 10−12

SWCNT 425 2600 6600 –
MWCNT 796 1600 3000 –
H2O 4179 997.1 0.613 0.05

kerosene oil 2090 783 0.145 –

2.9.2 Buongiorno Single Phase Model

Buongiorno nanofluid model [52] is a combination of homogeneous and dispersion

models. Of the various slip mechanisms, Buongiorno deduced that the Brownian

and thermal diffusion affects are potent slip mechanisms in the nanofluids. The set

of constitutive equations differ in the sense that in the energy and concentration

equations the effects of Brownian motion and the thermophoresis are incorporated

as :

DT

Dt
= α′nf∇2T + τ ∗(DB∇T · ∇C +

DT

T0

∇T · ∇T ), (2.21)

Here, τ ∗ =
(ρCp)p
(ρCp)f

.

DC

Dt
= DB∇2T + τ

DT

T0

∇2T. (2.22)
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Buongiorno nanofluid model approach is utilized in Chapter 3 and Chapter 6 of

the present thesis.

2.10 Governing Equations of Micropolar Fluids

Making use of the Eringen theory, for the micropolar fluid, the momentum (2.6)

and angular momentum equations take the form:

ρnf
DV

Dt
= −∇p+ (µnf + κ∗)∇2V + κ∗(∇×V) + b. (2.23)

ρnfj
DN

Dt
= γnf∇2N + κ∗(−2N +∇×V), (2.24)

where, N = [Nx, Ny, Nz] is angular velocity vector and γnf = (µnf +
κ∗

2
)j is the

rotation viscosity of the nanofluids.

2.11 Boundary Layer Flow

A viscous fluid flowing over a surface can be divided into two regions. The region

where the viscosity effects can be neglected and flow is almost inviscid and the re-

gion of boundary layer where viscosity effects compete with the convective effects.

Boundary layer is formed due to presence of no slip at the surface with which the

fluid is in contact. Introduction to this concept was given by Ludwig Prandtl [53]

in 1904. The distance from the surface to the point where the fluid has 99% of

the free stream velocity is called boundary layer thickness. It is denoted by ω.

Analogous to velocity boundary layer, thermal and concentration boundary layers

can be defined [26].

Outside the boundary layer, the velocity gradient ∂u
∂y

perpendicular to the wall is
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of the order of ∂u
∂x

but within the boundary layer, we have

∂u

∂x
<<

∂u

∂y
,

and the boundary layer thickness ω, in growing x-direction satisfies

ω

L
<< 1. (2.25)

Here, L characterizes the flat surface’s length. Similar analogy is applied to ther-

mal and concentration boundary layers provided that the temperature and con-

centration gradients are significant. Consider a 2D, steady and incompressible

laminar flow.The expanded form of mass and Navier Stokes equations are given

as:

∂u

∂x
+
∂v

∂y
= 0, (2.26)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.27)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (2.28)

 uu

Velocity boundary layer Thermal boundary layer

0u 0TT 

 T

x

y

Thermal boundary thicknessMomentum boundary thickness

Figure 2.1: Boundary layer flow model
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The proper nondimensional variables are:

x∗ =
x

L
, y∗ =

y

ω
, u∗ =

u

uw
, v∗ =

v
√
Re

uw
, p∗ =

p

ρu2
w

.

Using these nondimensional parameters in (2.26)-(2.28) lead to the following nondi-

mensional equations:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (2.29)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p

∗

∂x∗
+ ν

(
1

Re

∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
, (2.30)

1

Re

(
u∗
∂v∗

∂x∗
+ v∗

∂v∗

∂y∗

)
= −∂p

∗

∂y∗
+ ν

(
1

Re2

∂2v∗

∂x∗2
+

1

Re

∂2v∗

∂y∗2

)
. (2.31)

The inequality (2.25) is satified only if Re→∞. After dropping “*”, we have:

∂u

∂x
+
∂v

∂y
= 0, (2.32)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ν

∂2u

∂y2
, (2.33)

0 = −∂p
∂y
. (2.34)

2.12 Entropy

Entropy of a system is its inability to make use of the energy 100%. Greater is

the entropy generation in a system, less is the usefulness of that system. The

quality of a heat transfer system greatly depends upon the entropy generation in

that system. Only in an ideal system where no energy is lost, the entropy of the

system is zero. In our study, the considered factors contributing to the entropy

of a system are fluid friction irreversibly, heat transfer irreversibly, mass transfer

irreversibly and entropy generation due to Lorentz forces [54]:

S
′′′

gen = (S
′′′

gen)FF + (S
′′′

gen)HT + (S
′′′

gen)MT + (S
′′′

gen)MF .
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For a two dimensional flow, the mathematical equation of local entropy generation

is given as:

S
′′′

gen =
τ : ∇V
T

+
λ

T
(∇T )2 +

RD

T

[
(∇C)2 +∇C · ∇T

]
+ (σ)el

|V×B|2

T
. (2.35)

Here, “:” represents double dot product of τ and ∇V. The first term at the right

hand side of the Eq. (2.35) is due to fluid friction, second term is due to heat

transfer, third is due to mass transfer and the fourth is due to magnetic force.

2.13 Physical Quantities

In the heat transfer analysis in nanofluids, some important physical parameters

appear in the mathematical equations. Here, some insight is provided about these

numbers and their physical aspect in order to develop an understanding about

their impact on the properties of the fluid in this study.

2.13.1 Hartmann Number

Hartmann number Ha, arises in the term involving Lorentz forces present in the

momentum equation, when nondimensionalized. It is defined mathematically as:

Ha =

√
σelB2

0

µ
.

“Hartmann number is a measure of the strength of resistance or assistance of-

fered by the magnetic field when applied to the electrically conducting fluid flow”.

Sometimes, Hartmann number is defined in the form of magnetic number M which

is defined as M = Ha2..
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2.13.2 Material Parameter

Material or the so called rotation viscosity parameter K, arises in the nondi-

mensionalized linear and angular momentum equations due to the presence of

microstructures in the constitutive fluids. This parameter is a measure of the re-

sistance provided by the rotation viscosity of the nanofluid. Mathematically, it is

defined as [23]:

K =
κ∗

µ
.

2.13.3 Eckert Number

Eckert number Ec, is a dimensionless number which characterizes the relative heat

dissipation taking place in a system by conduction and convection. Mathemati-

cally, it is given as [48]:

Ec =
u2

Cp(T − Tw)
.

2.13.4 Reynolds Number

“Reynolds number Re, is the ratio of the inertial to viscous forces. When Reynolds

number is small, the viscous forces are dominant and the velocity boundary layer

is significant but as it increases, the boundary layer effects and boundary layer

thickness diminishes”. It is defined mathematically as [48]:

Re =
uL

ν
.

2.13.5 Prandtl Number

The Prandtl number Pr characterizes the heat transfer mechanism in fluid. It

tells whether the heat transport in fluid is dominated by heat conduction or by
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convection. Prandtl number is analogous to Reynolds number [48].

Pr =
ν

α′
.

Prandtl number for liquid metals is less than 1, for gases, it is almost 1 and for

liquids, it is greater than 1.

2.13.6 Schmidt Number

Schmidt number Sc characterizes the mass transfer phenomenon in fluids. It gives

information whether the mass transport in fluid is dominated by diffusion or by

convection [48]:

Sc =
ν

Dm

.

2.13.7 Brownian Motion Parameter

“Brownian motion is the random motion of solid particles present inside the host

fluid due to their collisions with the constitutive particles”. In heat transfer appli-

cations, heat transport mechanism is significantly affected due to the presence of

the nanoparticles in the nanofluid. The Brownian motion coefficient DB is defined

in the following manner as [55]:

DB =
κBTC

3πpµfdP
.

2.13.8 Thermophoresis Parameter

Thermophoresis force can be viewed as a symmetrical force to the Brownian mo-

tion imposed by the temperature gradient. In nanofluids, due to this force the

nanoparticles travel under the influence of the thermal imbalances existing with
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in the fluid. The thermophoresis coefficient DT is defined as [55]:

DT = 0.26
κnfνnf

2κnf + κp
C.

2.13.9 Skin Friction Coefficient

“Skin friction coefficient Cf is the measure of friction between the surface and the

fluid. The coefficient of skin friction is obtained by dividing the shear stress by

the dynamic pressure of the free stream [48]”:

Cf =
τw

1
2
ρfu2

w

.

The viscosity of the fluid is responsible for this force and the presence of nanopar-

ticles in the nanofluid add to the skin friction.

2.13.10 Nusselt Number

“Nusselt number Nu is a measure of the heat transfer rate at the surface of the

fluid”. It is important to study the heat transfer at the surface of the fluid in

boundary layer flow. Its importance is more highlighted when most of the heat

transfer takes place near the boundary. It is defined as [48]:

Nu = κnf
∇T
κf

.

2.13.11 Sherwood Number

“Sherwood number Sh, is a dimensionless number which is a measure of the mass

transfer rate at the surface of the fluid”. It is defined as [48]:

Sh = Dm∇C.
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2.14 Keller Box Method

The numerical procedure used to solve the system of ODEs arising in the problems

considered in the present study is the KBM. KBM is widely used to solve BVPs

of complex nature. The details, accuracy and stability criteria of the scheme can

be found in [26, 56]. The layout of the scheme is given as follows:

• First, we convert the BVPs into first order ODEs.

• The resulting ODEs are discretized by central differences for the derivative

terms and average values for the functions at the (ζ − 1
2
) nodes appearing in

the equations as follows:  ∗′
ζ− 1

2

=
∗ζ−∗ζ−1

h
,

∗ζ− 1
2

=
∗ζ+∗ζ−1

2
.

(2.36)

• Linearization of the resulting nonlinear difference equations is achieved by

the Newton’s method.

∗i+1
ζ = ∗iζ + ε ∗iζ . (2.37)

• The resulting linear system is written in the matrix form as:

Wx = r. (2.38)

• The vector of unknowns x is obtained by solving the system (2.38) using the

LU -decomposition method.

• Updation is made to the solution vector and the process is continued until

the required accuracy is achieved. To explain KBM, two nonlinear ODEs

are considered. The deliberation of each step of KBM is carried out in full

description for a complete understanding of the method.
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Example 2.1. Consider the following 4th order boundary value problem:

f
′′′′ − (1− x2)(f

′′
)2 + 5f 2 = 0, (2.39)

subject to

f(0) = 1, f ′(0) = 0, f
′′
(1) = −2, f

′′′
(1) = −3. (2.40)

We convert (2.39) to four first order ODEs as:

f
′
= Y1, (2.41)

f
′′

= Y
′

1 = Y2, (2.42)

f
′′′

= Y
′

2 = Y3, (2.43)

Y
′

3 − (1− x2)Y 2
2 + 5f 2 = 0, (2.44)

and the boundary conditions in (2.45) become:

f(0) = 1, Y1(0) = 0, Y2(1) = −2, Y3(1) = −3. (2.45)

Next, making use of the relations defined in (2.36), the system in (2.41)-(2.44) is

transformed as:

(f)ζ − (f)ζ−1

h
=

(Y1)ζ + (Y1)ζ−1

2
, (2.46)

(Y1)ζ − (Y1)ζ−1

h
=

(Y2)ζ + (Y2)ζ−1

2
, (2.47)

(Y2)ζ − (Y2)ζ−1

h
=

(Y3)ζ + (Y3)ζ−1

2
, (2.48)

(Y3)ζ − (Y3)ζ−1

h
− (1− x2

ζ− 1
2
)

[
(Y2)ζ + (Y2)ζ−1

2

]2

+ 5

[
(f)ζ + (f)ζ−1

2

]2

= 0.

(2.49)
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After linearization, (2.46)-(2.49) take the form:

ε(f)ζ − ε(f)ζ−1 −
1

2
h
[
ε(Y1)ζ + ε(Y1)ζ−1

]
= (r1)ζ− 1

2
, (2.50)

ε(Y1)ζ − ε(Y1)ζ−1 −
1

2
h
[
ε(Y2)ζ + ε(Y2)ζ−1

]
= (r2)ζ− 1

2
, (2.51)

ε(Y1)ζ − ε(Y1)ζ−1 −
1

2
h
[
ε(Y2)ζ + ε(Y2)ζ−1

]
= (r3)ζ− 1

2
, (2.52)

(a1)ζε(f)ζ + (a2)ζε(f)ζ−1 + (a3)ζε(Y1)ζ + (a4)ζε(Y1)ζ−1 + (a5)ζε(Y2)ζ

+ (a6)ζε(Y2)ζ−1 + (a7)ζε(Y3)ζ + (a8)ζε(Y3)ζ−1 = (r4)ζ− 1
2
. (2.53)

Here,

(a1)ζ = (a2)ζ = 5Yζ− 1
2
,

(a3)ζ = (a4)ζ = 0,

(a5)ζ = (a6)ζ = −(1− x2
ζ− 1

2
)vζ− 1

2
,

(a7)ζ = 1,

(a8)ζ = −1,

(r1)ζ− 1
2

= −(f)ζ + (f)ζ−1 +
1

2
h
[
(Y1)ζ + (Y1)ζ−1

]
,

(r2)ζ− 1
2

= −(Y1)ζ + (Y1)ζ−1 +
1

2
h
[
(Y2)ζ + (Y2)ζ−1

]
,

(r3)ζ− 1
2

= −(Y2)ζ + (Y2)ζ−1 +
1

2
h
[
(Y3)ζ + (Y3)ζ−1

]
,

(r4)ζ− 1
2

= −(Y3)ζ − (Y3)ζ−1

h
+ (1− x2

ζ− 1
2
)

[
(Y2)ζ − (Y2)ζ−1

2

]2

− 5

[
(f)ζ − (f)ζ−1

2

]2

.

The boundary conditions in (2.45) give rise to the following constraints:

ε(f)0 = ε(Y1)0 = ε(Y2)J = ε(Y3)J = 0.

The vector of unknowns is defined using the above constriants as:

εζ =


ε(Y2)ζ−1

ε(Y3)ζ−1

ε(f)ζ

ε(Y1)ζ

 , ζ = 1, ..., J.
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Making use of the above defined vector, the system is written as:

Wx = r. (2.54)

where

W =



A1 C1

B2 A2 C2

. . .
. . .

. . .

BJ−1 AJ−1 CJ−1

BJ AJ


, x =



ε1

ε2

...

εJ−1

εJ


, r =



(r1)ζ− 1
2

(r2)ζ− 1
2

...

(rJ−1)J− 1
2

(rJ)J− 1
2


.

(2.55)

Aζ =


0 0 1 −h

2

−h
2

0 0 1

−1 −h
2

0 0

(a6)ζ (a8)ζ (a1)ζ (a3)ζ

 , ζ = 1, 2, 3, ..., J,

Bζ =


0 0 −1 −h

2

0 0 0 −1

0 0 0 0

0 0 (a2)ζ (a4)ζ

 , ζ = 2, 3, ..., J,

Cζ =


0 0 0 0

−h
2

0 0 0

1 −h
2

0 0

(a5)ζ (a7)ζ 0 0

 , ζ = 1, 2, ..., J − 1.

The system defined by (2.54) is solved using LU -block factorization method. The

vector of unknowns is updated and the process is continued till the relative error

calculated at each iteration becomes less than the required accuracy. The numeri-

cal results obtained by KBM for the present problem are demonstrated graphically

in Figure 2.3.

