
CAPITAL UNIVERSITY OF SCIENCE AND
TECHNOLOGY, ISLAMABAD

ObScure Logging: A Framework
to Protect and Evaluate the Web

Search Privacy

by
Mohib Ullah

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Computing

Department of Computer Science

2020

www.cust.edu.pk
www.cust.edu.pk
mrmohibkhan@yahoo.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

ObScure Logging: A Framework to Protect and

Evaluate the Web Search Privacy

By

Mohib Ullah

(PC133004)

Dr. Sung Wook Baik, Professor

Sejong University, Seoul, South Korea

(Foreign Evaluator 1)

Dr. M. Akhtar Ali, Senior Lecturer

Northumbria University, Newcastle, UK

(Foreign Evaluator 2)

Dr. Muhammad Arshad Islam

(Thesis Supervisor)

Dr. Nayyer Masood

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2020

ii

Copyright © 2020 by Mohib Ullah

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

This work is dedicated to my parents, my siblings and my wife, without their

prayers, support and encouragement this work would not have been completed. I

must extend gratitude to my father (Haji Habibullah) and wife (MS. S Mohib)

because if they had not been around, this work might not have been

accomplished. This work is also dedicated to Muhammad Yusuf Khan, who is

considered the real driving force behind this degree.

vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

Journal Paper

1. Ullah, Mohib, Muhammad Arshad Islam, Rafiullah Khan, Muhammad

Aleem, and Muhammad Azhar Iqbal. “ObScure Logging (OSLo): A Frame-

work to Protect and Evaluate the Web Search Privacy in Health Care Do-

main.” Journal of Medical Imaging and Health Informatics Vol. 9(6), pp.

1181-1190, 2019.

Conference Papers

1. Ullah, Mohib, Rafiullah Khan, and Muhammad Arshad Islam. “Poshida, a

protocol for private information retrieval.” 2016 Sixth International Confer-

ence on Innovative Computing Technology (INTECH). pp. 464-470. IEEE,

2016

2. Ullah, Mohib, Rafiullah Khan, and Muhammad Arshad Islam. “Poshida

II, a Multi Group Distributed Peer to Peer Protocol for Private Web Search.”

2016 International Conference on Frontiers of Information Technology (FIT).

pp. 75-80. IEEE, 2016.

Mohib Ullah

(Registration No. PC133004)

viii

Acknowledgements

All praise to Allah, the most merciful and most magnificent. First, I would like to

thank Dr. Muhammad Arshad Islam for the supervision of this dissertation. He

was always available to guide during the entire research period. I would like to

thank and acknowledge the unprecedented support of Mr. Rafiullah Khan, with-

out his company, I would not be able to complete this degree. Special thanks to

Dr. Abdul Qadir, Dr. Muhammad Aleem, and Dr. Nayyar Masood who were a

source of inspiration for me. They were always available to boost my confidence

and supported me in completing this degree. Mr. Muhammad Shahid and Dr. As-

fandyar khan (Agriculture University Peshawar) have also done their part through

providing their sincere help. This acknowledgment would be incomplete without

mentioning the name of Dr. Inam Ul Haq (Khushal Khan Khattak University

Karak) who extended his genuine concern and expertise to keep me on track. In

the end, thanks to all the faculty and support staff of Capital University of Science

and Technology, Islamabad.

ix

Abstract
Web Search Engine (WSE) is an inevitable software system used by people around

the world to retrieve data from the web. WSE stores search queries to build the

user’s profile and provides personalized results. These search queries hold identifi-

able information that can possibly compromise the privacy of the users. Preserving

privacy in web search is the main concern of the users belonging to different walks

of life. This research tries to highlight the loopholes imbedded in the available

privacy preserving techniques. Besides, it aims at proposing some novel protocols

with the least possible limitations. In this highly technological world, user is aston-

ishingly surrounded by the amazingly advanced gadgets yet he is madly desirous

to keep intact his privacy to the maximum. In order to preserve the Web search

privacy of a user, this dissertation proposes a number of protocols such as a sin-

gle group ObScure Logging (OSLo), a Multi Group ObScure Logging (MG-OSLo)

and a Profile aware ObScure Logging (PaOSLo). This research work focuses on

two main objectives. The first objective of this dissertation is to assess the local

privacy and the profile privacy of a user through unlinkability and indistinguisha-

bility. The second objective of this dissertation is to evaluate the impact of group

size, group count and the profile aware grouping on the local privacy and on the

profile privacy of a user. Local privacy of proposed protocols has been evaluated

by using probabilistic advantage being a curious entity and having linking query

with the user. The profile privacy calculates the level of profile obfuscation us-

ing a privacy metric Profile Exposure Level (PEL). Computing the profile privacy

of a user, a test has been performed over the same subset of AOL query log for

two situations i.e. first, when the self-query submission is allowed and second,

when self-query submission is not allowed. The privacy achieved by the proposed

protocols has been compared with the state-of-the-art privacy-preserving protocol

UUP(e) and co-utile protocol.

In the first protocol (OSLo), random users are grouped together to compute the

impact of group size on the privacy of users in a single group design. In MG-OSLo,

users are grouped by using non-overlapping group design and overlapping group

design to measure the impact of group size and group count on the privacy of a

x

user. The calculation depicts that the probability of linking query with the user

depends on the group size and group count i.e. larger the group size or higher the

group count lower the probability of linking query with the user. Whereas users,

having dissimilar interest, are grouped together in PaOSLO, in order to evaluate

the impact of profile aware grouping on the privacy. The results show that OSLo

provides 9.37% better privacy as compared to the co-utile and 6.67% better privacy

than UUP(e). The multi-group has a positive impact on the local privacy and on

the profile privacy of a user. The MG-OSLo preserves 19.9% better privacy as

compared to co-utile and 9.1% better as compared to UUP(e). Similarly, The

profile aware grouping (PaOSLo) further improves the profile privacy as compared

to UUP(e) and OSLo. The PaOSLo has 10% less PEL as compared to UUP(e)

and 2.5% less as compared to OSLo when it is simulated on the same dataset.

Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgements viii

Abstract ix

List of Figures xiv

List of Tables xvi

Abbreviations xvii

Symbols xix

1 Introduction 1
1.1 Motivation . 1
1.2 Standalone Methods . 5
1.3 Third-party Infrastructure . 5
1.4 Hybrid Technique . 6
1.5 Query Scrambling . 6
1.6 Distributed Schemes . 7
1.7 Objectives and Significance . 8
1.8 Research Question / Problem statement 8
1.9 Contribution . 10
1.10 Dissertation Organization . 11

2 Literature Review 13
2.1 Standalone Schemes . 13

2.1.1 TrackMeNot . 14
2.1.2 GooPIR . 15
2.1.3 Dissociating Privacy Agent (DisPA) 16

2.2 Third-party Infrastructure . 16
2.2.1 Scroogle . 16

xi

xii

2.2.2 TOR (The Onion Routing) 17
2.2.3 Privacy-Preserving Framework using DLT and TOR 17

2.3 Query Scrambling . 18
2.4 Hybrid Techniques . 18

2.4.1 Private Efficient and Accurate Web Search (PEAS) 18
2.4.2 X-Search . 19

2.5 Distributed Schemes . 19
2.5.1 Indistinguishability Solutions 20
2.5.2 Unlinkability Solutions . 27
2.5.3 Implementation of Distributed Protocols 33

2.6 Summary of Distributed Protocols and Research Gap 34
2.7 Privacy Evaluation Metrics . 36

2.7.1 Entropy . 36
2.7.2 Degree of Anonymity . 37
2.7.3 Profile Exposure Level (PEL) 37

3 ObScure Logging (OSLo). 41
3.1 Introduction . 41
3.2 ObScure Logging (OSLo) . 44
3.3 OSLo Execution Process . 45

3.3.1 Connection Setup . 46
3.3.2 SQFC Selection . 46
3.3.3 Query Sending Process . 48
3.3.4 Query Shuffling . 49
3.3.5 Query Sending to WSE and Result Retrieval 49
3.3.6 Result Decryption Process 52

3.4 Dataset . 53
3.4.1 Dataset 1 . 54
3.4.2 Dataset 2 . 55

3.5 Privacy Mechanism . 56
3.5.1 Adversary Model . 56
3.5.2 Mechanism to Achieve Local Privacy 57
3.5.3 Mechanism to Achieve Profile Privacy 60

3.6 Privacy Evaluation . 62
3.6.1 Local Privacy Evaluation 64

3.7 Results and Discussion . 67
3.7.1 Profile Privacy Evaluation 68
3.7.2 Time delay of OSLo . 80
3.7.3 Performance Comparison of UUP(e) vs. OSLo 83

3.8 Limitation of OSLo . 86
3.9 Conclusion . 87

4 Multi-Group ObScure Logging (MG-OSLo) 90
4.1 Multi-Group ObScure Logging (MG-OSLo) 92

4.1.1 Entities . 92
4.1.2 MG-OSLo Execution Process 93

xiii

4.2 Privacy Evaluation of MG-OSLo 101
4.2.1 Local Privacy . 102
4.2.2 Profile Privacy . 110

4.3 Results and Discussion . 111
4.3.1 Profile Privacy of MG-OSLo: Self-Query Submission not

Allowed Dataset 1 . 111
4.3.2 Profile Privacy of MG-OSLo: Self-Query Submission Al-

lowed Dataset 1 . 113
4.3.3 Profile Privacy of MG-OSLo: Self-Query Submission Al-

lowed Dataset 2 . 113
4.3.4 Profile Privacy of MG-OSLo: Self-Query Submission not

Allowed Dataset 2 . 113
4.3.5 MG-OSLo VS OSLo VS Co-utile: Self-Query Submission

Allowed Dataset 1 . 114
4.3.6 MG-OSLo VS OSLo VS Co-utile: Self-Query Submission

Allowed for Dataset 2 . 117
4.3.7 MG-OSLo vs UUP(e) and OSLo: Self-Query Submission

not Allowed Dataset 1 . 118
4.3.8 MG-OSLO VS UUP(e) and OSLo: Self-Query Submission

not Allowed at Dataset 2 120
4.3.9 Time Complexity of MG-OSLo 121

4.4 Conclusion . 122

5 Profile aware ObScure Logging (PaOSLo) 125
5.1 PaOSLo Description . 126

5.1.1 User Profile Construction 127
5.1.2 Measuring Similarity between the User Profiles 128
5.1.3 Cosine Similarity . 129
5.1.4 Profile Clustering . 130

5.2 PaOSLo Execution Process . 133
5.3 Privacy of PaOSLo . 136

5.3.1 Local Privacy of PaOSLo 136
5.3.2 Profile Privacy of PaOSLo 138
5.3.3 Profile Privacy Comparison of UUP(e), OSLo and PaOSLo . 139

5.4 Conclusion . 140

6 Conclusion and Future Work 142
6.1 ObScure Logging (OSLo) . 143
6.2 Multi Group ObScure Logging (MG-OSLo) 144
6.3 Profile Aware ObScure Logging (PaOSLo) 146
6.4 Limitation of Proposed Work . 147
6.5 Future Work . 148

Bibliography 149

List of Figures

1.1 Taxonomy of private web search . 6

2.1 TrackMeNot [48] . 14
2.2 DisPA: disassociation enactment demonstration [51] 15
2.3 The Onion Routing (TOR) model [33] 17
2.4 A path between a user and Web Server in a Crowds [38]. 21
2.5 Degree of Anonymity [38]. 22
2.6 Timeline of distributed privacy-perserving protocol 32

3.1 Activity diagram of user connection and SQFC selection 47
3.2 Activity diagram of query sending and result retrieval process . . . 48
3.3 Graphical representation of query sending process 52
3.4 Statistics of AOL query log by Peddinti and Saxena [49] 54
3.5 Probability of Head, After Tossing 59
3.6 ODP hierarchy of categories [83] . 63
3.7 Probability of Head, after number of tossing 67
3.8 Average PEL of OSLo with Dataset 1 70
3.9 Avearage PEL of OSLo with Dataset 2 72
3.10 Avearage PEL of OSLo VS Co-utile with Dataset 1 74
3.11 Avearage PEL of OSLo VS Co-utile with Dataset 2 75
3.12 Avearage PEL of OSLo VS. UUP(e) for Dataset 1 78
3.13 Avearage PEL of OSLo VS. UUP(e) for Dataset 2 79
3.14 Time required to create a group . 81
3.15 Time required to send a query and retrieve results 83
3.16 Delay comparison of OSLo vs other protocols 84
3.17 Number of groups required to simulate dataset 2 85

4.1 MG-OSLo: Activity diagram of query sending process 97
4.2 MG-OSLo: Graphical representation of query sending process . . . 98
4.3 Average PEL of MG-OSLo: self-query submission not allowed with

dataset 1 . 112
4.4 Average PEL of MG-OSLo: self-query submission allowed Dataset1 112
4.5 Profile Privacy of MG-OSLo: Self-query submission allowed Dataset

2 . 114
4.6 Average PEL of MG-OSLo: self-query submission not allowed with

Dataset 2 . 115
4.7 Average PEL of MG-OSLo VS. OSLo VS. Co-utile at Degree 1 and

Degree 2 of ODP hierarchy for Dataset 1 115

xiv

xv

4.8 Average PEL of MG-OSLo VS. OSLo VS. Co-utile at Degree 3 and
Degree 4 of ODP hierarchy for Dataset 1 116

4.9 Average PEL of MG-OSLo VS OSLo VS Co-utile at Degree 1 and
Degree 2 of ODP hierarchy for Dataset 2 117

4.10 Average PEL of MG-OSLo VS. OSLo VS. Co-utile at Degree 3 and
Degree 4 of ODP hierarchy for Dataset 2 118

4.11 Average PEL of MG-OSLo VS. UUP(e) and OSLo at Degree 1 and
Degree 2 for Dataset 1 . 119

4.12 Average PEL of MG-OSLo VS UUP(e) VS OSLo at Degree 3 and
Degree 4 for Dataset 1 . 120

4.13 Average PEL of MG-OSLo VS. UUP(e) VS. OSLo at Degree 1 and
Degree 2 for Dataset 2 . 121

4.14 Average PEL of MG-OSLo VS. UUP(e) VS. OSLo at Degree 3 and
Degree 4 for Dataset 2 . 122

5.1 PaOSLO: Activity diagram of User profile construction and clustering127
5.2 Categories at first degree of the ODP hierarchy [83] 128
5.3 Sample ARFF file . 132
5.4 Term count in three cluster . 133
5.5 Term count in four cluster . 134
5.6 Term count in five cluster . 134
5.7 PaOSLo: Acitivity diagram of Group creation and SQFC selection

process . 135
5.8 PaOSLo: Activity diagram of query sending and result broadcast-

ing process . 136
5.9 Average PEL of UUP(e) VS. OSLo VS. PaOSLo 140

List of Tables

2.1 Simulators used for the implementation of distributed protocol . . . 34
2.2 Summary of distributed protocol 35

3.1 AOL query log attributes and description [76] 53
3.2 Dataset 1: Range of queries sent by a user 55
3.3 Dataset 2: Range of queries sent by a user 55
3.4 Distributed protocol shuffling method 59
3.5 Example of query categorization by ODP [82] 63
3.6 Profile of a user X at different degrees 63
3.7 OSLo average PEL self-query submission allowed, dataset 1 70
3.8 OSLo average PEL self-query submission allowed dataset 2 71
3.9 Co-utile protocol: Average PEL, self-query submission allowed for

dataset 1 . 73
3.10 Co-utile protocol: Average PEL, self-query submission allowed for

dataset 2 . 73
3.11 Average PEL of OSLo VS. UUP(e) self query-submission not al-

lowed dataset 1 . 75
3.12 Average PEL of OSLo VS. UUP(e), self query-submission not al-

lowed for Dataset 2 . 77
3.13 Simulation details under controlled environment: equipments . . . 81
3.14 Simulation parameters . 84

5.1 Query classification of queries by ODP into a hierarchy of cate-
gories. [82] . 129

5.2 Query categorization by ODP of a sample user “3978802” of AOL
query log . 130

5.3 Terms extracted for degree 1 of user “3978802” 130
5.4 Terms extracted for degree 1 of user “280617” 131
5.5 Similarity between sample seven users’ profile at degree 1 of ODP

hierarchy . 131
5.6 Number of users in each cluster after K-Mean clustering 131
5.7 Average PEL comparison of UUP(e), OSLo and PaOSLo 139

xvi

Abbreviations

AnonID Anonymous Identifier

AES Advance Encryption Standard

AOL American Online

CS Core Server

DisPA Dissociating Privacy Agent

SQFC Search Query Forwarding Client

GSQFC Group Search Query Forwarding Client

OSLo ObScure Logging

MG-OSLo Multi Group ObScure Logging

PaOSLo Profile aware ObScure Logging

ODP Open Directory Project

NLP Natural Language Processing

HTTP HyperText Transfer Protocol

TOR The Onion Routing

PEAS Private Efficient and Accurate Web Search

PIR Private Information Retrieval

DB Database

pf Probability of Forwarding

eMsg Encrypted Message

eQ Encrypted Query

eQ_Msg Encrypted Query Message

eAnsMsg Encrypted Answer Message

OAS Optimized Arbitrary Size

P2P Peer-to-Peer

PEL Profile Exposure Level

xvii

xviii

UUP Useless User Profile Protocol

UUP(e) UUP extended

UPIR User Private Information Retrieval

WSE Web Search Engine

WWW World Wide Web

Symbols

H Entropy

HMax Maximum Entropy

I Mutual Information

pr Probability

q query

r result

xix

Chapter 1

Introduction

“Every man should know that his conversation, his correspondence and his personal

life are private”.

Lyndon B Johnson, President of United States (1963-69)

1.1 Motivation

Being an enormous warehouse of data, the World Wide Web (WWW) is a store-

house to a range of documents including text, images, video, audio, etc. Today,

data is generated at great speed from a variety of fields. Information about any-

thing and everything is uploaded on the WWW. We depend on WSEs to search

for specific topics or information on Web. The WSE has become an integral part

of daily life of Internet users. People from all over the world and from all walks of

life, search for pertinent information available on the Internet. WSEs are browsed

everyday by billions of users to search for different information by entering few

words called queries. In 2002, 52% Americans used the WSEs, and this percent-

age rose to 73% in 2012 [1]. The current Internet live statistics show that Google

answers around 72 thousand queries in one second [2]. Research shows that online

users are more satisfied with the performance of search engines than ever [3, 4].

However, they are very concerned about their privacy because of the personalized

search results and advertisements that appear as a result of their search [1]. The

personalized search result is more appealing to users as it matches their interest.

1

Introduction 2

A typical query is almost three words long revealing less information about the

actual interest of the user. Additionally, sometimes certain words can cause am-

biguity. Consider a search query on “mouse”; it is an animal and a computer

device. Similarly, another search query “apple”, it is a fruit and a technology

company that sells electronic devices. In such cases, the WSEs use the user’s

profile to show relevant results [5, 6]. Research shows that WSEs evaluate the

query log through certain algorithms to profile the users. Moreover, WSEs infer

the interests of the user to provide personalized search results [7, 8]. In order to

provide relevant results, WSE builds a user profile considering their interest, pro-

fession, preferences and previous searches. According to the authors [9], the user’s

profile improves search results. For an accurate response, the user’s privacy is at

risk. However, for absolute privacy, the user has to compromise on the accuracy of

search result. While the user’s profile is an asset for WSEs, it reveals sensitive data

about the user [10]. For example, the user’s profile supports retrieving the related

materials from the Internet, while simultaneously it threatens the user’s privacy

as well. Most often a user’s queries contain important information like Unique

User ID, name, user’s employer’s details, location, etc. Moreover, a query may

enclose health information, gender orientation, religion, politics, faith, believes,

etc., which can be exceptionally sensitive data for the possessor [11].

According to studies, users sometimes query their own name, social security num-

ber, or other people’s information [12]. WSEs are able to provide personalized

results because the WSEs record all the submitted queries in a query log. A typi-

cal query log may contain user-submitted query contents, the machine IP address,

operating system details, browser type, the query’s date & time, browser language,

preferences, and cookies that are possibly used to recognize the user [5, 9, 13, 14].

In the year 2010, a research study analyzed device fingerprinting over a data col-

lected from 470,161 Internet users’ browser setting who visited the Panopticlick 1

website concluded that browser setting parameters (screen dimensions, font, time-

zone, user agent strings, language settings, plugins) serve as a global identifier

to uniquely identify a user anywhere on the Internet [15]. A user can block the

cookies and disable an account login for web surfing, but there is no disable option
1https://panopticlick.eff.org. (accessed 25 June 2019)

Introduction 3

for the device fingerprinting [16, 17]. Furthermore, disabling cookies can make a

user more vulnerable to be identified because such settings make a user unique.

Likewise Nikiforakis et al. established that companies use a concealed flash object

to determine a user who tries to hide his identity through a proxy server and link

the queries to the user [18]. There are some non-explicit identifiers like zip codes,

date of birth, gender, that if combined with the publicly available data they can

be linked directly with the user’s profile. The release of a query log poses serious

risks in terms of privacy [19]. The disclosure of sensitive data to a third party

(e.g., advertiser, media, etc.) [7, 12] can be exploited for business purposes or to

retrieve information about competitors [19].

A survey [1] conducted in 2012 showed that 65% of users believed that it was unac-

ceptable to record their searches, 73% of them were not happy with WSE keeping

track of their data, and 68% of these surveyed individuals were not interested in

advertisements they received due to profiling. The query log is a precious resource

to the WSEs [20] since they analyze a person’s query log to retrieve relevant search

results. According to Cooper [9], the core privacy threat of storing a query log

is the disclosure to advertising agencies and media. Additionally, the query log

frequently holds sensitive data about users, and the dissemination of such data

violates one’s privacy [12]. The major privacy scandal is the release of the AOL

log in 2006 [21, 22] where twenty million queries generated by 658000 users in

three months of the time were published for research purpose. Before the search

log was released, data was anonymized with the intention that no one should be

able to link a query to the user, e.g.they replaced the IP address with a unique ID

(pseudo-ID). However, this search log release had serious consequences, as data

was not properly anonymized; a 62-year old lady named Thelma with ID 4417749

was successfully discovered [21–25]. The users of the WSE especially those who

were using AOL were upset with the identification of the user “Thelma”, and

some users launched legal actions against AOL. A query log may also become a

subject to a subpoena such as in an incident that happened in 2006 when the US

Department of Justice (USDJ) issued a summon [26] to AOL, Yahoo, Google and

Microsoft to provide the query log [27]. The issue was to find out if the Internet

Introduction 4

filters were effectively protecting children from adult contents on the Internet as

a part of the litigation of an Internet child safety law [9]. All search engines pro-

vided the information required by the court, however, Google gave only limited

information [9, 28, 29]. Likewise, in some cases, a WSE compelled by the court to

disclose individual queries involving a divorce or civil lawsuit as a part of the evi-

dence [9]. Furthermore, in 2014, eighty million health records were lost by the US

second largest insurance company [30, 31]. These issues triggered the movement

of privacy preservation among members of the online community to eliminate the

threat of malicious efforts to expose their identity. These incidents put a ques-

tion mark on WSEs’ policy about user privacy. Many users demanded that WSE

should not maintain the query log [1]. Consider a situation where a company is

interested to promote an employee Mr. X, but Mr. X is searching for a specific

disease supposedly Hepatitis. If the company comes to know about the employee’s

search queries the company could suspect Mr. X as a Hepatitis patient and may

drop the idea of promotion; as a worst case scenario they may terminate his job

[8]. Another example is that if a company is searching for certain ideas or mate-

rials regarding a new product to be launched, competitors can find out about the

company’s plans based on the queries and can achieve a competitive advantage.

Furthermore, suppose a young woman is searching for information about morning

sickness or late cycle. The words she needs to use for the query will necessarily

reflect that she is possibly pregnant. These examples provide the evidence that

search queries include very personal data about a person that needs to be kept

private. In 2009 Eric Schmidt CEO of Google, responded to privacy concerns that

“if you have something and you want no one knows it then you should not be

searching it in the first place to achieve a high level of privacy”. For better results,

all WSEs, including Google, keep information for some period [32]. Given the high

number of cases in which user data is not sufficiently protected, there is a need

for actions to protect their privacy and prevent WSEs from profiling them.

So far, many techniques have been proposed to protect the privacy of the users dur-

ing their Web search. These techniques can be classified into five main groups, i.e.,

standalone methods, third-party infrastructure, hybrid technique, query scram-

bling and distributed techniques. The standalone methods and query scrambling

Introduction 5

aim at achieving indistinguishability (obfuscating the user profile maintained

by the WSE), whereas, the third-party infrastructure and distributed technique

aim for unlinkability (hiding the identity of an individual). Figure 1.1 shows

the well-known privacy preserving schemes; the Section below gives the description

of each technique.

1.2 Standalone Methods

The Standalone methods protect the privacy of the user against the profiling of

WSE through indistinguishability. The standalone methods do not hide the iden-

tity of a user but they obfuscate the profile of a user by sending the fake queries

to the WSE[10]. Standalone schemes are also called single-party infrastructure.

The popular standalone schemes are TrackMeNot, GooPIR and DisPA. The detail

description and working of each scheme are presented in Section 2.1.

1.3 Third-party Infrastructure

Another approach to achieve the Web search privacy is to use third-party infras-

tructure. A number of third party infrastructures such as scroogle2, anonymizer 3,

and The Onion Routing TOR [33] are available. These infrastructures are capable

of attaining the privacy of a user through unlinkability, i.e., hiding the identity

of a user. The user, using third-party services to achieve privacy, has to trust

those servers. The scroogle and TOR are the popular third-party infrastructures

adopted to enforce unlinkability. The description of each of these techniques is

given in Section 2.2. Internet search engines like DuckDuckgo 4, Ixquick 5, and

Yippy6, etc., which distinguish themselves from other search engines by not profil-

ing their users and by showing all users the same search results for a given search

term. However, the risk of privacy breach remains the same.
2http://scroogle.org/
3http://www.anonymizer.com/
4duckduckgo.com
5ixquick.com
6yippy.com

Introduction 6

Figure 1.1: Taxonomy of private web search

1.4 Hybrid Technique

This approach adoptes the concept of both unlinkability and indistinguishability.

The unlinkability is achieved by sending queries through third-party infrastruc-

ture like TOR, or proxy services etc and indistinguishability is attained by sending

bogus queries with the real queries using RSS seed queries. The popular hybrid

techniques are PEAS [34] and X-Search [35], the description of each hybrid tech-

nique is given in section 2.4.

1.5 Query Scrambling

Arampatzis et al. [23] proposed a technique for achieving the privacy of users

which was termed as versatile query scrambling on the basis of their previous

work [36]. This technique, instead of hiding the identity of a user, changed the

user query in such a way that the WSE did not understand the aim of the users’

interest. The technique was aimed at scrambling the query in such a way that the

actual interest of the users remained hidden. The resultant scrambled query loosely

corresponded to the actual interest and thus distorted the user’s query meaning.

The real query was divided into multiple scrambled queries and all those queries

were then submitted to the WSE. The list of results of the scrambled queries

Introduction 7

was collected and a scrambled ranking was applied on the list to get the actual

interest of the user called descrambling. Query scrambling had low accuracy, as

the scrambled query results hardly matched the initial query results.

1.6 Distributed Schemes

This technique works by the cooperation of multiple users with the intention of

diffusing the identity of a user among the group users. For example, a group of

users collaborates with each other to forward queries to the WSE. One member of

the group forwards another user’s queries and his/her query is thus forwarded by

another user and vice versa. A kind of role changing takes place in the group for

the sake of profile obfuscation. Many distributed techniques, which are proposed

over the course of time, have been detailed in the literature review.

The key advantage of distributed schemes over the other privacy-preserving meth-

ods is that they achieve both unlinkability and indistinguishability. Unlinkability

is disassociating the query and user i.e., unlinkability, is achieved if a query can-

not be linked to the user. Indistinguishability is obfuscating the user’s profile by

sending other users’ queries [37]. The privacy of the user is evaluated both locally

relative to the group entities and to the WSE. This work defines two new terms

i.e., local privacy and profile privacy.

Definition 1. Local Privacy: The privacy of the user relative to the peer entities

(group users and core server) that cooperate in forwarding query to the WSE.

Local privacy of the user is considered preserved, if the following two objectives

are achieved. i). the user achieves unlinkability, i.e, no peer entity can link a query

with the user, and ii) the contents of query and result of the query remain hidden

from the group entities.

Definition 2. Profile Privacy: The privacy of the user relative to the WSE.

Profile privacy is achieved through indistinguishability, i.e., a user obfuscates their

profile by sending queries of other users and the WSE cannot build the accurate

profile of a user.

Introduction 8

1.7 Objectives and Significance

The importance of the Web search privacy is undeniable. Although there have been

a great number of research efforts preserving the user’s privacy in such a way that

no entity can link the query to the originator and thus making WSE incapable of

building a reliable profile has not been achieved. This research proposes a number

of distributed privacy-preserving protocols that preserves the privacy of a user

through unlinkability and profile obfuscation (indistinguishability). The primary

objective of this dissertation is to propose a framework that preserves the Web

search privacy of a user. The privacy shall be preserved in a way that a query can

not be linked with the user and the WSE shall not build an accurate profile of a

user.

To the best of our knowledge, the privacy of user executing distributed privacy-

preserving protocol has never been evaluated in terms of unlinkability and indis-

tinguishability. In this dissertation, the privacy of the user is evaluated from two

dimensions, i.e., the local privacy and the profile privacy. The former is used to

assess the unlinkability and the later is used to measure the indistinguishability.

This work aims at helping both the institutions and the people of all categories

ranging from academic institutions to national security and common persons who

wish to remain anonymous while searching queries on the WSE. This research

proposes a distributed protocols to preserve the privacy of a user in a situations

when a group of users make a coalition to compromise the privacy of a user.

1.8 Research Question / Problem statement

Many distributed protocols have been proposed to preserve the privacy of a user by

providing the unlinkability and indistinguishability. However, we have identified

several limitations in the available distributed schemes [7, 38–45]:

1. The users occurring in a path between the query initiator and the WSE can

see the query and the result, hence compromising the privacy of the user

[38, 43, 44].

Introduction 9

2. Users having access to the common memory location can see the query con-

tent, as the query is encrypted under the key Kl associated with memory

location[40, 41].

3. The query results are broadcasted in unencrypted form, giving peers an idea

of what is being searched inside the group [7, 40].

4. The peer agent (user) knows the exact query of another user, also, getting

the query answer is another prime concern in co-utile protocol [45].

5. A user cannot submit his/her query to WSE, giving an attacker a clue to

link the query with the originator.

6. Users are grouped randomly, making them susceptible to group up with

those users who have similar interest, hence reducing the level of profile

obfuscation.

7. The privacy of a user has never been evaluated for multiple groups.

To the best of our knowledge, the existing distributed protocols do not preserve

and evaluate comprehensively the privacy of the user relative to the peer users

involved in forwarding the query to the WSE (local privacy) and against the profile

of WSE (profile privacy) while executing the distributed protocol. The privacy of

the user must remain intact against the external attacks such as an eavesdropper,

hacker, etc. Achieving the privacy of the user relative to the WSE, group peers,

the central server, and an external attacker is the core objective of this research.

RQ 1. How to improve the local privacy and profile privacy of a user in a private

web search?

RQ 1 (a). What will be the effect of allowing self-query submission and not

allowing self-query submission on the profile privacy of the user?

RQ 1 (b). How does the size of the group and group count affect the privacy

and performance of the protocol?

RQ2. What is the effect of random grouping and profile aware grouping on the

privacy of the user?