Example 2.2. Consider the following 3rd order boundary value problem:

f
′′′

+ ff
′′ − (f

′
)2 = 0, (2.56)
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subject to

f(0) = 0, f ′′(0) = −2, f
′
(∞) = 0. (2.57)

The exact solution to this problem is given by:

f(x) = (2)
1
3 (1− exp(−(2)

1
3x)). (2.58)

Following the KBM procedure as defined for Rxample 2.1, the numerical solution

to the present example is achieved. A comparison of the exact solution (2.59) to

the numerical solution is given in Figure 2.4.
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݈-1 ݈ − 1
2 ݈ 

݅ 
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Figure 2.2: Stencil: KBM.
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Figure 2.3: Graphical results of the Example 2.1.
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Figure 2.4: Graphical results of the Example 2.2.



Chapter 3

Convectively Heated Boundary

Impact on Heat Transfer in MHD

Casson Nanofluid

3.1 Introduction

Flows over flat plates has been seen with great interest in boundary layer flows for a

very long time. Many phyiscal applications witnesses a flow which is generated by

a sheet pulled in a certain direction. In the present chapter, Casson nanofluid flow

over a flat surface horizontally stretched is analyzed mathematically with MHD

effect. Boundary conditions at the surface are taken in the sense of slip and thermal

convection. Mathematical modeling is carried out using the Boungiorno nanofluid

model. Boundary layer approximations are applied to the model to observe the

flow properties of Casson nanofluid near the surface. KBM solution is obtained

to the nonlinear ODEs resultant after application of the similarity transformation

to the nonlinear PDEs. Besides this the energy dissipation in the flow has been

measured by the entropy generation number. Graphical representations are used

to scrutinize the effect of effective parameters on the nanofluid properties.

37
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3.2 Problem Statement and Mathematical For-

mulation

A 2D Casson nanofluidic flow over a stretching sheet is considered in the positive

x-direction. Magnetic field B0 is supposed to be acting perpendicularly to the

flow. Joule heating effect is incorporated in the study to observe the heat dissipa-

tion. It is assumed that the fluid doesn’t induces a magnetic field for the scenario

presented. The surface of the sheet is assumed to be slippery so at y = 0, the

slip boundary conditions are applied. A temperature gradient results in the use of

convective BCs at the surface. The nanofluid mixture is assumed to be homoge-

neous so that the Boungiorno nanofluid model can be utilized in the study. The

free stream temperature and concentration are taken as T∞ and C∞. Casson fluid

is characterized by the relation given in Eq. (2.2). Using the Casson nanofluid

shear stress tensor along with the above assumptions, the Buongiorno single phase

nanofluid model is defined as:

∂v

∂y
+
∂u

∂x
= 0, (3.1)

u
∂u

∂x
+ v

∂v

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− σel

B0
2u

ρ
, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

′ ∂2T

∂y2
+ τDB

∂C

∂y

∂T

∂y
+
τDT

T∞

(
∂T

∂y

)2

+ σel
B2

0u
2

ρCp
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
=
DT

T∞

∂2T

∂y2
+DB

∂2C

∂y2
. (3.4)

The boundary conditions are given as [57]:

 u = uw + γ0

(
1 + 1

β

)
∂u
∂y
, v = 0,−κ∂T

∂y
= hT (Tw − T ), C = Cw, at y = 0,

u→ 0, v → 0, T → T∞, C → C∞, as y →∞.

The dimensionless functions and similarity variables are as follows [58]:

u = uwf
′(η), v = −

√
νuw
x
f(η), θ =

T − Tw
Tw − T∞

, φ =
C − Cw
Cw − C∞

, η =

√
uw
νx
y.
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Figure 3.1: Schematic flow model diagram.

Using the similarity transforms, (3.1) is satisfied identically and (3.2)-(3.4) get the

form:

f ′′′ +

(
β

1 + β

)(
ff ′′ − f ′2 −Mf ′

)
= 0, (3.5)

1

Pr
θ′′ + fθ′ +NB θ′φ′ +NT θ

′2 + Ec Mf ′2 = 0, (3.6)

φ′′ + Lefφ′ +
NT

NB

θ′′ = 0, (3.7)

where Pr =
ν

α′
, NT =

τDT (Tw − T∞)

νT∞
, NB =

τDB (Cw − C∞)

ν
, Le =

ν

DB

,

M =
B0

2σel
ρCP

and Ec =
µu2

w

α′ρCP (Tw − T∞)
.

The dimensionless form of the boundary conditions becomes: f(0) = 0, f ′(0) = 1 + γ0

(
1 + 1

β

)
f ′′(0), θ′ (0) = −Bi (1− θ (0)) ,

φ (0) = 1, f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0, as η →∞.
(3.8)

Here γ = γ0

(
a
ν

) 1
2 and Bi = hT

κ

(
ν
a

) 1
2 .

Here a is a positive constant representing the stretching rate of the sheet. The
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physical quantities which govern the flow are the Nusselt number Nu∗x and Sher-

wood number Sh∗x, which are given by:

Nu∗x =
xqw

κ (Tw − T∞)
, Sh∗x =

xqm
DB (Cw − C∞)

, (3.9)

where heat and mass flux at the surface are qw and qm respectively, defined as:

qw = −κ
(
∂T

∂y

)
y=0

, qm = −DB

(
∂C

∂y

)
y=0

. (3.10)

Using the similarity transformations, we obtain:

Nux =
Nux

Re
1/2
x

= −θ′(0), Shx =
Shx

Re
1/2
x

= −φ′(0). (3.11)

According to [59, 60], the Casson nanofluid over the stretching surface has the

volumetric rate of local entropy generation. After applying the boundary layer

approximations, it can be described as:

S ′′′gen =
κ

T 2
∞

(
∂T

∂y

)2

+
µ

T∞

(
1 +

1

β

)(
∂u

∂y

)2

+
RD

C∞

(
∂C

∂y

)2

+
RD

T∞

∂T

∂y

∂C

∂y
+ σ

B2
0u

2

T∞
, (3.12)

The above equation represents the actual entropy which is produced in the system

when some work is done. In Eq. (3.12), R is the ideal gas constant and D is the

molecular diffusion coefficient. The ratio of the actual entropy produced in the

system to the characteristic function S ′′′0 = κ(4T )2

L2T 2
∞

defines the entropy generation

number given by:

Ng = Re

{
θ′2 +

(
1 +

1

β

)
Br

Ω
f ′′2 + λ1

(χ
Ω

)2

φ′2
}

(3.13)

+Re

{
λ1

(χ
Ω

)
θ′φ′ +

λ

Ω
BrMf ′2

}
,

where

Re =
uwL

2

νx
, Br =

µu2
w

κ(T − T∞)2
, Ω =

T − T∞
T∞

, χ =
C − C∞
C∞

.
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3.3 Keller Box Formulation

The details of Keller box method for the present problem are given below.

• Conversion of BVP (3.5)-(3.7) to seven first order ODEs given by (3.14)-

(3.20):

f = Y1,

Y
′

1 = Y2, (3.14)

Y
′

2 = Y3, (3.15)

θ = Y4,

Y
′

4 = Y5, (3.16)

φ = Y6,

Y
′

6 = Y7, (3.17)

Y ′3 +

(
β

1 + β

)(
M Y2 + Y1 Y3 − Y 2

2

)
= 0, (3.18)

1

Pr
Y ′5 + Y1 Y5 +NB Y5 Y7 +NT Y

2
5 + Ec M Y 2

2 = 0, (3.19)

1

Le

(
Y ′7 +

NT

NB

Y ′5

)
+ Y1 Y7 = 0. (3.20)

• The boundary conditions in (3.8) become:

 Y1(0) = 0, Y2(0) = 1 + γ
(

1 + 1
β

)
Y3(0), Y5(0) = −Bi(1− Y4(0)),

Y6(0) = 1, Y2(η)→ 0, Y4(η)→ 0, Y6(η)→ 0, as η →∞.

(3.21)

• As defined in section 2.14, derivatives and functions are discretized accord-

ingly. As a result, (3.14)-(3.20) become:

(Y1)ζ − (Y1)ζ−1 −
h

2
((Y2)ζ + (Y2)ζ−1) = 0, (3.22)
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(Y2)ζ − (Y2)ζ−1 −
h

2
((Y3)ζ + (Y3)ζ−1) = 0, (3.23)

(Y4)ζ − (Y4)ζ−1 −
h

2
((Y5)ζ + (Y5)ζ−1) = 0, (3.24)

(Y6)ζ − (Y6)ζ−1 −
h

2
((Y7)ζ + (Y7)ζ−1) = 0, (3.25)

(Y3)ζ − (Y3)ζ−1

h
+

(
β

1 + β

)[
M((Y2)ζ− 1

2
) + ((Y1)ζ− 1

2
)((Y3)ζ− 1

2
)

− ((Y2)ζ− 1
2
)2

]
= 0, (3.26)

1

Pr

(Y5)ζ − (Y5)ζ−1

h
+ ((Y1)ζ− 1

2
)((Y5)ζ− 1

2
) +NB((Y5)ζ− 1

2
)((Y7)ζ− 1

2
)

+NT ((Y5)ζ− 1
2
)2 + Ec M((Y2)ζ− 1

2
)2 = 0, (3.27)

1

Le

(
(Y7)ζ − (Y7)ζ−1

h
+
NT

NB

(Y5)ζ − (Y5)ζ−1

h

)
+ ((Y1)ζ− 1

2
) ((Y7)ζ− 1

2
) = 0,

(3.28)

• Recalling section 2.14, the Newton’s method is utilized and (3.22)-(3.28) are

converted to a linear tridiagonal system by ignorng the quadratic and higher

terms of ε(∗)iζ as follows:

ε(Y1)ζ − ε(Y1)ζ−1 −
1

2
h(ε(Y2)ζ + ε(Y2)ζ−1) = (r1)ζ− 1

2
, (3.29)

ε(Y2)ζ − ε(Y2)ζ−1 −
1

2
h(ε(Y3)ζ + ε(Y3)ζ−1) = (r2)ζ− 1

2
, (3.30)

ε(Y4)ζ − ε(Y4)ζ−1 −
1

2
h(ε(Y5)ζ + ε(Y5)ζ−1) = (r3)ζ− 1

2
, (3.31)

ε(Y6)ζ − ε(Y6)ζ−1 −
1

2
h(ε(Y7)ζ + ε(Y7)ζ−1) = (r4)ζ− 1

2
, (3.32)

(a1)ζε(Y1)ζ + (a2)ζε(Y1)ζ−1 + (a3)ζε(Y2)ζ + (a4)ζε(Y2)ζ−1+

(a5)ζε(Y3)ζ + (a6)ζε(Y3)ζ−1 + (a7)ζε(Y4)ζ + (a8)ζε(Y4)ζ−1+

(a9)ζε(Y5)ζ + (a10)ζε(Y5)ζ−1 + (a11)ζε(Y6)ζ + (a12)ζε(Y6)ζ−1+

(a13)ζε(Y7)ζ + (a14)ζε(Y7)ζ−1 = (r5)ζ− 1
2
,

(3.33)



(b1)ζε(Y1)ζ + (b2)ζε(Y1)ζ−1 + (b3)ζε(Y2)ζ + (b4)ζε(Y2)ζ−1+

(b5)ζε(Y3)ζ + (b6)ζε(Y3)ζ−1 + (b7)ζε(Y4)ζ + (b8)ζε(Y4)ζ−1+

(b9)ζε(Y5)ζ + (b10)ζε(Y5)ζ−1 + (b11)ζε(Y6)ζ + (b12)ζε(Y6)ζ−1+

(b13)ζε(Y7)ζ + (b14)ζε(Y7)ζ−1 = (r5)ζ− 1
2
,

(3.34)
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

(c1)ζε(Y1)ζ + (c2)ζε(Y1)ζ−1 + (c3)ζε(Y2)ζ + (c4)ζε(Y2)ζ−1+

(c5)ζε(Y3)ζ + (c6)ζε(Y3)ζ−1 + (c7)ζε(Y4)ζ + (c8)ζε(Y4)ζ−1+

(c9)ζε(Y5)ζ + (c10)ζε(Y5)ζ−1 + (c11)ζε(Y6)ζ + (c12)ζε(Y6)ζ−1+

(c13)ζε(Y7)ζ + (c14)ζε(Y7)ζ−1 = (r5)ζ− 1
2
,

(3.35)

(r1)ζ− 1
2

= −(Y1)ζ + (Y1)ζ−1 +
h

2
((Y2)ζ + (Y2)ζ−1), (3.36)

(r2)ζ− 1
2

= −(Y2)ζ + (Y2)ζ−1 +
h

2
((Y3)ζ + (Y3)ζ−1), (3.37)

(r3)ζ− 1
2

= −(Y4)ζ + (Y4)ζ−1 +
h

2
((Y5)ζ + (Y5)ζ−1), (3.38)

(r4)ζ− 1
2

= −(Y6)ζ + (Y6)ζ−1 +
h

2
((Y7)ζ + (Y7)ζ−1), (3.39)

(r5)ζ− 1
2

= −h
[(

1 +
1

β

)
(Y3)ζ − (Y3)ζ−1

h
+

1

4
((Y1)ζ(Y3)ζ + (Y1)ζ(Y3)ζ−1

+ (Y1)ζ−1(Y3)ζ + (Y1)ζ−1(Y3)ζ−1)− 1

2
((Y2)ζ− 1

2
)2

]
, (3.40)

(r6)ζ− 1
2

= −(Y5)ζ + (Y5)ζ−1 + hPr

[
(Y1)ζ− 1

2
(Y5)ζ− 1

2

+NB(Y5)ζ− 1
2
(Y7)ζ− 1

2
+NT

(
(Y5)ζ− 1

2

)2
]
, (3.41)

(r7)ζ− 1
2

= −(Y7)ζ + (Y7)ζ−1 + hLe

[
(Y1)ζ− 1

2
(Y7)ζ− 1

2

]
− NT

NB

((Y5)ζ − (Y5)ζ−1), (3.42)

subject to the boundary conditions:

ε(Y1)0 = ε(Y2)0 = ε(Y5)0 = ε(Y7)0 = ε(Y2)J = ε(Y4)J = ε(Y6)J = 0. (3.43)

The system of linear (3.29)-(3.35) can be written in matrix form as defined

in (2.54)-(2.55). Here, W is J × J block tridiagonal matrix with each block

of size 7× 7.

To claim the validity of our Matlab code, we compute reduced Nusselt number

and Sherwood number for the Newtonian case when β → ∞ for various values

of some physical parameters and compare these with those already published in
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the literature. Tables 3.1 and 3.2 reflect a very convincing comparison of these

numbers.

Pr [57] [61] [62] [63] [64] Present

0.20 0.1691 0.1691 0.1691 0.1691 0.1691 0.1691

0.70 0.4539 0.4539 0.4539 0.4539 0.4539 0.4539

2.00 0.9114 0.9114 0.9114 0.9114 0.9114 0.9114

7.00 1.8954 1.8954 1.8954 1.8954 1.8954 1.8954

Table 3.1: The reduced Nusselt number for different Pr when NB = 0, NT =
0, γ = 0, Bi = 0 and β →∞.

Pr [57] [64] Present

Nux Shx Nux Shx Nux Shx

1 0.0789 1.5477 0.0789 1.5477 0.0789 1.5477

2 0.0806 1.5554 0.0806 1.5554 0.0806 1.5554

5 0.0735 1.5983 0.0735 1.5983 0.0734 1.5984

Table 3.2: The reduced Nusselt number and the reduced Sherwood number
for varying Pr when NT = NB = 0.5, Le = 5, γ = 0, Bi = 0.1 and β →∞.

3.4 Numerical Results and Discussion

The impact of different physical parameters on the reduced Nusselt number and

reduced Sherwood number are described in Table 3.3. The CPU time for the

computations with grid spacing h = 0.01, η∞ = 20 and εa < 10−5 on an INTEL

core i5 processor with 4 GB ram on Windows 10 operating system is carried out.

The reduced Nusselt number is the relative heat transfer by conduction or convec-

tion in fluid at the boundary whereas the reduced Sherwood number represents

convective mass transfer fraction to the rate of diffusive mass transfer. The value

of the reduced Nusselt number increases for more turbulent flow. More viscous

fluids have a low Reynolds number value, thus less heat transfer results which in

return should reduce Nusselt number. This fact is evident from Table 3.3 as we
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see that an increase in Casson fluid parameter decreases the Nusselt number. A

similar behaviour is seen in Table 3.3 in the case of comparison between reduced

Sherwood number and Casson fluid parameter β. The impact of Lewis number is

also observed on Nusselt number and Sherwood number. It is seen that increase

in Le raises the mass transfer rate but diminishes the heat transfer rate. Nusselt

number and Sherwood numbers reduce but with rise in thermophoresis parameter

NT . Larger Brownian motion parameter NB accounts for greater Sherwood num-

ber but smaller Nusselt number. A higher value of Prandtl number means more

thermal heat transfer thus more heat is transferred through the surface which can

be observed from the Table 3.3. A similar behaviour is observed in the case of

Sherwood number. An increase in Biot number means conductive heat transport

dominates the convective heat transport at the surface thus increasing the heat

transfer rate at the surface but at the same time it decreases the mass transfer

rate. Thus, a rise in Biot number results in decrease in Sherwood number but in-

crease in the Nusselt number. A greater slip parameter is an indication that lesser

resistivity is awarded by the sheet thus a smaller friction which results in smaller

heat dissipation. An increase in velocity slip parameter decreases both Nusselt

number and Sherwood number. Eckert number is the ratio of heat dissipation by

conduction to convection. Greater values of Ec means heat transfer by conduction

dominates the convection heat transfer. Higher values of Ec results in decrease in

the Nusselt number but augments Sherwood number. Greater values of the mag-

netic parameter implies that the fluid is repelled away from the surface which in

return has a negative impact on the heat and mass transfer rates as both decrease.

The impact of some of the physical parameters on the nanofluid properties is

discussed in the form of graphs. The parameter values set as a standard are

β = 1, Le = 1,M = 0.5, Ec = 0.5, Bi = 0.2, γ = 0.3, NB = 0.1, NT = 0.1, P r =

0.71, Re = 5, Br = 20. Shear thinning behaviour of the Casson fluid and the re-

duction in yield stress are characterized by the growing values of Casson parameter

β. These factors have a diminishing impact on the fluid velocity as it decreases

with an increase in β as depicted in Figure 3.2. In Figure 3.3, an elevation in the
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values of β results in the rise in temperature of the fluid due to frictional factor

caused by the applied stress on the flow of the fluid. It can be seen in Figure 3.4

that a more viscous fluid flow upsurges the concentration boundary layer. The

entropy of the system against β is analyzed in Figure 3.5. Noteworthy is the fact

that the entropy of the system is reduced by a greater shear thinning and lesser

β Le NT NB Pr Bi γ Ec M Shx Nux CPU Time

(sec)

1 1 0.1 0.1 0.71 0.2 0.3 0.5 0.5 0.4324 0.1141 3.8560

3 0.4259 0.1128 4.2998

5 0.4131 0.1119 5.1298

7 0.4028 0.1113 5.5737

1.5 0.5900 0.1138 2.3222

2 0.7218 0.1136 2.2417

3 0.9409 0.1134 2.4030

0.3 0.3134 0.1130 3.9667

0.5 0.1989 0.1119 4.0846

0.9 -0.0166 0.1096 5.2746

0.3 0.4748 0.1097 3.8817

0.5 0.4833 0.1052 4.2858

0.9 0.4890 0.0956 6.1376

2.0 0.4257 0.1307 3.8984

5.0 0.4332 0.1344 3.9260

8.0 0.4432 0.1328 4.0103

0.0 0.5045 0.0 4.0257

0.1 0.4607 0.0692 3.9124

0.3 0.4126 0.1455 11.3798

0.1 0.5055 0.1146 3.4845

0.4 0.4060 0.1135 7.7850

0.5 0.3837 0.1127 18.7855

0.1 0.4154 0.1269 4.3833

0.3 0.4239 0.1205 4.1547

0.7 0.4409 0.1077 3.8593

0.2 0.4562 0.1262 3.9532

0.7 0.4177 0.1071 4.5132

1.0 0.3976 0.0979 5.3500

Table 3.3: Sherwood and Nusselt numbers for different values of the parame-
ters β, Le, NT , NB, P r,Bi and γ.
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yield stress in the fluid as β grows.

Where there is slip, velocity is not zero at the surface of the sheet or the flow

velocity adjacent to the sheet surface is not equal to the stretching sheet velocity.

Figure 3.6 reveals that when γ increases, the fluid velocity as well as the entropy

decreases in the boundary layer as displayed in Figure 3.7. Bi > 0.1 means that

the heat convection through the surface is much faster than the heat conduction

inside the body and temperature gradients are significant inside the body. Thus

the temperature changes within the fluid by increasing the values of Biot number.

Figure 3.8 shows that the temperature of the fluid rises as we increase the values

of Bi as well as the entropy of the system by increasing values of Bi as it can be

seen from Figure 3.9.

Brownian motion is observed in the fluid due to the very small size of nanofluid

particles. This makes a contribution toward the heat transfer in the fluid. This

effect is taken into account in Figure 3.10. In the figure, it is observed that rise

in the values of Brownian motion parameter NB increases the temperature of the

fluid as well as the boundary layer thickness. In Figure 3.11, it is observed that

the concentration boundary layer decreases by increasing the values of NB. Fig-

ures 3.12–3.13 display the effect of NT on the thermal distribution in nanofluid

and nanoparticle concentration. It is noted that the temperature of the fluid rises

as well as the nanoparticles concentration by increasing NT . The entropy of the

system tends to increase with increase in NB but decreases with higher NT as it

can be seen in Figures 3.14–3.15.

When Prandtl number Pr is increased, conductive heat transfer dominates the

convective heat transfer. The thermal energy of the system is increased and the

temperature of the fluid rises. This phenomenon is noticed in Figure 3.16 that the

temperature in the boundary layer of the fluid falls with a rise in Pr. In Figure

3.17, it is noticed that the concentration of the fluid increases near the wall with

the increase in the Prandtl number. Greater Prandtl number account for greater
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convection near the wall where the temperature difference is large as compared to

that away from the wall. Due to more convection near the wall, the concentration

of the nanoparticles near the wall rises. As we move away from the wall these con-

vective currents decreases so for a material with higher convective transport the

concentration falls. Greater Prandtl number plays a role in enhances the entropy

of the system as it can be observed in Figure 3.18.

Analogous to the Prandtl number, Lewis number Le depicts the pattern in which

the mass is transfer in fluid. Larger Lewis number indicates that the mass transfer

by diffusion is large as compared to the convective mass tranport. Diffusive mass

transport is usually much smaller as compared to convective mass transfer thus

the concentration of the nanoparticles in the boundary region reduces. This fact

can be seen in Figure 3.19. Figure 3.20 reveals a sharp rise with postive variation

in Ec in the temperature of the fluid near the surface of the sheet but the effects

are less prominent away from the sheet. In Figure 3.21, it is seen that the entropy

of the system increases with the rise in Eckert number.

Figures 3.22-3.23 portray the effect of magnetic number on flow and thermal

disturbance of the nanofluid respectively. The results show that increasing the

magnetic number decreases the velocity of the fluid in the boundary layer but in-

creases the thermal boundary layer thickness. The reason behind such a behavior

is that increasing the value of magnetic number amplifies the Lorentz forces which

resists the fluid motion and due to this resistance an increase in temperature dis-

tribution is observed. The impact of the magnetic number on the entropy of the

system is looked in Figure 3.24. Greater magnetic number increases the entropy

of the system. Higher Reynolds number results in turbulent flow and greater fluid

friction. Consequently entropy of the system tends to increase. Figure 3.25 depicts

this fact quiet clearly. Brinkman number Br is the relative measure of heat dissi-

pation to the heat conduction inside the fluid. Greater Br means heat dissipates

at faster rate as compared to the heat conducted by the fluid. The dissipation of

energy causes the entropy of the system to increase as is evident from Figure 3.26.
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Figure 3.2: Impact of β on the velocity profile.
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Figure 3.3: Impact of β on the temperature profile.
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Figure 3.4: Impact of β on the concentration profile.
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Figure 3.5: Impact of β on the entropy.
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Figure 3.6: Impact of γ on the velocity profile.
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Figure 3.7: Impact of γ on the entropy.



MHD Casson Nanofluid Flow Over A Streched Sheet 52

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.8: Impact of Bi on the temperature profile.
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Figure 3.9: Impact of Bi on the entropy.
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Figure 3.10: Impact of NB on the temperature profile.
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Figure 3.11: Impact of NB on the concentration profile.
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Figure 3.12: Impact of NT on the temperature profile.
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Figure 3.13: Impact of NT on the concentration profile.
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Figure 3.14: Impact of NB on the entropy.
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Figure 3.15: Impact of NT on the entropy.
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Figure 3.16: Impact of Pr on the temperature profile.
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Figure 3.17: Impact of Pr on the concentration profile.
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Figure 3.18: Impact of Pr on the entropy.
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Figure 3.19: Impact of Le on the concentration profile.
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Figure 3.20: Impact of Ec on the temperature profile.
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Figure 3.21: Impact of Ec on the entropy.
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Figure 3.22: Impact of M on the velocity profile.

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.23: Impact of M on the temperature profile.
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Figure 3.24: Impact of M on the entropy.
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Figure 3.25: Impact of Re on the entropy.
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Figure 3.26: Impact of Br on the entropy.

3.5 Chapter Summary

Entropy analysis of Casson nanofluid over a stretching sheet with convective and

slip boundary conditions subject to magnetic field and Joule heating was studied in

the present chapter. The transformed ordinary differential equations were solved

using an efficient Keller box finite difference scheme. The effects of some important

physical parameters on the flow and heat transport characteristics were analyzed in

the form of tables and graphs. Nusselt and Sherwood numbers were also calculated

to observe the heat and mass transfer phenomena for the present model. Some of

the important findings in the study can be summarized in the following points.

• Velocity decreases with the increase in the values of slip parameter γ, mag-

netic number M and non-Newtonian Casson fluid parameter β.

• Temperature in the boundary layer flow rises with rise in Casson fluid param-

eter β, Eckert number Ec, Brownian motion parameter NB, thermophoresis
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parameter NT , Biot number Bi, magnetic number M but falls with the

increase in Prandtl number Pr.

• Concentration profile witnesses an increase with greater values of Prandtl

number Pr, Casson fluid parameter β and thermophoresis parameter NT

whereas decreases with greater values of Brownian motion parameter NB

and Lewis number Le.

• Entropy of the system jumps with the greater Reynolds number Re, mag-

netic number M , Brownian motion parameter NB and Brinkman number Br

but falls for larger Prandtl number Pr, thermophoresis parameter NT , slip

parameter γ, Casson fluid parameter β, Biot number Bi and Eckert number

Ec.



Chapter 4

Induced Magnetic Field Effect on

Free Convective Flow and Heat

Transfer in CNT Micropolar

Nanofluid

4.1 Introduction

Heat transfer in flows between parallel plates is observed in many physical ap-

plications. Parallel plates heat exchangers is on such example in which the heat

exchanges between the working fluid and the walls of the exchanger. In this

chapter, mathematical analysis of buoyancy driven micropolar fluid subjected to

a strong magnetic field with induced magnetic field effects has been carried out.

The base fluids considered are water and kerosene oil and the nanoparticles utilzied

are single walled and multiwalled carbon nanotubes (SWCNTs and MWCNTs).

Eriegen formulation is applied for the construction of the micropolar fluid model.

The effect of rotation viscosity is pondered on the heat transfer rate of nanofluids.

Numerical approach of KBM is implied to solve the dimensionless constitutive

equations of fluid flow along with magnetic induction equation.

63
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4.2 Problem Statement and Mathematical For-

mulation

Steady and incompressible SWCNT/MWCNT-water/kerosene oil micropolar

nanofluid has been considered between two parallel plates with lower plate at

y
′

= 0 and upper plate at y
′

= h. The plates are porous with a constant suction

velocity v0 in the y-direction. The fluid velocity vector is given as V =
[
u
′
, v0, 0

]
.

A constant magnetic field B0 is applied perpendicular to the nanofluid. It is as-

sumed that the magnetic Prandtl number for the present case is close to “1” so

the induced magnetic field is developed due to electromotive forces generated by

the motion of free electrons present with the nanofluid. The upper plate is as-

sumed to be electrically conducting while the lower plate is non-conducting. The

fluid is supposed to have sufficient electrical conductivity σel and induces a mag-

netic field of strength B
′
x in the x-direction. The magnetic field vector is given

by B =
[
B
′
x, B0, 0

]
(See Figure 6.1). The homogeneous single phase model is

considered with carbon nanotubes as nanoparticles with water and kerosene oil as

the base fluids with constant thermophysical properties. The momentum and the

0v

hy  0TTh y

0B

xB u

0y
f
wq

yd
dT


x

microstructures

Figure 4.1: Schematic diagram of the flow model
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induced magnetic field equation for Buongiorno model are given as [65]:

(
νnf +

κ∗

ρnf

)
d2u

′

dy′2
+

κ∗

ρnf

dN

dy′
+ v0

du
′

dy′
+
µeB0

ρnf

dB
′
x

dy′
+ geβ(T − T0) = 0, (4.1)

1

µeσf

d2B
′
x

dy′2
+B0

du
′

dy′
+ v0

dB
′
x

dy′
= 0. (4.2)

The angular momentum equation accounting for the microrotation is defined as

[66] :

(
νnf +

κ∗

2ρnf

)
j
d2N

dy′2
− κ∗

ρnf

(
2N +

du
′

dy′

)
+ jv0

dN

dy′
= 0. (4.3)

Since, there is a constant heat flux applied at the lower plate, the energy equation

is defined as [67]:

α
′

nf

d2T

dy′2
+ v0

dT

dy′
= 0. (4.4)

The physical quantities of viscosity µnf , density ρnf and heat capacity are defined

in Eqs. (2.19)-(2.18) whereas the thermal conductivity κnf of the nanofluid for

the present problem is defined as [68]:

κnf
κf

=
(1− φ) + 2φ κCNT

κCNT−κf
ln
[
κCNT+κf

κf

]
(1− φ) + 2φ

κf
κCNT−κf

ln
[
κCNT+κf

κf

] .
The thermophysical properties of the nanofluid are mentioned in Table 2.1. The

boundary conditions have been considered as follows [65, 66]:

u
′
= 0, N = 0, B

′

x = 0,
dT

dy′
= −qw

κf
, at y

′
= 0, (4.5)

u
′
= 0, N = 0,

dB
′
x

dy′
= 0, T = T0, at y

′
= h. (4.6)

The nondimensional form of (4.1)-(4.4) by using the following transformations [65]

y =
y
′

h
, u =

µfu
′

ρfgeβTh2∆T
, g =

µfN

ρfgeβTh2∆T
, Bx =

√
µe
ρf

B
′
xµf

geβTh2∆T

θ =
T − T0

∆T
, ∆T =

hq

κf
,
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is obtained as

(A3 +K)
d2u

dy2
+ A1V0

du

dy
+M

dBx

dy
+K

dg

dy
+ A1θ = 0, (4.7)(

A3 +
K

2

)
d2g

dy2
+ A1V0

dg

dy
−K

[
2g +

du

dy

]
= 0, (4.8)

d2Bx

dy2
+ Pm

[
V0
dBx

dy
+M

du

dy

]
= 0, (4.9)

d2 θ

dy2
+ V0Pr

A2

A4

dθ

dy
= 0. (4.10)

The dimensionless form of the boundary conditions become
u(0) = 0, g(0) = 0, Bx(0) = 0,

dθ

dy

∣∣∣∣
y=0

= −1,

u(1) = 0, g(1) = 0, θ(1) = 0,
dBx

dy

∣∣∣∣
y=1

= 0.