Introduction 10

1.9 Contribution

The contributions of this dissertation include:

1. A single group distributed privacy-preserving framework called ObScure

Logging (OSLo) is proposed that reduces the limitations mentioned in exist-

ing schemes [7, 38–41, 46] and preserves the privacy of the user in a private

web search.

2. The OSLo evaluates the local privacy (unlinkability) and profile privacy

(indistinguishability) of a user by:

(a) The formal analysis of local privacy by computing the probability of

linking a query by a curious entity with the user.

(b) The profile privacy is evaluated by computing the magnitude of profile

obfuscation through OSLo using privacy metric Profile Exposure Level

(PEL).

(c) To compute the impact of group size on local privacy and profile pri-

vacy.

3. A Multi-Group distributed privacy-preserving protocol (MG-OSLo) is pro-

posed that evaluates the impact of multiple groups on local privacy and

profile privacy. Several formal design techniques are used to form groups,

i.e., non-overlapping group design, overlapping group design, and balance

incomplete block design (BIBD).

(a) Details analytical analysis of local privacy of group design methods

is performed. A MG-OSLo provides what probabilistic advantage an

entity have while linking query with a user.

(b) Detailed empirical evaluation is provided to measure the privacy of a

user executing MG-OSLo relative to WSE. An experiment is performed

to calculate the magnitude of profile obfuscation for multiple group

count over a privacy metric PEL.

(c) Impact of group size and group count on local privacy and profile pri-

vacy relative to the profiling of WSE is investigated.

Introduction 11

4. Profile aware ObScure Logging (PaOSLo) is proposed that investigates the

impact of grouping users having dissimilar interest on profile privacy of a

user.

(a) A cluster of users having similar profile interest is created using K-mean

algorithm and to compute the similarity between the users’ profile using

cosine similarity measure.

(b) A group of users by selecting each user from a different cluster is cre-

ated.

(c) An experiment is performed to compare the level of profile obfuscation

using profile aware grouping and randomize grouping.

1.10 Dissertation Organization

The remaining portion of the dissertation is organized in such a way that chapter

2 presents the existing work, chapter 3 proposes OSLo and explains the evaluation

of a user privacy, chapter 4 describes the MG-OSLo. The impact of profile aware

grouping is explained in Chapter 5. The conclusion and recommendation for the

future work are expounded in Chapter 6.

An overview of each chapter is detailed below.

Chapter 2- This chapter explains the existing privacy-preserving schemes and

privacy evaluation parameters. The existing schemes include standalone alone

scheme, third-party infrastructure, proxy services, hybrid schemes, and distributed

schemes. Each of the existing schemes has further techniques and protocol, which

are elaborated in the next chapter. There are different metrics that evaluate the

privacy of a user, however, the entropy, degree of anonymity and profile exposure

level (PEL) are detailed in this chapter.

Chapter 3- This chapter proposes a novel framework OSLo. This framework con-

sists of two parts. The first part proposes a protocol which preserves the Web

search privacy of a user by providing unlinkability and indistinguishability. The

second part of the framework evaluates the local privacy and profile of a user. A

Introduction 12

probabilistic model is used to evaluate the local privacy (unlinkability) by com-

puting the probabilistic advantage a curious user has in linking a query with the

originating users. The profile privacy (indistinguishability) measures the magni-

tude of profile obfuscation by sending the queries of the group user. The proposed

privacy and performance of OSLo is compared with the state-of-the-art privacy-

preserving protocols co-utile and UUP(e). The profile privacy is compared for two

situations: first, self-query submission is allowed and second, self-query submission

is not allowed.

Chapter 4- A multi-group distributed protocol MG-OSLo is proposed to investi-

gate the impact of multiple groups on local privacy and profile privacy. Users are

grouped using overlapping and non-overlapping group design approach. The pro-

file privacy of a user is evaluated by changing the group count and group size. The

profile privacy of single group (OSLo and UUP(e)) is compared with MG-OSLo.

Chapter 5- In the existing distributed privacy-preserving protocol groups are made

on the users’ first come first grouped basis. In this approach, a user may be grouped

with those users having similar interest making the profile less obfuscated. This

chapter proposes a novel profile aware ObScure Logging (PaOSLo) protocol that

first clusters the users having similar interest, and then selects a user from each

different cluster. The profile privacy of a user is compared with OSLo and UUP(e)

to investigate the difference between random grouping and profile aware grouping.

Chapter 6- This chapter details the key findings of this research, identify the open

challenges to the private web search and the future directions to enhance the web

search privacy of a user.

Chapter 2

Literature Review

This chapter focuses on the detailed explanation of the available privacy preserving

techniques. For instance, Steven Brier first highlighted the importance of web

privacy, in his article “How to Keep Your Privacy: Battle Lines Get Clearer”

published on January 13, 1997, in the New York Times. Brier mentioned whatever

you do on the internet is recorded [47]. The ISP, marketing maven, and many other

people are keeping track of your work. The privacy and anonymity of your internet

browsing are hardly guaranteed.

As mentioned in Section 1.1, privacy-preserving techniques can be classified into

five main categories i.e., standalone scheme, third-party infrastructure, hybrid

approach, query scrambling, and distributed schemes.The details of each of these

is as follows:

2.1 Standalone Schemes

Standalone methods also called single party system, try to achieve indistinguisha-

bility. These schemes are usually available as a browser plugin. A scheme in this

category sends bogus queries with original queries to mask the user profile among

the bogus/fictitious queries. Standalone schemes do not suffer any network delay

is the main advantage of standalone schemes. Some of the famous standalone

techniques are mentioned below.

13

Literature Review 14

Figure 2.1: TrackMeNot [48]

2.1.1 TrackMeNot

Nissenbaum and Howe [48] proposed a technique as a Internet browser plugin to

programmatically create a query seed file and send some noise queries with the

original query. This approach hides the user’s original query among the noise

queries, and thus obfuscates the user’s profile. However, this puts some extra

communication overhead of sending false queries to the WSE. Furthermore, the

automatically generated queries may sometime be more dangerous than the orig-

inal query and may put the user in trouble. TrackMeNot queries are machine

generated and hence easily distinguishable from the human generate queries since

the peripheral means used for producing false queries, such as dictionaries or RSS

feeds, make it possible for the WSE to distinguish between the false queries and

the real query [49]. Figure 2.1 shows the browser extension of TrackMeNot, a user

has the option to select multiple search engines. Additionally, the user is required

to give the query list of the RSS feed. Since August 2006, when the initial version

of TMN was made publicly available free of charge, in the year 2009 the statistics

states that there have been over 350K downloads [48]. However, some critiques

on TrackMeNot maintain that no matter how many false queries are generated to

Literature Review 15

Figure 2.2: DisPA: disassociation enactment demonstration [51]

hide the original query, if they want to track the user they will certainly find his

or her original interest.

2.1.2 GooPIR

Domingo-Ferrer, Solanas and Castell‘a-Roca [50] proposed a GooPIR system to

disguise the user’s query before sending to WSE. It breaks the query into several

keywords then masks the keywords with k-1 false keywords that have the same

frequency as the original keywords. These masking keywords are chosen so that

they have a frequency similar to the target keywords. The GooPIR system did

not achieve popularity due to its poor performance, because the false queries and

phrases that used to appear in the query were already known. The queries sent

through GooPIR were distinguishable through machine learning attacks. GooPIR

was also vulnerable to the de-anonymization attack. Petit et al, made a similarity

attack and concluded that if the WSE has already a profile of the user, GooPIR

was not able to effectively protect the privacy of the user and his or her actual

interest [34].

Literature Review 16

2.1.3 Dissociating Privacy Agent (DisPA)

DisPA was proposed to provide privacy to the user relative to the WSE by hiding

the identity of a user using multiple HTTP cookies [51]. DisPA assumed that WSE

builds multiple profiles for a person based on multiple cookies. Figure 2.2 shows

the disassociation enactment. The DisPA intercepts the user’s HTTP request to

the WSE and the intercepted query is classified into different categories. The

classified query by the DisPA is made to appear as a separate request to the WSE

from a different user. The aim of this approach is to reduce the disclosure of

information and thus sufficient protection of users’ privacy cannot be guaranteed.

2.2 Third-party Infrastructure

The third-party infrastructures are used to obtain the unlinkability. The Onion

Routing (TOR) [33], Proxy services like Scroogle 1 and anonymizer 2 are the

popular approaches to achieve web search privacy. Additionally, there are many

websites like DuckDuckgo [52], Ixquick [53], and Yippy 3, etc., which claim to

provide privacy by not profiling the users since they never store any user’s personal

information. If any user performs a search on those websites, the user will get the

same search results because they do not store the user profile. However, the risk

of privacy breach remains the same as like a WSE.

2.2.1 Scroogle

It was launched in 2003 and went offline in 2012. By then it was answering 350K

queries per day, Scroogle 4 was forwarding queries to Google on behalf of the user.

It was popular among searchers who wanted to get Google search results in a

private setting. Being a proxy service just like anonymizer 5 or ZenMate 6, yet

Scroogle started profiling in the same way as was done by the WSE.
1http://scroogle.org/
2http://www.anonymizer.com/
3www.yippy.com
4http://scroogle.org/
5http://www.anonymizer.com/
6https://zenmate.com/ last accessed Feb 23, 2020

Literature Review 17

Figure 2.3: The Onion Routing (TOR) model [33]

2.2.2 TOR (The Onion Routing)

TOR is the group of volunteer-operated network servers to provide privacy [33]; it

actually consists of multiple proxies and is used to hide the identity (IP address) of

an individual on the internet. It was not specifically designed for Web anonymity.

Although TOR provides the anonymity at the network layer, the WSE can identify

a person at the application layer. With TOR a user gets a very slow response and

none-personalized results. Figure 2.3 shows how a user establishes a path to WSE

through multiple proxies.

2.2.3 Privacy-Preserving Framework using DLT and TOR

Raza et al, proposed a framework for privacy-preserving, distributed search engines

using the topology of DLT and Onion Routing [54]. They reported that since the

search results are heavily dependent on WSEs run by central authorities, the

WSEs and central authorities not only compromise the privacy of an individual

by keeping track of his or her daily searches but also provide biased results for

the queries. To ensure privacy, Raza et al, used distributed ledger technology

using TOR to search for the web contents and ensure anonymity. Their proposed

framework consisted of four types of participant i.e. user, Tor nodes, search nodes,

and Tor block nodes with the assumption that the majority of the participants

Literature Review 18

were non-malicious. The privacy of the proposed framework was mainly dependent

on the TOR layer, whereas performance relied on the number of nodes in the TOR.

As discussed in section 2.2.2, although TOR can provide network-layer anonymity

however WSEs can identify a user through device fingerprinting.

2.3 Query Scrambling

The query scrambling technique conceals the profile of a user by not sending the

actual query directly to the WSE. Instead, the user query is broken into multiple

terms, whereas, each query term is sent separately to the WSE. The result for

each query term is collected and descrambled to get an answer for the original

query. However, query scrambling had two major shortcomings. First, the result

retrieved had poor quality, it loosely corresponded to the actual interest of the user

and second, query scrambling never tried to hide the identity of a user [13, 24].

2.4 Hybrid Techniques

Hybrid techniques are used to achieve both unlinkability and indistinguishability.

This technique sends a list of fake queries with the original queries through a third-

party infrastructure. In such case the profile of the user is obfuscated with the fake

queries. As the queries are sent through the third party infrastructure like TOR

or a proxy server hence the user achieves unlinkablity. PEAS and X-Search are

the two most popular hybrid techniques to achieve Web search privacy, through

unlinkability and indistinguishability.

2.4.1 Private Efficient and Accurate Web Search (PEAS)

Petit et al. [34] proposed PEAS to provide indistinguishability and unlinkability

to a user in private web search. PEAS achieves indistinguishability by adding K

fictitious queries with the original query using a logical OR operator. Whereas,

the unlinkability is attained by sending the set of queries through a proxy server.

Literature Review 19

The results show that PEAS decreased 81.9% linking of queries with the origi-

nator user as compared to the GooPIR. The unlinkability is proved through the

machine learning attack. However, PEAS used a very weak adversary model of

non-collaborating proxies[35].

2.4.2 X-Search

X-search is an alternative approach of PEAS to provide indistinguishability and

unlinkability [35]. X-Search has three entities i.e., a client, a proxy node (a trusted

software Guard Extension install on a proxy node) deployed over the untrusted

cloud and a WSE. The indistinguishability preserves the privacy by sending bogus

queries which are generated from users previous search history and unlinkability

between the client and WSE is achieved through the proxy node. However, Pires

et al.[55], identified that X-Search and PEAS are not convincing techniques as they

become simply blocked by search engines that have aggressive anti-boot strategies.

2.5 Distributed Schemes

Distributed schemes work with the cooperation of multiple users, every user for-

wards another user’s query and vice versa. Distributed schemes achieve both

unlinkability and indistinguishability to preserve privacy. The profile of a user is

obfuscated with the real queries of other users in order to attain indistinguishabil-

ity. Hence, the risk of a query being classified as the machine-generated query does

not exist with distributed schemes. Accomplishing indistinguishability through the

real queries of real users is the major advantage of the distributed scheme over

other schemes(standalone, hybrid schemes). A user of distributed schemes achieve

unlinkability when his or her query is forwarded by another user, hence, the WSE

will not be able to link a query with the user directly. There are many distributed

schemes proposed in the recent times, some techniques focused on indistinguisha-

bility alone while others focused on both unlinkability and indistinguishability.

The sections below detail the temporal advances made in distributed schemes to

achieve the Web search privacy.

Literature Review 20

2.5.1 Indistinguishability Solutions

Private Information Retrieval (PIR) is a technique proposed to retrieve an element

from the database with the aim of not allowing the database to find out about

the interests of the user. In order to make the database unable to get the actual

interests of the user, Chor et al. [56] proposed PIR with the supposition that

more than one copies of the database might be stored at different locations and

these copies should not communicate with each other. For obtaining an item Xi

privately from the database, Chor et al. described a technique in which the user

was supposed to send queries to the copies of the same database, i.e., set S ⊆ [n]

(i.e., each index j ∈ [n] was selected with probability 1/2). For instance, the user

was supposed to send S to DB1 and S ⊕ i to DB2. By applying the exclusive

OR operation on the results of the queries, the user may retrieve the item Xi

successfully without letting the databases know his actual interests. In the light

of a single database, Chor et al. assumed that a complete copy of the database

may be considered in order to obtain the required interests while keeping intact

the privacy. Later in 1997, Kushilevitz and Ostrovsky [57] came up with the idea

that PIR could be applied on a single database by using algebraic properties and

methods of Goldwasser–Micali public-key encryption.

In 1998, Reiter and Rubin [38] stressed the fact that encryption only protects

the contents of a user’s data. However, eavesdroppers can still capture the user’s

IP address, the duration of communication, and the partner. A WSE knows

the client’s IP address, his/her query and by digging other patterns from it, a

WSE can invade the privacy of a client. Reiter and Rubin introduced a technique

called Crowds for achieving anonymity in a web transaction. To retrieve data

privately from WSE, a user is first required to join the crowd before making a web

transaction. They used an approach called blending into crowds, i.e., concealing

one’s query within the queries of other users. To make a web transaction, a user

forwards his/her query to a randomly selected peer, the peer then flips a biased

coin to decide either to forward a query to another peer user or to the WSE. A path

is established between the query initiator and the WSE, the reply comes through

the same path and the result is delivered to the initiator as shown in Figure 2.4.

For retrieving data privately from a WSE, the Crowds was implemented through a

Literature Review 21

Figure 2.4: A path between a user and Web Server in a Crowds [38].

client-side software called jondo and a server-side software called blender. With the

aim of achieving confidentiality, the query had to be encrypted using a symmetric

key encryption scheme and it had to be exchanged between jondos’ before reaching

the WSE. Furthermore, Reiter and Rubin presented the degree of anonymity as

is shown in Figure 2.5 for analyzing the security achieved by the Crowds. In the

year 1998, 1400 copies of crowds (Jondos) were distributed free of cost with active

blender for maintaining crowds. The description of crowds project were available

online 7

Weakness: Crowd gained anonymity against the WSE but it did not offer any

anonymity against the local eavesdropping. The query is encrypted with the sym-

metric key when it is forwarded from one Jondo to another. Thus, every node in

the path knows the actual query content. WSE can also find the query originator

with the collaboration of multiple Jondos. Figure 2.4 represents a path established

between the user and WSE through multiple Jondos.

Ostrovsky and Skeith [58] comprehensively surveyed the different PIR techniques

in 2007. They suggested that getting the whole database for a single query is im-

practical, also, this approach makes a user more susceptible to the database.

Castella-Roca, Viejo and Herrera-Joancomartı [40] in 2009 proposed a new pro-

tocol called Useless User Profile (UUP) with the aim that it will allow the users
7http://www.research.att.com/projects/crowds.

Literature Review 22

Figure 2.5: Degree of Anonymity [38].

to forward queries to the WSE and preserve the privacy by distorting the profile.

UUP assumes three entities i.e., users, central server and WSE to preserve the

privacy of a user. Group creation, anonymous query sending & retrieval, query

forwarding to WSE & result retrieval and result broadcasting are the steps needed

in the execution of UUP. The central server creates the group once it has received

the requests from predetermined number of users. The connection information is

broadcasted in the group so that all users may communicate with each other. Each

user is supposed to forward a query to another user so that a query is submitted to

the server by another user. Once everyone have exchanged their queries, each user

then forwards query to the WSE, When the reply is received from the WSE, the

results are broadcasted in the group in clear text. In this way, the WSE is not be

able to make a real profile of a user. Moreover, UUP used cryptographic technique

(ElGamal group key encryption [59], ElGamal re-masking, and permutation) to

preserve the privacy relative to the peer user by hiding the query contents. If each

user has forwarded his/her query, the group ceases to exist. In order to send forth-

coming queries, the whole process of UUP i.e, group creation, anonymous query

sending and retrieval, query forwarding to WSE and result broadcasting repeats

again. The group creation puts an extra time delay on the system i.e., 5.2 seconds

[11, 34].

Weakness: The UUP has three major weaknesses, (i) the results are broadcasted

in clear text, letting all users knew what is being searched inside the group. (ii)

UUP fails to provide privacy in the presence of a single adversary. (iii) Once each

user has forwarded a query to WSE the group is disassembled and the overhead

of the whole process is borne for forthcoming queries.

Lindell and Waisbard [60] investigated and criticized the UUP [40] protocol in

2010. They discussed that UUP [40] is only secure in the presence of semi-honest

users that is when all users exactly follow the protocol. But with the presence of

even single adversary node, the privacy of all honest nodes can be compromised and

Literature Review 23

the adversary remains unnoticed. Lindell and Waisbard [60] carried out four types

of attacks proposed by [11], (i) Targeted Public key attack. (ii) Stage skipping

attack. (iii) Input-Replacement attack. (iv) Input-Tagging attack. With those

attacks, Lindel and Waisbard concluded that the privacy provided by UUP [40]

can be compromised. Lindell and Waisbard technique work in the following steps:

(i) encrypt the query to hide the contents. (ii) the query is shuffled among the

users in the group by placing the encrypted query into mixnet according to the

technique mentioned in [61]. For the technique to proceed, each user must check

if his/her query does appear after shuffling in order to tackle the replacement

attack. If the query does appear the user must broadcast the true message in

the group. The user can then proceed to decrypt the query and forward it to the

WSE. Lindell and Waisbard claimed that even with malicious adversaries their

technique achieves security because they do not re-mask the messages like [60] as

re-masking is vulnerable to input tagging attack. Instead, [61] used CCA2-secure

encryption [62] and onion layered encryption method with the assurance that at

least one honest user must “re-mask and permute” all ciphertexts. At the end of

the shuffle, each user must verify that his/her encrypted query still appears in the

shuffle. When the above-mentioned steps complete, the queries are decrypted and

forwarded to the WSE to collect the result. In the end, the results are encrypted

using the symmetric encryption algorithm (AES) algorithm and broadcasted to

users in the group. Lindell’s technique used double encryption to preserve privacy

but it puts an extra delay on the system, it is twofold costly as UUP [40].

Weakness: Zhengjun, Liu and Yan [63] has presented attacks that compromise the

Lindell’s [60] technique and concluded that the privacy of the user can be revealed

in the verification stage. When the queries shuffling process concludes, each user

has to verify if his/her query still appears after the shuffling. During this time if

a malicious user replaces a genuine query of a user and sends a fake query to the

WSE, and broadcast the results in the group. The user whose query been replaced

upon not receiving an answer to the query will complain and the adversary will

link a complaint to find the user. Furthermore, Lindell and Waisbard said that the

result of the query will be broadcasted after encrypting through AES algorithm,

but they did not explain any method of AES keys exchange.

Literature Review 24

In 2010 Viejo and Castell‘a-Roca [43] used social networks to distort the user profile

that was generated by WSE. Their technique has two aims to achieve workable

model i.e., to use the social network in which user did not need to generate the

groups instead it used the social network to forward queries to the WSE they never

used an anonymous channel like TOR because it is a slow approach. Secondly, the

WSE should not be able to obtain the profile of the user. Each user had K friends

in the social network, the protocol executed in the following steps.

1. The user Ui forwards query q based on privacy function Ψ that estimates

the profile exposure level to forward the query to the WSE or its neighbor.

However, if the function suggests forwarding the query directly to the WSE,

the protocol ends here, otherwise, the query is forwarded to the neighbor.

2. If function Ψ decides that user forward his/her query q to neighbor Ui, Ui

either accepts or rejects depending on the level of selfishness. If Ui accepts,

he/she follow the step i, if reject Ui selects another friend from the list.

3. When a neighbor Uj accepted a query from Ui he forwards it to WSE in

order to get the answer from WSE and forwarded it back to the user Ui.

If the query used a path U1-U2-U3-U4, U4 would not be able to link the

query to U1. Similarly, U3 and U2 would not know if the U1 was the query

q generator or forwarder like them.

Weakness: The social network had a few shortcomings. First, it did not use

any encryption and the query was known to all users. Second, if multiple users

collaborated, they could find the initiator of the user through the predecessor

attack [64].

Erola et al. [44] presented an advanced version of Viejo and Castell‘a-Roca’s

technique [43]. They investigated selfish behavior of the users (the user who request

other neighbors to send his/her query to WSE, in turn, the user does not forward

other queries to the WSE) in their system using a γ (selfishness function), which

decides the level of the selfishness of a user. Every time when a user sends a query

to a neighbor, and if he accepts it and answers the query in a specified time, he

marks him positive otherwise negative. For sending a query q, user Ui calculates

Literature Review 25

the sending probability ps of all neighbors and executes the user selection function

Ψ. The γ function is used to punish selfish users. Their system used the approach

of path length 2 before sending a query to the WSE. Additionally, each user will

submit the same number of queries as does its neighbor and neighbors of neighbors.

The user anonymity is diffused and the true source of the query remains hidden.

Weakness: In this technique [44], If the same static group always submits the

same types of queries then WSE can use it to find the real initiator of the query.

moreover, this technique is also vulnerable to intersection attack.

Romero-Tris, Viejo and Castell‘a-Roca [7] in 2014 extended the work of UUP [40]

and introduced a novel idea for anonymous web search in the presence of an un-

trusted partner. UUP is not secure in the presence of the malicious user, the

new protocol improved the security of UUP [40] in the presence of the untrusted

user. The new protocol aimed at protecting the privacy of the user against the

WSE, dishonest central node and dishonest user. It used the same idea as UUP

for group building, ElGamal group key encryption [59] was used for data security.

The privacy of a user against the peer user or dishonest user was achieved through

Optimized Arbitrary Size (OAS) Benes Network [65]. Benes permutation network

is a directed graph, it performs every possible permutation of elements and cor-

responding inputs and outputs. OAS Benes network actually privately shuffle the

queries among the users in such a way that none of the users should be able to link

any query with any user. PEP and DISPEP are a zero-knowledge proof technique

used for proving that one of the two ciphertexts is the re-masked version of another

cipher text. The central node creates a group and gives necessary information to

each user for contacting each other such as the IP address and port number. If the

central node is dishonest and it groups a single user with n-1 malicious users, then

the central node can find the query of the honest user. The WSE is the contact at

the last phase of the protocol. Where each user submits someone else’s query, the

WSE links the query to the user submitting the query. In such a case the profile

of the user is obfuscated.

Romero-Tris, Viejo and Castell‘a-Roca [66] surveyed all previous techniques of

the multi-party peer-to-peer network for private web search. They improved their

[40, 44] techniques by reducing the response time to 3.2 seconds, which was 5.8

Literature Review 26

and 6.8 in previous techniques. The first improvement outperformed all previous

dynamic group multiparty protocol with the delay of 3.9 seconds in the simulated

environment. In the second improvement, they achieved the privacy of the user

between the peer users in the presence of the dishonest user. They used the OAS

Benes Network, every time a cipher-text passed a switch, its value is re-permuted

and re-masked, so the probability of the user finding the exact user is 1
n
.

In 2018, Domingo-Ferrer introduces the concept of a self-enforcing protocol called

co-utile protocol to promote social welfare[45]. The co-utile consists of agents

having complementary interests desired to query a WSE but do not want the

WSE to learn about his/her interest. The co-utile protocol was modeled as self-

enforcing and mutually beneficial for agents (users) using a game-theoretical model

for scenario consisting of single-hop query submission game for two agents, single-

hop query submission game with multiple agents and multi-hop query submission

game. To send a query to the WSE in the single-hop query submission game pro-

tocol with two agents (initiator and responder), an agent (initiator) is required to

compute the impact of query on his/her privacy using entropy, based on equation

2.1. If the query enhances the privacy of an agent (initiator) relative to the WSE,

the agent forwards the query itself, otherwise, the initiator asks the peer agent (re-

sponder) to forward the query. The responder first computes the impact of query

on his/her privacy based on equation 2.2, if the query enhances the responder’s

privacy, he/she forwards the query to the WSE otherwise, the responder denies

the query-forwarding request. The initiator has to forward the query itself to the

WSE.

pI(P) = H(YI ∪ {q})−H(YI)pR(P) = H(Y R ∪ {q})−H(YR) (2.1)

pR(P) = H(Y R ∪ {q})−H(YR) (2.2)

Where pI(P) represents the privacy of initiator agent, Y is the agent’s query profile,

H(YI) is the entropy of initiator’s profile, H(YIU{q}) is the entropy after adding

query “q” to the agent’s profile.

Literature Review 27

In the single-hop query submission game, the agents would only forward each other

queries if their interests were complementary; this assumption limits functional-

ity (having the query answered) and the privacy of an agent. To overcome this

limitation, a single-hop query submission game protocol with multiple agents is

considered. It works in the same way as a single-hop query submission game pro-

tocol with two agents, however, when the responder denies the initiator’s request

for submitting a query to the WSE, the initiator asks another responder agent to

send a query. The initiator added a time threshold to the query i.e. if the query

is not answered in time t, the initiator sends it himself, as functionality is the

primary focus of co-utile over privacy.

Weakness: The co-utile protocol has two shortcomings, first, there was no privacy

between the agents. Every agent was exactly aware of the interest (query) of an-

other agent hence compromising the privacy relative to the responder agents. In

such case, a the agent’s privacy is solely dependent on responder agent. Second,

functionality and delay were the other serious issue associated with the co-utile, a

query may not get answered at all or an agent had to wait for long or at the end

an agent may have to forward a query on his/her own.

2.5.2 Unlinkability Solutions

As discussed earlier, the aim of the unlinkability solution is to disassociate the

query and the user. Some of the prominent unlinkability solutions are discussed

below.

In 2008, Domingo-Ferrer et al. [39] introduced the concept of Peer-to-Peer User

Private Information Retrieval (UPIR). They considered a community of b users,

where each user submits a query on behalf of another user. Their prime target was

to preclude the WSE or database from getting the profile of an individual user.

Their second aim was to hide the secrecy of a user in front of other peers. The

UPIR technique is based on the concept of a shared memory location, where the

users record their queries in the shared memory location. A user reads the query

from the memory location and forwards it to the database. The user then retrieves

the answer from the database, writes it back in the same memory location. The

Literature Review 28

query-originating user reads the answer, and hence the data is retrieved from the

database. To defend confidentiality, the queries and answers are encrypted under

the symmetric encryption technique. Users are able to distinguish between the

queries or answer when the memory location is decrypted. Based on the above

assumption three techniques were proposed.

1. All to all P2P UPIR protocol: To submit a query to the database/WSE

a, user must read the memory location m. In the decryption under the

symmetric key, five cases may arise.

(a) If the memory location is free, then encrypt the query and save it in

the memory location.

(b) If the memory location is already occupied with a query, the user sends

the query to the WSE, retrieves the answer, encrypts it under the

symmetric key and then records it back in the memory location.

(c) If the memory location contains an answer to the previous query not

read by the user who made it waiting for a short random time.

(d) If the memory location contains a query submitted by the user before

but not yet served by anyone waiting for a random short time.

(e) Contains answer to the previous query submitted to the WSE by some

other user. In such a case the user reads the answer of the previous

query, encrypts the new query and records it in the memory location.

Weakness: In the above all to all UPIR protocol, the identity of the user

can be hidden from the WSE but all the group members know all queries

being searched in the group. Additionally, by the linking of the IP address

to the user accessing the shared memory location, the group members can

identify the query originator. An external intruder can also find the query

contents and the list of users associated with the shared memory location if

the single shared symmetric key is leaked.

2. One to one P2P UPIR protocol: In this protocol each user shares a memory

location with each of the other users. To submit a query, each user may

need to read the memory location mij Five cases may occur.

Literature Review 29

(a) The memory location is free. In this case, the user encrypts his/her

query and records it in the memory location.

(b) Contains the query submitted by user Uj in this case user Ui decrypts

the query, submits it to WSE, gets the answer, encrypts it and record

it in the memory location.

(c) Contains answer to the query submitted by Uj that is forwarded by Ui

not yet read by Uj then wait for a random short time.

(d) Contains the previous query of Ui who is expecting Uj to forward it to

WSE but still pending, in such case the Ui selects another user with

another key and go to start again with step i.

(e) contains answer to previous query of Ui in this case Ui reads and an-

swers, encrypts his/her new query and records in the memory location.

Weakness: With one to one P2P UPIR protocol, the user Uj knows exactly

that Ui has forwarded the query because both share the common memory

location. The trust of privacy is completely shifted to Uj. This approach

requires a high number of shared keys, such as for b number of users it

requires b(b−1)
2

number of keys. Furthermore, this approach suffers significant

delay because Ui has to wait for Uj to read the query from the shared memory

location and forward it to database/WSE.

3. Configuration based P2P UPIR protocol: A dealer is assumed to create a

key pool for the community of b users in a way that v keys are created and

distributed into b blocks of size k according to the (v, b, r, k) configuration

[67]. The dealer sends a unique block to each user in a secret way through

the asymmetric cipher technique. The dealer then deletes the v keys from

the memory. For submitting a query to the WSE, the user needs to randomly

select one of supposed keys xij from the block which the user shares with

one of the other users according to the configuration structure. The user Ui

follows the same procedure by reading a memory location mij and decrypt

it under xij . five situations may arise.

(a) The memory location is empty, then the user encrypts his/her query

using xij and records in that location.

Literature Review 30

(b) The memory location contains a query qj sent by another user and ex-

pects someone to forward it to the WSE. In this case, the user decrypts

the query, forwards it to WSE, retrieves the result, encrypts the result,

and records in that location.

(c) The outcome is an answer to the previously submitted query by one of

the peer users and forwarded by another user. However, the answer is

not yet read by that user so the user must wait for some random time.

(d) The memory location contains a query submitted by the same user ui

, however, this query is still waiting for some other user to forward it.

In this case, the user goes to step 1 and selects another key to forward

the query.

(e) The memory location contains an answer to the previous query sub-

mitted by the same user Ui. In this case, the user reads the answer of

the previous query, encrypts his/her new query, and writes it in the

memory location.

Weakness: with configuration based P2P UPIR the users sharing the com-

mon memory location know the queries forwarded by that group of users.

The identity of the user can be revealed through the intersection attack

shown below. The above three protocols contain some weaknesses. First,

they are not very secure because they use single keys, meaning anyone knows

the queries. While the second requires too many keys and each has to wait

for the other users. Viejo and Castell‘a-Roca [43] showed some drawbacks

in [39], such as that they did not show the memory location requirement

for their system. Each user must check or read the memory location in

the steady interval of time. According to Viejo and Castell‘a-Roca the best

response time is 5.84 seconds while they did not include the network time

involved in communication, etc.

The previous technique UPIR [39] privacy of user against the WSE, is sat-

isfactory, but the privacy against the peer client cannot be maintained be-

cause all the queries have to go through a shared memory location. Klara

and Bras-Amoros [67] proposed a technique called an optimal configura-

tion for a peer-to-peer network using combinatory configuration. They used

Literature Review 31

(v, b, r, k)− 1-design. v is the number of users, b is shared memory location,

r number of users accessing the memory location and one user accessing k

memory locations . They concluded that finite projective-planes are the op-

timal configuration of the P2P UPIR. The anonymity of the user is diffused

among k(r−1) other users in the locality, and k(r−1) is an increasing func-

tion of privacy against the database. Concepts like ternary ring and singer

cycles are a simple construction of projective planes are also discussed.

Swanson and Stinson [41] discussed the previous techniques of UPIR [67] and high-

lighted the weakness in the projective plane used for optimal configuration, i.e.,

when v = r(k − 1) + 1. This would mean that the user has a neighborhood con-

sisting of all other users. In such a case, all neighbors will be forwarding queries

to the WSE and only the actual user who is the initiator of the query will not.

Thus, the WSE can link the query to him. Another attack introduced by [51] is

the intersection attack, i.e., if the attacker (WSE) can analyze the neighborhood

of the user submitting the query, and all linked queries, then perhaps the WSE

can identify the source of the query. Swanson and Stinson [41] made an intersec-

tion attack on stokes and Bras-Amoros [67] (v, b, r, k)− 1-design. Suppose v = 12

(users), b = 8 (shared memory spaces) the following design is acquired for memory

space.

S1 = {USR1, USR2, USR3}

S2 = {USR4, USR5, USR6}

S3 = {USR7, USR8, USR9}

S4= {USR10, USR11, USR12}

S5 = {USR1, USR4, USR7}

S6 = {USR2, USR5, USR10}

S7 = {USR3, USR8, USR11}

S8 = {USR6, USR9, USR12}

This is a (12, 8, 2, 3)− 1-design. The dual design is: USR1 = S1, S5 USR2 = S1,

S6 USR3 = S1, S7 USR4 = S2, S5 USR5 = S2, S6 USR6 = S2, S8 USR7 = S3, S5

USR8 = S3, S7 USR9 = S3, S8 USR10 = S4, S6 USR11 = S4, S7 USR12 = S4,

S8. Suppose the above configuration was used, there are a series of three queries

Literature Review 32

Figure 2.6: Timeline of distributed privacy-perserving protocol

on esoteric topics forwarded by USR2, USR8 and USR11 and we want to find the

original user in the above configuration. The intersection attack will identify the

query originator. If USR2 is the forwarder, then the possible source could be in

S1 ∪ S6 = {USR1, USR2, USR3, USR5, USR10}. If USR11, then original source

might be in S4 ∪ S7 = {USR3, USR8, USR10, USR11, USR12}. If USR8, then

S3∪S7 = {USR3, USR7, USR8, USR9, USR11}. By making the intersection of all

possible groups we get USR3 as a source of the query originator. The anonymity

of a user among the neighbors can be compromised through algebraic functions.

Swanson and Stinson [41] suggested that there are Sl memory locations, each

containing k users, and each user is associated with r memory locations. A user

must be allowed to forward his/her own queries sometimes with the probability

of 1
v
. The user can choose to randomly pick his/her own proxies, while in [67]

the user would have to write his/her query into a memory location ,which can be

read by another user randomly who forwards it to the WSE. By assigning a proxy

to each query, the user can be made anonymous with the attacks (intersection

attack) that compromised the privacy.

Kaaniche et al. proposed a decentralized solution CoWSA that empowers end-user

to have control over personal data, mitigate single-point failure, ensures the secu-

rity of the queries, and provides anonymity to a user [68]. User, client, WSE, third

parties(TP) and trusted authorities are the five entities of CoWSA. It is basically a

proxy solution to retrieve data from WSE on the basis of Sys_Init, Query_Submit,

Literature Review 33

and Query_Resp procedure. Sys_Init procedure involves interest-based group cre-

ation, Query_submit corresponds to the process of sending queries to the WSE

by setting a random path through multiple relay user. The Query_Resp occurs

when the WSE receives the query aggregates the profile of the user and returns the

answer to the user through TPs. However, the CoWSA does not explain how ag-

gregated profiles are computed and what level of obfuscation a client achieve.RSA

encryption is used in coWSA to achieve confidentiality.

2.5.3 Implementation of Distributed Protocols

Table 2.1 represents the simulators used in the implementation of various dis-

tributed protocols along with simulation platform, dataset used for evaluation,

group size, time delay caused by the execution of protocol to retrieve an answer

from WSE and encryption techniques. To provide the portability across Unix and

Microsoft platforms crowds were implemented in Perl 5. Netscape 3.01 browser

was configured to allow 4 simultaneous network connection for the jondos. Apache

Web server were used in the implementation of crowds at AT&T lab in the close

network proximity.

UUP consisted to two components i.e. Central server (CS) and client application.

Those components were implemented through Java programming language. The

CS is a multi-thread process that continuously listen to the connection request

from the client at TCP port. The client side were implemented through Java ap-

plet program to allow the user to search a query in a transparent manner. ElGamal

shared key encryption were used to provide confidentiality of query content. The

whole UUP system were implemented over a LAN to perform web search secretly.

To eliminate the need of CS, the existing social network was employed to achieve

web search privacy [43, 44]. They implemented their concept over NS-2 with 400

users [69]. The proposed social network scheme was tested in four social networks

consisting of 100, 300, 500 and 1000, where each user was connected to 1-30 users.

The proposed social network have not employed an encryption technique when

passing query among the neighbours.

The same simulation platform of UUP were employed by UUP(e) i.e. Java pro-

gramming language were used to implement the protocol. However, the UUP(e)

Literature Review 34

Table 2.1: Simulators used for the implementation of distributed protocol

Protocol Simulation
platform Dataset Group

size Users Delay Encryption
Technique

Crowds [38]
C language
and Perl 5
over LAN

static
users 4 users 1400 13438ms SSL

UUP [40] Java based
over LAN

AOL
query log

3 users,
4 users,
5 users

1000 5200ms ELGamal

social
network [43] NS-2 AOL

query log 1-10 user 400 3918ms No
encryption

UUP(e) [7] Java based
over LAN

AOL
query Log

3 users,
4 users,
5 users

1000 8032ms ElGamal

Co-utile [45] LAN AOL
query log

2 users,
3 users,
4 users,
5 users

900 4900ms,
5500ms

No
encryption

OSLo [13] Java based AOL
query log

3 users,
4 users,
5 users

500,
1000 6988ms RSA

has an extra step of zero knowledge proof. The delay cost of UUP(e) has highest

in worst case as compared to the all other distributed protocol.

The co-utile protocol were implemented as multi hope game with 900 agents over

LAN. AOL query log were used to compute the privacy through entropy. Co-utile

protocol have not employed any encryption or shuffling technique.

OSLo is implemented through Java programming language simulator. OSLo has

two component CS and client, the CS is implemented as multi thread process that

continuously listen to the connection request from client. Once the CS receive a

request from client it records the IP and port numbers. RSA and AES encryption

schemes are employed to achieve the confidentiality of query and results. The test

are performed with the subset of AOL query log consisting of 500 and 1000 users.

2.6 Summary of Distributed Protocols and Re-

search Gap

The need for query privacy was emphasized in the late ‘90s. Since then many

efforts have been made to achieve absolute privacy. Table 2.2 shows a detailed

summary of distributed private web search protocols with their strength, weakness

Literature Review 35

Table 2.2: Summary of distributed protocol
Limitation and vulnerabilities

Protocol Group creation/

Type

Query

Encryption

Vulnerable
to
Attacks

Privacy
against
peer users

Privacy
against
WSE

Crowds Single Group
/Static Symmetric

Predecessor,
Denial of Service,
collaborating jondos

No
privacy peers
in path knows
the query

Yes
But with
collaborating
jondos
can find
the user

UPIR Single group Symmetric Input-replacement,
Denial of Service No Yes

Optimal
Configuration
UPIR

Single
/Multi Groups
/Static

symmetric
Input-replacement,
Denial of Service,
Intersection attack

No
No
Local privacy
can be
compromised

UUP
Single
/Multi Groups
/Dynamic

No

Denial of Service,
Input Replacement,
Targeted public-key,
Stage skipping,
Input-replacement,
Input-tagging

No

No
Privacy
can be
compromised
through
intersection
attack

UUP
Lindell and
Waisbard
Improvement

Single
/Multi groups
/Dynamic

Symmetric
Input-replacement,
Denial of Service,
Verification
stage attack

Yes
But can be
compromised

No
Privacy
can be
compromised
through
intersection
attack

Social
Network

Single Group
/Static No Predecessor,

Denial of Service

No
Query is exposed
and user can be
find with the
help of multiple
users

Yes

UUP(e)
Single
/Multi Groups
/Dynamic

Asymmetric
Input-replacement,
Denial of Service,
Intersection attack,
data mining,

Yes
(result are
broadcast
in plaintext)

No
can be
compromised
through
intersection
attack

Co-utile Single /static No Denial of service
No privacy
against
peer agents

Yes

and vulnerabilities. Standalone schemes were introduced but the privacy provided

by such schemes did not show promising results. Query scrambling is a new

technique in query privacy, but so far the result quality obtained are not very

good [23].

The peer to peer protocols have charmed the researchers, many efforts have been

done on that concept and have settled a pathway. Few protocols like Crowds [38],

UPIR [39] gave the initial importance to the problem and guided a way to the

solution. UUP [40] introduced distributed concept but lacked security, Lindell and

Waisbard [60] added security to [40] but were soon after criticized by Zhengjun,

Liu and Yan [63]. Viejo and Castella-Roca[43] proposed that instead of creating

groups, social network could be used to achieve the privacy but the predecessor

attack [64] without encryption left the content visible. Erola et al. [44] devised

a technique to handle the selfish user in social networks through the same static

group which again failed to fulfill the promise. Romero-Tris, Castella-Roc and

Viejo [7] achieved good privacy for local peers but the WSE was able to link a query

Literature Review 36

to the user via the association rule mining. However, in the distributed protocols

like crowds [38], use social network [43, 44] the query and answer to the query

remain visible to the peer users occurring in the path between query originating

user and WSE. This compromises the confidentiality and privacy of the user.

The protocols like UPIR [39], extended combinatorial design [41], and extended

results on privacy [42], uses memory locations to enforce the privacy, but the users

associated with memory location can see the query contents and results to the

query hence compromising the confidentiality and privacy of the user. In protocols

like UPIR [39], UUP [40] and distributed protocol with untrusted partner(UUP

extended) [7] the query results are broadcasted in clear text, giving an idea to the

users what is being searched inside the group. In the co-utile protocol [45], an

agent asks another agent to send a query on his/her behalf to the WSE. In such

a case, the peer agents know exactly the queries of the agent. Also, functionality

is another prime issue in the co-utile protocol, an agent may ask a peer agent to

forward his/her query, but the peer agent may deny the request causing delay to

get the answer to the query. In many protocols, users are not allowed to send

his/her query to the WSE, giving an attacker to link a query with the originator.

Furthermore, the privacy of the user is never evaluated relative to peer users and

WSE.

In this dissertation, a series of protocols (OSLo, MG-OSLo, PaOSLo) are proposed

to eliminate the limitations mentioned above and to evaluate the privacy of a user

relative to the WSE and peer users involved in forwarding queries to the WSE.

2.7 Privacy Evaluation Metrics

Following are the metrics used to evaluate the privacy of users.

2.7.1 Entropy

Entropy is used as a metric for computing the privacy of a user. It estimates

the quantity of information represented by a discrete random variable. Entropy

provides the quantity of information contained in the probability distribution [70].

Literature Review 37

In private web search, it measures the amount of information an attacker assigned

to a user “X”. Let M be the discrete random variable with probability mass

function pri = Pr(M = mi), where i represents each possible value that X may

take. Entropy is expressed as.

H(M) = −
∑

pr(mi).(log2)pr(mi) (2.3)

where, pr is the probability mass function assigned to the random variable M .

2.7.2 Degree of Anonymity

A degree of anonymity measures the quantity of information the system is leaking

[71]. Entropy is used as a tool to calculate the degree of anonymity. Entropy H(M)

provides a measure of the average amount of information needed to represent an

event drawn from a probability distribution for a random variable. Let M be the

discrete random variable denoting the likely query originator in the group. The

entropy of M is expressed by Equation 2.3, where p(xi) symbolizes the probability

that the user p(xi) is the query originator. We denote by HMax the maximum

entropy of the system: The degree of anonymity is computed from a ratio of the

entropy of a system in the probability distribution (i.e. assigning probabilities to

individual user) to the maximum entropy a system can achieve as given in 2.4.

d = 1− (HM −H(X))

HM

=
H(X)

HMax

(2.4)

Where, HMax the maximum entropy protocol can achieve. HMax = Log2(N) . N

is the total number of users in the set.

2.7.3 Profile Exposure Level (PEL)

Profile Exposure Level (PEL) is a privacy metric that measures the percentage of

information about a user. It can be measured from the user’s obfuscated profile.

Authors in [7, 44, 72, 73] have used PEL as a privacy evaluation metric, to evaluate

the privacy achieved by the user alongside of WSE. PEL uses mutual information

Literature Review 38

and entropy to measure the level of user profile exposure. PEL measures the

difference between the user’s original profile (this profile is built from the set of

queries that a user actually generates and send directly to WSE) and obfuscated

the profile (the profile obtained when a user executes a privacy-preserving protocol

and pollutes his/her profile with the queries of other users). The equation2.5

represents the PEL of a user as a difference of mutual information and entropy.

PEL =

(
I(M,N)

H(M)
∗ 100

)
(2.5)

H(M) represents the entropy whereas, I(M,N) denotes the mutual information.

Authors in [7, 44] defined M , N as random variables having a sample space ΩM

and ΩN . M represent a set of categories of queries that a user actually generated,

and N represented a set of categories of queries that the user sends to the WSE.

As the user sends many queries other than his/her original query, N commonly

contained another user’s query categories. PEL measured the percentage of user

information promulgation when N is known. The probability function of M, in-

dicated as pr(m) is define as, ∀m ∈ ΩM , pr(m) = Pr(M = m) The Probability

function of N indicated as pr(n) is defined as, ∀n ∈ ΩN , pr(n) = Pr(N = n) The

conditional probability function of M given N, written as pr(m | n). it was defined

as ∀ m ∈ ΩM and ∀n ∈ ΩN , pr(m | n) = pr(M = m | N = n) Using probability

functions, authors in [44] calculated entropy and mutual information as given in

Equation 2.6 and Equation 2.8

H(M) = −
∑

pr(mi).(log2)pr(mi) (2.6)

where, H(M) is the entropy of M, I(M,N) is the mutual information

I(M,N) = H(m)−H(M | N) (2.7)

I(M,N) =
∑
m,n

pr(m | n).pr(n)log2
(
pr(m | n
pr(n)

)
(2.8)

H(M |N) is the conditional entropy. pr(m) and pr(n) are the probabilities of each

element of M and N proportional to its cardinal. The following notations are used

to solve the above equations.

Literature Review 39

ΩM = {mi}vi=1 is the set consist of query categories of M.

ΩN = {ni}wi=1 is the set consist of query categories of N.

CardM = {cardmi}vi=1 is the set of the cardinal of each item of M.

CardN = {cardni}wi=1 is the set of the cardinal of each item of N.

V =
∑v

i=1Cardmi
, number of items of set M counting repetition.

W =
∑w

i=1 Cardni
, number of items of set N counting repetition.

Probabilities of each element of M and N are proportional to its cardinal, pr(m)

and pr(n) are calculated as:

pr(m) =
cardmi

V
, where, 1 ≤ i ≤ v (2.9)

pr(n) =
cardni

W
, where, 1 ≤ j ≤ w (2.10)

pr(m | n) is calculated for two cases where pr(M = mi | N = nj) is computed for

each pair of mi, nj where 1 ≤ i ≤ v 1 ≤ j ≤ w

1) nj /∈M then

pr(M = mi | N = nj =
Cardmi

V
where 1 ≤ i ≤ v (2.11)

2) When nj ∈M then there is mk ∈M so that mk = nj

a. if cardnj
≤ cardmk

then

pr(M = mk | N = nj) = 1 (2.12)

pr(M = mk
′ | N = nj) = 0 (2.13)

b. if cardnj
> cardmk

pr(M = mk | N = nj) =
cardmk

cardnj

+
cadrnj

− cardmk

cardnj

(2.14)

pr(M = mk | N = nj) =
cardnj

− cardmk

cardnj

.
cardmk

′

V
(2.15)

Suppose a user “X” has four queries (“AOL.com”, “myspace”, “Europe”, and

“Writing contest”), when these queries are categorized by ODP, the user origi-

nal profile i.e, denoted by M at the first degree of ODP hierarchy will contain

Literature Review 40

a {Computer, Computer, Regional and Arts}. Whereas, when he/she executes

a privacy-preserving protocol and sends queries like “Yahoo”, “fruits”, “making

candy” and “football”, his/her obfuscated profile denoted by N contains cate-

gories like a {Computer, Home, Art, and Sports}. PEL refers to the difference

between M and N based on 2.5. PEL measures the percentage of ’X’ original infor-

mation (M) disclosure when obfuscated profile (N) is known. The value of PEL is

between 0 and 100, where 100 means full profile exposure and 0 means no profile

exposure. Considering the original and obfuscated query of ‘X’, the entropy of the

original profile is calculated using 2.8 is given as H(M)=1.50. Similarly, the mu-

tual information between M and N is computed as I(M, N)=0.75 using Equation

2.7. PEL value will be 50% using the equation. presented in 2.2. Further details

related to PEL computation are available in [44].

Chapter 3

ObScure Logging (OSLo).

3.1 Introduction

As discussed in chapter 2, the queries sent by the user to the WSE often contain

sensitive information, which makes the query linkable to the user. The search

queries contain terms like unique User ID, name, user’s employers’ details, location,

religion, health information, gender orientation, political affiliations, faith, beliefs,

social security number etc., which can be termed as user sensitive. The release

of such information poses a serious threat to user privacy. To preserve the user’s

privacy, the unlinkability and indistinguishability are the primary focus of a user

in private web search. There are several techniques presented to preserve the web

search privacy of a user in the recent past. Techniques like standalone schemes only

focus on indistinguishability [48, 50] whereas, proxy servers provide unlinkability.

However, distributed schemes achieve both unlinkability and indistinguishability.

The user’s privacy in the Web search is considered preserved if the following three

objectives are attained.

1. The query of the user and its results must remain concealed from the group

users.

2. The unlinkability between the user and his or her query must be assured.

3. WSE should not be able to build an accurate profile of the user.

41

ObScure Logging (OSLo) 42

Distributed schemes work by the collaboration of multiple users, where each user

forwards a query of another user. To preserve the privacy in distributed protocols,

unlinkability (hiding the identity of the user) and indistinguishability (the profile

is polluted with queries of group users not with the machine generate queries) are

the key objectives for a user to achieve. The group users shuffle a query to hide the

identity of a user (unlinkability). In the existing distributed protocols, the query

is shuffled using coin tossing [38] or Benes network [74]. Each user in the group

forwards a query of another user; hence, the queries of the group users’ obfuscates

the profile of a user. The standalone schemes like [48, 50] use machine generate

queries to obfuscate the profile of a user. However, distributed protocols have the

advantage of obfuscating the profile with the real queries. This minimizes the risk

of a query being filtered out as machine-generated queries. Minimizing the traffic

overhead is another advantage of distributed protocol, as a user only forwards a

query of another user instead of forwarding a high number of machine-generated

bogus queries.

However, there are several limitations identified in the existing distributed privacy-

preserving protocols.

1. Distributed protocols like Crowds, Using Social Network, and Exploiting

Social Network [38, 43, 44] establishes a path over multiple users between

the query-originating user and the WSE/database. This makes it possible

for the intermediate users who relay the query to the WSE/database to see

the query contents. Similarly, the result from the query has to come through

the same path and hence compromises the confidentiality and privacy of the

query and the result contents.

2. Distributed protocols like UPIR, Extended combinatorial construction and

Designing privacy enhancing technologies [39, 41, 46] use the concept of the

memory location where a block of users is associated with each memory

location. To send a query, a user first encrypts a query with the encryption

key linked to the memory location and then writes a query into the memory

location. Another user from the block reads the query from the memory

location and forwards it to the database/WSE. The results retrieved from

the database/WSE are written back into the memory location. All users

ObScure Logging (OSLo) 43

associated with the memory location can see the query content and result

of the query, which compromises the confidentiality and privacy of the user.

3. Results retrieved from WSE are broadcasted in clear text int the extended

UUP(e), this makes a group users aware of what is being searched inside the

group [7].

4. In co-utile protocol [45], a responder agent/user knows the exact query of

the initiator agent hence, compromising the privacy of the initiator agent.

Furthermore, functionality (to retrieve an answer to the query) is a prime

issue in the co-utile protocol. The responder may deny the query forwarding

request of the initiator, it only forwards a query to the WSE if the query

is beneficial to his/her privacy, otherwise, the query forwarding request is

discarded which causes significant delay.

5. Users cannot submit their query since this gives a clue to the adversary to

link the query to the originator by narrowing down the link [7, 39, 40].

Additionally, the existing distributed schemes evaluate the privacy of a user ei-

ther relative to the peer users involved in forwarding the query to the WSE using

probabilistic models or relative to the WSE using privacy metric like PEL, en-

tropy or KL divergence. To the best of our knowledge, there is no framework that

evaluates the privacy of a user, relative peer user, and the WSE for distributed

privacy-preserving protocols.

To tackle the above-mentioned limitations, this chapter proposes a novel dis-

tributed privacy-preserving framework OSLo that answers the research question 1

and research question 2 of this dissertation. The main contribution of this work

includes:

1. A distributed privacy-preserving Framework called ObScure Loging (OSLo)

is proposed that eliminates the limitations mentioned above in schemes [7,

39–41, 45, 46] and preserves the privacy of the user in a private web search.

2. The proposed framework evaluates the local privacy (unlinkability) and pro-

file privacy (indistinguishability) of a user executing a distributed protocol

that comprises of the following steps:

ObScure Logging (OSLo) 44

(a) The formal analysis of local privacy of the OSLo, by computing the

probabilistic advantages a curious user and a coalition of users have in

linking a query with the originator.

(b) The local privacy is also measured through the degree of anonymity.

(c) The profile privacy is evaluated by computing the magnitude of profile

obfuscation through OSLo using privacy the metric Profile Exposure

Level (PEL).

(d) The impact of group size on local privacy and profile privacy is calcu-

lated.

This chapter aims to accomplish three objectives. First, to compute the web

search privacy of a user by executing OSLo. second, to compare the privacy and

performance achieved by OSLo with the benchmark distributed privacy-preserving

protocols extended UUP(e) [7] and co-utile [45], and finally to compute the delay

caused by the execution of OSLo.

3.2 ObScure Logging (OSLo)

The proposed framework (OSLo) is a distributed protocol, which makes a group

of the ‘n’ user. Each user forwards queries of the other users of the group. The

OSLo consist of the following entities.

1. User: An individual who is intendeds to search a query over the WSE

covertly.

2. Core server (CS): A dedicated machine that supervises the working of the

protocol.

3. Search Query Forwarding Client (SQFC): A user selected by CS to forward

queries of group users to WSE for the specified duration.

4. Web Search Engine (WSE): A software system, that is used to search infor-

mation on internet based on queries.

ObScure Logging (OSLo) 45

3.3 OSLo Execution Process

The execution process of OSLo starts when the CS starts listening to the connect-

ing requests. Users who want to perform the web search secretly send a connection

request to the CS. When the CS receives ‘n’ number of requests, it creates a group

of n (size of group) users. After creating a group the next step is to select the

Search Query Forwarding Client (SQFC). The SQFC is supposed to forward the

queries of all other users in the group to the WSE and broadcast the results of the

query in the group. The CS selects each user of the group as SQFC one by one

in round robin fashion. Once the user is selected as SQFC, the CS requests it to

provide the encryption key. The SQFC creates a pair of asymmetric keys (RSA,

1024 bits keys) and shares the public key with the CS. The CS broadcasts the lists

of users in the group including the IP address, the port number of each user and

the details of the SQFC. When the group is formed and necessary details are

shared, a user can send a query to the WSE secretly. All stages of this process

is depicted in Figure 3.1 To send a query to the WSE, the user first generates a

query, then attaches an encryption key for the result encryption making a query

message (QMsg). The user then encrypts the QMsg with the public key of SQFC

making it an encrypted query, then attaches a q_ID and achieves an encrypted

message(eMsg). The (eMsg) is shuffled among the group users to break the link

between the user and query. The process of shuffling starts when the user flips a

coin to decide to where to forward the eMsg. If the coin flip results in head, the

eMsg is forwarded to SQFC, otherwise to a randomly selected user from the list

of available users in the group. After a few numbers of passes, the eMsg reaches

the SQFC. The SQFC decrypts the eMsg, forwards the query to the WSE, and

retrieves the results. The SQFC encrypts the query result with the encryption

key of the originating user; after encryption, an eAnsMsg is created. The SQFC

broadcasts the eAnsMsg in the group. The user who has the decryption key will

decrypt the eAnsMsg. Once the SQFC has forwarded the queries of all other

users in the group, the SQFC sends a relieving message to the CS. The CS selects

the next user as SQFC, once each user selected as SQFC by CS and they have

completed their tasks, the group ends. Figure 3.2 shows the query sending and

result process. Following are the steps required in the execution of OSLo.

ObScure Logging (OSLo) 46

1. Connection setup

2. SQFC selection

3. Query sending process

4. Query shuffling

5. Query forwarding to WSE

6. Query result processing and broadcasting

3.3.1 Connection Setup

A user who wants to connect to the CS, sends a connection request to the CS. When

the CS receives ‘n’ number of requests, it creates a group having ‘n’ members.

Algorithm 1 shows the server side algorithm, line No. 4 depicts when the CS

receives a connection request from a user. The CS accepts the request and registers

the IP address and port number of a user making the request. When the group

size completes, the CS selects an SQFC (line No. 9) by calling a function Select

SQFC (line No. 14). The function returns the details of SQFC (line No. 18), the

CS then broadcasts the user list and the details of SQFC (line No. 10). Figure

3.1 shows the users’ connection process and SQFC selection process.

3.3.2 SQFC Selection

Each user of the group is selected as SQFC. The SQFC is supposed to act as

a proxy for one query for each user of the group. Figure 3.1 depicts the SQFC

selection process, When the CS selects a user as SQFC from the user_list, the

CS forwards a get get_SQFC_info message to the user shown in Algorithm 1

line No. 17. When the user receives the message from the CS, the user calls a

get_SQFC_info() function (Algorithm 2 line No. 5), and it generates a pair

of a RSA 1024 bits of public key & private key. The The get_SQFC_info()

returns the detailed message detail_SQFC to the CS which contains the public

key and port number shown in Algorithm 2 line No. 4-13. The CS broadcast the

ObScure Logging (OSLo) 47

Figure 3.1: Activity diagram of user connection and SQFC selection

Algorithm 1 OSLo: Server Side Algorithm

1: procedure Server Side

2: Input:{Connection_request, relieved_msg}

3: Output:{user_list, detail_SQFC}

4: Receive(Connection_request)
5: Server := request.accept()
6: user_list[] := enqueue (get(IP, port))
7: if(user_list.complete)
8: counter_variable = 0
9: detail_SQFC = SelectSQFC(couner_variable)

10: Broadcast(user_list, detail_SQFC)
11: [end if structure]
12: Receive(relieved_msg)
13: detail_SQFC := SelectSQFC(counter_variable++)
14: Broadcast(detail_SQFC)
15: SelectSQFC(counter_variable])
16: Client := dequeue((List_of_user[counter_variable])
17: detail_SQFC := forward(client, get_SQFC_info())
18: return(detail_SQFC)

information of SQFC in the group like IP address, Port number, and public key

using line No. 10.

ObScure Logging (OSLo) 48

Figure 3.2: Activity diagram of query sending and result retrieval process

3.3.3 Query Sending Process

After connecting with the CS, when a user wants to perform a web search secretly,

a user is required to get the list of all online users and the information about

SQFC (Algorithm2 line No. 15-16). Figure 3.2 shows the activity diagram of

the step by step execution of query sending, query shuffling and result retrieval

process. In the query sending process the user first gets user_list and the detail

(public key and port number) about the SQFC. The user generates a query (q),

an encryption key (K_Ui) and a random number q_ID. The (K_Ui) will be

later used for query result encryption & q_ID will be used for matching. The

user then generates a query message (QMsg) by concatenating the query (q) and

(K_Ui). Query encryption is the next step of this process, the user encrypts

the QMsg with the public key of SQFC making an encrypted query (eQ). In

the following step, the user concatenates the eQ) and q_ID using packet creation

function (pcf) to generates an enrypted query messge eMsg. This whole process is

shown in Algorithm 2 line No. 17-28. Once the process of encryption completes,

ObScure Logging (OSLo) 49

the eMsg is shuffled between the group users to obscure the identity of a user

among the group. The queryshuffling() function is called (line No. 29) and eMSg

is passed in the parameter.The queryshuffling() function shuffles the eMsg among

the users. The query shuffling function is detailed in line No. 35-45 of Algorithm

2.

3.3.4 Query Shuffling

To obscure the identity of a user the eMsg is shuffled amongst the group users

depicted in Figure 3.2. The shuffling function “Queryshuffling(eMsg)” is shown

in Algorithm 1 (line No. 35-47). In the shuffling function, the user first gets the

details of group users and the information about SQFC (line No. 37-38).

The process of shuffling begins when the user tosses a coin to decide where to

forwards the eMsg. If the coin produces the head, the eMsg is forwarded to

SQFC. Otherwise, the eMsg is forwarded to a group user that are selected

stochastically from group members. The implementation of coin tossing is shown

in Algorithm 2 (line No.40-45). The process begins when a user generates a random

number ’X’ between 0 and 10 (line No. 36), the user then takes a mod 2 of ’X’ in

the next line, if the value is equal to 1, we consider this value as a head of the coin

tossing, and the eMsg is forwarded to SQFC. However, if the ’X’ mod 2 equal to

0 (it is considered a tail of the coin tossing) the eMsg is forwarded to a randomly

selected group user Uj, from the list of group users. The shuffling ends when the

eMsg are forwarded to SQFC. The line 46 of an algorithm 2 (Receive(eMsg))

indicates when a user in a group receives an eMsg from another group user during

the shuffling process will call the Queryshuffling(eMsg) in the next line (line

No. 43) to decide either to forward a query to SQFC, or another group user for

further shuffling.