(4.11)

Here,

Pr =
Cpµf
kf

, Pm =
µf
ρf
µeσf , M =

B0h

νf

√
µe
ρf
, V0 =

v0h

νf
, K =

κ∗

µf
,

A1 =
ρnf
ρf

, A2 =
(ρCp)nf
(ρCp)f

, A3 =
µnf
µf

, A4 =
κnf
κf

.

The nondimensional form of the Nusselt number and skin friction are obtained as

follows:

Nux =
1

θ(0)
,

τ = (1 +K)u′(0) +Kg(0).

In the next section, a detailed procedure of the Keller box method is presented

to solve the linear boundary value problem (4.7)-(4.11). Although the Keller

box method has been applied successfully to nonlinear boundary value problems

[26, 56], in the present study it has been successfully applied to a linear two point

boundary value problem without any procedural changes required.
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4.3 Keller Box Formulation

As a first step, the linear coupled system of ODEs in (4.7)-(4.10) is converted to

eight first order ODEs as given in (4.12)-(4.20):

u = Y1,

dY1

dy
= Y2, (4.12)

g = Y3,

dY3

dy
= Y4, (4.13)

Bx = Y5,

dY5

dy
= Y6, (4.14)

θ = Y7, (4.15)

dY7

dy
= Y8, (4.16)

(A3 +K)
dY2

dy
+ A1V0Y2 +MY6 +KY4 + A1Y7 = 0, (4.17)(

A3 +
K

2

)
dY4

dy
+ A1V0Y4 − A1K [2Y3 + Y2] = 0, (4.18)

dY6

dy
+ Pm [V0Y6 +MY2] = 0, (4.19)

dY8

dy
+ V0Pr

A2

A4

Y8 = 0. (4.20)

Next, the derivative terms and the functions values in (4.12)-(4.20) are discretized

following (2.36) as:

(Y1)ζ − (Y1)ζ−1

h
= (Y2)ζ− 1

2
, (4.21)

(Y3)ζ − (Y3)ζ−1

h
= (Y4)ζ− 1

2
, (4.22)

(Y5)ζ − (Y5)ζ−1

h
= (Y6)ζ− 1

2
, (4.23)

(Y7)ζ − (Y7)ζ−1

h
= (Y8)ζ− 1

2
, (4.24)

(A3 +K)

(
(Y2)ζ − (Y2)ζ−1

h

)
+ A1

[
V0(Y2)ζ− 1

2
+ (Y7)ζ− 1

2

]
+M(Y6)ζ− 1

2
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+K(Y4)ζ− 1
2

= 0, (4.25)(
A3 +

K

2

)(
(Y4)ζ − (Y4)ζ−1

h

)
+ A1V0(Y4)ζ− 1

2
− A1K

[
2(Y3)ζ− 1

2
+ (Y2)ζ− 1

2

]
= 0,

(4.26)(
(Y6)ζ − (Y6)ζ−1

h

)
+ Pm

[
V0(Y6)ζ− 1

2
+M(Y2)ζ− 1

2

]
= 0, (4.27)(

(Y8)ζ − (Y8)ζ−1

h

)
+ V0Pr

A2

A4

(Y8)ζ− 1
2

= 0. (4.28)

Next, consistent to the linearization procedure of Keller box method defined in

(2.37), (4.21)-(4.28) takes the form:

ε(Y1)ζ − ε(Y1)ζ−1

h
− ε(Y2)ζ + ε(Y2)ζ−1

2
= (r1)ζ− 1

2
, (4.29)

ε(Y3)ζ − ε(Y3)ζ−1

h
− ε(Y4)ζ + ε(Y4)ζ−1

2
= (r2)ζ− 1

2
, (4.30)

ε(Y5)ζ − ε(Y5)ζ−1

h
− ε(Y2)ζ + ε(Y6)ζ−1

2
= (r3)ζ− 1

2
, (4.31)

ε(Y7)ζ − ε(Y7)ζ−1

h
− ε(Y8)ζ + ε(Y2)ζ−1

2
= (r4)ζ− 1

2
, (4.32)



(ξ1)ζε(Y1)ζ + (ξ2)ζε(Y1)ζ−1 + (ξ3)ζε(Y2)ζ + (ξ4)ζε(Y2)ζ−1 + (ξ5)ζ

ε(Y3)ζ + (ξ6)ζε(Y3)ζ−1 + (ξ7)ζε(Y4)ζ + (ξ8)ζε(Y4)ζ−1 + (ξ9)ζε(Y5)ζ

+(ξ10)ζε(Y5)ζ−1 + (ξ11)ζε(Y6)ζ + (ξ12)ζε(Y6)ζ−1 + (ξ13)ζε(Y7)ζ

+(ξ14)ζε(Y7)ζ−1 + (ξ15)ζε(Y8)ζ + (ξ16)ζε(Y8)ζ−1 = (r5)ζ− 1
2
,

(4.33)



(χ1)ζε(Y1)ζ + (χ2)ζε(Y1)ζ−1 + (χ3)ζε(Y2)ζ + (χ4)ζε(Y2)ζ−1 + (χ5)ζ

ε(Y3)ζ + (χ6)ζε(Y3)ζ−1 + (χ7)ζε(Y4)ζ + (χ8)ζε(Y4)ζ−1 + (χ9)ζε(Y5)ζ

+(χ10)ζε(Y5)ζ−1 + (χ11)ζε(Y6)ζ + (χ12)ζε(Y6)ζ−1 + (χ13)ζε(Y7)ζ

+(χ14)ζε(Y7)ζ−1 + (χ15)ζε(Y8)ζ + (χ16)ζε(Y8)ζ−1 = (r6)ζ− 1
2
,

(4.34)



(γ1)ζε(Y1)ζ + (γ2)ζε(Y1)ζ−1 + (γ3)ζε(Y2)ζ + (γ4)ζε(Y2)ζ−1 + (γ5)ζ

ε(Y3)ζ + (γ6)ζε(Y3)ζ−1 + (γ7)ζε(Y4)ζ + (γ8)ζε(Y4)ζ−1 + (γ9)ζε(Y5)ζ

+(γ10)ζε(Y5)ζ−1 + (γ11)ζε(Y6)ζ + (γ12)ζε(Y6)ζ−1 + (γ13)ζε(Y7)ζ

+(γ14)ζε(Y7)ζ−1 + (γ15)ζε(Y8)ζ + (γ16)ζε(Y8)ζ−1 = (r7)ζ− 1
2
,

(4.35)
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

(λ1)ζε(Y1)ζ + (λ2)ζε(Y1)ζ−1 + (λ3)ζε(Y2)ζ + (λ4)ζε(Y2)ζ−1 + (λ5)ζ

ε(Y3)ζ + (λ6)ζε(Y3)ζ−1 + (λ7)ζε(Y4)ζ + (λ8)ζε(Y4)ζ−1 + (λ9)ζε(Y5)ζ

+(λ10)ζε(Y5)ζ−1 + (λ11)ζε(Y6)ζ + (λ12)ζε(Y6)ζ−1 + (λ13)ζε(Y7)ζ

+(λ14)ζε(Y7)ζ−1 + (λ15)ζε(Y8)ζ + (λ16)ζε(Y8)ζ−1 = (r8)ζ− 1
2
.

(4.36)

Here, ξ(l), χ(l), γ(l), λ(l), ζ = 1, ..., 16 are constants. The linear system is written

in the matrix form as given in (2.54)-(2.55). Making use of the boundary conditions

defined in (4.11), we have:

x1 =



ε(Y2)0

ε(Y4)0

ε(Y6)0

ε(Y7)0

ε(Y2)1

ε(Y4)1

ε(Y5)1

ε(Y8)1



, xζ =



ε(Y1)ζ−1

ε(Y3)ζ−1

ε(Y6)ζ−1

ε(Y7)ζ−1

ε(Y2)ζ

ε(Y4)ζ

ε(Y5)ζ

ε(Y8)ζ



, ζ = 2, 3, ..., J, (4.37)

A1 =



−0.5h 0 0 0 −0.5h 0 0 0

0 −0.5h 0 0 0 −0.5h 0 0

0 0 −0.5h 0 0 0 −0.5h 0

0 0 0 −1 0 0 0 −0.5h

(ξ4)1 (ξ8)1 (ξ12)1 (ξ14)1 (ξ3)1 (ξ7)1 (ξ9)1 (ξ15)1

(χ4)1 (χ8)1 (χ12)1 (χ14)1 (χ3)1 (χ7)1 (χ9)1 (χ15)1

(γ4)1 (γ8)1 (γ12)1 (γ14)1 (γ3)1 (γ7)1 (γ9)1 (γ15)1

(λ4)1 (λ8)1 (λ12)1 (λ14)1 (λ3)1 (λ7)1 (λ9)1 (λ15)1



,

Aζ =



−1 0 0 0 −0.5h 0 0 0

0 −1 0 0 0 −0.5h 0 0

0 0 −0.5h 0 0 0 1 0

0 0 0 −1 0 0 0 −0.5h

(ξ2)ζ (ξ6)ζ (ξ12)ζ (ξ14)ζ (ξ3)ζ (ξ7)ζ (ξ9)ζ (ξ15)ζ

(χ2)ζ (χ6)ζ (χ12)ζ (χ14)ζ (χ3)ζ (χ7)ζ (χ9)ζ (χ15)ζ

(γ2)ζ (γ6)ζ (γ12)ζ (γ14)ζ (γ3)ζ (γ7)ζ (γ9)ζ (γ15)ζ

(λ2)ζ (λ6)ζ (λ12)ζ (λ14)ζ (λ3)ζ (λ7)ζ (λ9)ζ (λ15)ζ



, ζ = 2, 3, ..., J,
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Bζ =



0 0 0 0 −0.5h 0 0 0

0 0 0 0 0 −0.5h 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −0.5h

0 0 0 0 (ξ4)ζ (ξ8)ζ (ξ10)ζ (ξ16)ζ

0 0 0 0 (χ4)ζ (χ8)ζ (χ10)ζ (χ16)ζ

0 0 0 0 (γ4)ζ (γ8)ζ (γ10)ζ (γ16)ζ

0 0 0 0 (λ4)ζ (λ8)ζ (λ10)ζ (λ16)ζ



, ζ = 2, 3, ..., J,

Cζ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −0.5h 0 0 0 0 0

0 0 0 1 0 0 0 0

(ξ1)ζ (ξ5)ζ (ξ11)ζ (ξ13)ζ 0 0 0 0

(χ1)ζ (χ5)ζ (χ11)ζ (χ13)ζ 0 0 0 0

(γ1)ζ (γ5)ζ (γ11)ζ (γ13)ζ 0 0 0 0

(λ1)ζ (λ5)ζ (λ11)ζ (λ13)ζ 0 0 0 0



, ζ = 1, 2, ..., J.

In the next step, the arising linear system is solved by block LU -factorization. The coding of the

whole procedure was carried in Matlab. To validate the Keller box Matlab program developed

for the present problem, the results are compared with a built-in Matlab routine of bvp4c. A

good agreement is found amongst the results as evident from the Table 4.1.

V0 τ
bvp4c KBM

0.2 0.135173 0.135173
0.4 0.090768 0.090768
0.6 0.063248 0.063248
0.8 0.045697 0.045697
1 0.034158 0.034158

Table 4.1: Comparison table of Keller box and bvp4c solutions for τ with
M = 5, Pm = 1,K = 1, φ = 0.04, P r = 6.2.

4.4 Numerical Results and Discussion

The present section provides a discussion on the impact of the sundry parameters affecting the

flow and heat transfer properties. The results in Figures 4.2 and 4.3 show that the velocity and

the angular velocity, both are decreasing functions of the magnetic parameter due to the resis-

tance provided by the magnetic field. A stronger impact is seen in the case of kerosene oil-based

SWCNT and MWCNT nanofluid as compared to water-based SWCNT and MWCNT nanofluid.

The induced magnetic field is also seen declining for higher values of the magnetic parameter in
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Figure 4.4. In Figures 4.5 and 4.6, it is seen that both the velocity and the angular velocity

shrink with an increase in Pm. Figure 4.7 reveals that the induced magnetic field decreases with

an increase in the values of Pm because of the increase in the momentum diffusion as compared

to magnetic diffusion.

The velocity decreases with an increase in the material parameter K (see Figure 4.8) which

is an indication that the couple stresses tend to reduce the velocity. An augmentation in the

angular velocity is observed in Figure 4.9 as K augments. The induced magnetic field also grows

with the rising values of the material parameter K as it is evident from Figure 4.10. The angular

velocity profile is enhanced by increasing the nanoparticle volume fraction for all cases but par-

ticularly in the case of the SWCNT-water nanofluid (see Figure 4.11), the velocity is increased

most rapidly. In Figure 4.12, the induced magnetic field is noticed as a decreasing function of

the volume fraction when plotted for variation in the φ. The temperature profile when plotted

against the values of volume fraction in Figure 4.13 shows that it increases when the amount of

nanoparticles is increased. However the temperature profile grows most for the SWCNT-water

and least for MWNCT-kerosene oil.