3.3.5 Query Sending to WSE and Result Retrieval

When then eMsg reaches the SQFC, the SQFC gets the eQ message, the user’s

encryption key K_Ui and the q_ID. The SQFC decrypts the eQ to get the

ObScure Logging (OSLo) 50

Algorithm 2 OSLo: Client Side Algorithm

1: procedure User Side
2: Input:{get_SQFN_info, eMsg, user_list, detail_SQFC, eAnsMsg}
3: Output:{eMsg, Result)

4: Receive(get_SQFC_info)
5: get_SQFC_info()
6: Counter_variable := 0
7: Generate_Asymmetric_Keys()
8: pbKSQFC := get_public_key()
9: prKSQFC := get_private_key()

10: port := get_port()
11: generate_detail_msg()
12: detail_SQFC := dMsg(pbKSQFC, port)
13: return(detail_SQFC)

14: \\Query sending process
15: G := get_user_list()
16: eKSQFC := get(detail_SQFC)
17: Generate_Query

18: q := generate_query()
19: Generate_Key()
20: KUi := get_eKey()
21: Generate_random_number
22: generate(q_ID)
23: Generate_Query_Message
24: QMsg = concatenate(q,K_U i)
25: Encryption()
26: eQ := eKSQFC(QMsg)
27: Generate_eMsg_packet()
28: eMsg := pcf(eQ, q_ID)
29: queryshufffling(eMsg)

30: \\Result Retrieval process
31: Receive(eAnsMsg)

32: q_ID := get_q_ID(dKUi(eAnsMsg)
33: if(q_ID.match)
34: Result := get_result(eAnsMsg)

ObScure Logging (OSLo) 51

35: \\Query shuffling process
36: Queryshuffling(eMsg)
37: G := get_user_list()
38: SQFC := get(detail_SQFC)
39: Queryshufforwarding(eMsg)
40: X := generate_random_number(0, 10)
41: If(x mod 2 = 0)
42: y := get_random_user_details(size(G))
43: forward(y, eMsg)
44: else
45: forward(eMsg, SQFC)
46: Receive(eMsg)
47: Queryshuffling(eMsg)

Algorithm 3 OSLo: Search Query Forwarding Client Algorithm

1: procedure Search Query Forwarding Client
2: Input :{eMsg}
3: Output :{eAnsMsg}
4: Receive(eMsg)
5: eQ := get_Query(eMsg)
6: KU i := get_user_Key(eMsg)
7: q_ID := get_q_ID(eMsg)
8: q := dprKSQFC(eQ)
9: ForwardMsg_WSE(q)

10: r := forward(WSE, q)
11: Generate_answer_Msg(r)
12: eAnsMsg := generate(eKui(r), q_ID)
13: BroadCast(eAnsMsg)
14: counter_variable++
15: if(counter_variable == user_list(size))
16: forward(server, relieved_msg)

query contents. The query contents (q) are forwarded to WSE that processes it

and return the results to the SQFC, mentioned in Algorithm 3 (line No. 9-10). To

achieve the confidentiality of results contents are encrypted with the encryption key

(K_Ui)of the user. The SQFC generates an encrypted answer message eAnsMsg

by passing the result “r” to Generate_answer_Msg(r) (Algorithm 3, line No. 11-

12). The eAnsMsg is then broadcasted in the group (line No. 13). The SQFC

increment the counter variable each time the user forwards a query to the WSE.

When the SQFC has forwarded “n” queries it sends a relieved_msg to the server

shown in line15-16 of algorithm 3. The CS after receiving the relieved_msg selects

ObScure Logging (OSLo) 52

Figure 3.3: Graphical representation of query sending process

the next user of the group as SQFC by calling a function SelectSQFC Algorithm

1 (line N.o 15). After getting the details of SQFC the information is broadcasted

in the group Algorithm 1 (line No. 14).

3.3.6 Result Decryption Process

When the SQFC broadcasts the eAnsMsg in the group, all users in the group

receive the eAnsMsg. The user with the decryption key would be able to decipher

the result contents. To check if the results is for his or her query the user matches

the q_ID. If the q_ID value does not matches the eAnsMsg is dropped by the

user. This process of result decryption with symmetric key is given in algorithm

2 line No. 31-34.

ObScure Logging (OSLo) 53

Table 3.1: AOL query log attributes and description [76]

Attribute Description
AnonID Anonymous ID, Distinctively ascertain users in the query log
Query The query contents, submitted to the AOL search engine.
Query Time Temporal information including date and time of the query.
ItemRank Rank assigned to each clicked URL
ClickURL Address of the clicked URL

3.4 Dataset

This section presents the dataset used in the research. America Online (AOL)

released a query log of more than 650 thousand users for the purpose of research

[10, 22, 27]. The query log consists of around twenty millions queries, generated by

the users in a period of three months from March 2006 through May 2006 [21]. The

users were unaware of their queries being released and could be freely accessible[19].

Before releasing the queries, AOL had pseudo-anonymized the query log so that

the queries could not be linked back to the originator. The anonymization of query

log was achieved by removing all identifiers and personal information such as the

name, email address, IP address, etc. The AOL query log dataset consisted of five

attributes: i.e., AnonID, Query, Query Time, ItemRank and ClickURL [27]. AOL

query log is considered the main experimental data source in the filed of query log

privacy [75]. AOL query log has been extensively used in the filed of Web search

privacy. Table 3.1 shows the attributes of AOL query log along with its descrip-

tion. Piddinti and Saxena worked on the AOL query log and analyzed different

aspect of it, the statistics show that 98.72% have performed less than 100 searches

over three months [49]. About 70% of the users have sent less than 30 queries

to the AOL log. Figure 3.4 shows the number of users and number of queries

relationship. The maximum queries performed by a user in the AOL log is 4960

whereas, around 450K users have sent 10 or fewer queries in a three-months period.

This chapter details the experiments performed to compute the level of privacy

(profile privacy) a user achieves by simulating OSLo relative to WSE. The exper-

iments are performed with three-month queries of users selected from the AOL

query log. Two datasets consisting of five hundred users and one thousand users

ObScure Logging (OSLo) 54

Figure 3.4: Statistics of AOL query log by Peddinti and Saxena [49]

selected from the AOL query log are extracted to measure the profile privacy of a

user. The description of these datasets is given in the Section below. The reason

for selecting two datasets is to find out the effect of the number of users in the

dataset on the profile privacy. The experiment over these datasets will validate

the impact of varying users in the datasets over the PEL. The difference between

the profile maintained by the WSE will dictate the level of profile obfuscation with

both datasets. We have used only two attributes of the dataset, i.e., AnnonID and

Query. There is some pre-processing applied on the dataset before using it to

build the user profile. The pre-processing steps and the profile building process is

explained in Section 3.5.3. The dataset used in this work is available at Git-Hub1.

3.4.1 Dataset 1

As mentioned earlier, in the AOL query log, 98.72% users have sent less than 100

queries whereas, 70% of the users have sent less than 30 queries. The users we

have selected in this dataset, have sent between 20 and 661 queries. The users in

this dataset are selected randomly; the dataset contains users that have sent at

least the average number of queries and those that have sent a good number of

queries. The dataset contains 170 of those users who have sent 20 – 50 queries in

a three-month period, similarly 55 users have sent up to 75 queries. Furthermore,
1https://github.com/mrmohibkhan/dataset

ObScure Logging (OSLo) 55

Table 3.2: Dataset 1: Range of queries sent by a user

Queries range Number of User
20-50 170
51-75 55
76-100 50
101-150 60
151-200 38
201-300 50
301-400 30
401-661 47

Table 3.3: Dataset 2: Range of queries sent by a user

Queries range Number of User
20-30 210
31-40 180
41-50 245
51-100 140
101-200 105
201-300 50
300-400 30
400-600 20
600-1515 20

50 users have sent up to 100 queries, and so on. Table 3.2 shows the description

of dataset 1 used in the simulation to compute the privacy of the user relative to

the WSE.

3.4.2 Dataset 2

The statistical selection of dataset 2 consisting of 1000 users, the description of

dataset 2 is shown in Table 3.3. Users are selected randomly from highly active

users to least active users. The selected users has sent a minimum of 20 queries up

to a maximum of 1514 queries. This dataset contains 210 of those users who have

sent 20 - 30 queries, 180 users have sent 31-40 queries, and 245 users have sent

41-50 queries. In this dataset we have 775 of those users who have sent 20-100

queries, 105 users have sent 101-200 queries, 50 users have sent 201-300 queries,

and around 100 users have sent 301-1515 queries within a three-month period.

The reason behind this is to select users from least active to highly active to see

the impact on the profile of those users.

ObScure Logging (OSLo) 56

3.5 Privacy Mechanism

As discussed earlier, the primary privacy requirement of a user executing a dis-

tributed privacy-preserving protocol is to achieve the following three objectives: i)

query contents and result contents remain hidden from the group users. ii) query

contents shall not be linked to the originator, and iii) the WSE shall not build

the actual profile of a user. To fulfill the above requirements, the OSLo evaluates

the privacy of a user in two dimensions, i.e., local privacy to ensure unlinkability

and profile privacy to confirm indistinguishability. The local privacy is consid-

ered preserved if a user achieves the first and second objectives. Whereas, profile

privacy is preserved when the third objective is accomplished. Following are the

steps performed in the execution of OSLo:

1. Query Encryption

2. Query Shuffling

3. Query Forwarding to WSE and Result Retrieval

4. Result Broadcasting.

3.5.1 Adversary Model

In any adversary model, the objective of the adversary is to compromise the privacy

of a user. In this chapter, any entities involved in forwarding the query to the WSE

and retrieving the information on the internet are considered adversary. All entities

of OSLo are considered curious, i.e., each entity follows the protocol according to

the description mention in Section 3.3. The objective of each adversary entity is

detailed below.

1. User: Although user cannot see the contents of a query or results, however,

user can collaborate with SQFC to link query with the originator.

2. SQFC: The SQFC sees the query content, whereby the objective of SQFC

is to link a query to the user. The SQFC can collaborate with other entities

to find the query source user.

ObScure Logging (OSLo) 57

3. Core Server (CS): The CS supervises the operation of OSLo including group

creation. However, the CS does not take part in query shuffling. Addition-

ally, the query is encrypted, however, the CS can make a collation with

SQFC or other users to link a query to the user.

4. WSE: The objective of WSE is to build the real profile of a user.

3.5.2 Mechanism to Achieve Local Privacy

The query encryption, query shuffling and result broadcasting are the processes

to enact the local privacy of a user. Description of each step is detailed below.

1. Query Encryption: Query encryption is used to achieve confidentiality,

such that the query contents remains hidden from the peer users involved

in forwarding query to the WSE. The user can use a symmetric encryption

scheme or asymmetric encryption scheme to achieve confidentiality. The

symmetric encryption uses the same key for both encryption and decryption.

It can provide confidentiality against the external eavesdropping, however,

any user in the group will see the query contents, and hence the confiden-

tiality of the query contents is compromised. Asymmetric encryption has

an advantage over symmetric encryption. If the private key would be kept

secure, no peer user would be able to see the query contents. Authors in

[7, 72, 73] have used RSA and ElGamal shared key encryption schemes.

In this work, RSA encryption algorithm are used to achieve confidentiality.

RSA is an asymmetric encryption scheme and it is easy to share the public

key of RSA. Asymmetric keys are best in encrypting data of smaller size,

public-key cryptography is usually used for encrypting share keys, digital

signatures etc. In this dissertation, the query contents are encrypted with

RSA 1024bits public key. The 1024 bit key can encrypt a message of 128

bytes minus any padding or header data (11 bytes) [77]. A typical query

is 2.3 words long i.e. around 15 characters, that require around 31 bytes

to represent a query [7, 43, 77]. Similarly, an AES key is 128 bits or 16

bytes. The total query message (QMsg) is around 47 bytes including user’s

ObScure Logging (OSLo) 58

query and user’s encryption key(K_Ui). The 1024 bit RSA public key can

encrypt QMsg of 117bytes size. In this dissertation, as mentioned in Sec-

tion 3.7.2 the experiment performed to compute the time delay, the first

30 results returned by the WSE for any query is considered as a potential

result. This makes the query result size of around 5kb. Although Arora

et. al, [78] performed an experiment to measure the time delay and com-

pare the performance of various encryption algorithms to encrypt text file

states that RSA takes an average of 679 milliseconds to encrypt a text file of

2kb, and 748 milliseconds to encrypt text file of 5kb. However, Singh et, al.

[79] mentioned that asymmetric encryption techniques are about 1000 times

slower than symmetric encryption schemes which makes it impractical when

trying to encrypt large amounts of data [79]. Therefore, AES is employed

to encrypt the query results retrieved from WSE, as it exhibits a delay of

20ms much faster as compared to the encryption of results through RSA.

2. Query Shuffling: There are different techniques available in the distributed

protocol to shuffle the query among the group users to hide the identity of

query originator. Table 3.4 shows the shuffling methods of existing dis-

tributed protocols. The primary aim of the shuffling is to make the query

unlinkable with the originator. We are using a coin tossing approach to

shuffling query among the group users to achieve local privacy through

anonymity. The user generates a random number between 1 and 10, then

the user takes a mod of that number if the mod is equal to the one we con-

sider, it as a head, otherwise it is tail. The SQFC forwards queries of the

group users to the WSE. The SQFC can see the contents of the query and

the result retrieved from WSE. If the SQFC is curious and wants to link

a query with the originator, the question is what probabilistic advantages

does the SQFC have? The local privacy of the user is evaluated relative to

the group entities involved in forwarding query to the WSE i.e., CS, SQFC

and group users.

3. Effects on shuffling using fair and biased coin: The process of shuffling

starts when the user encrypts the query and flips the coin to decide where

ObScure Logging (OSLo) 59

Table 3.4: Distributed protocol shuffling method

Protocol Shuffling method
Crowds [38] Coin tossing
UUP [40] Remasking and permutation
UUP (e) [7] Optimised Bens Network
UPIR [39, 67] Encrypted memory location
Co-utile [45] No shuffling
OSLo [13] Coin tossing
MG-OSLo Coin tossing

Figure 3.5: Probability of Head, After Tossing

to forward the query. If the coin lands on the head, the query is forwarded

to SQFC, otherwise, it is forwarded to a user randomly selected from the

list of all users. Shuffling query obscures the identity of the user among the

group peers. The number of time a query is to be shuffled is calculated from

the multiplicative rule of probability. Tossing a fair or biased coin affects

the number of shuffles. Authors in [38] have used a biased coin to shuffle

the query (inside the group). We have calculated the impact of both biased

and fair coins on shuffling. Figure 3.5 shows the probability of getting heads

after a number of tossing with fair and biased coins. If a fair coin is tossed,

the probability that a coin lands on heads on the first toss is 0.5%. The

probability of query being forwarded to SQFC, on the second, third and

fourth attempt is 0.75%, 0.88%, and 0.94%, respectively. However, when a

peer wants to shuffle a query more inside the group, a biased coin can be

ObScure Logging (OSLo) 60

used. Suppose the probability of forwarding query to a group peer is 0.6%,

then the eMsg has to be shuffled five times to obtain a 0.92% chance of

obtaining head. It is important to mention that while shuffling obscures

the identity of a user among group peers, biased coin can be used only if

there are more then three users in the anonymity set (number of users in

the group). However, shuffling a query many times has no effect on privacy

relative to the WSE.

3.5.3 Mechanism to Achieve Profile Privacy

WSE receives queries from the user and builds the profile accordingly. The profile

privacy of the user is considered preserved if the WSE fails to construct the ac-

curate profile of the user. The user executing the OSLo forwards queries of other

group users, hence his profile is obfuscated with the real queries of group users.

To measure the profile privacy, an experiment is performed that computes the

magnitude of profile obfuscation after executing the OSLo. The profile privacy,

a user achieves is compared with the benchmark distributed protocol UUP(e) [7]

and co-utile [45]. The experiment measures the difference between the user profiles

(original profile and obfuscated profile) without executing any privacy-preserving

protocol, i.e., sending queries directly to the WSE and after executing the proto-

cols, i.e., forwarding the query to WSE through another user of the group using

privacy-preserving protocol (co-utile, UUP(e) and OSLo). Let P symbolizes the

original profile of the user built from the queries sent directly to the WSE without

executing a privacy-preserving protocol, and Q represents the obfuscated profile

build from the queries after executing the privacy-preserving protocol. The pri-

mary step of the experiment is to build the profile of a user. The profile building

process is explained below.

1. User Profile Building: To evaluate the privacy a user achieves relative to

the WSE and to measure the level of profile obfuscation, profile building is

one of the major steps. The profile of a user is built from the queries a user

send to the WSE. This profile is used by the WSEs to retrieve personalize

results, also considered as a source of revenue for WSEs. Authors in [7] have

ObScure Logging (OSLo) 61

proposed steps to build the user profile. These steps involve the morpho-

syntactic analysis and semantic analysis of the queries. Details about each

step is described below.

(a) Morpho-syntactic Analysis:

The primary step of profile building is to recognize the main topic of

the query. In the morpho-syntactic analysis of the query content, Nat-

ural Language Process (NLP) techniques based on maximum entropy

are used to syntactically analyze the user query. To acquire the main

category of the user’s query, the NLP techniques like sentence detec-

tion, syntactical-parsing, tokenization, stop words removal, stemming

and part of speech tagging are followed. The complete description of

each step of NLP techniques is described in [80]. By applying these

steps, the main topic of the query can be extracted. The next step if

the semantic analysis of the query.

(b) Semantic Analysis: The keywords acquired in the prior step are sent

to DMOZ 2 to discover the hierarchy of query topic. DMOZ is an open-

content directory of World Wide Web links, the site and community

who maintained DMOZ are also known as the Open Directory Project

(ODP). ODP is the largest human editable web directory maintained

by a community of volunteers [81, 82]. Figure 3.6 shows the ODP hi-

erarchy categorization, containing around 1 million different categories

at ODP, whereby there are sixteen different categories at the top level

(first degree). When the user queries are sent to ODP, it categories

the user’s query into a hierarchy of categories [81, 82]. Any query sent

by a user to ODP are categories, e.g., at first degree the query is cat-

egorized into one out of 16 categories, at the next degree (second level

of hierarchy) the query is categorized into sub categories and so on so

forth. Consider a user query “mac.com”, the ODP categories this query

as “Computers: Software: Operating Systems: MacOS: Internet”. The

query “mac.com” at first degree is categorized as “computers”, at sec-

ond as “Software”, at the third degree as “Operating Systems”, at the
2dmoz.org (accessed on: 6 February 2017)

ObScure Logging (OSLo) 62

fourth degree at “MacOS”, and “Internet” at the fifth degree in the

ODP directory. Thus, the user whose query is “mac.com” will have

computers, software, operating systems, MacOS in his profile. Table

3.5 shows an example of a few queries categorized by ODP into a hier-

archy of categories.

The syntactical analysis and semantic analysis are the two analysis applied

on the queries of a user. The corresponding profile of the user is built at

the first four degrees of the ODP hierarchy. Consider a user ‘X’ has nine

queries such as, snooker, rugby, Java, XML, Honda, Jeep, herpes, Boeing

and HIV. When these queries are sent to the ODP for categorization, the

ODP categorizes X’s queries into a hierarchy of categories as shown in Table

3.6. The profile of ‘X’ at the first degree contains “Sports, sports, computer,

computer, Recreation, Recreation, Health, Recreation and Health”. The

profile of ‘X’ at the second degree contains the categories: “Cue, Football,

Programming Language, Data formats, Motorcycle, Autos, Condition and

disease, aviation, Condition and disease”. Similarly, the profile of ‘X’ at the

third-degree contains categories: “Sports, Rugby, Java, Markup, makes and

model, Makes and model, aircraft, and immune”. In this work, the profile of

a user is built for two scenarios, first with the user original queries without

executing any privacy-preserving protocol; this profile is called the original

profile. In the second scenario the obfuscated profile is built from the queries

that a user actually sends to the WSE after executing the privacy-preserving

protocol.

3.6 Privacy Evaluation

As discussed, the primary privacy objectives of a user executing the distributed

privacy-preserving protocols are presented in Section 3.1. The OSLo evaluates the

local privacy to confirm unlinkability and profile privacy to ensure the indistin-

guishability of a user. The section below describes the results relating to the local

privacy and profile privacy of a user. The section below addresses the research

question (RQ) 1 of the dissertation.

ObScure Logging (OSLo) 63

Figure 3.6: ODP hierarchy of categories [83]

Table 3.5: Example of query categorization by ODP [82]

Query ODP classification at different degrees

Valley National Bank Business: Financial Services: Banking Services:
Credit Unions: Regional: United States: California

Photography Studios Arts: Photography: Techniques and Styles:
Documentary: Photographers

mac.com Computers: Software: Operating Systems:
MacOS: Internet

Ford fairlane Recreation: Autos: Makes and Models:
Ford: Mustang

PKIX
Computers: Security: Public Key Infrastructure:
PKIX: Tools and Services:
Third Party Certificate Authorities

Table 3.6: Profile of a user X at different degrees

Query Degree 1 Degree 2 Degree 3 Degree 4 Degree 5
Snooker Sports Cue Sports Snooker

Rugby Sports Football Rugby Union Clubs
and Team

Java Computers Programming Languages Java Class
XML Computers Data Formats Markup Languages

Honda Recreation Motorcycles Models
and make Honda

Jeep Recreation Autos Models
and make Jeep

Herpes Health
Conditions
and
Disease

Infectious Diseases Viral

Boeing Recreation Aviation Aircraft Fixed Wing

ObScure Logging (OSLo) 64

RQ1.“How to improve the local privacy and profile privacy of a user in a private

web search?”

RQ1 (a). How the size of the group and group count affects the privacy and

performance of the protocol?

RQ1 (b). What will be the effect of allowing self-query submission and not allowing

self-query submission on profile privacy of the user?

Section 3.6.1 gives the result calculations relating to local privacy, and the impact

of group size on the local privacy, whereas Section 3.7.1 shows the results relating

to the profile privacy answering the second part of research questions.

3.6.1 Local Privacy Evaluation

The local privacy (unlinkability) of the user is considered preserved if no entity

(peer users, CS and SQFC) able to link query with the originating user. Local

privacy of OSLo: As discussed earlier in the query sending process (Section 3.3.3),

the user Ui encrypts the query contents with the public key of SQFC and the

result retrieved are encrypted with the user’s encryption key to attaining the

confidentiality. No entity other than SQFC could see the query or result content.

However, if the SQFC is curious and wants to link a query to the originator, what

is the probability of linking a query with the originator? How much local privacy

of a user will be affected if SQFC makes a coalition with the group users? What

if the CS is curious, can it link a query to the originating user?

To answer these questions, let two random variables S and P , where S denote the

source of the query and P represents the proxy (a peer user in the group) that

passes the query to the SQFC. Suppose there are ‘n’ users in the group. If the

SQFC has received a leery query on esoteric topic, and the SQFC wants to find

the originator of that leery query. The probability of linking the query to the user

“Ui” is given below.

Pr[S = Ui | P = Uj] =
Pr[P = Uj | S = Ui] · Pr[S = Ui]

Pr[P = Uj]
(3.1)

ObScure Logging (OSLo) 65

Pr[P = Uj | S = Ui] = Pr[P = Uj] (3.2)

Pr[S = Ui] =
1

n− 1
(3.3)

Where, n represents the number of users in a group and i, j ∈ (1...n) , as SQFC

is not the query source so SQFC excludes himself.

Equating (3.2) and (3.3) we get

Pr(S = Ui | P = Uj) =
1

n− 1
(3.4)

Equation (3.4) shows the probability of linking the query to the user by SQFC

depends on a number of users in a group, all users in the group are equally probable.

However, If SQFC and C users collaborate to identify the query originator then

the probability of linking query is given in (3.5)

Pr(S = Ui | P = Uj) =
1

n− C
(3.5)

Equation 3.5 shows that if SQFC forms a coalition with the C user for the prob-

ability of linking the query to the initiator 1
n−C

, which means all compromised C

users will be excluded from the list. If C is equal to n, all users are compromised

and there is no user to attack, i.e., to whom to link the query. If n − C is equal

to 1, it means that all users are compromised except the query generating user, in

which case n− C shall be greater than 1.

The CS and peer users cannot read the content of the query and query results as

they are encrypted. However, if any of the curious entity makes a coalition with

SQFC, then equation (3.5) shows the probability of associating the query with the

originator. As the CS is not involved in the query shuffling process, and if SQFC

does not collaborate with CS or group user, none of the curious entity would see

the query or query result and the probability of relating the query to the originator

is 1
n
, i.e., all users are equally probable. However, if CS makes a coalition with

SQFC, the probability of linking the query to the originator are given in (3.4).

The group users do not see the query (q) or result returned (r), however, if the

compromised peers forms a coalition with SQFC then the probability of linking

the query with the originator is given in (3.5)

ObScure Logging (OSLo) 66

• Degree of Anonymity

Anonymity is defined as the state of being unidentifiable within the set

of subjects [46]. The maximum anonymity a user can achieve when the

attacker sees all other users in the group is equally probable. According

to [71] the degree of anonymity depends on the probability distribution,

i.e., the probability assigned by the attacker to the individual user. In the

proposed protocol, the user forwards a query to SQFC or to a member

of the group based on the result of coin flips. If the coin flip produces a

head, the query packet is forwarded to SQFC, otherwise the query packet is

forwarded to another group user selected randomly from the list of all users.

When the SQFC receives a query packet from the user, the probability

the user forwarding the query packet is that the originator depends on the

probability of forwarding. Suppose SQFC is curious and wants to link a

query with the originator, SQFC can assign different probabilities to a user

based on the type of coin tossing (biased or fair coin). If a fair coin is tossed

during the query-shuffling phase of OSLo, i.e., probability of forwarding (pf)

query to SQFC 50% and to a randomly selected user is also 50%. When

SQFC receives a query from a userUi there is a 50% chance that Ui is the

query originator and a 50% chance that Ui is the forwarder. If there are 3

users in the group apart from SQFC, there is a 50% chance that Ui is the

originator while there is a 25% chance for each of the remaining two users.

In such a case, the degree of anonymity according to equation 2.4 is 89%.

Figure 3.7 shows the degree of anonymity and the number of users in the

anonymity set relationship. If a fair coin is tossed (pf=50%), the degree of

anonymity drops when the number of users in the anonymity set increases.

When there are eight users in the anonymity set, the degree of anonymity

drops below 80%. However, if a biased coin is tossed (pf=60%), the degree

of anonymity is around 86%. Similarly, when the pf=70%, the degree of

anonymity for eight users is 93%. Therefore, if there are more than eight

users in the anonymity set than it is recommended to toss a biased coin (pf

60%) instead of a fair coin to keep the degree of anonymity above 80% as

according to [71] the system should provide the degree of anonymity greater

than 80%.

ObScure Logging (OSLo) 67

Figure 3.7: Probability of Head, after number of tossing

Local privacy of Co-utile protocol:

The co-utile protocol offers no local privacy. A user/agent when requests a peer

user to forward his/her query to the WSE sends the query directly to him/her

without any anonymous technique or query shuffling. Hence, the peer user who

forwards a query to the WSE knows the exact query of the user. In the co-

utile protocol, a user shifts his/her trust from WSE to the peer users, if the peer

user is dishonest the privacy of a user requesting a query is fully compromised.

Furthermore, functionality is another concern in the co-utile protocol. Sometimes,

when a user requests a peer agent to forward a query to WSE maybe denied request

because the query may not be beneficial for the obfuscation of the peer’s profile.

3.7 Results and Discussion

This section gives a detailed discussion of the performance analysis of OSLo in

terms of profile privacy and delay.We have compared the OSLo with a co-utile

protocol [45] based on privacy and with the latest extended version of UUP(e) [7]

(a benchmark distributed privacy-preserving protocol) based on privacy & delay.

A Java-based simulator is developed to simulate the OSLo, co-utile and UUP(e)

ObScure Logging (OSLo) 68

protocols using a “Dataset 1 & 2” given in Table 3.2 and Table 3.3 and the sim-

ulation description given in Table 3.14. The simulation code, actual query log

generated after simulating the protocols are available at Git-Hub3 4 5.

3.7.1 Profile Privacy Evaluation

As explained in the introduction, the profile privacy of a user is considered pre-

served when WSE fails to build the reliable/original profile of a user. To measure

the magnitude of profile privacy a privacy metric Profile Exposure Level (PEL) is

used to measure the profile obfuscation a user achieves in front of the WSE. The

results of profile privacy validate the percentage of disclosure of information for

an original profile from the observance of the obfuscated profile. The PEL calcu-

lates the difference between the original profile P (built from user queries without

simulating the protocol) and obfuscated profile P’ (after simulating OSLo). The

proposed protocol (OSLo) is simulated with two subset of AOL dataset consisting

of 500 users and 1000 users, the details of each subset of users are explained in

Table 3.2 and Table 3.3. OSLo is simulated for two situations. First, when self-

query-submission is allowed, i.e., when the user forwards his/her query along with

the queries of group peers. Second, when query-self-submission is not allowed, i.e.,

when the user only forwards the queries of peer users but not of his/her query.

The results of the former situation is given in Figure 3.8 and Figure 3.9when OSLo

is simulated over a Dataset1 and Dataset2 for the group size of 3 users, 4 users, 5

users, 7 users, 10 users and 15 users. Whereas, in the later situation Figure 3.12

and 3.13 shows the average PEL results of a user simulated over the same datasets.

Furthermore, the profile privacy results of OSLo are compared with the co-utile

protocol and with the latest version UUP(e). The co-utile protocol is simulated

for the group size of two users, 3 users, 4 users, and 5 users. Whereas, the UUP(e)

is simulated for the group size of 3 users, 4 users, and 5 users. To show the real-

istic comparison between these protocols, OSLo and co-utile are compared for a

situation when self query-submission is allowed because, in the co-utile protocol, a

user is allowed to submit a self query if the query obfuscates the person’s profile.
3https://github.com/mrmohibkhan/OSLo
4https://github.com/mrmohibkhan/UUP(e)
5https://github.com/mrmohibkhan/Co-utile

ObScure Logging (OSLo) 69

Moreover, the latest UUP(e) [7] and OSLo are compared for a situation when self

query-submission is not allowed, as a person does not forward a self query in the

latest UUP(e). The vertical axis of Figure 3.8 - 3.13 shows the average PEL be-

tween 0 and 100. The “0” means the no profile exposed whereas, the “100” means

fully profile exposed. The percentage at the vertical axis represents the extent of

original information disclosed by the observance of obfuscated information. The

horizontal axis represents the ODP hierarchy from degree 1 to degree 4. The ODP

categorize the user query into a hierarchy of categories, where the degree 1 repre-

sents the more general category many diverse queries fall into the same category

at degree 1, e.g., Cricket and Soccer both belong to sports category. However, the

higher degrees are more and most specific categories of a query.

1. Profile Privacy: Self-Query Submission Allowed:

Table 3.7, Table 3.8, Figure 3.8, and Figure 3.9 shows the result obtained

for the simulation of OSLo when the self-query submission is allowed. The

average PEL represents the leakage percentage of the real profile from the

observance of obfuscated profile. The result indicates the difference between

the uncertainty of the WSE before and after getting the obfuscated profile.

(a) OSLo PEL with Dataset 1

Figure 3.8 and Table 3.7 presents the simulation result of the average

PEL of a user when selected as SQFC to forward his query and the

queries of other users. The average PEL at the first degree of the ODP

hierarchy for a group size of 3 users is 67.59%. Similarly, the results

depict that the average PEL for a group size of 4 users is 64.59%. When

the number of users in a group is increased to 5, 7 and 10 users the

result of average PEL is 63.6%, 60.5% respectively. Furthermore, the

simulation result depicts the average PEL at degree 2 of the ODP hier-

archy for the group size of 3 users to 7 users are 42.6%, 36.33%, 32.5%,

27.94%, 24.31%, and 21.24% respectively. The results show that the

average PEL drops when the number of users in the group increases

from 3 to 10. This is because the profile of the user is obfuscated with

the queries of a higher number of users. However, when the number

of users increased from 10 to 15, an insignificant change in the average

ObScure Logging (OSLo) 70

Table 3.7: OSLo average PEL self-query submission allowed, dataset 1

Number of users Degree 1 Degree 2 Degree 3 Degree 4
3 Users 67.60 42.60 38.30 37.85
4 users 64.59 36.33 31.03 30.99
5 users 63.61 32.50 26.72 26.30
7 Users 60.74 27.94 21.28 21.22
10 users 58.86 24.31 17.74 17.48
15 User 58.19 21.24 14.54 14.34

Figure 3.8: Average PEL of OSLo with Dataset 1

PEL is observed. As the profile is obfuscated to the maximum value

and increasing more users in the group have no significant impact. It

is important to mention that depending on the group size, the number

of self-queries forwarded by a user is as follows: When the OSLo is

simulated with a group size of 3 users, a user when selected as SQFC

forwards 33% of self-queries in addition to the queries of other group

users. Consider a user has 40 queries to forward to the WSE, by ex-

ecuting the OSLo when self-query-submission is allowed for the group

size of 3 users, the user forwards 13 queries of his own and 27 queries

of the other group users. Similarly, a user forwards 25% of self-queries

along with the queries of group peers with a group size of 4, 20% with a

group size of 5, 14.5% with a group size of 7, and 10% with a group size

of 10. When the self-query submission is allowed the attacker cannot

exclude the user from the group being an originator of the query.

ObScure Logging (OSLo) 71

Table 3.8: OSLo average PEL self-query submission allowed dataset 2

Number of users Degree 1 Degree 2 Degree 3 Degree 4
3 users 62.69 40.35 36.91 36.82
4 users 59.72 33.36 29.42 29.51
5 Users 57.89 29.28 25.09 25.27
7 Users 55.35 24.51 19.82 19.89
10 Users 54.48 21.27 16.31 16.44
15 Users 53.49 18.76 13.36 13.21

(b) OSLo PEL with Dataset 2

Figure 3.9 and Table 3.8 shows the result of average PEL of OSLo sim-

ulation with Dataset 2 for the same situation i.e., self-query submission

is allowed. The PEL at the first degree is 62.69 % for the group size of

3 users, the average PEL decreases when the number of users increases

in the group. The value of average PEL drops to 59.71% for the group

size of 4 users, 55.34%, 54.48% and 53.49% for the group size of 5, 7

and 10 users. The ODP first degree of a query represents a general

category, many dissimilar queries may belong to the same category,

and, e.g., queries like eczema, arthritis and pregnancy belong to the

health” category at first degree in the ODP ontology. However, ODP

higher degree represents the more specific category of a query. The

PEL at the second degree of ODP is 40.34%, 33.36%, 29.27%, 24.51%

and 21.27% for the group size of 3, 4, 5, 7 and 10 users. Similarly, the

degree three and degree four shows the group size inversely affects the

PEL. The OSLo when simulated with dataset 2, obfuscates the user

profile more as compared to the Dataset 1. The reason of more obfus-

cation with dataset 2 is the chances of grouping with distinct user get

high, the dataset 2 have a higher number of users (1000) as compared

to the Dataset 1 which have less number of users (i.e., 500).When the

number of users increases the chances that a user may grouped with

other users having variety of interests that increases higher obfuscation

for dataset 2 as compared to dataset 1.

The profile privacy of OSLo for a situation where self-query submission

is allowed cannot be compared with the UUP(e), as the user of UUP(e)

never forwards his/her query to the WSE. Additionally, once a user has

ObScure Logging (OSLo) 72

Figure 3.9: Avearage PEL of OSLo with Dataset 2

forwarded one query to WSE the group ends, to send another query

the whole process of query sending repeats, however, in case of OSLo

a SQFC forwards “n” (where n is the size of a group) queries to the

WSE.

(c) Co-utile Average PEL

The working of the co-utile protocol is detailed in section 2.5.1. Table

3.9 and Table 3.10 shows the simulation results obtained for the co-utile

protocol over dataset 1 and dataset 2 respectively. The average PEL

at degree 1 of the ODP hierarchy for two users is 82.81% for dataset1

and 81.87% at dataset 2. Whereas at the second degree the average

PEL is 76.05% & 71.30% at the degree 2 of ODP hierarchy. Similarly,

for single hop query submission with 3 users (multi-agent) the average

PEL at degree 1 of ODP hierarchy is 74.58% & 75.11%, whereas, at

the higher degree (i.e., degree 2, degree 3 and degree 4) the average

PEL is 64.21% 62.47% and 63.41% for dataset 1 and 64.74%, 63.41%

and 63.85% for dataset 2. Unlike OSLo, the simulation results depict

that the increasing the number of users in the dataset has no positive

impact on average PEL of a user executing co-utile protocol, instead,

the profile of a user is exposed more with it. The co-utile protocol is

ObScure Logging (OSLo) 73

Table 3.9: Co-utile protocol: Average PEL, self-query submission allowed for
dataset 1

Dataset 1
Number of users Degree 1 Degree 2 Degree 3 Degree 4
Two users 82.81 76.05 74.92 75.09
Three users 74.58 64.21 62.47 63.41
Four users 74.09 64.02 62.48 63.32
Five users 73.54 61.38 59.47 60.42

Table 3.10: Co-utile protocol: Average PEL, self-query submission allowed for
dataset 2

Dataset 2
Number of users Degree 1 Degree 2 Degree 3 Degree 4
Two users 81.87 71.3 70.09 70.62
Three users 75.11 64.72 63.41 63.85
Four users 77.16 63.45 61.42 61.55
Five users 78.82 64.7 62.74 63.19

the self-enforcing protocol, a user only forwards the query of a peer user

if it obfuscates his/her profile otherwise the query forwarding request

is denied resulting user has to forward a query on their own, making

more exposed to the WSE.

(d) Profile privacy comparison of OSLo VS Co-utile

Figure 3.10 and Figure 3.11 show the profile privacy a user achieve by

executing OSLo and co-utile protocol. The simulation results indicate

that OSLo preserves 9.37% better privacy as compared to co-utile for

the group size of 3 users at degree 1 of the ODP hierarchy when sim-

ulated over dataset 1. The percentage raises to 28.97%, 32.40%, and

34.27% at degree 2, degree 3 and degree 4 of ODP hierarchy. Similarly,

for the group size of 4 users, OSLo preserves 12.81%, 37.37%, 42.45%,

and 43.64% privacy at degree 1-4 of ODP hierarchy as compared to the

co-utile protocol. Results for the group of 5 users depicts that the OSLo

preserved better privacy as compared to the co-utile. Similarly, when

both protocols are simulated with dataset 2, OSLo preserved 16.55%

better privacy as compared to the co-utile protocol at degree 1 for the

group size of 3 users. Likewise, OSLo preserved 32.49%, 35.33%, and

36.04% better privacy at degree 2-degree 4 of ODP hierarchy as com-

pared to the co-utile protocol. Furthermore, OSLo maintained better

ObScure Logging (OSLo) 74

Figure 3.10: Avearage PEL of OSLo VS Co-utile with Dataset 1

privacy as compared to the co-utile protocol for any group size. In the

co-utile protocol, the user (forwarding agent/user) only forwards the

query of initiator if it obfuscates the profile of the forwarding user oth-

erwise the query is denied. In such a case when the forwarding agent

denies the request, the initiator has to forward the query on his/her

own, resulting in the profile of the initiator is not obfuscated. How-

ever, in the case of OSLo, the SQFC has to forward the query of all

other users, hence, obfuscating the profile of the user. Functionality

(to retrieve an answer to the query) is another prime issue in the co-

utile protocol, the responder may deny the initiator’s request causing

a notable delay in the query answering.

2. Profile Privacy: Self-Query Submission not Allowed:

Figure 3.12, Figure 3.13, Table 3.11 and Table 3.12 shows the average PEL

of a user executing the OSLo for a situation when the self-query submission

is not allowed for the group size 3 users, 4 users and 5 users. The profile

privacy provided by OSLo for the above-mentioned group sizes is compared

with the state-of-art privacy-preserving protocol UUP(e) as the self-query

submission is not allowed.

ObScure Logging (OSLo) 75

Figure 3.11: Avearage PEL of OSLo VS Co-utile with Dataset 2

Table 3.11: Average PEL of OSLo VS. UUP(e) self query-submission not
allowed dataset 1

Number of Users Protocol Degree 1 Degree 2 Degree 3 Degree 4
UUP(e) 61.37 18.3 8.97 8.823 users OSLo 57.3 16.54 8.86 8.49
UUP(e) 60.88 17.21 9.08 8.714 users OSLo 56.75 15.68 7.6 7.46
UUP(e) 57.16 17.17 8.99 8.735 users OSLo 54.18 14.64 6.75 6.38

(a) OSLo average PEL with Dataset 1

Figure 3.12 shows the average PEL simulation result of a user executing

OSLo for group size of 3 users is 57.3%. Similarly, the average PEL

for group size of 4 users and 5 users are 56.75% and 54.18% at degree

1 of the ODP hierarchy. Likewise, for the second degree of the ODP

hierarchy, the average PEL of the user for group size of 3, 4 and 5

users are 16.54%, 15.68% and 14.64% respectively. The PEL at higher

degree, i.e., at degree 3 and degree 4 are less 10% for all group size.

(b) OSLo average PEL with Dataset 2

Figure 3.13 depicts the user average PEL result of OSLo simulated with

Dataset 2. When there are 3 users grouped together, the average PEL

of OSLo for degree 1 of the ODP hierarchy is 47.69%. Likewise, for a

ObScure Logging (OSLo) 76

group size of 4 users the average PEL is 48.56%; similarly, the results

for the group size of 5 users is 49.15%. The average PEL at degree 2

of the ODP hierarchy for the group size of 3 users, 4 user, and 5 users

is 12.78%, 12.76% and 12.61%. The average PEL at higher degrees is

less than 8% for any group size.

• Profile Privacy of UUP(e): UUP(e) was proposed to preserve the pri-

vacy of a user relative to the WSE. UUP(e) consists of entities like

Central server (CS), users and WSE. When the UUP(e) employee sin-

gle dynamic group sends a query to t he WSE, the user is required to

connect to the CS. Upon receiving ‘n’ numbers of requests, the UUP(e)

creates a group of ‘n’ users. Afterward, each user forwards the query

of another user in the group to the WSE. Each user collects the result

for the query he has forwarded to the WSE and broadcasts the result

in the group. Once all users have forwarded the single query of another

member, the group finishes. To send another query, the whole process

is repeated.

In this work, we have compared the privacy achieved by proposed OSLo

with the latest version of UUP(e) (Distributed system for private web

search with an untrusted partner [7] proposed in 2014). In the latest

version [7], queries are shuffled through optimized Bens network, and

the confidentiality of the query contents are achieved through ElGamal

shared key encryption. A Java-based simulator is developed to sim-

ulate UUP(e) to compute the profile privacy of a user over a privacy

metric PEL. A user simulating UUP(e) only forwards a query of other

group users, i.e., a self-query submission is not allowed. To have a fair

comparison of profile privacy, the OSLo is simulated for a situation

where a SQFC only forwards the queries of other group users. The

simulation result of both protocols (UUP(e) and OSLo) are collected

with Dataset 1 and dataset 2. Figure 3.12 and figure 3.13 shows the

profile privacy achieved by a user executing of UUP(e).

(a) UUP(e) PEL with Dataset 1:

Figure 3.12 represents the average PEL a simulation result of

ObScure Logging (OSLo) 77

Table 3.12: Average PEL of OSLo VS. UUP(e), self query-submission not
allowed for Dataset 2

Number of Users Protocol Degree 1 Degree 2 Degree 3 Degree 4
UUP(e) 51.85 13.382 7.30 7.223 users OSLO 47.70 12.79 6.95 7.16
UUP(e) 51.156 13.14 7.08 7.194 users OSLO 48.56 12.77 6.85 6.95
UUP(e) 51.55 13.47 7.36 7.255 users OSLO 49.18 12.86 6.98 6.85

UUP(e) protocol for a group size of 3, 4, and 5 users at degree

1 to degree 4 of the ODP hierarchy. The results shown in Figure

3.12 validate the average PEL for a group size of 3 users at the first

degree of the ODP hierarchy is 61.37%. The average PEL value

drops to 60.88% for a group size of 4 and 57.16% for a group size

of 5 users. The PEL at the second degree is 18.30%, 17.22% and

17.17% for a group size of 3 users, 4 users and 5 users respectively.

The PEL for at third and fourth degree is less than 10% for all

group sizes.

(b) UUP(e) PEL with Dataset 2:

Figure 3.13 shows the simulation result of UUP when simulated

with Dataset 2 for the same group sizes at degree 1 to degree 4

of the ODP hierarchy. The results depict 51.85% of average PEL

when 3 users are grouped together. Similarly, 51.156% and 51.55%

for a group size of 4 and 5 users. However, at the second degree, a

user profile for the group size of 3, 4 and 5 users is 15%, 13.13%,

and 13.47% is exposed. The PEL at higher degrees (third and four

degrees) of all group sizes are less than 10%.

(c) Profile Privacy Comparison of OSLo VS UUP(e)

The user executing UUP(e) forwards only a single query when the

group is established, after that the group is dissolved, and to send

another query the process of group creation and shuffling repeats.

However, a user executing OSLo can forwards ‘n − 1’ queries to

the WSE once the group is created. In this experiment, both pro-

tocols are simulated for a single dynamic group over Dataset 1

ObScure Logging (OSLo) 78

Figure 3.12: Avearage PEL of OSLo VS. UUP(e) for Dataset 1

and dataset 2. Considering Dataset 1, the results indicate that the

user achieves better profile privacy with OSLo for all degrees of the

ODP hierarchy. Results shows that for the group size of 3 users

OSLo has 6.67% better profile privacy as compared to UUP(e) at

degree 1 of the ODP hierarchy. Similarly, for the group size of 4

users OSLo preserved 6.89% better privacy at the degree 1 of the

ODP hierarchy and 5.26% for the group size of 5 users as com-

pared to UUP(e). Furthermore, at degree 2 of the ODP hierarchy

the OSLo has 9.7% better privacy for the group size of 3 users,

9% for the group size of 4 users and 14.73% for the group size of

5 users. Likewise, at a higher degree the OSLo has better profile

privacy for any group size.

Figure 3.13 and Table 3.12 shows the profile privacy comparison

of UUP(e) and OSLo when simulated with dataset 2. The average

PEL of a user executing UUP(e) at the first degree for the group

size of 3 is 51.85% whereas, the OSLo PEL is 47.70%; similarly

the PEL of UUP(e) for the group size of 4 users is 51.156% and

OSLo has 48.56% at first degree. Likewise, the PEL for UUP(e) is

51.55% and OSLo has 49.18% for the group size of 5 users. Based

on these results, OSLo has 8.01% better profile privacy at degree

1 of the ODP hierarchy for the group size of 3 users, 5.09% better

ObScure Logging (OSLo) 79

Figure 3.13: Avearage PEL of OSLo VS. UUP(e) for Dataset 2

profile privacy for the group size of 4 users and 4.60% for the group

size of 5 users at degree 1 of the ODP hierarchy. The UUP(e)

has higher profile exposure for all group sizes at all four degrees

as compared to the OSLo. Furthermore, it is observed from the

results that OSLo depicted an unanticipated increase in average

PEL when the group size is increased to 4 and 5. Unlike, the

previous situation when a self-query submission was allowed, the

OSLo showed a slight increase in average PEL for the group size

of 4 and 5 users. The random group is the possible reason for this

increase, a user possibly grouped with those users having similar

interests.

3. Profile privacy: Self-Query Submission Allowed VS self-Query Submission

not Allowed:

It is concluded from the results that a user achieve better privacy and low

profile exposure for a situation when a self-query submission is not allowed

as compared to allowing the self-query submission. In the latter case, a

user forwards one of his/her query to the WSE when selected as SQFC, e.g.

when there are 3 users in a group, a user forwards 33% of his/her queries. For

a group of 4 users, a user forwards 25% of self queries, for a group of 5 users

ObScure Logging (OSLo) 80

20% of self queries are forwarded to WSE, and so on. However, when a self-

query submission is not allowed, a user does not forward any of self query,

all queries forwarded by SQFC belongs to the group users. As discussed

earlier, PEL measures the difference between the user original profile and

obfuscated profile, allowing the self-query submission a user has to forward a

good number of self queries resulting higher PEL as compared to not allowing

self-query submission. However, considering when self-query submission is

not allowed, when an adversary wants to link a query to a user will exclude a

user (SQFC) from the list of suspected originator, hence, narrowing the list

of potential originator. Whereas, when self-query submission is allowed, an

adversary cannot exclude a user (SQFC) from the list of all potential query

originator users.

3.7.2 Time delay of OSLo

In any distributed protocol, a group of users collaborates to forward each other

queries to the WSE. The Web search privacy achieved through any distributed

protocol causes a time delay in retrieving query results from the WSE. Like other

distributed protocols, privacy at the cost of delay is also a nature of OSLo. The

time delay caused to achieve privacy is measured in two dimensions. i.e. time

to create a group and query response delay. In this work, two experiments are

performed to measure the time delay caused by the group creation process and

query sending to WSE and result processing by the OSLo. A java based simu-

lator is developed to execute OSLo using multi threads socket programming to

create group, CryptoUtil library, and keypair generator methods are used to cre-

ate RSA public-private key pair for query and result encryption. The experiment

is performed over Intel(R) Core(TM) i3-231M CPU having 8192MB RAM over

Windows 8.1 Pro 64bits. Table 3.13 shows the details of simulation equipments

used to execute the OSLo.

1. Time to create a group: In OSLo, ‘n’ users collaborate to forward each other

queries. The time required to create a group of ‘n’ users is one of the critical

point in OSLo. This time starts when CS receives the first request from the

ObScure Logging (OSLo) 81

Table 3.13: Simulation details under controlled environment: equipments

Computer

CPU Intel(R) Core(TM) i3-231M
RAM 8 GBytes
O.S. Microsoft Windows 8.1 pro 64-bit
Java version Java(TM) SE Runtime Environment (1.8.0_65)

Network 4Mb internet
connection Java Multi-threading

Figure 3.14: Time required to create a group

client and ends when the CS broadcasts the information about the group

including the SQFC details and other group peers. The list contains the

description of each time interval.

T0: The time required by user Ui to connect to CS, this includes CS records

Ui’s IP address and port number.

T1: Time required by ‘n’ users to connect to CS.

T2: Time required by CS to choose one user as SQFC, and forward request

to share public key.

T3: Time required by SQFC to generate a public key and private key pair

T4: Time required by the SQFC to share the public key with CS this includes

network delay.

T5: The time required for CS to broadcast the group information.

This experiment computed the time required to create a group of three

users, four users, and five users. The experiment is performed ten times, the

average time interval taken each step is shown in Figure 3.14. The result

ObScure Logging (OSLo) 82

shows that the average time required to create a group of three users is

1663ms. Similarly, a time interval of 1815ms is required to create a group

size of four users and 1914ms for the group size of five users.

2. Query response delay: The objective of this experiment is to compute a

delay caused by the execution of OSLo, i.e. to forward a query to WSE and

retrieve the answer. The list contains a description of the time interval of

each step.

T0: Time required to make a query message, it includes generating a query

‘q’ of three words, generating a user Ui’s encryption key(K_Ui) of 128bits

and q_ID(a random number).

T1: Time required to encrypt a query message with 1024 bit public key of

SQFC.

T2: Time required to shuffle a query among the group peers. This includes

a time required to flip a coin to shuffle an encrypted query message. the

network delay to pass an encrypted query from one user to another is also

included in this T2.

T3: Time required to SQFC to decrypt a query.

T4: Time required by the SQFC to forward a query to WSE and retrieve &

process results.

T5: Time required to make an encrypted answer message (eAnsMsg) by

encrypting the result file with the encryption key(KU i) of the user and con-

catenating q_ID.

T6: Time required to broadcast eAnsMsg.

T7: Time required to decrypted eAnsMsg by matching q_ID

The Figure 3.15 shows the time required to send a query to WSE covertly through

OSLo and retrieve results. The result shows that an average time of 6446.67

milliseconds is required to send a query to WSE and retrieve results in the group

of three users. Similarly, for the group of four users, the delay caused by OSLo

is 6988 milliseconds whereas 6962 milliseconds for the group size of five users.

It is important to note that time T4 needed the highest delay, the reason for

ObScure Logging (OSLo) 83

Figure 3.15: Time required to send a query and retrieve results

this delay is the processing of retrieved results. The first 30 results retrieved by

WSE are selected and the URL of those results is written in the text files, this

process incurred almost half delay of the total time. Figure 3.16 shows the delay

comparison of OSLo vs other distributed protocols, the result shows OSLo cost

less delay as compared to UUP(e), the reason is the UUP(e) [7] spends higher

time in computing the zero knowledge proof. However, OSLo costs more time as

compred to co-utile [13] and social network [43] because there were no encryption

of query or result involved in the execution of these protocols. Co-utile and social

network are faster but provides no local privacy and no confidentiality of query or

results to the query.

3.7.3 Performance Comparison of UUP(e) vs. OSLo

The performance of OSLo and UUP(e) is analyzed on the basis of the delay caused

in the group creation process and the number of groups required to execute Dataset

2. The UUP(e) protocol [7] was proposed to obfuscate the profile of a user in

front of WSE. The UUP(e) executes in following steps, group setup, permutation

network distribution, group key generation, anonymous query retrieval, and query

submission and retrieval. In the group setup process, the CS constantly listens

for the connection request. Each time a user attempts a web search privately, it

sends a connection request to the CS. When the CS receives n number of requests,

ObScure Logging (OSLo) 84

Figure 3.16: Delay comparison of OSLo vs other protocols

Table 3.14: Simulation parameters

Protocol No of Users
in a Groups

Number of
Groups created

Theoretical
Group Required

3 11485 11516
4 6452 6477
5 4126 4145
7 2093 2115
10 1030 1036

OSLo:Self
query-submission
allowed

15 457 460
3 17259 17274
4 11470 11516

OSLo: Self
query-submission
notallowed 5 8603 8637

3 34522 34548
4 25858 25911

UUP(e): Self
query-submission
notallowed 5 20656 20728

it creates a group and informs each user about the details of other users in the

group. Each user in the UUP(e) sends a single query of other users in the group to

the WSE and broadcasts the results. Similarly, another user in the group forwards

his /her query to the WSE. After each user has forwarded the query, the group

session of UUP(e) ends. To send another query, the whole process repeats again.

The UUP(e) is simulated with the group size of 3, 4, and 5 users. The working of

OSLo is given in Section 3.3, The connection setup explains the procedure of a user

connecting to the CS as well as the method of group creation. The group creation

process of UUP(e) and OSLo is the same, both protocols follow the same steps to

create the group. The key difference of OSLo is the ability to send multiple queries

ObScure Logging (OSLo) 85

Figure 3.17: Number of groups required to simulate dataset 2

of the group in a single session. Once a group session is established, a user can

send n queries when the self-query submission is allowed or n−1 queries when the

self-query submission is not allowed (where n is the size of the group). The user

executing OSLo requires a smaller number of groups to send the same number of

queries. Table 3.14 shows the number of groups created during the simulation of

OSLo and UUP(e) to send the queries mentioned in Table 3.14. Figure 3.17 shows

the number of groups required to simulate dataset 2. For the group size of 3 users,

UUP(e) builds 34522 groups to send the queries mention in Table 3.14. However,

the OSLo made 17259 groups when the self-query submission was not allowed and

11485 numbers of groups when the self-submission was allowed. Similarly, for the

group size of 4 users and 5 users, the UUP(e) made 25858 and 20646 groups to send

the queries of Dataset 2, whereas OSLo required 11470 and 8603 groups. Table

3.14 shows the number of an actual group created and the theoretical required

number of groups for the execution of Dataset 2. When the self query-submission

was allowed the number of groups created by OSLo for simulating the Dataset 2

decreased with the group count. It is important to mention that the difference

between the last two columns of Table 3.14 is due to the unequal number of queries

of each user. At the end of the simulation, the protocols are left one user short

of the group size required to create the group. The group creation process of a

distributed protocol is a critical point, a user must wait for the n−1 of other users

to send a connection request to the CS for the group to be created. As illustrated

ObScure Logging (OSLo) 86

[7, 40] the Poisson distribution can be used to model the number of queries a WSE

receive. As mentioned in [84] the average number of queries Google answered in

one second is 3996.91. If there are an average of 39.96 queries per hundredth of

a second, the probability of making a group of n=3 users to send 6 queries is 1.

Similarly, for the group size of n=4 to n=15, the probability of making a group is 1.

According to recent statistics, Google answered 40,000 queries in one second, this

means in every hundredth of a second 4000 users send their queries to Google [2].

If those users send their queries through our proposed framework, the probability

of making a group size of n= 3 to 15 user is 1. Similarly, duckduckgo 6 an another

WSE answers around 58M queries in a day. The duckduckgo answer an average

671 in one second i.e. 33.55 queries in fiftieth of a second (50ms) the probability of

making group of three users (n=3) to send 6 queries is 1. Similarly, for the group

4 users (n=4) to 6 users(n=6) the probability of sending queries is also 1.

3.8 Limitation of OSLo

Web search privacy provided by OSLo empowers a user to protect their self from

identification and profiling. Although a user executing OSLo achieves both local

privacy and profile privacy but the user has to compromise on a certain thing.

A user may not get personalized search results, the quality of results returned

by the WSE may not as accurate as a user gets with the profiling by the WSE.

Like any other distributed protocol, a delay is another prime concern in OSLo.

The whole execution process of OSLo causes delay as compared to the prompt

response if a user had forwarded the query directly to the WSE. In OSLo, the

SQFC is considered curious but honest, SQFC has to perform his or her role of

forwarding queries to WSE genuinely. However, if SQFC is corrupt and does not

forward queries of the group peers to the WSE can cause significant delay or in the

worst case no query result at all. Like other distributed protocols, the ethical issue

is an additional matter associated with OSLo. A user may forward a dangerous

query on behalf of group peers may have a grave outcome, and a user has to face

the consequences for such queries.
6https://duckduckgo.com/traffic

ObScure Logging (OSLo) 87

3.9 Conclusion

This chapter presents a novel distributed privacy-preserving protocol ObScure

Logging (OSLo) to tackle the limitation mentioned in the initial paragraph of

this chapter and to provide better privacy and performance. The first limitation

mentioned is that the user associated with a common memory location can see

the query content and the result to the query once it is written in the memory

location. In OSLo, the user encrypts the query with the public key of SQFC,

so no user in the group can see the query contents. Similarly, the second lim-

itation is that results retrieved from WSE are broadcasted in clear text giving

the group user an idea of what is being searched by an individual in the group’s

existing protocols. The SQFC encrypts the results retrieved from WSE with the

encryption key of the query originating user, hiding the results from the group

users. The self-query submission was not allowed in the existing protocol, which

gives an attacker a clue to exclude a query-forwarding user from the anonymity

set, hence narrowing the anonymity set. However, the OSLo allows the self-query

submission to eliminate this limitation. The co-utile protocol offered no privacy

relative to the peer users, but OSLo preserves the local privacy through shuffling

and encryption. The performance of the OSLo is compared to the UUP(e) based

on the number of the groups required to send the same number of queries to the

WSE. The OSLo requires far fewer groups as compared to UUP(e) when forward-

ing the same number of queries.

This chapter answer the research question 1 of dissertation mentioned in Section

1.8. RQ 1. How to improve the local privacy and profile privacy of a user in a

private web search?”

• RQ 1 (a)What will be the effect of allowing self-query submission and not

allowing self-query submission on profile privacy of the user?

• RQ 1(b) How does the size of the group and group count affect the privacy

and performance of the protocol?

In this chapter, the proposed framework ObScure Logging (OSLo) tackles the RQ1.

The OSLo provides both local privacy and profile privacy. The local privacy is

ObScure Logging (OSLo) 88

achieved through query encryption, query shuffling, result encryption, and broad-

casting, whereas, the profile privacy is attained through forwarding the queries

of other users. The query encryption makes the query contents hidden from the

group users; the query shuffling breaks the link between the query and the origi-

nating user. The SQFC, when receiving a query from the user will not be used if

the user who has forwarded a query to him is the query originator or just the query

forwarder. The results are encrypted with the encryption key (asymmetric key)

provided by query originating user makes the query contents hidden from group

users, also the result broadcasting is the final step to achieve the local privacy.

The OSLo achieves profile by obfuscating the profile of a user with the queries

of other group users. This obfuscating reduces the risk of the WSE classifying a

query as a machine-generated query. Every time the user is grouped with other

users having a range of interests, hence the profile of a user has obfuscated the

queries of users who have a variety of interest, resulting in a significant obfuscation

of user profile.

1. “How the size of the group affects the privacy and performance of the pro-

tocol?”

The Equation 3.4 and Equation 3.5 show that the local privacy is depending

on the size of the group. When the number of users ‘n’ increases, the prob-

ability of linking the query to the originator decreases. Similarly, the profile

privacy also affects the size of the group as shown in Table 3.5 - Table 3.8.

In this chapter, the performance of OSLo is compared with UUP(e) on the

basis of the number of those groups required to send the number of queries

in dataset 2. The results mentioned in Table 3.3 shows OSLo requires a

fewer number of groups to send the same number of queries as compared to

the UUP(e), hence OSLo offers better performance as compared to UUP(e).

2. “What will be the effect of allowing self-query submission and not allowing

self-query submission on profile privacy of the user”?

Section 3.7.1 provides the detailed description of the effects for allowing

self-query submission and not allowing self-query submission on the profile

privacy of a user. The result of not allowing the self-query submission is

compared with the state-of-the-art privacy preserving protocol UUP(e). The

ObScure Logging (OSLo) 89

results show that OSLo improves the profile privacy of a user as compared

to UUP(e) with simulated with the selected datasets.

Chapter 4

Multi-Group ObScure Logging

(MG-OSLo)

The previous chapter discussed the single group distributed protocol to preserve

the web search privacy of a user. Domingo-Ferrer and Bras-Amor´ [39] intro-

duced the concept of multi-group to preserve the privacy of a user. UPIR was

implemented with the use of drop boxes or memory location, where a subset of

users was associated with each memory location. Over time, there are a few vari-

ations of UPIR presented, such as the one-to-one, all to all UPIR protocols and

configuration-based protocol. Descriptions of these protocols are presented in Sec-

tion 2.5.2. Later the concept of UPIR is extended by authors in [41, 42, 67, 85].

Swanson and Stinson presented an extended combinatorial construction for peer-

to-peer UPIR protocol by strengthening the existing UPIR protocol, provided pri-

vacy analysis of UPIR protocols using Balance Incomplete Block Design (BIBD)

and introduced an attack called intersection attack [41]. Later, Swanson and Stin-

son extended their work by providing extended results for UPIR protocols [42].

However, the entire existing variant evaluated the privacy of users only relative to

the peer users (local privacy).