Figure 4.14 reveals that the angular velocity decreases for the greater values of the suction

parameter. Furthermore near the lower plate, the profile is concave up while the concavity

changes as we move towards the upper plate. The suction parameter V0 enhances the induced

magnetic field of the nanofluid as observed in Figure 4.15. Greater suction velocity is responsible

for increasing the linear velocity of the fluid which in return increases the electromotive current

due to the increased free electrons motion thus induced magnetic field is enhanced. The tem-

perature profile shows a decline with the rising values of the suction parameter as it decreases

the temperature gradient applied at the surface (see Figure 4.16). A comparison of the SWCNT

and MWCNT nanoparticles with base fluid as water in Figure 4.18 indicates that the Nusselt

number increases with the increase in the suction parameter V0 but it is greater in SWCNT-

water nanofluid. In Figure 4.20, the heat transfer rate increases appreciably when kerosene oil is

used as the base fluid. The MWCNT-kerosene oil nanofluid is the most effective in heat transfer

among the nanofluids used in the present study. Bar graphs have been utilized to evaluate the

impact of various parameters on skin friction. In Figure 4.21, the magnetic parameter is seen

reducing the skin friction of nanofluid because it repels the fluid away from the plate surface. A

similar observation can be seen in the case of variation in the magnetic Prandtl number Pm (see

Figure 4.22). Figure 4.23 reveals that the material parameter K, when increased, rises the skin

friction of the nanofluids, particularly, the SWCNT-water nanofluid. Greater volume fraction of

the nanoparticles increase the skin friction of the nanofluids as witnessed in Figure 4.24. From

Figure 4.25, we observe that the skin friction of the nanofluids decreases with the increment in

the suction parameter.
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Figure 4.2: Effect of the magnetic parameter M on velocity.
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Figure 4.3: Effect of the magnetic parameter M on angular velocity.
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Figure 4.4: Effect of the magnetic parameter M on induced magnetic field.
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Figure 4.5: Impact of magnetic Prandtl number Pm on velocity.
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Figure 4.6: Impact of magnetic Prandtl number Pm on angular velocity.
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Figure 4.7: Impact of magnetic Prandtl number Pm on induced magnetic
field.
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Figure 4.8: Impact of material parameter K on velocity.
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Figure 4.9: Impact of material parameter K on angular velocity.
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Figure 4.10: Impact of material parameter K on induced magnetic field.
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Figure 4.11: Impact of volume fraction φ on the angular velocity.
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Figure 4.12: Impact of volume fraction φ on the induced magnetic field.
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Figure 4.13: Impact of volume fraction φ on temperature.
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Figure 4.14: Impact of suction parameter V0 on the angular velocity.
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Figure 4.15: Impact of suction parameter V0 on induced magnetic field.
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Figure 4.16: Impact of suction parameter V0 on temperature.
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Figure 4.17: Impact of suction parameter V0 and φ on the Nusselt number
with water as base fluid.(3D)
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Figure 4.18: Impact of changing suction parameter V0 and φ on the Nusselt
number with water as base fluid. (2D)
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Figure 4.19: Impact of suction parameter V0 and φ on the Nusselt number
with kerosene oil as base fluid.
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Figure 4.20: Impact of suction parameter V0 and φ on the Nusselt number
with kerosene oil as base fluid.
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Figure 4.21: Impact of magnetic number M on the skin friction.
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Figure 4.22: Impact of magnetic Prandtl number Pm on the skin friction.
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Figure 4.23: Impact of material parameter K on the skin friction.
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Figure 4.24: Impact of volume fraction φ on the skin friction.
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Figure 4.25: Impact of suction velocity V0 on the skin friction.
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4.5 Chapter Summary

On the basis of graphical results, the findings of the study can be summarized as follows:

• A greater decline in the fluid velocity and angular velocity with the growing values of

magnetic number, is seen in the case of kerosene oil-based SWCNT and MWCNT nanofluid

as compared to water-based SWCNT and MWCNT nanofluid.

• It is noted that induced magnetic field declines for greater values of volume fraction in

all cases. The result indicates that the increase in the number of nanoparticles tend to

reduce the effects of induced magnetic field in the SWCNT/MWCNT-water as well as

SWCNT/MWCNT-kerosene oil nanofluids.

• Observing the comparison of the Nusselt number for SWCNT/MWCNT-kerosene oil

nanofluid, it is noted that for smaller values of volume fraction φ the MWNCT-kerosene

is more effective but for greater values of φ, MWCNT-kerosene oil is better suited in

enhancement of heat transfer rate.

• The Suction parameter V0 when coupled with the volume fraction φ and SWCNT-kerosene

oil can bring about greatest heat transfer.



Chapter 5

Marangoni Convective Flow and

Heat Transfer in MHD

Micropolar Alumina-water

Nanofluid

5.1 Introduction

The present chapter is aimed at the thermal transport analysis in alumina-water micropolar

nanofluid spotlighted by the Cattaneo-Christov heat flux model. Fluid flow in the situations

where either fluid is superbly heated or flowing in the region having microgravity such as space

is accumulated to observe the effects of surface tension gradients on the thermal transport in

nanofluids. This phenomena is seldomly discussed mathematically as very few researches can

found on this topic. Here, Marangoni convection in alumina/water nanofluid is considered. Four

different shaped nanoparticles are used to analyze the heat transfer in the nanofluid. The fluid

flow is deemed with the application of a uniform magnetic field applied in way to control the

flow of the fluid. The mathematical modeling is based on the coupled Naiver-Stokes equations

of fluid dynamics and the energy equation with the thermal time relaxation factor. Model

equations after applying the boundary layer approximations and similarity transformations are

ODEs which are solved by the KBM. The results for fluid flow, temperature profile and Nusselt

number are plotted and analyzed.

85
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5.2 Problem Statement and Mathematical For-

mulation

Consider a steady, two dimensional and incompressible flow of alumina-water micropolar nanofluid.

Flow of the nanofluid is due to the surface tension gradients prevailing at the interface as a result

of the temperature imbalances in the fluid. Magnetic field is applied perpendicular to the fluid

motion to optimize the flow (see Figure 5.1). The Joule heating effects and the electric cur-

rents produced in the nanofluid are supposed to be very small so these are ignored in the study.

Fluid is supposed to contain microstrutures with in its composition so the angular momentum

equation is added to the set of governing equations. Contrary to the study carried out in the

previous chapter, the nanofluid is assumed to contain microstructures at the surface, the Impact

on which is added to the boundary conditions at the surface. Also, microstructures are assumed

not to contribute towards heat dissipation caused inside the nanofluid. Homogeneous single

phase model is considered with Al2O3 as nanoparticles and water as the base fluid with constant

thermophysical properties. The primary purpose of the study is to ponder on the heat transfer

rate in the boundary layer formed close at the interface. The fluid is assumed to isotropic that

is the viscosity of the fluid is constant and the value of magnetic Prandtl number Pr is close to

“1”. Implementation of the boundary layer approximation to the governing equations give the

set of equations by following [69]:

∂u

∂x
+
∂v

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂u

∂y
=

(
νnf +

κ∗

ρnf

)
∂2u

∂y2
+

κ∗

ρnf

∂N

∂y
− (σel)nf

B0
2u

ρnf
, (5.2)

j

(
u
∂N

∂x
+ v

∂N

∂y

)
=

(
νnf +

κ∗

2ρnf

)
j
∂2N

∂y2
− κ∗

(
2N +

∂u

∂y

)
, (5.3)


u∂T∂x + v ∂T∂y + λ0

[
u∂u∂x

∂T
∂x + v ∂v∂y

∂T
∂y + u2 ∂2T

∂x2 + v2 ∂2T
∂y2 + 2uv ∂2T

∂x∂y + u ∂v∂x
∂T
∂y

+v ∂u∂y
∂T
∂x

]
= α′nf

∂2T
∂y2 .

(5.4)

The physical quantities of viscosity µnf , density ρnf , heat capacity (ρCp)nf and electrical

conductivity (σel)nf of the nanofluid are defined in Eqs. (2.19)-(2.20). The shape factor m for

different shaped nanoparticles is defined in Table 5.1 [70], whereas the thermophysical properties

of the nanofluid in Table 2.1.
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Figure 5.1: Schematic diagram of the flow model.

Shape Sphere Tetrahedron Column Lamina

m 3 4.0613 6.3598 16.1576

Table 5.1: Empirical shape factor values defining various shapes of the
nanoparticles.

The surface tension σ is assumed to be a linear function of temperature and is defined as [69]:

σ = σ0 [1− γT (T − T∞)] ,

where γT = − 1
σ0

∂σ
∂T

∣∣∣∣
T

.

The shear stress is related to the temperature gradient at the boundary surface as:

∂σ

∂X
=
∂σ

∂T

∂T

∂X
,

where X = x
L .
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The boundary conditions have been considered as follows [69]:

(µnf + κ∗)
∂u

∂y

∣∣∣∣
y=0

= −∂σ
∂x

∣∣∣∣
y=0

= σ0γT
∂T

∂x

∣∣∣∣
y=0

, v (x, 0) = 0, N(x, 0) = −n∂u
∂y

∣∣∣∣
y=0

,

T (x, 0) = T∞ + T0X
2, (5.5)

u→ 0, v → 0, N → 0, T → T∞ as y →∞. (5.6)

Here, n is a constant ranging between ‘0’ and ‘1’. For the case n = 0, the microstructures are

unable to rotate in the boundary layer. The weak concentration corresponds to the case when

n = 0.5 for which the anti-symmetrical part of the stress tensor vanishes. n = 1 give rise to

turbulent flows where the couple stress effects are present. In the present analysis, the cases

when n = 0 and n = 0.5 are considered. The self similar form of Eqs. (5.1)-(5.4) is obtained by

using the following similarity variables

Ψ (x, y) = νfXf (η) , η =
y

L
,

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
,

N (x, y) =
νf
L2
Xg(η),

T (x, y) = T0X
2θ (η) + T∞.

Using the similarity transforms, Eq. (5.1) is satisfied identically and Eqs. (5.2)-(5.4) take the

form:

(
A3 +K

A1

)
f ′′′ + ff ′′ − f ′2 − A5

A1
M f ′ +

K

A1
g′ = 0, (5.7)

θ′′ − A2 A3

A1 A4
Pr

[
2f ′θ − fθ′ + λE

(
4 f ′2 θ − 3 f f ′ θ′ + f2 θ′′ − 2 f f ′′ θ

)]
= 0, (5.8)

(
A3

A1
+

K

2A1

)
g′′ − K

A1
(2g + f ′′)− gf ′ + fg′ = 0, (5.9)

where

Pr =
νf
αf
, λE =

λ0νf
L2

,M =
B2

0(σel)fL
2

ρfνf
,K =

κ

µf
, A1 =

ρnf
ρf

, A2 =
(ρCp)nf
(ρCp)f

,

A3 =
µnf
µf

, A4 =
κnf
κf

, A5 =
(σel)nf
(σel)f

, L = − µfνf
σ0γTT0

.

The material parameter K correctly predicts the flow behavior in the limiting case when there is

zero spin. In that case, spin N turns to angular flow velocity or fluid vorticity. The dimensionless
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form of the boundary conditions become:

f(0) = 0, (A3 +K)f ′′(0) = −2, g (0) = −nf ′′(0), θ (0) = 1, (5.10)

f ′(η)→ 0, g(η)→ 0, θ(η)→ 0, as η →∞. (5.11)

The heat flux at the interface is qw, which is defined as:

qw = −κnf
(
∂T

∂y

)
y=0

. (5.12)

The strength of the heat transfer is given by the Nusselt number Nux, which is expressed as

Nux = x
qw

κf (T − T∞)
.

Using the non-dimensional transformations, we obtain:

Nuxκf
Xκnf

= −θ′(0).

5.3 Keller Box Formulation

• BVP (5.7) - (5.11) is transformed to seven first order ODEs.

f = Y1, (5.13)

Y
′

1 = Y2, (5.14)

Y
′

2 = Y3, (5.15)

θ = Y4, (5.16)

Y
′

4 = Y5, (5.17)

g = Y6, (5.18)

Y
′

6 = Y7, (5.19)(
A3 +K

A1

)
Y
′

3 + Y1Y3 − Y 2
2 −

A5

A1
M Y2 +

K

A1
Y7 = 0, (5.20)

Y
′

5 − A2 A3

A1 A4
Pr

[
2Y2Y4 − Y1Y5 + λE

(
4 Y 2

2 Y4 − 3 Y1 Y2 Y5

+Y 2
1 Y ′5 − 2 Y1 Y3 Y4

)]
= 0,

(5.21)

(
A3

A1
+

K

2A1

)
Y
′

7 −
K

A1
(2Y6 + Y3)− Y6Y2 + Y1Y7 = 0. (5.22)
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• The set of discretized equations are given as:

(Y1)ζ − (Y1)ζ−1

h
= (Y2)ζ− 1

2
, (5.23)

(Y2)ζ − (Y2)ζ−1

h
= (Y3)ζ− 1

2
, (5.24)

(Y4)ζ − (Y4)ζ−1

h
= (Y5)ζ− 1

2
, (5.25)

(Y6)ζ − (Y6)ζ−1

h
= (Y7)ζ− 1

2
, (5.26)

(
A3+K
A1

)
(Y3)ζ−(Y3)ζ−1

h + (Y1)ζ− 1
2
(Y3)ζ− 1

2
− (Y2)2

ζ− 1
2

−A5

A1
M (Y2)ζ− 1

2
+ K

A1
(Y7)ζ− 1

2
= 0,

(5.27)



(Y5)ζ−(Y5)ζ−1

h − A2 A3

A1 A4
Pr

[
2(Y2)ζ− 1

2
(Y4)ζ− 1

2
− (Y1)ζ− 1

2
(Y5)ζ− 1

2

+λE

(
4 (Y2)2

ζ− 1
2

(Y4)ζ− 1
2
− 3 (Y1)ζ− 1

2
(Y2)ζ− 1

2
(Y5)ζ− 1

2

+(Y1)2
ζ− 1

2

(Y5)ζ−(Y5)ζ−1

h − 2 (Y1)ζ− 1
2

(Y3)ζ− 1
2

(Y4)ζ− 1
2

)]
= 0,

(5.28)


(
A3

A1
+ K

2A1

)
(Y7)ζ−(Y7)ζ−1

h − K
A1

(
2(Y6)ζ− 1

2
+ (Y3)ζ− 1

2

)
−(Y6)ζ− 1

2
(Y2)ζ− 1

2
+ (Y1)ζ− 1

2
(Y7)ζ− 1

2
= 0.

(5.29)

• Following section 2.14, the nonlinear difference equations are linearized as:

ε(Y1)ζ − ε(Y1)ζ−1

h
− ε(Y2)ζ + ε(Y2)ζ−1

2
= (r1)ζ− 1

2
, (5.30)

ε(Y2)ζ − ε(Y2)ζ−1

h
− ε(Y3)ζ + ε(Y3)ζ−1

2
= (r2)ζ− 1

2
, (5.31)

ε(Y4)ζ − ε(Y4)ζ−1

h
− ε(Y5)ζ + ε(Y5)ζ−1

2
= (r3)ζ− 1

2
, (5.32)

ε(Y6)ζ − ε(Y6)ζ−1

h
− ε(Y7)ζ + ε(Y7)ζ−1

2
= (r4)ζ− 1

2
, (5.33)



(ξ1)ζε(Y1)ζ + (ξ2)ζε(Y1)ζ−1 + (ξ3)ζε(Y2)ζ + (ξ4)ζε(Y2)ζ−1

+(ξ5)ζε(Y3)ζ + (ξ6)ζε(Y3)ζ−1 + (ξ7)ζε(Y4)ζ + (ξ8)ζε(Y4)ζ−1

+(ξ9)ζε(Y5)ζ + (ξ10)ζε(Y5)ζ−1 + (ξ11)ζε(Y6)ζ + (ξ12)ζε(Y6)ζ−1

+(ξ13)ζε(Y7)ζ + (ξ14)ζε(Y7)ζ−1 = (r5)ζ− 1
2
,

(5.34)



(χ1)ζε(Y1)ζ + (χ2)ζε(Y1)ζ−1 + (χ3)ζε(Y2)ζ + (χ4)ζε(Y2)ζ−1

+(χ5)ζε(Y3)ζ + (χ6)ζε(Y3)ζ−1 + (χ7)ζε(Y4)ζ + (χ8)ζε(Y4)ζ−1

+(χ9)ζε(Y5)ζ + (χ10)ζε(Y5)ζ−1 + (χ11)ζε(Y6)ζ

+(χ12)ζε(Y6)ζ−1 + (χ13)ζε(Y7)ζ + (χ14)ζε(Y7)ζ−1 = (r6)ζ− 1
2
,

(5.35)
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

(γ1)ζε(Y1)ζ + (γ2)ζε(Y1)ζ−1 + (γ3)ζε(Y2)ζ + (γ4)ζε(Y2)ζ−1

+(γ5)ζε(Y3)ζ + (γ6)ζε(Y3)ζ−1 + (γ7)ζε(Y4)ζ + (γ8)ζε(Y4)ζ−1

+(γ9)ζε(Y5)ζ + (γ10)ζε(Y5)ζ−1 + (γ11)ζε(Y6)ζ

+(γ12)ζε(Y6)ζ−1 + (γ13)ζε(Y7)ζ + (γ14)ζε(Y7)ζ−1 = (r7)ζ− 1
2
.