The following are the drawbacks of the existing multi-group distributed protocols:

i. any user connected with the memory location can see the query contents.

ii. the result of the query is written back in the same memory location, so the

90

Multi-Group ObScure Logging (MG-OSLo) 91

user associated with the memory location can see the contents of the result.

iii. these schemes are vulnerable to intersection attack [39, 41, 67, 85].

To the best of our knowledge, the privacy of a user in multi-group protocols is

only evaluated relative to the group users involved in forwarding query to the

WSE. The existing multi-group distributed protocols evaluate the privacy of a

user in only one dimension i.e., the local privacy. The profile privacy (the privacy

of users relative to the WSE) in multi-group distributed protocol has never been

evaluated. This chapter proposes, a multi-group distributed privacy-preserving

protocol MG-OSLo (Multi Group ObScure Logging) that preserves and evaluates

the local privacy and profile privacy of a user. The privacy of a user achieved

through the MG-OSLo is evaluated in two dimensions, the local privacy computes

the probability of linking a query by a dishonest user with the query originating

users. Whereas, the profile privacy computes the impact of multi grouping on the

magnitude of profile obfuscation. The MG-OSLo consists of multiple groups, each

group accommodates a set of users to perform a web search secretly. MG-OSLo

does not use the concept of the memory location, instead, users are grouped by a

Core server (CS). The Section below presents the description of MG-OSLo.

The objectives of MG-OSLo include:

1. To devise a mechanism a Multi Group distributed privacy-preserving proto-

col (MG-OSLo) that preserve the local privacy and profile privacy of a user

in private web search.

2. To evaluate the privacy preserved by executing MG-OSLo in two dimensions

i.e., the impact of multi grouping on local privacy and profile privacy.

3. To analyze the grouping of users using various approaches such as non-

overlapping design, overlapping design, and BIBD

4. To analyze analytically the local privacy of a peer for BIBD (v, b, r, k, λ)

configuration. A probabilistic advantage to an entity of MG-OSLo in linking

query with the user in grouping design.

5. To provide empirical evaluation to measure the privacy of a user relative

to WSE. An experiment is performed to calculate the magnitude of profile

Multi-Group ObScure Logging (MG-OSLo) 92

obfuscation for multiple group count over multiple datasets using a privacy

metric PEL.

6. To analyze the impact of group size and group count on local privacy and

privacy relative to the profiling of WSE.

Definition: Non-overlapping group design: In this design, each user is asso-

ciated with a single group. All groups are distinct, but a user can send a query

through the users associated with other groups.

Definition: Overlapping group design: Each user is associated with multiple

groups simultaneously There are different grouping design approaches available,

however, in this work, BIBD is used to group the users together.

4.1 Multi-Group ObScure Logging (MG-OSLo)

In this chapter, a multi-group distributed privacy-preserving protocol MG-OSLo

is proposed which consists of ‘b’ number of groups and each group has ‘k’ number

of the user. The section below explains the entities and execution process of MG-

OSLo. The entities and working of the MG-OSLo are explained below.

4.1.1 Entities

Following are the entities required for the executing of MG-OSLo.

1. User: An individual who intends to search a query over the WSE covertly.

2. Group Search query-forwarding client (GSQFC): A user selected by CS

to forward queries of group users to WSE for the specified duration. Each

group will have GSQFC, which is supposed to forward queries to WSE. The

GSQFC takes part in query shuffling.

3. Core server (CS): A dedicated machine that supervises the working of the

protocol. The CS is responsible for group creation, selection of GSQFC and

CS does take part in query shuffling. In the proposed MG-OSLo, the CS is

Multi-Group ObScure Logging (MG-OSLo) 93

considered an honest but curious machine that performs its duties honestly

and accordingly.

4. Web Search Engine (WSE): A software system, that searches data in the

internet based on keywords.

4.1.2 MG-OSLo Execution Process

The Core Server (CS) continuously listens to the connection request from the

users. When the CS receives a connection request, it enqueues a user into a group

having a vacant slot. The CS creates a new group when a group has reached its

maximum size. The CS selects a user as GSQFC for each group who is supposed

to forward K queries to the WSE. Once the GSQFC has forwarded the desired

number of queries the next user in the group is selected as GSQFC. Every user is

selected as a GSQFC in round robin fashion. GSQFC also takes a part in query

shuffling, the process of shuffling is explained in the latter Section. It is important

to mention that if a user has ‘X’ number of queries to be forwarded to WSE, he

forwards ‘X’ queries of the group users to the WSE and his or her queries are be

forwarded by other users when selected as GSQFC. Once the desired group count

and group size is complete, and GSQFC is designated for each group the CS then

broadcasts the information about groups, users in each group, and the GSQFC of

each group. Each time the GSQFC has changed the CS updates this information

accordingly.

To send a query covertly through MG-OSLo, a user generates a query ‘q’, encryp-

tion key(K_Ui) and a random number (q_ID). The user then makes a query

message (QMsg) by concatenating these three strings. In the next step the user

randomly select a GSQFC and encrypts the QMsg with the encryption key (pub-

lic key) of that GSQFC creating an eQ, in the following step the users appends

a G_ID and makes an eQ_Msg. After the completion of query encryption pro-

cess, the user shuffles the eQ_Msg in two-level, i.e., intra-group shuffling and

inter-group shuffling. The shuffling breaks the link between the query and user

(means the query become unlinkable with the user who has created it). In the

intra-group shuffling, the query is shuffled among the group users, whereas, in the

Multi-Group ObScure Logging (MG-OSLo) 94

inter-group shuffling the query is shuffled among GSQFC to hide the group ID

of the user. When the eQ_Msg reaches the GSQFC, it decrypts the eQ_Msg

and forwards the ‘q’ to the WSE. The GSQFC collects the query result, afterward

the GSQFC encrypts the query result with the public key of the originating user

creating an eAns_msg. The eAns_msg is forwarded to the CS, which relays it to

all GSQFCs, the group where from which the query originator from the GSQFC

will broadcast it in the group. The query sending process of MG-OSLo is shown

in Figure 4.2

Following are the steps required in the execution of MG-OSLo.

1. Connection setup and Group formation:

A client-side software enables the user to connect to the CS. Once the con-

nection is established, the CS records the user’s credential (IP and port

number) the CS places the user in a group having a vacant slot. If there is

no vacant slot in a group, the CS creates a new group. A user receives a

list of all online peers in the group from CS and the information of GSQFC.

Each group will have ‘K’ users. Algorithm 4 line 1 to 11 shows the connec-

tion setup process. Each user in the group will be able to forward K queries

to WSE through any GSQFC. The CS keeps track of users moving in and

out of the group.

2. GSQFC Selection

The CS selects a GSQFC from group users in round-robin fashion for each

group. Algorithm 4 line No. 13 to 20 shows the GSQFC selection process.

When a user is selected as GSQFC, it generates asymmetric keys and shares

a public key and G_ID with CS. The information about GSQFC encryp-

tion key and G_ID are broadcasted to all users in MG-OSLo (Algorithm 4

line No. 21). A user selected as GSQFC forwards K queries to the WSE,

afterward another user is selected as GSQFC. Algorithm 7 shows working

for GSQFC.

3. Query Sending Process

Figure 4.1 depicts the activity diagram of query sending process of MG-

OSLo. The query sending process consists of the following steps:

Multi-Group ObScure Logging (MG-OSLo) 95

Algorithm 4 MG-OSLo: ServerSideAlgorithm

Input: (Connection_request, relieved_Msg, eQ_Msg, eAns_Msg,
M ′number of Groups′, K ′size of group′)

Output: (group_information, group_user_list[M][K])

1: procedure Connection Algorithm

2: Receive(Connection_request)
3: server ← connection_request.accept()
4: for i ∈M do
5: for j ∈ K do
6: G[i][j]← enqueue(get(IP, port))

7: Let counter_variable← 0
8: Select GSQFC

(
G[][counter_variable]

)
9: Receive(relieved_Msg)

10: counter_variable++
11: Select GSQFC

(
G[][counter_variable]

)
12:
13: procedure group search query forwarding client selection

14: GSQFC
(
G[][counter_variable]

)
15: Select GSQFC

(
G[][]

)
16: for x ∈M do
17: GSQFC[]← G[x][counter_variable]

18: for y ∈M do
19: GSQFC_list[]← forward

(
GSQFC[y],

get_GSQFC_infoMSG)

20: return(details)
21: Broadcast

(
G[][], GSQFC_list[]

)
22:
23: procedure : Forwarding eQ_Msg to all GSQFC

24: Receive(eQ_Msg)
25: for i ∈ GSFQC_list.size do
26: Forward

(
GSQFC[i], eQMsg

)
27:
28: procedure : forwarding eAns_Msg to all GSQFC

29: Receive(eAns_Msg)
30: for i ∈ GSFQC_list.size do
31: Forward

(
GSQFC[i], eAns_Msg

)

Multi-Group ObScure Logging (MG-OSLo) 96

Algorithm 5 OSLo: Client Side Algorithm

Input:
(
G[][], GSQFC_list[], eAns_Msg, get_GSQFC_info_MSG

)
Output: (eQ_Msg,GSQFC_details)

1: procedure : Query sending process
2: q ← generate_query()
3: GSQFC ← Select_randomly

(
GSQFC_list[]

)
4: pbK_GSQFC ← get_pub_Key

(
GSQFC_details

)
5: G_ID ← get_ID

(
GSQFC, details

)
6: Query_content_encryption(q)

7:
8: procedure : Query_content_encryption(q)
9: Encryption()

10: generate_key()
11: K_Ui ← get_ekey()
12: generate(q_ID)
13: QMsg ← concatenate(q +K_Ui + q_ID)
14: eQ← eKPbK_GSQFC(QMsg)

15:
16: procedure : eQ_Msg creation
17: Generate_eQMsg_packet()
18: eQ_Msg ← pcf(eQ+G_ID)

19:

20: procedure : intra group shuffling

21: intra_group_shuffling(eQ_Msg)
22: X ← generate_random_number(1, 10)
23: if x ≤ 5 then
24: y ← get_random_user_details

(
G[g_ID]

)
25: forward(eQ_Msg, y)
26: else
27: forward(eQ_Msg,GSQFC)

28:
29: procedure : result decryption process
30: Receive(eAns_Msg)
31: q_ID ← get_id(eAnsMsg)
32: if q_ID.match then
33: Enres← get_result(eAnsMsg)
34: result← decrypt(Enres)

35:

Multi-Group ObScure Logging (MG-OSLo) 97

36: procedure : GSQFC details generation

37: Receive(get_GSQFC_infoMSG)
38: get_GSQFC_details_info()
39: Generate_Asymmetric_Keys()
40: PbK_GSQFC ← get_public_key()
41: PrK_GSQFC ← get_private_key()
42: Generate ID()
43: G_ID ← random_number()
44: port← get_port()
45: generate_details_msg()
46: details← dMsg(PbKGSQFC, port,G_ID)
\\details message consisting

47: return(details)

Figure 4.1: MG-OSLo: Activity diagram of query sending process

(a) Encryption

To send a query, the user performs the following tasks, i) generate the

query ‘q’, generate an encryption key K_Ui and a query id (q_ID).

The K_Ui is a 128bits AES share key that are be used for encrypting

the query result (r) while qID will be used by a query originating user

to recognize that the result(r) is of his query(q). The user concatenates

the ‘q’, K_Ui and q_ID together and makes a packet called a QMsg

packet. In the next step, the user selects a GSQFC from the list of all

GSQFCs and encrypts the QMsg with the public key of the GSQFC

Multi-Group ObScure Logging (MG-OSLo) 98

Figure 4.2: MG-OSLo: Graphical representation of query sending process

using a function PbKGSQFC(QMsg) and making an eQ packet. The

query encryption process is shown in Algorithm 5 Line No. 8 - 14. The

user then appends G_ID with eQ making an encrypted query message

eQ_Msg by using a packet creation function. The G_ID will be used

by GSQFC to confirm that query (q) is encrypted with his public key

and he is supposed to forward the query (q) to WSE. The process of

encryption is shown in Algorithm 2 line 17 - 18.

(b) Query Shuffling

Encrypted query message (eQ_msg) is shuffled in two stages i.e., intra-

group shuffling and inter-group shuffling.

• Intra-Group Shuffling

To shuffle the eQ_Msg among the group peers, a coin is tossed

by the user to decide the destination of eQ_Msg. If the coin

lands on head, the eQ_Msg are forwarded to GSQFC and intra-

group shuffling ends there. However, if the coin lands on tail, the

eQ_Msg is forwarded to another group peer selected randomly

Multi-Group ObScure Logging (MG-OSLo) 99

from the list of all peers. The intra-group shuffling is shown in

Algorithm 5 line 20 - 27.

• Inter-Group Shuffling

This level of shuffling is used to hide the group identity of the

user. When GSQFC receives an eQ_Msg, it will try to decrypt

in order to check the G_ID whether the query(q) is encrypted

with their public key, otherwise GSQFC will toss a coin to decide

the destination for the eQ_Msg. If the toss results in tail, the

eQ_Msg will be forwarded to another GSQFC selected randomly

from the list of all GSQFCs. The GSQFC will follow the same steps

mentioned above, else, if the toss results in head, the eQ_Msg is

forwarded to CS. Algorithm 6 shows the process of Inter group

shuffling. The CS forwards the eQ_msg to all GSQFC as shown

Algorithm 4 line 23 - 26. The GSQFC will check the G_ID to

check if the query is encrypted with his public key, Algorithm 7

line 4.

Algorithm 6 M_G-OSLo: Inter group shuffling

Input:
(
GSQFC_list[], eQ_Msg

)
Output: (query shuffled before reaching the server)

1: procedure : inter_group_shuffling
2: Receive(eQ_Msg)
3: x← generate_random_number(1, 10)
4: if x ≤ 5 then
5: y ← get_random_GSQFC[]

)
6: forward(eQ_Msg, y)
7: else
8: forward(eQ_Msg, server)

4. Query forwarding to WSE and Result Retrieval:

The eQ_msg is decrypted using decrypt(eQ_msg) function by the GSQFC.

The query(q) is forwarded to the WSE. The q is processed by WSE and

the results(Q_Result) are returned to the GSQFC. The GSQFC encrypts

the result(Q_Result) with the encryption key of the user (eKUi) making

En_Res. The En_Res are appended to the q_ID, thus creating an en-

crypted answer message eAns_Msg. The GSQFC forwards eAns_Msg to

Multi-Group ObScure Logging (MG-OSLo) 100

CS, which forwards the results to all GSQFCs. The GSQFC broadcasts the

eAns_Msg to all peers in the group. The user who has the decryption key

will decrypt the required result. The q_ID is used as an identifier to confirm

if the results are for the queries what originator has sent. Algorithm 7 shows

the query forwarding and result retrieval process.

The eQ_msg are decrypted using decrypt(eQ_msg) function by GSQFC.

The query(q) is forwarded to WSE. The q is processed by WSE and the

results(Q_Result) are returned to the GSQFC. The GSQFC encrypts

the result(Q_Result) with the encryption key of the user (K_Ui) mak-

ing En_Res. The En_Res are appended to the q_ID, thus creating

an encrypted answer message eAns_Msg. The GSQFC then forwards

eAns_Msg to CS, which forwards the results to all GSQFCs. Algorithm

7 line No. 1 - 13 shows the query sending and result retrieval process, The

GSQFC broadcasts the eAns_Msg to all peers in the group, as shown in

algorithm 7 line No. 20 - 23. The user when receives the eAns_Msg will

try to decrypt the packet, however, the user who has the decryption key will

decrypt the required result. The q_ID is used as an identifier to confirm

if the results are for the queries what originator has sent. Algorithm 5 line

No. 29 - 34 shows the result decryption process.

5. Search Query Forwarding Client selection

The CS selects GSQFC for each group from the list of users in that group

on first come first serve basis. Each GSQFC is supposed to forward K

queries to the WSE, once GSQFC has forwarded K queries, next user will be

selected as GSQFC (where K is the number of users in a group). GSQFC

is supposed to do the following task.

(a) It generates a public key and a random number (G_ID) and gives in-

formation to CS. The CS broadcasts GSQFC’s public key information

in all groups. The random number is used for identification by GSQFC

to confirm that the query is encrypted under his/her public key.

(b) It sends a query to WSE and downloads the answer to the query. Cre-

ates an encrypted answer packet after encrypting query with the en-

cryption key of the user, and broadcast it to all other GSQFC.

Multi-Group ObScure Logging (MG-OSLo) 101

Algorithm 7 M_G-OSLo: Group source query forwarding client

Input: (eQ_Msg,eAns_Msg,threshold)
Output: (forward msg to server, broadcast msg in group,
forward msg to WSE)

1: procedure : query forwarding and result retrieval from WSE

2:
3: Receive(eQ_Msg)
4: get.G_ID(eQMsg)
5: if G_ID.match() then
6: QMsg ← decrypt(eQMsg

)
7: q ← get_query(QMsg)
8: K_Ui ← get_usrkey(QMsg)
9: q_ID ← get_q_ID(QMsg)

10: Q_Result← forward(q,WSE)
11: c_variable++
12: En_Res← eK_Ui(Q_Result)
13: eAns_Msg ← concatenate(En_Res, q_ID)
14: forward(eAns_Msg, server)
15:
16: if c_variable.equal(threshold) then
17: forward(server, relievedMsg)

18: else
19: Inter_group_shuffling()

20:
21: procedure : received encrypted answer packet
22: Receive(eAns_Msg)
23: for i ∈ groupsize do
24: Forward

(
eAnsMsg,G[G_ID][i]

)
(c) GSQFC takes part in intra group query shuffling. This level of shuffling

ensures unlinkability of group ID. This will not allow the adversary to

link a query with any group or user.

(d) When GSQFC receives a query packet from a group peer user, it at-

taches a hash with a query packet for answer packet identification.

4.2 Privacy Evaluation of MG-OSLo

As mentioned in Section 3.1, the privacy of a user in the distributed privacy-

preserving scheme is considered preserved if the user achieves to preserve local

Multi-Group ObScure Logging (MG-OSLo) 102

privacy and profile privacy. They local privacy is attained by encryption (query

content and query result encryption) and shuffling. The encryption makes the

query and results unreadable while shuffling breaks the link between the user and

the query making the query and user unlinkable. Profile privacy is achieved by

polluting the profile of the user with the queries of group users. The privacy

of a user executing MG-OSLo is evaluated in two dimensions, i.e., local privacy

and profile privacy. The local privacy measures the unlinkability whereas, the

profile privacy quantifies the indistinguishability. The local privacy measures the

probabilistic advantage a curious user has in linking a query with the originating

user, whereas the profile privacy computes the level of profile obfuscation. The

section below gives a comprehensive evaluation of local privacy and profile privacy.

4.2.1 Local Privacy

The local privacy of the user depends on the way the users are grouped. The users

can be grouped in different ways, each grouping method affects the privacy of a

user. MG-OSLo considers two grouping designs i.e. A) Non-overlapping group

design. B) Overlapping group design.

A Non-overlapping group design

In this design, each user appears in a single group. Each group has its own

GSQFC, a user can send a query through any GSQFC.

v total number of users i.e., U = {U1, U2, Uv}

b total number of groups i.e., M = {S1, S2, ..Sb}

r degree of a user, i.e., how many groups a user is associated with. In non-

overlapping design, r is one because each user appears in a single group.

k is the number of users in a single group.

We have considered three random variables, S, M and P. where S represents

a source of a query, M denotes a group, and P indicates proxy (GSQFC or

CS) who forwards the query to GSQFC.

The subsection below describes the local privacy of a user relative to the

entities of MG-OSLo. When non-overlapping group design is considered for

Multi-Group ObScure Logging (MG-OSLo) 103

grouping users and a curious entity of MG-OSLo wants to link a query with

the user, the probability of linking query is given as:

(a) Privacy Relative to GSQFC

Considering the working of MG-OSLo, when a GSQFC receives a sus-

picious query and interested to find the query source, what advantages

does a GSQFC have in linking the query with the user. According

to the shuffling technique of MG-OSLo, the query is shuffled before

reaching GSQFC. The probability of linking query with the user.

Pr(S = Ui,M = Sl |P = GSQFC) = Pr(M = Sl | P = GSQFC)·

Pr(S = Ui |M = Sl, P = GSQFC)
(4.1)

Pr(M = Sl | P = GSQFC) =
1

(b− 1)
(4.2)

where, b is the total number of block (groups). GSQFC knows that

query does not belong to their group so he excludes their group.

Pr(S = Ui |M = Sl, P = GSQFC) =
1

K
(4.3)

Where k is the total number of users in each block.

Equating 4.2 and 4.3

Pr(S = Ui,M = Sl | P = GSQFC) =
1

(K(b− 1))
(4.4)

If GSQFC wants to link query with the user, the probability depends

on a number of users and groups, shown in (4.4). GSQFC does not

get any advantage in linking query with the user except excluding their

group.

(b) Privacy Relative to the Core Server

The CS receives the encrypted query after the shuffling process finishes.

The user achieves data confidentiality due to the query contents and

the results are encryption. As a result, the CS will not be able to

discover the content of a query. If GSQFC or any other user does not

collaborate with CS, the probability of linking the query to the user is

Multi-Group ObScure Logging (MG-OSLo) 104

1
v
, because all users are equally probable, where ‘v is the total number

of users in all groups. According MG-OSLo, CS gets no advantage in

linking the query with the user. However, if the GSQFC and CS form

a coalition to find the query source, the probability of linking the query

to the user is given by:

Pr(S = Ui,M = Sl | P = GSQFC, S /∈Mc) =

Pr(M = bi | P = GSQFC, S /∈Mc)

· Pr(S = Ui |M = Sl, P = GSQFC, S /∈Mc)

(4.5)

Mc is a group whose GSQFC has made a coalition with CS.

Pr(M = Sl | P = GSQFC, S /∈Mc) =
1

(b− 1)
(4.6)

Pr(S = Ui |M = bi, P = GSQFC, S /∈Mc) =
1

K
(4.7)

Equating 4.6 and 4.7

Pr(S = Ui,M = Sl | P = GSQFC, S /∈Mc) =
1

(K(b− 1))
(4.8)

The CS can only exclude the group that GSQFC has made a coalition

with the CS shown in (4.8); all other groups and users are equally

probable if C GSQFC made a coalition with CS, all of those groups

would be excluded from the anonymity list and the probability of link

query would be 1
(b−C)K

.

(c) Privacy Relative to Group Users:

As discussed earlier, the query and the result contents are encrypted

under the public key of the GSQFC, the user achieves unlinkability

and confidentiality for users in the same group or other groups. How-

ever, if all GSQFCs are compromised, i.e., where from the query has

originated, the GSQFC who has sent the query to the WSE and the

GSQFC of other groups including the CS, build a coalition to find the

query originator. Equation (4.9) gives the probability of linking the

query to the user when the above-mentioned entities form a coalition

Multi-Group ObScure Logging (MG-OSLo) 105

to find the query originator.

Pr(S = Ui |M = Sl, P = GSQFC) =
1

K
(4.9)

If C number of users collaborate with the GSQFC and the CS to find

the user, the probability of linking the query to the user is presented

in (4.10).

Pr(S = Ui |M = Sl, P = GSQFC) =
1

(|K| − C)
(4.10)

B Overlapping Group Design

If an overlapping design is used, i.e., a user appears in multiple groups, one

user (GSQFC) is supposed to forward the queries to WSE. The design is

described as

v total number of users i.e., U = {U1, U2, ...Uv}

b total number of groups i.e., M = {S1, S2, ...Sb}

r degree of user, i.e., the user association with number of groups

k number of users in a single group

λ pair of user appearance in a group if λ =1 means, a pair of users appears in

a single block, λ =2 means a pair appears in two block Definition: Balance

Incomplete Block Design (BIBD): a (v, b, r, k, λ) design in which every pair of

points occurs in exactly λ blocks [86]. In the MG-OSLo, users are grouped

using BIBD approach to evaluate the impact overlapping design on local

privacy.

Let’s consider the first case where (v, b, r, k, λ) design is used, S= source, P=

proxy (a user who forwards the query to GSQFC), M=group, Group Query

Forwarding Node (GSQFC) user who for¬wards query to the WSE

(a) Source and GSQFC Belong to Different Groups

A user appears in multiple groups and overlapping design is used.

Where GSQFC is supposed to forward the queries of all peer users

to the WSE. GSQFC and query source are not from the same group.

Pr(S = Ui,M = Sl | P = Uj , GSQFC /∈ Sl) =

Pr(P = Uj , GSQFC /∈ Sl | S = Ui,M = Sl) · Pr(S = Ui,M = Sl)

Pr(P = Uj , GSQFC /∈ Sl)

(4.11)

Multi-Group ObScure Logging (MG-OSLo) 106

Pr(S = Ui,M = Sl) = Pr(S = Ui) · Pr(M = Sl | S = Ui) (4.12)

Pr(S = Ui) =
b∑

i=1

Pr(M = Sl) · Pr(Ui |M = Sl)

=
b∑

i=1

1

b
· 1
K

(4.13)

Pr(S = Ui) =
r

(b.K)
(4.14)

Pr(M = Sl | S = Ui) =
r

b
(4.15)

Equating 4.14 and 4.15

Pr(S = Ui,M = Sl) =
r

b
· r

b ·K
(4.16)

Pr(P = Uj, GSQFC /∈ Sl) = Pr(P = Uj) · Pr(GSQFC /∈ Sl) (4.17)

Pr(P = Uj) =
b∑

j=1,Ui∈Sl

Pr(Uj |M = Sl) · Pr(M = Sl)

=
b∑

j=1,Ui∈Sl

1

K
· 1
b
=

r

(b ·K)

(4.18)

Pr(P = Uj) =
r

b ·K
(4.19)

Pr(GSQFC /∈ Sl) =
(b− r)

b
(4.20)

Equating 4.19 and 4.20

Pr(P = Uj, GSQFC /∈ Sl) =
r

b ·K
· (b− r)

b
(4.21)

Pr(P = Uj , GSQFC /∈ Sl | S = Ui,M = Sl) =

Pr(P = Uj | S = Ui,M = Sl) · Pr(GSQFC /∈ Sl | S = Ui,M = Sl)
(4.22)

Pr(GSQFC /∈ Sl | S = Ui,M = Sl) =
(b− r)

b
(4.23)

Pr(P = Uj | S = Ui,M = Sl) =
1

K
(4.24)

Multi-Group ObScure Logging (MG-OSLo) 107

Equating (4.23) and (4.24)

Pr(P = Ui, GSQFC /∈ Sl | S = Ui,M = Sl) =
1

K
· (b− r)

b
(4.25)

Equation 4.16, 4.21, and 4.26

=
r

(b− 1) ·K (4.26)

Equation (4.26) shows the probability of linking query with the source

when single GSQFC is supposed to forward the queries of all user from

multiple to the WSE.

(b) Source and GSQFC belong to the same group

When overlapping group design is used, GSQFC and source occur in

the same group, two case may occur, i.GSQFC = Uj ii. GSQFC ̸= Uj.

The probability of such cases is given by.

Case 1
When GSQFC and the query source user occur in the same group such

that GSQFC = Uj:

Pr(S = Ui | M = Sl, P = Uj , GSQFC ∈ Sl)

=
(Pr(S = Ui | GQFN ∈ Sl)Pr(M = Sl, P = Uj | S = Ui, GSQFC ∈ Sl))

Pr(M = Sl, P = Uj | GSQFC ∈ Sl)

(4.27)

Pr(M = Sl, P = Uj | S = Ui, GSQFC ∈ Sl) =

Pr(M = Sl | S = Ui, GSQFC ∈ Sl)

· Pr(P = Uj |M = Sl, S = Ui, GSQFC ∈ Sl)

(4.28)

Pr(M = Sl | S = Ui, GSQFC ∈ Sl) =
1

λ
(4.29)

As Ui and GSQFC are pair in λ groups so

Pr(P = Uj |M = Sl, S = Ui, GSQFC ∈ Sl) =
1

K − 1
(4.30)

Pr(S = Ui | GSQFC ∈ Sl) =
Pr(S = Ui ∩GSQFC ∈ Sl)

Pr(GSQFC ∈ Sl)
(4.31)

=
Pr(S = Ui ∩GSQFC ∈ Sl)∑b
i=1 Pr(Sl) · Pr(GSQFC | Sl)

(4.32)

Multi-Group ObScure Logging (MG-OSLo) 108

Pr(S = Ui ∩GSQFC ∈ Sl) =
λ

k ·K
(4.33)

b∑
i=1

Pr(Sl) · Pr(GSQFC | Sl) =
b∑

1=1

1

b
· 1
k
=

r

b · k
(4.34)

Equating 4.33 and 4.34

Pr(S = Ui | GSQFC ∈ Sl) =
λ

r
(4.35)

Pr(M = Sl, P = Uj | GSQFC ∈ Sl) =

Pr(M = Sl | P = Uj , GSQFC ∈ Sl) · Pr(P = Uj | GSQFC ∈ Sl)
(4.36)

Pr(M = Sl | P = Uj, GSQFC ∈ SL) =
1

r
as GSQFC = Uj (4.37)

Pr(P = Uj | GSQFC ∈ Sl) = 1 as Uj = GSQFC (4.38)

Equating 4.29, 4.30, 4.35 and 4.37 we get

Pr(S = Ui |M = Sl, P = Uj, GSQFC ∈ Sl) =
1

K − 1
(4.39)

When GSQFC, User Ui and belongs to the same group the probability

of linking query with the source is given in (4.39).

Case 2
When overlapping group design is used, such that (GSQFC ∈ Sl) and

Uj ̸= GSQFC) then the probability is given by

Pr(S = Ui,M = Sl | P = Uj, GSQFC ∈ Sl) =

Pr(P = Uj,M = Sl | S = Ui,M = Sl) · Pr(S = Ui,M = Sl)

Pr(P = Uj, GSQFC ∈ Sl)

(4.40)

Pr(S = Ui,M = Sl) = Pr(S = Ui) · Pr(M = Sl | S = Ui) (4.41)

Pr(S = Ui) =
b∑

i=1

Pr(M = Sl) · Pr(Ui |M = Sl)

=
b∑

i=1

1

b
· 1
k

Pr(S = Ui) =
r

b · k

(4.42)

Multi-Group ObScure Logging (MG-OSLo) 109

Pr(M = Sl | S = Ui) =
r

b
(4.43)

Equating 4.42 and 4.43

Pr(S = Ui,M = Sl) =
r

b
· r

b · k
(4.44)

Pr(P = Uj, GSQFC ∈ Sl) = Pr(P = Uj) · Pr(GSQFC ∈ Sl) (4.45)

Pr(S = Uj) =
b∑

j=1

Pr(M = Sl) · Pr(Uj |M = Sl)

=
b∑

j=1

1

b
· 1
k

Pr(S = Uj) =
r

b · k

(4.46)

Pr(GSQFC ∈ Sl) =
λ

b
(4.47)

Equating 4.46 and 4.47

Pr(P = Uj, GSQFC ∈ Sl) =
λ

b
· r

b · k
(4.48)

Pr(P = Uj , GSQFC ∈ Sl ∈ S = Ui,M = Sl) =

Pr(P = Uj | S = Ui,M = Sl) · Pr(GSQFC ∈ Sl | S = Ui,M = Sl)
(4.49)

Pr(P = Uj | S = Ui,M = Sl) =
1

K − 1
if i = j and j ̸= GSQFC (4.50)

=
1

K − 2
if i ̸= j and j ̸= GSQFC (4.51)

Pr(GSQFC ∈ Sl | S = Ui,M = Sl =

Pr(M = Sl | S = Ui, GSQFC ∈ Sl) · Pr(GSQFC ∈ Sl | S = Ui)

Pr(M = Sl | S = Ui)

(4.52)

Pr(M = Sl | S = Ui, GSQFC ∈ Sl) =
1

λ
(4.53)

Pr(GSQFC ∈ Sl | S = Ui) =
λ

b
(4.54)

Pr(M = Sl | S = Ui) =
r

b
(4.55)

Multi-Group ObScure Logging (MG-OSLo) 110

equating 4.53, 4.54 and 4.55

Pr(GSQFC ∈ Sl | S = Ui,M = Sl) =
1

r
(4.56)

Equating 4.44, 4.48, 4.50, and 4.56

Pr(S = Ui,M = Sl | P = Uj, GSQFC ∈ Sl)

=
1

λ · (K − 1)
if i = j and j ̸= GSQFC

(4.57)

Equating 4.44, 4.48, 4.52, and 4.56

=
1

λ · (K − 2)
if i ̸= j and j ̸= GSQFC (4.58)

When GSQFC and source belongs to the same group the probability

of linking query is given by (4.57) and (4.58) A user can achieve better

local privacy (unlinkability) when the source and the GSQFC belong

to different groups since it has a low probability of linking the query to

the user. However, the best choice is to use a non-overlapping group

design as it has the lowest probability of linking the query with the

user.

4.2.2 Profile Privacy

The profile privacy validates the level of profile obfuscation by simulating a privacy-

preserving protocol. In MG-OSLo, the profile of a user is obfuscated by sending

the queries of other group users to the WSE. A privacy metric Profile Exposure

Level (PEL) is used to measure the magnitude of profile obfuscation. An experi-

ment performed to measure the level of profile obfuscation, i.e., profile privacy a

user achieves by simulating the MG-OSLo. The experiment consists of three steps:

i. simulating the MG-OSLo with the dataset mentioned in section 3.4, ii. Building

the profile of a user iii. measuring the profile privacy with PEL. The MG-OSLo is

simulated for two situations; i) self-query submission allowed, ii) self-query sub-

mission not allowed, with the dataset 1 mentioned in Section 3.4.1 and dataset 2

the description of which is given in Section 3.4.2. The experiment is performed by

Multi-Group ObScure Logging (MG-OSLo) 111

changing the group size (number of users in a group) and group count (number of

groups). The MG-OSLo is simulated with a group size of three users, four users

and five users and a group count of three, four, five and six groups. After simula-

tion, the MG-OSLo is next step of the experiment is to build the profile of each

user, Section 3.5.2 shows the profile building process, steps like morpho-synthetic

and semantic analysis are followed to build the profile of each user in datasets.

Computing PEL is the last step of the experiment, PEL measures the difference

between the original profile (sending queries directly to WSE without simulating

a protocol) and obfuscated profile (after simulating MG-OSL0) of a user using

equation 2.5.

4.3 Results and Discussion

This section gives a detail description of profile privacy analysis of MG-OSLo. As

mentioned above, the MG-OSLo is simulated for two situations, i.e., i) self-query

submission allowed, ii) self-query submission not allowed. Both situations are

simulated with dataset 1 and dataset 2. The profile privacy of a user executing

MG-OSLo is compared with state-of-the-art three privacy-preserving protocols i.e.

co-utile, UUP(e) and OSLo. The comparison are done over privacy metric PEL

at degree 1 to degree of ODP hierarchy.

4.3.1 Profile Privacy of MG-OSLo: Self-Query Submission

not Allowed Dataset 1

Figure 4.3 (A-D) show the PEL of a user executing MG-OSLo, when a user only

forwards other users’ queries only, i.e., self-query submission is not allowed. The

results show that the average PEL is 55% at first degree, 16% at the second degree,

8.7% at third degree and 8.5% at the fourth degree. The results show that the

group size and a number of groups have little effect on PEL. If the peer does not

forward his own query, an attacker can exclude him as a query originator thus

reducing the anonymity set.

Multi-Group ObScure Logging (MG-OSLo) 112

Figure 4.3: Average PEL of MG-OSLo: self-query submission not allowed
with dataset 1

Figure 4.4: Average PEL of MG-OSLo: self-query submission allowed
Dataset1

Multi-Group ObScure Logging (MG-OSLo) 113

4.3.2 Profile Privacy of MG-OSLo: Self-Query Submission

Allowed Dataset 1

Figure 4.4 (A-D) show the results when a user selected as GSQFC, can forward

his query and queries of the other users. The results show that the PEL of a user

is affected by the size of the group and group count. The MG-OSLo successfully

hides the profile of a user by more than 40% at the first degree as it represents

a more general category. However, at higher degrees, it manages to hide the

profile by more than 80%; when the number of peers increases in the group, the

corresponding PEL decreases. Increasing the number of groups has a minor effect

on PEL as shown in Figure 4.4.

4.3.3 Profile Privacy of MG-OSLo: Self-Query Submission

Allowed Dataset 2

Figure 4.5 (A-D) shows the average PEL of a user executing MG-OSLo for a

situation in which the self-query submission is allowed. The results show that when

the number of users in a group increases, the PEL drops. However, increasing the

group count has little effect on PEL. The average PEL MG-OSLo when simulated

for three group having three users in each group, is 54.48%; when each group has

four users the average PEL is 53.57% and for five users the average PEL is 53.05%

at the first degree of the ODP hierarchy. However, at the second degree of the

ODP hierarchy, the average PEL is less than 20% for all group sizes and the group

count.

4.3.4 Profile Privacy of MG-OSLo: Self-Query Submission

not Allowed Dataset 2

Figure 4.6 (A-D) shows the average PEL of a user execution MG-OSLo when

simulated with dataset 2 for a situation in which self-query submission is not

allowed. The average PEL for the group size of three users, four users and five

users at degree 1 of the ODP hierarchy for the group count of three, four, five and

Multi-Group ObScure Logging (MG-OSLo) 114

Figure 4.5: Profile Privacy of MG-OSLo: Self-query submission allowed
Dataset 2

six groups are almost 50%. The group size and count have very little effect on the

profile privacy of a user when MG-OSLo is simulated with dataset 2.

4.3.5 MG-OSLo VS OSLo VS Co-utile: Self-Query Sub-

mission Allowed Dataset 1

Figure 4.7 and Figure 4.8 show the profile privacy a user achieves relative to the

WSE. The values show the average PEL comparison at degree 1 to degree 4 of the

ODP hierarchy. The results show that the average PEL of a user executing OSLo

for a group size of three users at the first degree of the ODP hierarchy is 67.59%,

and 74.58% for the co-utile protocol, whereas the average PEL of MG-OSLo for

a group count of three, each group having three users is 59.61%. The MG-OSLo

preserved 11.76% and 19.9% better profile privacy as compared to OSLo and co-

utile protocols. Similarly, the average PEL further drops by increasing the group

count. When the group count increased to four, the MG-OSLo achieved 58.61%

average PEL, the value of average PEL further dropped to 58.17% and 57.42%

Multi-Group ObScure Logging (MG-OSLo) 115

Figure 4.6: Average PEL of MG-OSLo: self-query submission not allowed
with Dataset 2

Figure 4.7: Average PEL of MG-OSLo VS. OSLo VS. Co-utile at Degree 1
and Degree 2 of ODP hierarchy for Dataset 1

Multi-Group ObScure Logging (MG-OSLo) 116

Figure 4.8: Average PEL of MG-OSLo VS. OSLo VS. Co-utile at Degree 3
and Degree 4 of ODP hierarchy for Dataset 1

for a group count of five and six, hence, achieving 13.28%, 13.94% and 15.04%

better profile privacy as compared to OSLo and 21.4%, 21.9%, and 23.0% better

profile privacy as compared to co-utile protocol. When the size of the group is

increased to four users, the results depicted that the OSLo achieved 64.59%, and

the co-utile protocol acquired 74.09% average PEL, whereas the MG-OSLo with

the group count of three procured 58.42%. When the group count increased to four

57.66% average PEL was obtained. The value of average PEL further dropped to

57.34%, and 57.43% for the group count of five and six. In such case when the

self-query submission was allowed, the MG-OSLo attained 9.5%, 10.72%, 11.22%,

and 11.08% better results as compared to OSLo at degree 1 of the ODP hierarchy

and 21.15%, 22.17%, 22.60%, and 22.47% better average PEL as compared to

the co-utile protocol. Additionally, the average PEL of a user when five users

are grouped, the average PEL for OSLo was 63.60 and for co-utile was 73.54%,

whereas, the MG-OSLo with the group count of three 57.66%, 57.16% for the

group count of four, 57.08% and 56.65% for the group count of five and six. The

comparison shows that MG-OSLo provided better profile privacy at all degrees of

the ODP hierarchy for any group size.

The average PEL a user achieves at degree 2 of the ODP hierarchy for the group

size of three users is mentioned in Figure 4.7. The user executing OSLo had 46.60%

and 64.21% for the co-utile protocol, whereas the user executing the MG-OSLo

Multi-Group ObScure Logging (MG-OSLo) 117

Figure 4.9: Average PEL of MG-OSLo VS OSLo VS Co-utile at Degree 1 and
Degree 2 of ODP hierarchy for Dataset 2

the average PEL with the group count of three has 25.49%. Similarly, 23.28%,

22.05% and 21.13% for the group count of four, five and six. Likewise, the average

PEL of a user executing MG-OSLo had better profile privacy at all degrees of the

ODP hierarchy when the self-query submission was allowed.

4.3.6 MG-OSLo VS OSLo VS Co-utile: Self-Query Sub-

mission Allowed for Dataset 2

Figure 4.9 and Figure 4.10 show the profile privacy comparison of OSLo, co-utile,

and MG-OSLo based on the average PEL when simulated with Dataset 2 for a

situation where self-query submission is allowed. The results show that the average

PEL of a user, when simulated OSLo and co-utile for the group size of three users

was 62.69% and 75.11% at degree 1 of the ODP hierarchy, whereas the average

PEL with MG-OSLo for group count three is 54.48%, i.e., 13.09% better than

OSLo and 27.45% better than co-utile protocol. The result of the average PEL

with MG-OSLo for the group count of four was 53.32%; it achieved 14.94% and

29% better profile privacy as compared to OSLo and co-utile protocol. When four

users were grouped, the average PEL with OSLo was 59.72% and 77.16% with

co-utile, whereas MG-OSLo is 53.57%, 52.44%, 52.34% and 51.92% for the group

Multi-Group ObScure Logging (MG-OSLo) 118

Figure 4.10: Average PEL of MG-OSLo VS. OSLo VS. Co-utile at Degree 3
and Degree 4 of ODP hierarchy for Dataset 2

count of three, four, five and six. The average PEL drops when the number of

users is increased in the group in both OSLo and MG-OSLo. Furthermore, when

the group has five users, the average PEL a user achieved by simulating OSLo is

57.88% and MG-OSLo with the three-group count is 53.05%, 52.11% with a group

count of four, and so on. Likewise, with the average PEL at degree 2, degree 3

and degree 4 of the ODP hierarchy, the MG-SOLo has a lower average PEL as

compared to OSLo. The MG-OSLo has a better profile privacy as compared to

the OSLo for all group counts and group sizes when both protocols are simulated

for a situation where self-query submission is allowed.

4.3.7 MG-OSLo vs UUP(e) and OSLo: Self-Query Sub-

mission not Allowed Dataset 1

Figure 4.11 and Figure 4.12 shows the profile privacy a user achieve relative to

the WSE for a situation when self-query submission is not allowed. The profile

privacy a user achieved by simulating MG-OSLo is compared with state-of-the-

art protocol UUP(e) and OSLo. All three protocols are simulated for the group

size of three users, four users and five users. The MG-OSLo is simulated with

the count of three groups, four groups, five groups and six groups. The results

show, when three users are grouped together the average PEL of a user executing

Multi-Group ObScure Logging (MG-OSLo) 119

Figure 4.11: Average PEL of MG-OSLo VS. UUP(e) and OSLo at Degree 1
and Degree 2 for Dataset 1

UUP(e) is 61.37% and OSLo user has 57.3%. Whereas, the average PEL of a

user executing MG-OSLo is 55.74% for the group count of three, 55.19% for the

group count of four, 55.65% and 55.79% for the group count of five and six at

degree 1 of ODP hierarchy. The MG-OSLo achieves 9.1% better profile privacy as

compared to UUP(e) and 3.69% improvement from OSLo for the group count of

three users. Similarly, when four users are group together the MG-OSLo attains

8.5% better as compared to UUP(e) and 1.8% as compared to OSLo. The MG-

OSLo has improved the profile privacy of a user as compared to the UUP(e) and

OSLo for any group size at degree 1 and degree of ODP hierarchy. The reason

that MG-OSLo has succeeded in improved profile privacy as compared to UUP(e)

and OSLo is that the profile of a user is obfuscated with the queries of a larger

number of users present in multiple groups of MG-OSLo.

Although based on the simulation results of allowing the self-query submission it

was anticipated that increasing the group count would have compelling impact

on profile privacy, however, it is also observed from the simulation results that

increasing the group count in MG-OSLo has no significant effect on profile privacy.

For example, the difference between average PEL for the group count of three,

four, five and six is less than 1% at degree 1 and degree 2 of ODP hierarchy.

Therefore, the MG-OSLo with group count of three is recommended when the

self-query submission is not allowed. Furthermore, it is also observed the profile

privacy at degree 3 and degree 4 (which represents a more specific category) of

ODP hierarchy, OSLo preserved slightly better profile privacy (0.71%) than MG-

OSLo for the group count and size of three. When the number of users increased to

Multi-Group ObScure Logging (MG-OSLo) 120

Figure 4.12: Average PEL of MG-OSLo VS UUP(e) VS OSLo at Degree 3
and Degree 4 for Dataset 1

four and five the privacy of MG-OSLo decline as compared to OSLo. As discussed

above, the reason behind this finding is the profile of the user is obfuscated to its

maximum level with group count of three and increasing further the group count

and group size has no positive impact on profile privacy.

4.3.8 MG-OSLO VS UUP(e) and OSLo: Self-Query Sub-

mission not Allowed at Dataset 2

Figure 4.13 and Figure 4.14 shows the comparison of profile privacy a user achieve

by simulating UUP(e), OSLo and MG-OSLo over dataset 2 for a situation when

self-query submission is not allowed. The results show when three users are

grouped together, the average PEL a user achieve by executing UUP(e) is 51.85%,

and OSLo attains 47.69%. The average PEL of a user executing MG-OSLo for

group count of three is 47.50%. The MG-OSLo provides 8.3% and 0.40% better

profile privacy as compared to UUP(e) and OSLo at degree 1 of ODP hierarchy.

When four users are grouped together the average PEL a user reaches by executing

UUP(e) and OSLo is 51.15% and 48.56% whereas the MG-OSLo for three group

count is 48.29%. The MG-OSLo with three group count provides 5.59% and 0.55%

better profile privacy as compared to the UUP(e) and OSLo. It is also noted that

when the group count in MG-OSLo is increased the average PEL unexpectedly

slightly decreases.

Multi-Group ObScure Logging (MG-OSLo) 121

Figure 4.13: Average PEL of MG-OSLo VS. UUP(e) VS. OSLo at Degree 1
and Degree 2 for Dataset 2

The results infer that with a group count of three each containing three users

achieves the minimum average PEL because the profile of a user is obfuscated

to its maximum level in a situation when self-query submission is not allowed.

It is observed that increasing the group count or group size any further has no

significant impact on average PEL, instead, the average PEL slightly increases in

contrast to the situation when the self-query submission was allowed. Therefore,

based on the result it is recommended that the group count of three and each group

having three users provide the best results in terms of average PEL for a situation

when self-query submission is not allowed. However, a user can forward more

queries with group count of four and five with a little compromised on average

PEL. As delay is a prime concern in any distributed protocol so with higher group

count a user can forward many queries, otherwise the whole group creatation

process are to be repeated what would cost more delay.

4.3.9 Time Complexity of MG-OSLo

MG-OSLo consists of M number of groups while each group has n users. The

connection process happens in O(n ∗M), as CS has to enqueue “n” number of

users in each group and there is a M number of groups. In the group search

query forwarding client (GSQFC) selection process, the CS selects a user from

each group as GSQFC, this process completes in O(n) time. Similarly, the CS

forward a get_GSQFC_info_MSG message to the selected users in O(n) times.

Multi-Group ObScure Logging (MG-OSLo) 122

Figure 4.14: Average PEL of MG-OSLo VS. UUP(e) VS. OSLo at Degree 3
and Degree 4 for Dataset 2

The CS then broadcasts the group information and the GSQFC to all users in O(n)

time. Furthermore, when the CS receives the eQ_Msg or eAns_Msg, it forwards

those messages in O(n) times. On the client-side, the query sending process like

query content generation, query encryption, query shuffling, and result decryption

are sequential steps done in constant time. likewise, when the GSQFC receives

an encrypted query message, the packet decryption, query forwarding to WSE

& result retrieval, result encryption and forwarding encrypted result to WSE are

also done sequentially in constant time. In the worst case, the MG-OSLo protocol

executes in O(n∗M) time. Where n represents the number of users and each user

will forward n queries. However, the experimental results show the MG-OSLo

performs best with the group count of three each having three users.

4.4 Conclusion

This chapter highlighted the limitation in the existing multi-group distributed

protocols and proposed a novel multi-group distributed privacy-preserving protocol

MG-OSLo (Multi Group ObScure Logging). MG-OSLo eliminates the limitation

mentioned at the beginning of the chapter and preserves the privacy of a user in

a web search. The MG-OSLo preserves the web search privacy of a user using

steps like query encryption, shuffling, result encryption and result broadcasting.

Previous multi-group protocols only evaluated the privacy of a user relative to

the group user; however, the MG-OSLo evaluates the privacy relative to group

Multi-Group ObScure Logging (MG-OSLo) 123

user (local privacy) and privacy against the profiling of WSE (profile privacy).

The grouping is the primary step of the multi-group distributed protocol, and

affects the privacy of a user. To comprehensively evaluate the effect of grouping

of local privacy, two grouping approaches, i.e., none-overlapping grouping design

and overlapping group design are considered in MG-OSLo. The local privacy is

measured by computing the probabilistic advantage an entity has in linking a query

with the user. In the proposed protocol (MG-OSLo), the user query is encrypted

with the public key of the GSQFC, hiding the query from all other entities. In

comparison, in the previous protocols the users associated a memory location and

were able to see the query contents as the query was encrypted with the shared

key. When the non-overlapping block design is adopted, the probability of linking

query by GSQFC with the user is computed as 1
(b−1)K

. When multiple GSQFC

and CS makes a coalition to link a query to a user the probability is calculated

as 1
(b−C)K

. Similarly, in the overlapping group design where the query originating

user and GSQFC belong to a different group, the probability of linking the query

is r
(b·K)

, and when the source user and GSQFC belongs to the same group the

probability of linking query with the user is 1
λ(K−1)

.

An experiment performed over both datasets (dataset 1 and dataset 2) to evaluate

the impact of multi-grouping on profile privacy of a user. The experiment is

performed for two scenarios, first, self-query submission is allowed and second self-

query submission is not allowed. The results obtained are compared with UUP(e)

and OSLo, thereby identifying the impact of multi-grouping on profile privacy. The

MG-OSLo is simulated with a group count of three, four and five with a group

size of 3 users, 4 users and 5 users in each group for two scenarios discussed above.

The results show that MG-OSLo preserves 11.76% better privacy as compared to

OSLo for the group count of three, each group having three users in the group.

Similarly, when the group count is increased, MG-OSLo preserves better privacy

as compared to OSLo at all four degrees of the ODP hierarchy for any group size in

both datasets. In the second situation where self-query submission is not allowed,

the MG-OSLo has improved the profile privacy 9.1% and 3.69% at degree 1 for the

group count of three, while each group has three users for dataset 1. Similarly, the

experiment shows when performed with dataset 2, the MG-OSLo preserves 8.3%

Multi-Group ObScure Logging (MG-OSLo) 124

and 0.4% better privacy as compared to the UUP(e) and OSLO.

This chapter answers the both parts of research question 1 mentioned in Section

1.8 by varying the group count and group size.

Research Question RQ 1. How to improve the local privacy and profile privacy

of a user in a private web search?

RQ 1 (a). What will be the effect of allowing self-query submission and not

allowing self-query

RQ 1 (b) How does the size of the group and group count affects the privacy

and performance of a user”?

The profile privacy of MG-OSLo is evaluated for allowing self-query submission

and not allowing the self-query submission. The impact is stated in the results

and the reason for variation in the results are discussed in this chapter. Moreover,

The impact of group count and group size on local privacy and profile privacy is

also elaborated in this chapter. In this chapter, the research question RQ 1 with

it subparts RQ 1(a) and RQ 1(b) are addressed with empirical results.

Chapter 5

Profile aware ObScure Logging

(PaOSLo)

The distributed privacy-preserving protocols work based on the cooperation of

users. These protocols create a group of ‘n’ users who wish to query the WSE

without using their privacy. Each user in the group forwards a query of another

user to the WSE to receive the query result. Grouping of users is considered

a primary step in the distributed privacy-preserving protocols. In the existing

approaches, the Core Server (CS) listens to the connection request from the user,

upon receiving ‘n’ number of connection requests, the CS creates a group of users

on first comes first serve basis. The major shortcoming in the first come first

serve approach, also called random grouping, is that a user maybe groups with

those users who have similar interests, as there is no prior information about the

users’ preferences [8]. Consider a situation where a user Mr. X has a medical

related query. He is in a group with other users having a similar type of interest;

in such a case, although, Mr. X forwards a query of another user, his profile will

not be significantly obfuscated. The profile maintained by the WSE for Mr. X

will contain the same type of categories. Profile obfuscation is the fundamental

objective of web search privacy; however, with existing randomized grouping a

user can possibly be grouped with users having similar interests. Such grouping

will not expressively obfuscate the profile of the users.

This chapter proposes a novel protocol PaOSLo (Profile aware ObScure Logging)

125

Profile aware ObScure Logging (PaOSLo) 126

to significantly obfuscate the profile of a user by grouping users based on their

profile dissimilarity as compared to the random grouping approach. The PaOSLo

executes in two steps: (i) cluster the user according to their profile similarity.

(ii) the CS creates a group of users from each distinct cluster instead of random

grouping. The user when selected as SQFC, only forwards the queries of other

group users but not of his own query. This approach obfuscates the profile of a

user with the queries of a user who has different interests.

Following are the objective of PaOSLo.

1. Profile aware grouping to considerably obfuscate the profile of a user.

(a) The cosine similarity measures the similarity between the users’ profile.

(b) The K-Mean algorithm group the users into three cluster, four cluster,

and five clusters

(c) Create a group of users by selecting each user from a different cluster.

2. An experiment is performed to compare the level of profile obfuscation using

profile aware grouping and randomize grouping over the queries of users

described in dataset 2.

5.1 PaOSLo Description

The Profile aware ObScure Logging (PaOSLo) obfuscates the profile of a user

with the queries of a user having dissimilar interests. The PaOSLo has the same

entities as OSLo; the description of entities and execution process of each entity

are discussed in section 3.2 and 3.3. However, before the execution of protocol, the

primary aim of PaOSLo is to cluster the users who have a almost similar interests

or almost similar profile. The cosine similarity metric is adopted measures the

similarity between the users’ profile. After calculating the similarity between the

users’ profile, the next step is to cluster the user based on their profile similarity.

The clustering is performed with the K-mean clustering algorithm using the Weka

tool.

Profile aware ObScure Logging (PaOSLo) 127

Figure 5.1: PaOSLO: Activity diagram of User profile construction and clus-
tering

5.1.1 User Profile Construction

The profile is built from the queries that user send to the WSE. In this experi-

ment, AOL query log described in section 3.4. The AOL query log consists of five

attributes:, i.e.,AnonID, Query, Query Time, ItemRank and ClickURL [27, 49].

However, in the experiment of simulating PaOSLo only two attributes, are used,

i.e., AnonID and Query. In this work, PaOSLo is simulated with a subset of 1000

queries submitted by users in a three month period of the AOL query log. Section

3.4.2 gives the description of the dataset used in the experimentation. The WSE

builds the profile of a user from the queries it receives. Section 3.5.2 explains the

profile building process; two fundamental steps are required to build the profile

of a user. Figure 5.1 shows the activity diagram of users’ profile construction

and clustering. The initial step is the to extract the main topic of the query; it

involves the morpho-syntactic analysis of the query. The second step performs

the semantic analysis of the terms acquired in the previous steps. The terms are

sent to DMOZ1 to classify it into a hierarchy of categories [82]. DMOZ is an
1demoz.org, (accessed 6 February 2017)

Profile aware ObScure Logging (PaOSLo) 128

Figure 5.2: Categories at first degree of the ODP hierarchy [83]

open-content directory of World Wide Web links, the site and community who

maintained DMOZ are also known as the Open Directory Project (ODP). The

profile of the users are built from the queries mentioned in Section 3.4.2. The

queries of the users are categorized into degrees 1-4 of the ODP hierarchy. Table

5.1 below shows an example of categorization of queries into a hierarchy of degrees

by ODP. A query of a user is classified into one of the sixteen categories at the

first degree of the ODP hierarchy; Figure 5.2 shows the top level 16 categories at

first degree of the ODP hierarchy. The query “valley national bank, photography

studio, and mac.com” are categorized as “business, arts, and computer” at first

degree of the ODP hierarchy, “financial services, photography, and software” at

the second degree of the ODP hierarchy.

5.1.2 Measuring Similarity between the User Profiles

The queries of users selected from the AOL query log mentioned in the dataset 2

are categorized into hierarchy of degrees by ODP. Table 5.2 shows a query cat-

egorization of an AOL user denoted with pseudo ID “3978802”. The similarity

Profile aware ObScure Logging (PaOSLo) 129

Table 5.1: Query classification of queries by ODP into a hierarchy of cate-
gories. [82]

Query ODP classification at different degrees

Valley National Banker Business: Financial Services: Banking Services:
Credit Unions: Regional: United States:

Photography Studios Arts: Photography: Techniques and Styles:
Documentary: Photographers

mac.com Computers: Software: Operating Systems:
MacOS: Internet

between the users’ profiles is computed over the degree 1 of the ODP hierarchy.

In this chapter, the following are the two steps taken to compute the similarity

between the users’ profiles. First, extract the terms at degree 1 from the catego-

rized profile of a user. In the case of user “3978802”, Table 5.3 shows the terms

and its count at degree 1 of the ODP hierarchy. Similarly, Table 5.4 shows the

terms and count of the AOL user pseudo ID “2806175” at degree 1 of the ODP

hierarchy. After extracting the terms at degree 1 for all users, the second step is

to compute the similarity among the users’ profile.

5.1.3 Cosine Similarity

The Cosine similarity measures the similarity between two vectors; it is a function

of the angle between their vectors in the term vector space [87]. Equation 5.1

computes the similarity between vector A and B; it gives a value between 0 and 1,

where 1 represents exactly the same profiles and 0 presents completely different.

Applying equation 5.1, the similarity computed between the profiles of user pseudo

ID “3978802” and “2806175” is 0.335. The above-mentioned two steps are followed

to compute the similarity between the users’ profiles at degree 1 of the ODP

hierarchy for the users mentioned in dataset 2. Table 5.5 shows a sample of

similarity matrix between six users’ profiles; the same way 1000 x 1000 profile

similarity matrix is computed for inputting data into Weka tool for clustering.

cos(A,B) =
A ·B
∥A∥∥B∥

=

∑n
i=1AiBi√∑n

i=1 (Ai)2
√∑n

i=1 (Bi)2
(5.1)

Profile aware ObScure Logging (PaOSLo) 130

Table 5.2: Query categorization by ODP of a sample user “3978802” of AOL
query log

Query Degree 1 Degree 2 Degree 3 Degree 4
map quest Reference Maps Libraries
la quinta
inn World Nederlands Kunst Schilderkunst

Quinta inn World Nederlands Kunst Schilderkunst
grove city
ohio map Reference Maps Libraries

yahoo.com
games Society

Religion
and
Spirituality

Christianity Denominations

unclaimed
funds Business Investing Funds Mutual Funds

woodworking
hobbies

Kids
and Teens

Sports and
Hobbies

Summer
Camps North America

birdhouse
kits Computers Speech

Technology Tool Kits

kazoo
toys.com Arts Music Instruments Winds

tim allen
birdhouse Arts People A Allen 2C Tim

Menards Recreation Outdoors Hunting Guides and
Outfitters

brain
cancer gold Health

Conditions
and
Diseases

Cancer Brain and CNS

brain cancer
vinyl chloride Health

Conditions
and
Diseases

Cancer Brain and CNS

hc.sc.gc.ca Regional North America Canada Governmen

Table 5.3: Terms extracted for degree 1 of user “3978802”

Arts Business Computers Games Health Home Kids_and
_Teens News

2 2 2 0 7 0 1 0
Recreation Reference Regional Science Shopping Society Sports World

Terms
and
Count 1 1 1 0 0 1 0 3

5.1.4 Profile Clustering

Clustering is the process of grouping objects based on their similarity, such that

the object in the same cluster is highly similar, whereas it is dissimilar from the

objects of other clusters. Profile clustering is the second step of PaOSLo, the

similarity between the users’ based on degree 1 of the ODP hierarchy calculated

Profile aware ObScure Logging (PaOSLo) 131

Table 5.4: Terms extracted for degree 1 of user “280617”

Arts Business Computers Games Health Home Kids_and
_Teens News

0 6 5 1 0 3 0 2
Recreation Reference Regional Science Shopping Society Sports World

Terms
and
Count 0 1 4 0 0 1 0 0

Table 5.5: Similarity between sample seven users’ profile at degree 1 of ODP
hierarchy

User to User
cosine similarity 1000335 1002092 100218 1002425 1002791 1003275 1004684

1000335 1 0.675079 0.683216 0.659781 0.852979 0.428317 0.73927
1002092 0.675079 1 0.69809 0.657131 0.503999 0.532601 0.741844
100218 0.683216 0.69809 1 0.802557 0.694908 0.348226 0.522755
1002425 0.659781 0.657131 0.802557 1 0.523591 0.316964 0.59288
1002791 0.852979 0.503999 0.694908 0.523591 1 0.271875 0.677567
1003275 0.428317 0.532601 0.348226 0.316964 0.271875 1 0.46275
1004684 0.73927 0.741844 0.522755 0.59288 0.677567 0.46275 1

Table 5.6: Number of users in each cluster after K-Mean clustering

Cluster count Cluster 1 Cluster 2 Cluster 3 Cluster 4 cluster 5
Three cluster 390 306 304 - -
Four Cluster 266 188 311 235 -
Five Cluster 241 122 222 236 179

in the previous step works as an input for profile clustering. Weka tool cluster

the users’ based on profile similarity [88]. To perform the process of clustering,

the profile similarity matrix computed in the previous step is transformed into

Attribute-Relation File Format (ARFF). An ARFF is the extension of Comma

Separated Value (CSV), this file is an ASCII text file that defines a list of instances

sharing a set of attributes [89]. ARFF files consist of Header information and Data

information. The first Section (Header) holds the name of the relation, the list

of attributes and the type of attribute (numeric, nominal, string, and date &

time). The data Section defines the data declaration and actual instances lines.

Figure 5.3 shows a sample of ARFF file, such type of file is created and loaded into

Weka. The profile of the users’ is grouped into three cluster, four clusters, and five

clusters using a simple K-Mean algorithm. Euclidean distance is used to calculate

the distance between the objects of the clusters [90]. Based on the minimum value

of Euclidean distance each object is assigned to one of the clusters. Table 5.5

shows the number of users assigned to each cluster; the cluster is calculated over

the term count of degree 1 categories of the ODP hierarchy.