(5.36)

• The resulting linear system is written in the matrix form as defined in (2.54)-(2.55).

Where,

x1 =



ε(Y2)0

ε(Y5)0

ε(Y7)0

ε(Y1)1

ε(Y3)1

ε(Y5)1

ε(Y7)1


, xζ =



ε(Y2)ζ−1

ε(Y4)ζ−1

ε(Y6)ζ−1

ε(Y1)ζ

ε(Y3)ζ

ε(Y5)ζ

ε(Y7)ζ


, ζ = 2, 3, ..., J, (5.37)

A1 =



−h
2 0 0 1 0 0 0

−1 0 0 0 −h
2 0 0

0 −h
2 0 0 0 −h

2 0

0 0 −h
2 0 0 0 −h

2

(ξ4)1 (ξ10)1 (ξ14)1 (ξ1)1 (ξ5)1 (ξ9)1 (ξ13)1

(χ4)1 (χ10)1 (χ14)1 (χ1)1 (χ5)1 (χ9)1 (χ13)1

(γ4)1 (γ10)1 (γ14)1 (γ1)1 (γ5)1 (γ9)1 (γ13)1


,

Aζ =



−h
2 0 0 −1 0 0 0

−1 0 0 0 −h
2 0 0

0 −1 0 0 0 −h
2 0

0 0 −1 0 0 0 −h
2

(ξ4)ζ (ξ8)ζ (ξ12)ζ (ξ1)ζ (ξ5)ζ (ξ9)1 (ξ13)ζ

(χ4)ζ (χ8)ζ (χ12)ζ (χ1)ζ (χ5)ζ (χ9)ζ (χ13)ζ

(γ4)ζ (γ8)ζ (γ12)ζ (γζ)ζ (γ5)ζ (γ9)ζ (γ13)ζ


, ζ = 2, 3, ..., J,

Bζ =



0 0 0 −1 0 0 0

0 0 0 0 −h
2 0 0

0 0 0 0 0 −h
2 0

0 0 0 0 0 0 −h
2

0 0 0 (ξ2)ζ (ξ6)ζ (ξ10)ζ (ξ14)ζ

0 0 0 (χ2)ζ (χ6)ζ (χ10)ζ (χ14)ζ

0 0 0 (γ2)ζ (γ6)ζ (γ10)ζ (γ14)ζ


, ζ = 2, 3, ..., J,
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Cζ =



−h
2 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

(ξ3)ζ (ξ7)ζ (ξ11)ζ 0 0 0 0

(χ3)ζ (χ7)ζ (χ11)ζ 0 0 0 0

(γ3)ζ (γ7)ζ (γ11)ζ 0 0 0 0


, ζ = 1, 2, ..., J.

• The vector of unknowns x is obtained by solving the system Wx = r by using LU -

decomposition method.

• Updation is made to the solution vector and the process is continued until a required

accuracy of 10−5 is achieved. For the present problem mesh spacing is taken as 0.01.

• Matlab code validation of the KBM used for the solution of the BVP (5.7)-(5.11) is

achieved by a comparison of the present results to the already available results in Table

5.2. The results verifies the technique’s effectiveness in solving BVPs of present nature.

To have an estimate of the computational time required to produce results for the present

problem, CPU time is calculated in Table 5.3.

Ariffin et al. [71] Present results

n S f
′
(0) g

′
(0) −θ′(0) f

′
(0) g

′
(0) −θ′(0)

0 -2 2.69002 0.46534 1.39916 2.69002 0.46535 1.39916

-1 2.36794 0.52726 1.54924 2.36794 0.52727 1.54924

0 2.02929 0.57939 1.74535 2.02929 0.57940 1.74535

1 1.68896 0.52726 2.01542 1.68896 0.60499 2.01541

2 1.37409 0.59299 2.39309 1.37409 0.59299 2.39309

0.5 -2 2.52510 -0.79204 1.32235 2.52510 -0.79204 1.32235

-1 2.17998 -0.91743 1.44696 2.17997 -0.91743 1.44695

0 1.81712 -1.10064 1.61252 1.81712 -1.10064 1.61252

1 1.45616 -1.37347 1.85711 1.45616 -1.37347 1.85711

2 1.13472 -1.76253 2.23294 1.13472 -1.76253 2.23294

Table 5.2: Values of f
′
(0), g

′
(0) and −θ′(0) for varying S when K = 1 and
Pr = 0.78.

K f
′
(0) CPU time (sec)

0.5 1.5476 3.104
1 1.5726 3.520

1.5 1.5995 14.436

Table 5.3: Values of f
′
(0) for varying K when λE = 0.5, M = 5, n = 0 and

Pr = 6.2.
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5.4 Numerical Results and Discussion

A discussion based on the results obtained for the fluid properties in the form of graphs has been

presented in the present section. Homogeneous single phase model with nanoparticles of Al2O3

are used along side water as the base fluid. The effectiveness of the nanoparticles shapes has

also been pondered upon the graphs.

An increase in the material parameter values decreases the linear velocity of the fluid in the

boundary layer in the case of weak concentration of the microstructures but the opposite behav-

ior is observed in the absence of microstructures. This suggests that a greater rotation viscosity

tends to resist the flow of the fluid which results in a decrease in the linear velocity as evident

from Figure 5.2. A similar Impact on the material parameter can be found on the spin velocity

as observed in Figure 5.3. The figure reveals that the inclination in the K results in the reduction

of the angular velocity thus stabilizing the flow. It is observed in Figure 5.4 that the temperature

in the boundary layer increases as the value of K is increased and the effect is more pronounced

in the case of n = 0.5. Figures 5.5-5.6 reveal that the heat transfer rate decreases with an

augmentation in the material parameter. The heat transfer drops at a greater rate when there

is a weak concentration of the microstructures.

Figure 5.7 shows that the rising values of magnetic number imply an increase in the Lorentz

forces which in return declines the linear velocity of the fluid. The spin velocity declines with

an increase in the magnetic number which shows that the stronger magnetic field also impacts

negatively on the spin velocity of the fluid (see Figure 5.8). In Figure 5.9, the temperature of the

fluid rises for the growing values of magnetic number which suggests that more heat is dissipated

in the case of a stronger magnetic field. A greater heat dissipation causes a decline in the heat

transfer rate which is evident from Figures 5.10 and 5.11 as greater values of magnetic number

decrease the heat transfer rate in the nanofluid. The loss of heat transfer is found greater in the

case of weak concentration.

The Impact on the different shapes of the nanoparticles on the temperature profile has been

pondered upon in Figure 5.12. The results show that the temperature in the boundary layer is

maximum in the case of laminar particles but least in the case of the spherical particles. This

is an indication that spherical particles tend to take more heat away from the boundary layer

as compared to the other particles used in the present study. For the lamina nanoparticles,

the heat transfer rate either in the case of the absence of microstructures or in the presence of

microstructures is maximum (see Figure 5.13-5.14).

The effect of the nanoparticles concentration on the velocity and temperature profiles is discussed
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in Figures 5.15–5.16. The linear velocity seems to be growing with a higher concentration of

the nanoparticles (see Figure5.15). The physical reason for this is the random motion of the

nanoparticles as well as their motion in the presence of temperature gradient prevalent in the

regime which give rise to drift velocity, a greater number of nanoparticles will enhance the ve-

locity of the fluid in the boundary layer. Similarly, the temperature of the fluid also increases

with an increase in the nanoparticles concentration as it can be observed in Figure 5.16.

The thermal relaxation time is a measure of the resistance of the system in the change of its

thermal state. This implies that a greater value of the thermal relaxation time parameter will

lead to more delay in the system to change its thermal state thus lowering the temperature of

the fluid in the boundary layer. Figure 5.17 shows that the growing values of the relaxation time

parameter lead to a smaller temperature in the boundary layer. Physically due greater thermal

inertia, the system opposes more to a temperature change with greater thermal relaxation time.

Figures 5.18-5.19 gives an account of the effect of the thermal time relaxation on the heat transfer

rate. It is observed that the greater values of λE lead to an enhancement in the Nusselt number.

Streamlines provides information about the flow pattern. The streamlines in the cases of zero

spin concentration of the microstructures have been plotted in Figure 5.20.

.
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Figure 5.2: Impact on linear velocity for varying material parameter K.
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Figure 5.3: Impact on angular velocity for varying material parameter K.
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Figure 5.4: Impact on temperature for varying material parameter K.
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Figure 5.5: Impact on Nusselt number in the presence of microstructures.
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Figure 5.6: Impact on Nusselt number in the absence of microstructures for
varying material parameter K.
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Figure 5.7: Impact on linear velocity for varying magnetic number M .
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Figure 5.8: impact on temperature for varying magnetic number M .
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Figure 5.9: impact on temperature for varying magnetic number M .
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Figure 5.10: Impact on Nusselt number in the presence of microstructures for
varying magnetic number M .
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Figure 5.11: Impact on Nusselt Number in the absence of microstructures for
varying magnetic number M .

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.12: Impact on temperature for varying shape factor m.
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Figure 5.13: Impact on Nusselt number in the absence of microstructures for
varying shape factor m.
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Figure 5.14: Impact on Nusselt number in the presence of microstructures for
varying shape factor m.
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Figure 5.15: Impact on linear velocity for varying nanoparticle volume fraction
φ.
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Figure 5.16: impact on temperature for varying nanoparticle volume fraction
φ.
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Figure 5.17: impact on temperature for varying λE .
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Figure 5.18: impact on Nusselt number in the absence of microstructures for
varying λE .
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Figure 5.19: impact on Nusselt number in the presence of microstructures for
varying λE .
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Figure 5.20: Streamlines in the absence of microstructures with K = 1, m = 3,
λE = 0.5 and M = 5.
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5.5 Chapter Summary

The findings of heat transfer analysis of the problem stated in 5.2 have been summarized as

under:

• The increasing values of the material parameter K decrease the linear as well as the spin

velocity of the micropolar nanofluid and reduces the heat transfer rate in the micropolar

nanofluid.

• Higher magnetic parameter M is proved to be an obstruction to both the linear as well

as the angular velocity of the nanofluid thus rising the temperature of the fluid and more

heat is found to dissipate, so the heat transfer rate is decreased.

• The temperature in the boundary layer is least for the spherical particles and most for

the lamina particles.

• A higher concentration of the nanoparticles augments the linear velocity of the fluid and

tends to rise the temperature in the boundary layer and an enhancement in the heat

transfer rate.

• Lamina shaped nanoparticle are proved to be the best of all the nanoparticles used in the

study for the heat transport in the nanofluid.

• An increase in the thermal time relaxation parameter λE decreases the temperature of

the nanofluid but increases the heat transfer rate in the nanofluid.



Chapter 6

Jeffery-Hamel Flow and Heat

Transport in Non-Newtonian

Nanofluid Between Nonparallel

Plates

6.1 Introduction

The present chapter focuses on the heat and mass transfer in Jeffery-Hamel flow of a micropolar

nanofluid between two converging/diverging plates. Buongiorno nanofluid model is utilized to

investigate the heat and mass transfer. The fluid flow has been analyzed by the linear and

angular momentum equations of fluid dynamics. Fourier and Fick’s laws have been used in the

energy and mass conservation equations to discover the heat and mass transfer in the fluid.

Magnetic field effects are incorporated in the analysis by applying the magnetic field normal

to the flow of the fluid. The Joule heating is assumed to be considerable so its effect is added

to the energy equation. The numerical results of the nondimesionalized ODEs are obtained by

KBM. A striking feature of the study is the evaluation of the critical Reynolds number Rec for

the diverging channel. The critical Reynolds number is detrimental in identifying the separation

flow. The application of the magnetic field and the presence of microstructures impact on the

stability on the stability of the flow in the diverging channel.

105
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6.2 Problem Statement and Mathematical For-

mulation

Consider a two dimensional Jeffery Hamel flow of an electrically conductive, steady, incompress-

ible fluid between two non-parallel walls. The walls make an angle α with the radial axis. The

channel is said to be diverging if α > 0 and converging if α < 0. The flow is assumed to be

uni-directional with two dimensions r and Θ. Magnetic field is applied across the walls and it

is assumed that the value of magnetic Prandtl number is small so the induced magnetic field

effects are ignored. It is assumed that the fluid contains microstructures that influence on the

fluid properties. Brownian motion and thermal diffusion effects are significant so Boungiorno

nanofluid model has been used in the study. The Joule heating effect is incorporated in the

model to observe its impact on the heat transfer rate. Here, V = (u(r,Θ), 0, 0), B = (0, r0, 0),

N = (0, 0, N(r,Θ)), T = (T (r,Θ), 0, 0) and C = (C(r,Θ), 0, 0). Making use of the assumptions

microstructures nanoparticles

source.
/sink

Figure 6.1: Schematic diagram of the flow model

for the present problem, the reduced form of conservation equations for continuity, momentum,

angular momentum, energy and concentration is obtained as:

1

r
ρ
∂ru

∂r
= 0. (6.1)
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ρu
∂u

∂r
= (µ+ κ∗)

(
∂2u

∂r2
− u

r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂Θ2

)
− κ∗

r

∂N

∂Θ
− ∂p

∂r
− σr2

0

ρfr2
u, (6.2)

0 = − ∂p
∂Θ

+
2(µ+ κ∗)

r

∂u

∂Θ
− rκ∗ ∂N

∂r
− κ∗N, (6.3)

ρju
∂N

∂r
= γ

(
∂2N

∂r2
− N

r2
+

1

r

∂N

∂r
+

1

r2

∂2N

∂Θ2

)
− 2κ∗N − κ∗

r

∂u

∂Θ
, (6.4)

 u∂T∂r = α′
(
∂2T
∂r2 + 1

r
∂T
∂r + 1

r2
∂2T
∂Θ2

)
+ µ+κ∗

ρCpf

[
2
(
∂u
∂r

)2
+ 2

(
u
r

)2
+
(

1
r
∂u
∂Θ

)2]
+τr2

[
DB

(
∂T
∂r

∂C
∂r + 1

r2 /
∂C
∂Θ

∂T
∂Θ

)
+ DT

Tw

(
∂T
∂r

)2
+ 1

r2

(
∂T
∂Θ

)2]
+

σelr
2
0

(ρCp)f
u2,

(6.5)

Here, τ =
(ρCp)p
ρCp)f

and α′ =
κ

(ρCp)f
.

u
∂C

∂r
=

[
DB

(
∂2C

∂r2
+

1

r

∂C

∂r
+

1

r2

∂2C

∂Θ2

)
+
DT

Tw

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂Θ2

)]
, (6.6)

Keeping in view of the flow properties, the associated boundary conditions are given as:

At the centerline of the channel:

u = Ymax,
∂u

∂Θ
= 0, N = 0,

∂T

∂Θ
= 0,

∂C

∂Θ
= 0. (6.7)

At the walls of the channel:

u = 0, N = 0, T =
Tw
r2
, C =

Cw
r2
. (6.8)

The pressure term in Eqs.(6.2) - (6.3) is eliminated by differentiating Eq. (6.2) with respect

to “Θ” and Eq. (6.3) with respect to “r” and then comparing the two equations. From the

continuity equation (6.1) it is seen that u(r,Θ) = F (Θ). The following transformation are

introduced to convert the boundary value problem Eqs.(6.1)-(6.8) to nondimensional form:

u(r,Θ) =
f(Θ)

r
, η =

Θ

α
, f(η) =

f(Θ)

Ymax
, N =

g(η)Ymax
r2

, θ(η) =
r2T

Tw
, φ(η) =

r2C

Cw
. (6.9)

The nondimensional equations along with the boundary conditions take the form: (1 +K)f
′′′

(η)−Kαg′′(η) + 4α2(1 +K)f
′
(η) + 2Kα3g(η)

−Ha2α2f
′
(η) + 2αRef

′
(η)f(η) = 0,

(6.10)

(1 +
K

2
)(3α2g(η) + g

′′
(η))−KB(2g(η) + αf

′
(η)) + 2Reαf(η)g(η) = 0, (6.11)



Jeffery-Hamel Flow of A Micropolar Nanofluid 108


θ
′′
(η) + 4α2θ(η) + PrRef(η)θ(η) + (1 +K)PrEc[4α2f2(η) + f

′2(η)]

+NB(4α2θ(η)φ(η) + φ
′
(η)θ

′
(η)) +NT (4α2θ2(η) + θ

′2(η))

+Ha2EcPrα2f2(η) = 0,

(6.12)

φ
′′
(η) + ScRe2α2φ(η)f(η) + 4α2φ(η) +

NT
NB

(4α2θ(η) + θ
′′
(η)) = 0. (6.13)

 f(0) = 1, f
′
(0) = 0, g(0) = 0, θ

′
(0) = 0, φ

′
(0) = 0,

f(1) = 0, g(1) = 0, θ(1) = 1, φ(1) = 1.

(6.14)

Here,

Pr =
ν

α′
, Re =

αYmax
ν

 α > 0, Ymax > 0,diverging channel

α < 0, Ymax < 0, converging channel

, K =
κ∗

µ
,

NB =
τDBCw
α′

,M =

√
σr2

0

µ
, Ec =

Y 2
max

(Cp)fTw
, NT =

τDT

α′
, B =

r2

j
, Sc =

ν

DB
.

The skin friction at the walls of the channel is characterized by the following relation:

C∗f =
(µ+ κ∗)

ρY 2
max

1

r

∂u

∂Θ
. (6.15)

Heat transfer rate is characterized by the Nusselt number which defined as:

Nu∗ = − r

κTw ζ−1

t, w

∣∣∣∣
Θ=α

, (6.16)

where ζ−1t, w = −κr
∂T
∂Θ is the surface heat flux. The nondimensional forms of Eqs. (6.15)-(6.16)

become:

Cf = (1 +K)f
′
(1),

Nu =
1

r2α
θ
′
(1).

6.3 Keller Box Formulation

The present section contains details of the solution procedure of Keller box method explicitly

defined for the present problem. The boundary value problem (6.10)-(6.14) is converted to nine
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first order ODEs as given in (6.17)-(6.26):

f = Y1,

Y
′

1 = Y2, (6.17)

Y
′

2 = Y3, (6.18)

g = Y4,

Y
′

4 = Y5, (6.19)

θ = Y6,

Y
′

6 = Y7, (6.20)

φ = Y8, (6.21)

Y
′

8 = Y9, (6.22)

 (1 +K)Y
′

3 −KαY
′

5 + 4α2(1 +K)Y2 + 2Kα3Y4

−Ha2α2Y2 + 2αReY2Y1 = 0,

(6.23)

(1 +
K

2
)(3α2Y4 + Y

′

5 )−KB(2Y4 + αY2) + 2ReαY1Y4 = 0, (6.24)
Y
′

7 + 4α2Y6 + PrReY1Y6 + PrEc[4α2Y 2
1 + Y2]

+NB(4α2Y6Y8 + Y9Y7) +NT (4α2Y 2
6 + Y 2

7 )

+Ha2EcPrα2Y 2
1 = 0,

(6.25)

Y
′

9 + ScRe2α2Y8Y1 + 4α2Y8 +
NT
NB

(4α2Y6 + Y
′

7 ) = 0. (6.26)

Following section 2.14, the nonlinear system in (6.17)-(6.26) takes the linear discrete form:

(Y1)ζ − (Y1)ζ−1

h
= (Y2)ζ− 1

2
, (6.27)

(Y2)ζ − (Y2)ζ−1

h
= (Y3)ζ− 1

2
, (6.28)

(Y4)ζ − (Y4)ζ−1

h
= (Y5)ζ− 1

2
, (6.29)

(Y6)ζ − (Y6)ζ−1

h
= (Y7)ζ− 1

2
, (6.30)

(Y8)ζ − (Y8)ζ−1

h
= (Y9)ζ− 1

2
, (6.31)

 (1 +K)
(

(Y3)ζ−(Y3)ζ−1

h

)
−Kα

(
(Y5)ζ−(Y5)ζ−1

h

)
+ 4α2(1 +K)(Y2)ζ− 1

2

+2Kα3(Y4)ζ− 1
2
−Ha2α2(Y2)ζ− 1

2
+ 2αRe(Y2)ζ− 1

2
(Y1)ζ− 1

2
= 0,

(6.32)
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 (1 + K
2 )
[
3α2(Y4)ζ− 1

2
+
(

(Y5)ζ−(Y5)ζ−1

h

)]
−KB(2(Y4)ζ− 1

2

+α(Y2)ζ− 1
2
) + 2Reα(Y1)ζ− 1

2
(Y4)ζ− 1

2
= 0,

(6.33)



(
(Y7)ζ−(Y7)ζ−1

h

)
+ 4α2(Y6)ζ− 1

2
+ PrRe(Y1)ζ− 1

2
(Y6)ζ− 1

2
+ PrEc[4α2(Y1)2

ζ− 1
2

+(Y2)ζ− 1
2
] +NB(4α2(Y6)ζ− 1

2
(Y8)ζ− 1

2
+ (Y9)ζ− 1

2
(Y7)ζ− 1

2
) +NT (4α2(Y6)ζ− 1

2

+(Y7)ζ− 1
2
) +Ha2EcPrα2(Y1)2

ζ− 1
2

= 0,

(6.34)


(

(Y9)ζ−(Y9)ζ−1

h

)
+ ScRe2α2

[
(Y8)ζ− 1

2
(Y1)ζ− 1

2
+ 4α2(Y8)ζ− 1

2

]
+NT
NB

[
4α2(Y6)ζ− 1

2
+
(

(Y7)ζ−(Y7)ζ−1

h

)]
= 0.

(6.35)

Linearization of the nonlinear difference equations in (6.27)-(??) is carried out using Newton’s

method defined in section 2.14 as:

ε(Y1)ζ − ε(Y1)ζ−1

h
− ε(Y2)ζ + ε(Y2)ζ−1

2
= (r1)ζ− 1

2
, (6.36)

ε(Y2)ζ − ε(Y2)ζ−1

h
− ε(Y3)ζ + ε(Y3)ζ−1

2
= (r2)ζ− 1

2
, (6.37)

ε(Y4)ζ − ε(Y4)ζ−1

h
− ε(Y5)ζ + ε(Y5)ζ−1

2
= (r3)ζ− 1

2
, (6.38)

ε(Y6)ζ − ε(Y6)ζ−1

h
− ε(Y7)ζ + ε(Y7)ζ−1

2
= (r4)ζ− 1

2
, (6.39)

ε(Y8)ζ − ε(Y8)ζ−1

h
− ε(Y9)ζ + ε(Y9)ζ−1

2
= (r5)ζ− 1

2
, (6.40)



(ψ1)‘jε(Y1)ζ + (ψ2)ζε(Y1)ζ−1 + (ψ3)ζε(Y2)ζ + (ψ4)ζε(Y2)ζ−1 + (ψ5)ζε(Y3)ζ

+(ψ6)ζε(Y3)ζ−1 + (ψ7)ζε(Y4)ζ + (ψ8)ζε(Y4)ζ−1 + (ψ9)ζε(Y5)ζ + (ψ10)ζε(Y5)ζ−1

+(ψ11)ζε(Y6)ζ + (ψ12)ζε(Y6)ζ−1 + (ψ13)ζε(Y7)ζ + (ψ14)ζε(Y7)ζ−1 + (ψ15)ζε(Y8)ζ

+(ψ16)ζε(Y8)ζ−1 + (ψ17)ζε(Y9)ζ + (ψ18)ζε(Y9)ζ−1 = (r6)ζ− 1
2
,

(6.41)

(χ1)ζε(Y1)ζ + (χ2)ζε(Y1)ζ−1 + (χ3)ζε(Y2)ζ + (χ4)ζε(Y2)ζ−1 + (χ5)ζε(Y3)ζ

+(χ6)ζε(Y3)ζ−1 + (χ7)ζε(Y4)ζ + (χ8)ζε(Y4)ζ−1 + (χ9)ζε(Y5)ζ + (χ10)ζε(Y5)ζ−1

+(χ11)ζε(Y6)ζ + (χ12)ζε(Y6)ζ−1 + (χ13)ζε(Y7)ζ + (χ14)ζε(Y7)ζ−1 + (χ15)ζε(Y8)ζ

+(χ16)ζε(Y8)ζ−1 + (χ17)ζε(Y9)ζ + (χ18)ζε(Y9)ζ−1 = (r7)ζ− 1
2
.

(6.42)
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

(Ω1)ζε(Y1)ζ + (Ω2)ζε(Y1)ζ−1 + (Ω3)ζε(Y2)ζ + (Ω4)ζε(Y2)ζ−1 + (Ω5)ζε(Y3)ζ

+(Ω6)ζε(Y3)ζ−1 + (Ω7)ζε(Y4)ζ + (Ω8)ζε(Y4)ζ−1 + (Ω9)ζε(Y5)ζ + (Ω10)ζε(Y5)ζ−1

+(Ω11)ζε(Y6)ζ + (Ω12)ζε(Y6)ζ−1 + (Ω13)ζε(Y7)ζ + (Ω14)ζε(Y7)ζ−1 + (Ω15)ζε(Y8)ζ

+(Ω16)ζε(Y8)ζ−1 + (Ω17)ζε(Y9)ζ + (Ω18)ζε(Y9)ζ−1 = (r8)ζ− 1
2
,

(6.43)

(ζ1)ζε(Y1)ζ + (ζ2)ζε(Y1)ζ−1 + (ζ3)ζε(Y2)ζ + (ζ4)ζε(Y2)ζ−1 + (ζ5)ζε(Y3)ζ

+(ζ6)ζε(Y3)ζ−1 + (ζ7)ζε(Y4)ζ + (ζ8)ζε(Y4)ζ−1 + (ζ9)ζε(Y5)ζ + (ζ10)ζε(Y5)ζ−1

+(ζ11)ζε(Y6)ζ + (ζ12)ζε(Y6)ζ−1 + (ζ13)ζε(Y7)ζ + (ζ14)ζε(Y7)ζ−1 + (ζ15)ζε(Y8)ζ

+(ζ16)ζε(Y8)ζ−1 + (ζ17)ζε(Y9)ζ + (ζ18)ζε(Y9)ζ−1 = (r9)ζ− 1
2
.

(6.44)

The above linear equations can be written in matrix form as defined in (2.54)-(2.55).

Making use of the boundary conditions (6.14), we have:

x1 =



ε(Y3)0

ε(Y5)0

ε(Y6)0

ε(Y8)0

ε(Y2)1

ε(Y3)1

ε(Y5)1

ε(Y7)1

ε(Y9)1



, xζ =



ε(Y1)ζ−1

ε(Y4)ζ−1

ε(Y6)ζ−1

ε(Y8)ζ−1

ε(Y2)ζ

ε(Y3)ζ

ε(Y5)ζ

ε(Y7)ζ

ε(Y9)ζ



, ζ = 2, 3, ..., J, (6.45)

A1 =



0 0 0 0 −h
2 0 0 0 0

−h
2 0 0 0 1 −h

2 0 0 0

0 −1 0 0 0 0 −h
2 0 0

0 0 −1 0 0 0 0 −h
2 0

0 0 0 −1 0 0 0 0 −h
2

(ψ6)1 (ψ10)1 (ψ12)1 (ψ16)1 (ψ3)1 (ψ5)1 (ψ9)1 (ψ13)1 (ψ17)1

(χ6)1 (χ10)1 (χ12)1 (χ16)1 (χ3)1 (χ5)1 (χ9)1 (χ13)1 (χ17)1

(Ω6)1 (Ω10)1 (Ω12)1 (Ω16)1 (Ω3)1 (Ω5)1 (Ω9)1 (Ω13)1 (Ω17)1

(ζ6)1 (ζ10)1 (ζ12)1 (ζ16)1 (ζ3)1 (ζ5)1 (ζ9)1 (ζ13)1 (ζ17)1



,
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Aζ =



−1 0 0 0 −h
2 0 0 0 0

0 0 0 0 1 −h
2 0 0 0

0 −1 0 0 0 0 −h
2 0 0

0 0 −1 0 0 0 0 −h
2 0

0 0 0 −1 0 0 0 0 −h
2

(ψ2)ζ (ψ8)ζ (ψ12)ζ (ψ16)ζ (ψ3)ζ (ψ5)ζ (ψ9)ζ (ψ13)ζ (ψ17)ζ

(χ2)ζ (χ8)ζ (χ12)ζ (χ16)ζ (χ3)ζ (χ5)ζ (χ9)ζ (χ13)ζ (χ17)ζ

(Ω2)ζ (Ω8)ζ (Ω12)ζ (Ω16)ζ (Ω3)ζ (Ω5)ζ (Ω9)ζ (Ω13)ζ (Ω17)ζ

(ζ2)ζ (ζ8)ζ (ζ12)ζ (ζ16)ζ (ζ3)ζ (ζ5)ζ (ζ9)ζ (ζ13)ζ (ζ17)ζ



, ζ = 2, 3, ..., J,

rζ =



0 0 0 0 −h
2 0 0 0 0

0 0 0 0 −1 −h
2 0 0 0

0 0 0 0 0 0 −h
2 0 0

0 0 0 0 0 0 0 −h
2 0

0 0 0 0 0 0 0 0 −h
2

0 0 0 0 (ψ4)ζ (ψ6)ζ (ψ10)ζ (ψ14)ζ (ψ18)ζ

0 0 0 0 (χ4)ζ (χ6)ζ (χ10)ζ (χ14)ζ (χ18)ζ

0 0 0 0 (Ω4)ζ (Ω6)ζ (Ω10)ζ (Ω14)ζ (Ω18)ζ

0 0 0 0 (ζ4)ζ (ζ6)ζ (ζ10)ζ (ζ14)ζ (ζ18)ζ



, ζ = 2, 3, ..., J,

Cζ =



1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

(ψ1)ζ (ψ7)ζ (ψ11)ζ (ψ15)ζ 0 0 0 0 0

(χ1)ζ (χ7)ζ (χ11)ζ (χ15)ζ 0 0 0 0 0

(Ω1)ζ (Ω7)ζ (Ω11)ζ (Ω15)ζ 0 0 0 0 0

(ζ1)ζ (ζ7)ζ (ζ11)ζ (ζ15)ζ 0 0 0 0 0



, ζ = 1, 2, ..., J.

Next, the resulting system is solved by block LU -factorization method. The accuracy of the

numerical results are verified by its comparison with the already published results of Turkyilma-

zoglu [72] in Table 6.1.

6.4 Numerical Results and Discussion

The present section is a discussion on the impact of pertinent parameters on the nanofluid prop-

erties like heat transfer, skin friction, velocity profile, angular velocity profile, temperature and
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nanoparticle concentration profiles.

The Hartmann number is a measure of the strength of the Lorentz forces acting on the fluid

flow. It is observed in Figure 6.2 that the fluid velocity is augmented with an increase in the

Hartmann number for both the converging and diverging channel flows. Observing Figure 6.3

the impression comes that the angular velocity of the fluid unlike the linear velocity shows a

contrasting behavour. The angular velocity of the nanofluid decreases with a rise in the Hart-

mann number for both the converging and diverging channel flows. Pondering at this behavior,

it seems that the Lorentz forces are diminishing the impact of the microstructures on the flow of

the nanofluid which is the cause for an increase in the linear velocity. Figure 6.4 reveals that the

temperature profile increases with an increase in the Hartmann number. The reason behind this

behavior is the heat dissipation caused in the form of Joule heating which rises the temperature

of the nanofluid.

The material parameter K shows the impact of the rotation viscosity on the fluid properties

due the presence of the microstructures in the nanofluid. Greater values of K implies an in-

creased number of microstructures and a stronger rotation viscosity. It is observed in Figures

6.5-6.6 that the rising values of the material parameter is increasing the fluid velocity as well

as the angular velocity for the diverging case but both the velocities are decreasing for the con-

verging case. This means that the greater rotation viscosity affects positively on both the linear

and angular velocities of the fluid in the diverging channel while the opposite in observed in the

case of converging channel. Similarly, an increase in temperature is observed in the diverging

channel for growing values of the K while a decline in temperature in the case of the converging

Turkyilmazoglu Present results

α C f
′
(1) −θ′(1) −f ′(1) −θ′(1)

-5 0 -2.8339514330 0.0421517243 -2.8339500375 0.0421517198

1 0.0000000000 0.0464015106 0.0000000000 0.04640151045

2 3.6697111853 0.0502423154 3.6697112559 0.0502423170

5 0 -1.1093265266 0.0399820121 -1.1093279586 0.0399820131

1 0.0000000000 0.0464015106 0.0000000000 0.0464015104

2 -1.0811324373 0.0557422655 -1.0811206439 0.0557422429

Table 6.1: Comparison of the present numerical results with previously pub-
lished results for K = B = 0 = NB = 0 = NT = Sc = Ha = Ec = 0 and

Pr = 1.
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channel as evident from Figure 6.7. The increased velocities and temperature of the nanofluid in

a diverging channel results in greater skin friction coefficient and heat transfer rate. In case of

converging channel, an upsurge is observed in skin friction coefficient but the heat transfer rate

declines with rising values of the material parameter K.

An investigation on the impact of the opening angle α on the fluid velocity, angular veloc-

ity, temperature and concentration profiles is carried out in Figures 6.8-6.11. It is seen that at

greater opening angles, in the case of divergent channel the velocity decreases while it increases

in the case of convergent channel (see Figure 6.8). A converse behavior is observed in the case

of angular velocity as the fluid velocity grows for divergent channel while it shrinks for the con-

vergent channel flow as evident in Figure 6.9. In Figure 6.10, it is found that the temperature

profile increases for both the cases of channel flows. The rise in temperature is more pronouced

in the case of convergent channel as compared to the divergent channel. Figure 6.11 shows that

the concentration profile declines with inclination in the opening angles for both the channel. A

much sharper decline is seen in the case of the divergent channel as compared to the convergent

channel.

Figure 6.12 reveals that the higher values of Reynolds number Re causes the velocity profile

to decrease in the divergent channel case while the velocity augments in case of the convergent

channel. A higher Reynolds number causes the angular velocity to grow for both the cases of

convegent and divergent channel flow. Greater Reynolds number happens to decrease in the

temperature profile and decreases the heat transfer rate in either of the two cases (see Figure

6.14 and Tables 6.2-6.3). Skin friction coefficient lower with greater Reynolds number in diverg-

ing channel flow but increases in the case of high Reynolds number in converging channel flow.

The concentration profile shows a decline with an increase in the Reynolds number as it can be

seen in Figure 6.15. Eckert number assosiated to energy dissipation increases the temperature

profile for both the cases as it is increased (see Figure 6.16). The growing values of Eckert

number has a contrasting effect on the concentration as the profile shows an increase in the case

of diverging channel but decrease in the case of convergent channel as found in Figure 6.17.

Considerable effects of the Brownian motion NB and thermopherotic NT on the temperature

and concentration profiles are investigated in a divergent channel in Figures 6.18-6.19. Both the

profiles and the heat transfer rate at the walls show a decline with an increase in the values of

NB and NT . In the last, the impact of the Prandtl number Pr is pondered on the temperature

and concentration profiles in Figures 6.20-6.21. Increased values of the Prandtl number increases

the temperature while the concentration profile shrinks for the case of convergent channel but it

grows in the case of divergent channel. Finally, coupling impact of Ha and K on the stability

of the flow in the diverging channel are pondered in Figure 6.22 with α = 10o. Looking at the

results it is observed that the presence of the microstructures and a strong magnetic field are
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instrumental in stabilizing the flow in diverging channel.
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Figure 6.2: Variation in velocity with change in Ha.
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Figure 6.3: Variation in angular velocity with change in Ha.
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Figure 6.4: Variation in temperature with change in Ha.
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Figure 6.5: Variation in velocity with change in Ha.
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Figure 6.6: Variation in angular velocity with change in K.
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Figure 6.7: Variation in temperature with change in K.
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Figure 6.8: Variation in velocity with change in α.
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Figure 6.9: Variation in angular velocity with change in α.
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Figure 6.10: Variation in temperature with change in α.
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Figure 6.11: Variation in concentration with change in α.
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Figure 6.12: Variation in velocity with change in Re.
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Figure 6.13: Variation in angular velocity with change in Re.
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Figure 6.14: Variation in temperature with change in Re.
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Figure 6.15: Variation in concentration with change in Re.
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Figure 6.16: Variation in temperature with change in Ec.
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Figure 6.17: Variation in concentration with change in Ec.
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Figure 6.18: Variation in temperature with change in NB and NT .
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Figure 6.19: Variation in concentration with change in NB and NT .
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Figure 6.20: Variation in temperature with change in Pr.
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Figure 6.21: Variation in concentration with change in Pr.
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Figure 6.22: Variation in critical Reynolds number with change in K and Ha.

Tables (6.2)-(6.3) provide an insight on the effects of the sundry parameters on the skin friction

coefficient and the heat transfer rate at the walls. A positive variation in the Hartmann number

causes the skin friction and the heat transfer rates to rise for both the converging and diverging

channels walls. Physically, the pressure gradient at the entrance in case of source and at the

exit in the case of sink, couples with the Lorentz forces to increase the velocity of the fluid.

Accelerated motion tends to increase the heat dissipation inside the channel which in return rise

in the temperature in the nanofluid. The accelerated flow is also responsible for an the skin

friction coefficient. Positive impact is observed on the Nusselt number as the opening angle α is

increased. The skin friction is seen diminishing for the diverging channel at greater angles while

it increases for greater α in convergent channel flow.

An increase in the opening angle eases the flow of the fluid in the divergent channel. Decel-

eration in the flow tends to reduce the frictional effects at the surface. In contrast, in the

convergent channel greater values of α means that the channel narrows as a result pressure is

generated at the surface, so skin friction tends to increase. The random motion of the nanopar-

ticles is measured by the Brownian diffusion parameter and the impact of the drift velocity is

analyzed via thermophoresis parameter. Increase in the Brownian and thermal diffusion of the

nanoparticles simultanously tend to decrease the heat transfer rate at the surface in both diver-

gent channel and convergent channels. A high inertial flow tends to stabilize the flow as backflow
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is decreased with the rise in Reynolds number Re. This fact results in a decrease in the skin

friction coefficient at the surface in case of divergent channel. In the case of convergent channel

the accelerated flow increases the skin friction at the surface.

α NT NB Pr Ha Re K f ′(1) θ′(1)

5 0.5 0.5 7 5 50 1 3.14147 0.47727
2.5 3.56661 1.60757
7.5 2.72882 0.90969
10 2.33417 1.53381

0.1 0.1 3.14147 0.97135
0.3 0.3 3.14147 0.70952
0.7 0.7 3.14147 0.30966

3 3.14147 0.15890
5 3.14147 0.29163
10 3.14147 1.01454

2 3.11331 0.12508
4 3.12941 0.28908
8 3.19358 0.49002

75 2.69772 0.41590
100 2.25612 0.33270
125 1.82071 0.27534

2 5.14013 0.50906
3 7.13812 0.52490
4 9.13570 0.53437

Table 6.2: Skin friction coefficient and Nusselt number for the diverging chan-
nel.

α NT NB Pr Ha Re K f ′(1) θ′(1)

-5 0.5 0.5 7 5 50 1 4.87775 1.19859
-2.5 4.43804 1.02380
-7.5 5.31668 1.60856
-10 5.75293 2.78833

0.1 0.1 4.87775 1.25808
0.3 0.3 4.87775 1.22827
0.7 0.7 4.87775 1.16904

3 4.87775 0.47688
5 4.87775 0.81285
10 4.87775 1.90645

2 4.85283 0.33881
4 4.89077 1.78266
8 4.92385 4.10417

75 5.29185 0.79294
100 5.69564 0.60779
125 6.08871 0.50288

2 6.88009 1.16935
3 8.87939 1.15444
4 10.87756 1.14541

Table 6.3: Skin friction coefficient and Nusselt number for the converging
channel
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6.5 Chapter Summary

The present study is focused at the heat transfer and flow characteristics a Jeffery Hamel mi-

cropolar flow of a nanofluid in a converging/diverging channel deemed with transverse magmetic

field. The mathematical modeling is carried out via Navier Stokes equations incorporated with

Boungiorno nanofluid model. The solution to the nondimensional ODEs is achieved via Keller

box method. The results show that:

• The Hartmann number is decreasing the angular velocity of the nanofluids but increasing

the linear velocity, temperature, skin friction and the heat transfer rate.

• Material parameter K is effecting positively on the linear velocity and angular momentum

while it acts negatively on the heat transfer rate.

• Opening angle α increases the linear velocity in the convergent channel while a converse

behavior is observed in the diverging channel case. Angular velocity grows for the diverg-

ing and converging channel for greater values of α.

• The present problem has potential applications to the situations where cooling of the

system is required.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This chapter highlights the prominent features of the study carried out in the present dissertation.

Numerical procedure was adopted in the study to discuss the thermal transport in nanofluids

using the homogeneous single phase model and Boungiorno nanofluid model. The set of equa-

tions describing the flow properties were the continuity and momentum equations while to study

the heat transfer analysis the energy equation was utilized. In Chapter 4 and Chapter 5, where

the homogeneous single phase model was used, base fluids used were water and kerosene oil with

the homogeneous dispersion of Al2O3 and CNTs as nanoparticles. Buongiorno nanofluid model

was utilized in Chapter 3 and Chapter 6. The Casson non-Newtonian nanofluid model and Mi-

cropolar nanofluid model were utilized in the modeling. Micropolar nanofluid model required an

addition conservation of momentum equation and in Chapter 4, the induced magnetic field ef-

fects were observed via Maxwell equations of magnetism. Nanofluid flow was studied in different

geometrical situations which often occur in many applications of heat exchange processes. These

geometries included the flow over a stretching sheet which is often found in polymer industry

and between parallel plates that usually occur in the heat exchangers application.

Heat transfer in the boundary layer and at the surface of the boundary was investigated by

the application of boundary layer approximations on the governing equation which converted

the PDEs to nondimensional ODEs. Solution procedure of Keller box was adopted to solve the

nondimesional ODEs. It was found that the Keller box method was very efficient in finding the

solution of linear and nonlinear system of ODEs. The calculation of CPU time required for the

128
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solution of the problems showed that very little computational time was required to obtain a so-

lution accurate up to 10−5 decimal places. The coding of the Keller box method for the problems

was carried out on Matlab by the author himself in order to adapt to the requirements of the

problems. The variation in velocity and thermal boundary layers was observed for variation in

the physical parameters appearing in the ODEs via graphical representations. Nusselt number

was evaluated at the boundary and examined for heat transfer in the boundary layer flow. The

drag force at the surface was investigated by pondering on the numerical values of skin friction

coefficient. Some interesting and noteworthy findings are summarized here.

• Velocity profile shows a decline with increase in Hartmann number in all the cases except

for the cases in converging/ diverging channel where it is seen to increase in with the

increase in Hartmann number.

• Upsurge in velocity slip parameter and Casson parameter also have a negative impact on

the linear velocity. Due to greater heat dissipation, the temperature profile increases with

the rise in Hartmann number in all cases.

• Greater material parameter has a negative impact on the linear velocity and a positive

impact on the angular velocity in the case of porous parallel plates but in converging/

diverging channel case an increase in the material parameter augments the linear as well

as angular velocity. Rise in the material parameter increases the induced magnetic field

effects.

• Increased volume fraction of nanoparticles results in greater Brownian motion which in

returns increases in the linear as well as angular velocity of the nanofluids.

• Induced magnetic field inclines with the inclination in the volume fraction parameter.

Temperature profile shows a positive behaviour with the increase in volume fraction con-

centration.

• Heat transfer rate increase with the increase in volume fraction of nanoparticles while it

decreases with the increase in the Hartmann number. MWCNT with kerosene as the base

fluid proves to be very effective in increasing the heat transfer rate.

• Increase in the Casson parameter effects negatively on the heat transfer rate. Increase

in the material parameter tends to enhance the heat transfer rate in the case of parallel

plates and converging/diverging channel but when Marangoni convective flow over a flat

plate is considered the converse effect is seen.

• Thermophoresis parameter when increased tends to decrease the heat transfer rate at the

boundary surface.
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• Greater values of the opening channel reduces both the skin friction as well as Nusselt

number at the boundary surface. Thus, a wider channel is useful for decreasing the skin

friction but at the same time the heat transfer rate is also affected negatively.

• In the converging/diverging channel problem, skin friction increases when a stronger mag-

netic field is applied but in case of parallel plates problem, a converse behavior is observed.

7.2 Future Work

The present work can be extended in different direction. Some suggestions are listed here:

• In the present study, single phase nanofluid models are used. The same problems can be

explored for two phase nanofluid models.

• The problems can be explored by considering different set of boundary conditions like slip

and convective boundary conditions, porous plates can be used, Soret and Dufort effects

can be incorporated.

• Different non-Newtonian fluid models like Williamson fluid model, Maxwell fluid model,

Jeffery model can be explored.

• In the present study, water and kerosene oil have been used as base fluids. The problems

can be pondered using other based fluids like engine oil and engine oil-water base fluid.

• Alumina and CNTs have been utilized for the present study. Other nanoparticles like

titanium oxide, ferrous oxides etc can be used to observe there effects on heat transfer

rate.
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