Figure 5.4 shows the term count in each category of degree 1 in the ODP hierarchy.

Profile aware ObScure Logging (PaOSLo) 132

Figure 5.3: Sample ARFF file

The x-axis of the graph shows the top level 16 categories of ODP, whereas the y-

axis shows the count of the terms in each cluster. Cluster 1 comprises those

users who have sent queries mostly from “Regional” category. Cluster 2 has users

who have sent most queries from “Business” category and cluster 3 has users

who have mostly sent queries from the “Arts” categories. Similarly, when users

grouped in four clusters, cluster 1 contains mostly those users who have forwarded

queries from the “Arts” category. Cluster 2 contains users who have interests in

“Business” categories, cluster 3 contains users of “Regional” category, and cluster

4 from “Computer” category.

Figure 5.5 shows when users are grouped into four clusters based on the term

count of degree 1 of the ODP hierarchy. Cluster 1 contains most users that have

sent queries from the “Art” category and users of cluster 2 have interests in the

“Business” category. Similarly, cluster 3 contains predominantly queries from the

“Regional” category and cluster 4 contains queries from the “Computer” category.

Figure 5.6 shows the term count of each category of ODP at degree 1 for a situation

when users are grouped into five clusters. Cluster 1 contains those users who have

sent maximum queries from the “Arts” category; “Computer” category dominates

Profile aware ObScure Logging (PaOSLo) 133

Figure 5.4: Term count in three cluster

cluster 2, cluster 3 with “Regional”, cluster 4 with“Recreation” while cluster 5 is

dominates with “Business” categories.

Based on profile similarity, once the users are clustered, the next step of PaOSLo is

to create a group with CS. The PaOSLo has the same entities as OSLo discussed in

Section 3.2. The group creation process, SQFC selection, query sending process,

query shuffling, query forwarding to the WSE, and result-broadcasting process

and algorithm for each process are discussed in Section 3.3. The major difference

between the profile aware grouping (PaOSLo) and random grouping (OSLo) is the

prior clustering of users based on profile similarity. As PaOSLo is simulated with

the group size of 3 users, 4 users and 5 users so datasets are organized into three

clusters, four clusters and five clusters to evaluated the impact of clustering.

5.2 PaOSLo Execution Process

The following are the necessary steps required in the execution of PaOSLo.

1. The primary step of PaOSLo is to compute the similarity between the users’

profile at degree 1 of the ODP hierarchy using cosine similarity measure.

2. The second step is to cluster the users’ having similar interest, K-Mean

algorithm clusters the users into three, four, and five clusters.

Profile aware ObScure Logging (PaOSLo) 134

Figure 5.5: Term count in four cluster

Figure 5.6: Term count in five cluster

3. To obfuscate the profile of a user with the queries of dissimilar interest a

group of ‘n’ users is created by selecting one user from each distinct cluster.

The PaOSLo is simulated with the group size of three users, four users,

and five users. Figure 5.7 shows the activity diagram of group creation and

SQFC selection process.

4. The SQFC selection, the query sending process, i.e., encryption, shuffling,

decryption, forwarding query to WSE, query result encryption, query result

broadcasting, and query result decryption are performed in the same fashion

as discussed in Section 3.3. Figure 5.8 shows the activity diagram of query

sending and result broadcasting process.

Profile aware ObScure Logging (PaOSLo) 135

Figure 5.7: PaOSLo: Acitivity diagram of Group creation and SQFC selection
process

It is important to mention that PaOSLo creates a group of ‘n’ users by selecting

a user from each distinct cluster; after simulation the PaOSLo came across with

the situation when one cluster gets empty while other still have users with queries.

This is due to users are not evenly distributed in the cluster; rather some cluster

has a higher number of users as compared to others. For example, when the dataset

is divided into five clusters, cluster 1 has 122 users; cluster 2 has 179 users, and

so on. When the PaOSLo is simulated for the group of five users, those five users

are selected from five clusters, i.e., one user from each distinct cluster. The cluster

with the smaller number of queries/users is exhausted while the other four clusters

still contain users with queries. In such a case, the PaOSLo is simulated again,

but this time with a group of four users, each user from four different clusters.

Similarly, after some more executions by PaOSLo, another cluster is exhausted,

and PaOSLo is then simulated for the group size of three users. At one point, the

PaOSLo is left with only two clusters with users having only very few queries left.

In such a situation, the queries that are not forwarded to the WSE are excluded

from the original file of the user. For example, a user had 40 original queries

and he has forwarded only 35 queries while 5 queries are yet to be sent and the

clusters are exhausted. Those five queries will be excluded from the original file

when computing the profile privacy.

Profile aware ObScure Logging (PaOSLo) 136

Figure 5.8: PaOSLo: Activity diagram of query sending and result broadcast-
ing process

5.3 Privacy of PaOSLo

The privacy objective of a user executing a distributed privacy-preserving protocol

is to achieve the following objectives, i.e., the query content and result to query

remains hidden from the group entities. Query that cannot be linked with the

user will hamper the capability of WSE to build actual profile of the user. As

evaluated in previous chapters, the privacy of a user executing PaOSLo will be

executed in two dimensions, i.e., the local privacy and profile privacy.

5.3.1 Local Privacy of PaOSLo

A user preserves the local privacy relative to the peer entities involved in forward-

ing a query to WSE. The local privacy is enforced through query encryption (to

hide the contents of query and result), query shuffling (to ensure unlinkability)

and result in broadcasting. Section 3.5.2 explains the query encryption process

Profile aware ObScure Logging (PaOSLo) 137

(detailed in 1); PaOSLo adopts the same approach to encrypt the query con-

tent. Similarly, to achieve unlinkability a query is shuffled among the group users,

query-shuffling procedure are discussed in (2) of 3.5.2. As the query is encrypted

with the public key of SQFC, no user in the group can see the query contents.

However, if the SQFC is curious and wants to link a query to the user, the question

is what advantages does a SQFC have? What if the SQFC builds a coalition with

group users?

Let two random variables S and P , where S denotes the source of the query, and

P represents the proxy (a peer user in the group), pass the query to the SQFC.

Suppose there are ‘n’ users in the group. If the SQFC wants to find the originating

user of a leery query, the probability of linking the query to the user “Ui” is given

below.

Pr[S = Ui | P = Uj] =
Pr[P = Uj | S = Ui] · Pr[S = Ui]

Pr[P = Uj]
(5.2)

Pr[P = Uj | S = Ui] = Pr[P = Uj] (5.3)

Pr[S = Ui] =
1

n− 1
(5.4)

Where, n represents the number of users in a group and i, j ∈ (1...n) , as SQFC

is not the query source so SQFC excludes himself.

Pr(S = Ui | P = Uj) =
1

n− 1
(5.5)

Equation (5.5) shows the probability of linking query with the user by SQFC

depends on a number of users in a group, all users in the group are equally probable.

However, If SQFC and C users collaborate to identify the query originat then the

probability of linking query is given in (5.6)

Pr(S = Ui | P = Uj) =
1

n− C
(5.6)

Equation 5.6 shows, if SQFC makes a coalition with C user the probability of

linking query with the initiator 1
n−C

, which means all compromised C users will

be excluded from the list. If C is equal to n, it means all users are compromised

and there is no one to link the query with, if n − C equal to one means all users

are compromised except the originator, n− C shall be greater than one.

Profile aware ObScure Logging (PaOSLo) 138

The CS and peer users cannot read the content of the query and query results as

they are encrypted, however, if any of the curious entity makes a coalition with

SQFC, then equation (5.6) shows the chances of associating the query with the

originator. As the CS is not involved in the query shuffling process, if SQFC does

not collaborate with CS or group user, none of the curious entity would see the

query or query result and the probability of relating the query with the originator

is 1
n
, i.e., all users are equally probable. However, if CS makes a coalition with

SQFC, the chances of linking the query with the originator are given in Equation

(5.5). The group users do not see the query (q) or result returned (r), however, if

the compromised peers make a coalition with SQFC then the probability of linking

query with the originator is given in Equation (5.6)

5.3.2 Profile Privacy of PaOSLo

Profile privacy measures the privacy of a user relative to the WSE, it computes

the difference between the original profile and obfuscated profile of the user. A

privacy metric PEL measures the level of the profile exposure from the observance

of obfuscated profile. PEL measures the difference between original profile (built

from the queries what user send directly to the WSE) and obfuscated profile

(built from the queries what user send after the execution of PaOSLo). PEL uses

entropy and mutual information according to equation 2.5 to compute he difference

between the original profile and obfuscated profile. Table 5.1 shows the average

PEL a user achieves by executing PaOSLo. The Average PEL at degree 1 of the

ODP hierarchy for the group size of three users is 46.64%, at degree 2 the average

PEL drops to 11.14%, the average PEL further drops to 5.5% at degree 3, and

so on. Similarly, for the group size of four users, the average PEL is 46.32% at

degree 1, 10.6% at degree2, 5.44% at degree 3 and 5.75 at degree 4 of the ODP

hierarchy. Likewise, the average PEL for the group size of five users at degree 1 is

46.29%, 10.58%, 5.83% and 5.92% at degree 2, degree 3 and degree 4 of the ODP

hierarchy. The results show that the average PEL of a user decreased when the

group size is increase. Similar pattern is observed at all degree of ODP hierarchy.

This is because the profile of a user is obfuscated with the multiple users having

dissimilar interests.

Profile aware ObScure Logging (PaOSLo) 139

Table 5.7: Average PEL comparison of UUP(e), OSLo and PaOSLo

Number of User Protocol Degree 1 Degree 2 Degree 3 Degree 4
UUP(e) 51.86 13.39 7.3 7.22
OSLo 47.7 12.79 6.95 7.173 Users
PaOSLo 46.65 11.14 5.5 6.01
UUP(e) 51.16 13.14 7.07 7.2
OSLo 48.56 12.76 6.85 6.954 Users
PaOSLo 46.32 10.6 5.44 5.75
UUP(e) 51.55 13.47 7.37 7.26
OSLo 49.18 12.86 6.99 6.855 Users
PaOSLo 46.29 10.58 5.39 5.92

5.3.3 Profile Privacy Comparison of UUP(e), OSLo and

PaOSLo

The profile privacy achieved by a user executing PaOSLo is compared with the

state-of-art privacy-preserving protocol UUP(e) and OSLo. This is basically a

comparison between random grouping of users and profile aware grouping of users.

Table 5.7 shows the result comparison of average PEL of UUP(e), OSLo and

PaOSLo. All three protocols employ single dynamic groups and they are simulated

for a situation where self-query submission is not allowed, simulated over the same

dataset described in section 3.4.2. The results show that PaOSLo has less average

PEL at all degrees of the ODP hierarchy as compared to UUP(e) and OSLo for

any group size. The PaOSLo has 10% less average PEL as compared to UUP(e)

and 2.5% less as compared to OSLo at degree 1 of the ODP hierarchy for the

group size of three users. The PaOSLo has 9.6% and 4.7% less average PEL as

compared to UUP(e) and OSLo at degree 1 of the ODP hierarchy for the group size

of four users. Similarly, for the group size of five users, the PaOSLo has 8.7% and

4.36% better profile privacy as compared to UUP(e) and OSLo. Results show that

PaOSLo provides better profile privacy as compared to UUP(e) and OSLo at all

degrees of the ODP hierarchy for any group size. The reasons are the PaOSLo first

cluster users based on their profile similarities. In such case, the group created by

CS from different clusters contains users of dissimilar interest. Each user forwards

a query of other users from the different clusters; hence, the profile of a user is

obfuscated with the queries of users who have a dissimilar interest, and the user

achieves maximum obfuscation.

Profile aware ObScure Logging (PaOSLo) 140

Figure 5.9: Average PEL of UUP(e) VS. OSLo VS. PaOSLo

5.4 Conclusion

The existing distributed privacy-preserving protocols create a group of ‘n’ users

on first come first serve basis. Users are randomly grouped to forward each other’s

queries to the WSE without any prior knowledge of their interests. In random

grouping, there is a greater chance that users having similar interests may be group

together. Such grouping has a trivial effect on profile obfuscation. To overcome

the limitation random grouping, this chapter proposes a novel privacy preserving

protocol PaOSLo to obfuscate the profile with the queries of those users who have

a dissimilar interest. Profile obfuscation with queries of dissimilar interest is the

prime objective of PaOSLo. Profile building and finding the similarity between

users’ profiles are the primary steps of PaOSLo. The profile of the user is build

using syntactic and semantic analysis of the query term, whereas, cosine similarity

measures the resemblance between the users’ profiles. K-Mean algorithm clusters

the users’ into three, four and five clusters based on the similarity computed in the

previous step. To evaluate the impact of profile aware grouping, an experiment

with the group size of three users, four users and five users is performed by selecting

a user from each distinct cluster. A user executing PaOSLo forwards queries of

other users of the group but not of his own query. The local privacy and profile

privacy are the two dimensions to evaluate the privacy of a user.

The local privacy calculates the probability of linking the query to the user by a

curious entity. As the user encrypts the query with the public key of SQFC, no

Profile aware ObScure Logging (PaOSLo) 141

one will read the query content. However, If SQFC is curious and wants to find the

query originator, 1
(n−1)

is the probability of linking the query to the user. But if a

SQFC makes a coalition with ‘c’ collaborators in a group 1
(n−c)

is the probability

of linking query with the user.

Profile privacy measures the extent of profile obfuscation by executing the PaOSLo.

A privacy metric profile exposure level (PEL) measures the profile privacy of the

user by calculating the difference between the original profile and obfuscated pro-

file. An experiment is performed to compare the profile privacy a user achieves by

executing PaOSLo and state-of-the-art privacy preserving protocol UUP(e) and

OSLo based on the privacy metric PEL. The results show that when PaOSLo

clustered the dataset into three clusters, it had preserved 10.04% and 2.2% better

profile privacy at degree 1 of the ODP hierarchy for the group size of three users.

Similarly, when the dataset is clustered into four groups and has executed the

protocols with the group size of four users, PaOSLo preserved 9.46% and 4.61%

better profile privacy as compared to UUP(e) and OSLo at degree 1 of the ODP

hierarchy. Likewise, when the dataset is clustered into a count of five, the PaOSLo

provides better profile privacy at degree 1 of the ODP hierarchy as compared to

UUP(e) and OSLo. Furthermore, at higher degrees of the ODP hierarchy, PaOSLo

has shown improved results as compared to UUP(e) and OSLo.

This chapter answer research question 2 of this dissertation mentioned in section

1.8. Research Question 2. What is the effect of random grouping and profile

aware grouping on the privacy of the user?

This chapter answered the research question 2, the privacy a user achieved through

profile-aware grouping is compared with the random grouping protocols (UUP(e)

and OSLo). The results show that the profile-aware grouping provides better pro-

file privacy as compared to random grouping. The result of profile-aware grouping

is compared for degree 1 to degree 4 of the ODP hierarchy. Therefore, the concept

of profile based grouping preserves better profile privacy as compared to random

grouping. The user executing PaOSLo achieves the same local privacy as provided

by OSLo, however, as improved profile privacy.

Chapter 6

Conclusion and Future Work

The Internet is an enormous warehouse of data, holding a range of material and

containing information almost about everything. People from every category, class

or country definitely need information residing in the WWW. The Web Search

Engines (WSEs) like Google, Ask, Bing, AOL, Baidu etc., allow us to retrieve

relevant information from the web using search queries. Through the searching and

information retrieval process, the WSEs record all submitted queries called a query

log. WSEs claim that they evaluate the query log through certain algorithms for a

long period to profile and categorize the users according to the users’ interests. The

query log frequently holds sensitive data or information about the user submitting

the query, and the dissemination of such data violates the user’s privacy [15]. The

release of such information poses a serious risk to the user privacy. Preserving web

search privacy is the real concern of today’s Internet life.

The existing techniques that preserve the Web search privacy of a user are classified

into categories like standalone schemes, proxy servers / third party infrastructure,

query scrabbling, hybrid techniques (encompassing standalone and proxy services)

and distributed protocols. Unlinkability and indistinguishability are the two ad-

vantages of distributed protocols over other techniques. However, there are certain

limitation in the existing distributed protocols, to tackle the limitation of existing

distributed protocols. Three novel distributed protocol are proposed employing

single dynamic groups named ObScure Logging (OSLo), Multi group distributed

protocol termed as MG-OSLo, and a profile aware user grouping protocol called

142

Conclusion and Future Work 143

PaOSLo. The objective of the OSLo and MG-OSLo is to provide both unlinkabil-

ity (local privacy)and indistinguishability (profile privacy), whereas to obfuscate

the profile with the users having dissimilar interest is the additional feature of

PaOSLo. The section below describes the functionality and efficiency of each

protocol.

6.1 ObScure Logging (OSLo)

To eliminate the limitation in the existing single group distributed privacy-pre-

serving protocols and provide better privacy as compared to the state-of-the-art

privacy-preserving protocol UUP(e) and co-utile, a novel single group privacy-

preserving protocol OSLo is proposed to preserve the privacy of a user.

The local privacy and profile privacy are the two dimensions in which the privacy

of a user were assessed. The query encryption, query shuffling, result encryption,

and result broadcasting are the steps followed to enforce local privacy. The local

privacy is measured using a probabilistic model relative to the entities involved in

forwarding the query to the WSE. The probabilistic model illustrates that 1
n−1

is

the probability of linking the query to the user by SQFC. However, if the SQFC

forms a coalition with other group users, 1
n−C

is the probability of linking the

query to the user where, c is the number of compromised users that have made a

coalition with SQFC to link a query with the user.

To evaluate the profile privacy of a user, a comprehensive experimentation is per-

formed with two datasets consisting of 500 users and 1000 users selected randomly

from the AOL query log from the least active to highly active users. The exper-

iment investigated the impact of the user count on profile privacy. The OSLo is

simulated for two situations, i) self-query submission allowed, and ii) self-query

submission not allowed. Results ensure that the average PEL drops by increasing

the group size at all degrees of the ODP hierarchy.

The proposed protocol OSLo tackled the limitation mentioned in section 3.1,

by achieving both local privacy and profile privacy. The local privacy acquired

Conclusion and Future Work 144

through encryption and query shuffling. The encryption ensured the query con-

tent and the query result hidden from the group users, whereas, the query shuffling

made the query unlinkable with the originating user. Hence, local privacy achieved

both unlinkability and confidentiality. Additionally, each user has forwarded a va-

riety of queries of other users resulted in the obfuscation of profile maintained by

WSE. This chapter answered the first research question (RQ 1) along with its

sub-parts RQ 1(a) and RQ 2(b). The key contribution of OSLo is that it offers,

improved privacy in terms of unlinkability (local privacy) and indistinguishability

(profile privacy) as compared to the state-of-the-art privacy-preserving protocols

i.e., UUP(e) and the co-utile protocol. Furthermore, the impact of group sizes for

a situation where self-query submission is allowed and self-query submission is not

allowed are also investigated in chapter 3.

6.2 Multi Group ObScure Logging (MG-OSLo)

In the existing multi-group privacy-preserving protocols, memory locations were

used to enforce privacy through unlinkability. A memory location is like a virtual

box, a set of users associated with it could drop/write their query in it. Another

user associated with the memory location is supposed to read the query and for-

ward it to the WSE. A user who had access to the memory location can read the

query contents and results in the query, hence compromising the privacy of the

user. Further, the privacy of a user in a multi-group was only evaluated relative

to the group users. To the best of our knowledge, that profile obfuscation was

never evaluated in a multi-group protocol. To tackle the limitation in the existing

multiple groups’ privacy-preserving protocol, and to evaluate the profile privacy

of a user along with privacy relative to the group users, a novel protocol called

MG-OSLo is proposed. The local privacy and profile privacy are the two dimen-

sions in which the privacy of a user are evaluated. To enforce the local privacy a

non-overlapping group design (a user appears in a single group) and overlapping

group design (a user appear in multiple groups) are considered to group the users.

A probabilistic model calculates the probability that a curious entity has in linking

the query to the user. In the case of non-overlapping group design, the probability

Conclusion and Future Work 145

of linking the query to the user by a curious GSQFC is given by 1
K(b−1)

. The CS

and group user cannot see the query or query result, as both are encrypted using

an asymmetric key. However, if a curious CS builds a coalition with GSQFC, the

probability of linking the query is 1
K(b−1)

. Similarly, if multiple GSQFC collaborate

to find the query originating user, the probability of linking is 1
K(b−C)

. Even if all

GSQFC are compromised including CS, the probability of linking query is 1/k.

In the case of overlapping group design, a balanced incomplete block design (BIBD)

is considered to compute the local privacy (unlinkability) of a user. BIBD is based

on (v, b, r, k, λ) configuration. In the overlapping design, two situation are consid-

ered, i) source and GSQFC belong to different groups. If the GSQFC is curious

and wants to link query with the user, the probability of linking query is computed

as r
b·K)

ii) When source and GSQFC belong to the same group, two possible cases

may arrive as a source and GSQFC paired in λ groups. In the first case when

the GSQFC act as proxy Uj for source Ui and forwards the query to WSE, the

probability of linking query with the user is computed as 1
(K−1)

. In the second

case when the proxy Uj ̸= GSQFC, the probability of linking query with the user

is computed as 1
λ(K−1)

.

To measure the profile privacy of a user executing MG-OSLo, an experiment is

performed to find the extent of profile obfuscation. The experiment consists of

steps like simulating MG-OSLo for two situations (i.e., self-query submission al-

lowed and self-query submission not allowed), building the profile for a user and

computing the level obfuscation with the privacy metric PEL. The results for the

first situation (allowing self query submission) show that the MG-OSLo provides

better profile privacy and a lower PEL as compared to OSLo and co-utile for all

group sizes when simulated with dataset 1. When the MG-OSLo is simulated with

dataset 2, the MG-OSLo displayed improved privacy over OSLo as compared to

OSLo and co-utile at degree 1 to degree 4 of ODP hierarchy.

Similarly, in the second situation, when self-query submission is not allowed, the

profile privacy of MG-OSLo is compared with UUP(e) and OSLo. Results show

that when these protocols were simulated for dataset 1 and dataset 2 for the group

count of three, the MG-OSLo has also depicted better profile privacy as compared

to UUP(e) and OSLo. The simulation results depict that a user achieved the

Conclusion and Future Work 146

best profile privacy results with group count of three, each having three users in a

group. In chapter 4, the MG-OSLo eliminated the limitation in the existing multi-

group protocol. The research question (RQ 1) and its subparts (RQ 1(a) and RQ

1(b)) are addressed in chapter 4. The user achieved both the local privacy through

encryption and query shuffling and profile privacy by forwarding the queries of the

group users.

6.3 Profile Aware ObScure Logging (PaOSLo)

Group creation is the primary step of any distributed privacy-preserving proto-

cols; each user in the group has to forward the query of other users to obfuscate

the profile maintained by the WSE. In the existing protocols (OSLo, UUP(e)), a

group of ‘n’ random users is created on a first come first serve basis. The random

grouping approach can create a group of users having similar interests, making

the profile insignificantly obfuscated. To create a group of a user having unrelated

interests, a novel distributed privacy-preserving protocol, called profile aware Ob-

Scure Logging (PaOSLo), is proposed to achieve better obfuscation of the user’s

profile maintained by WSE. In the first step of PaOSLo execution, the users are

clustered into groups based on their profile similarity before creating the group.

The cosine similarity measure is used to compute the similarity between the users’

profiles based on degree 1 of the ODP hierarchy. K-Mean algorithm clusters the

users into three clusters, four clusters, and five clusters. Afterward, the CS cre-

ated a group of users by selecting a user from each cluster, resulting in the profile

of a user obfuscated with queries of those users having dissimilar interests. The

impact of profile aware grouping on the profile privacy is evualted with dataset 2

in accordance with the step mentioned in section 3.5.2.

The Profile privacy a user achieved by executing PaOSLo is compared with the

state-of-the-art privacy-preserving protocol UUP(e) and OSLo based on privacy

metric PEL. The results showed that PaOSLo preserved 10.04% and 2.2% better

profile privacy as compared to UUP(e) and OSLo for the group size of three users.

Similarly, for the group size of four users, PaOSLo preserved 9.46% and 4.61%

better profile privacy at degree 1 of the ODP hierarchy. Likewise, when five users

Conclusion and Future Work 147

are grouped together, PaOSLo preserved 8.74% and 4.35% enhanced privacy as

compared to UUP(e) and OSLo at degree 1 of the ODP hierarchy. The results

show that at a higher degree of the ODP hierarchy PaOSLo provided better profile

privacy as compared to UUP(e) and OSLo.

PaOSLo addressed the research question (RQ 2), it evaluated the impact of profile

aware grouping vs random grouping. The results depicted that PaOSLo has a pos-

itive impact on profile privacy. A user achieved better profile privacy by grouping

with those users having dissimilar interests as compared to the random grouping.

6.4 Limitation of Proposed Work

Web search privacy is an active area of research; people from academia, business,

politics, etc. need to preserve their privacy when searching data via the WSE. How-

ever, there are some limitations associated with any distributed privacy-preserving

protocols. The ethical issue is one of the major problems associated with a private

web search. A user is possibly grouped with other users having no prior knowl-

edge about their intention or preferences. It is likely that a user may forward an

inappropriate query to the WSE on behalf of another user. Viejo et.al, in [43]

have suggested the solution with regards to this ethical issue. Initially we have

adopted the same solution to tackle this problem, however, in future alternatives

are required to deal with this specific issue. The time required to create a group

is a critical issue, although around 72 thousand queries are sent to Google in one

second. According to the Poisson distribution, if there is an average of 72 queries

per hundredth of a second, the probability of making a group of n=3 users to send

6 queries is 1 [13]. However, in realtime the number of users adopting distributed

privacy-preserving protocol remains questionable. In this dissertation, the users

that execute the proposed distributed protocols are considered curious but honest.

However, if a user is selfish and forwards his query through other users but refuses

to forward the queries of group users by leaving the group, it is another concern of

distributed privacy-preserving protocols. Personalized results are more appealing

to the user; profile obfuscation affects the quality of results. Poor personalized

results are also an apprehension of distributed privacy-preserving protocols.

Conclusion and Future Work 148

6.5 Future Work

In the future, the alternative way of user profiling needs to be investigated. The

WSE keeps track of user profiles through many ways to provide personalized re-

sult. To enforce the web search privacy, these alternative ways of profiling require

a further dimension of research. The effect of privacy on quality of results needs ex-

ploration. Moreover, how to get personalised results and privacy at the same time

is a query for future exploration. The execution of distributed privacy-preserving

protocol, such as encryption, shuffling, query forwarding, result processing and

broadcasting, can cause significant delays in getting results from the WSE. The

privacy and delay factor are another direction this research shall assess. Addi-

tionally, the privacy of the proposed distributed privacy-preserving protocols are

compared with state-of-the-art distributed privacy-preserving protocol UUP(e)(e).

However, the privacy of the proposed protocol shall be compared with the stan-

dalone scheme as well as the hybrid scheme.

Bibliography

[1] K. Purcell, L. Rainie, and J. Brenner, “Search engine use 2012,” 2012.

[Online]. Available: pewinternet.org/Reports/2012/Search-Engine-Use-2012.

aspx.

[2] “Internet live stats - internet usage social media statistics,” last accessed

June 16, 2019. [Online]. Available: https://www.internetlivestats.com/

[3] O. Y. Rieger, “Search engine use behavior of students and faculty: User per-

ceptions and implications for future research,” First Monday, vol. 14, no. 12,

2009.

[4] O. Dan and B. D. Davison, “Measuring and predicting search engine users’

satisfaction,” ACM Computing Surveys (CSUR), vol. 49, no. 1, pp. 1–35,

2016.

[5] N. Kaaniche, S. Masmoudi, S. Znina, M. Laurent, and L. Demir, “Privacy pre-

serving cooperative computation for personalized web search applications,” in

Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020,

pp. 250–258.

[6] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy, D. Lazer,

A. Mislove, and C. Wilson, “Measuring personalization of web search,” in

Proceedings of the 22nd international conference on World Wide Web. ACM,

2013, pp. 527–538.

[7] C. Romero-Tris, J. Castella-Roca, and A. Viejo, “Distributed system for pri-

vate web search with untrusted partners,” Computer Networks, vol. 67, pp.

26–42, 2014.

149

pewinternet.org/Reports/2012/Search-Engine-Use-2012. aspx.
pewinternet.org/Reports/2012/Search-Engine-Use-2012. aspx.
https://www.internetlivestats.com/

Bibliography 150

[8] J. Parra-Arnau, D. Rebollo-Monedero, and J. Forné, “Measuring the pri-

vacy of user profiles in personalized information systems,” Future Generation

Computer Systems, vol. 33, pp. 53–63, 2014.

[9] A. Cooper, “A survey of query log privacy-enhancing techniques from a policy

perspective,” ACM Transactions on the Web (TWEB), vol. 2, no. 4, pp. 1–27,

2008.

[10] C. Wei, Q. Gu, S. Ji, W. Chen, Z. Wang, and R. Beyah, “Ob-wspes: A

uniform evaluati on system for obfuscation-based web search privacy,” IEEE

Transactions on Dependable and Secure Computing, pp. 1–18, 2019.

[11] F. Saint-Jean, A. Johnson, D. Boneh, and J. Feigenbaum, “Private web

search,” in Proceedings of the 2007 ACM workshop on Privacy in electronic

society. ACM, 2007, pp. 84–90.

[12] B. C. Fung, K. Wang, A. W.-C. Fu, and S. Y. Philip, Introduction to privacy-

preserving data publishing: Concepts and techniques. Chapman and Hal-

l/CRC, 2010.

[13] M. Ullah, M. A. Islam, R. Khan, M. Aleem, and M. A. Iqbal, “Obsecure

logging (oslo): A framework to protect and evaluate the web search privacy

in health care domain,” Journal of Medical Imaging and Health Informatics,

vol. 9, no. 6, pp. 1181–1190, 2019.

[14] Mar 2013 (accessed May 15, 2019). [Online]. Available: http://www.google.

com/privacy

[15] P. Eckersley, “How unique is your web browser?” in International Symposium

on Privacy Enhancing Technologies Symposium. Springer, 2010, pp. 1–18.

[16] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,

A. Narayanan, and E. W. Felten, “Cookies that give you away: The surveil-

lance implications of web tracking,” in Proceedings of the 24th International

Conference on World Wide Web. International World Wide Web Conferences

Steering Committee, 2015, pp. 289–299.

http://www.google.com/privacy
http://www.google.com/privacy

Bibliography 151

[17] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and

B. Preneel, “Fpdetective: dusting the web for fingerprinters,” in Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security.

ACM, 2013, pp. 1129–1140.

[18] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vi-

gna, “Cookieless monster: Exploring the ecosystem of web-based device fin-

gerprinting,” pp. 541–555, 2013.

[19] D. Pàmies-Estrems, J. Castellà-Roca, and J. Garcia-Alfaro, “A real-time

query log protection method for web search engines,” IEEE Access, vol. 8,

pp. 87 393–87 413, 2020.

[20] A. J. Biega, R. Saha Roy, and G. Weikum, “Privacy through solidarity: A

user-utility-preserving framework to counter profiling,” in Proceedings of the

40th International ACM SIGIR Conference on Research and Development in

Information Retrieval. ACM, 2017, pp. 675–684.

[21] H. Wang, W. Liu, and J. Wang, “Achieve web search privacy by obfuscation,”

in International Conference on Security with Intelligent Computing and Big-

data Services. Springer, 2019, pp. 315–328.

[22] M. Barbaro, T. Zeller, and S. Hansell, “A face is exposed for aol searcher no.

4417749,” New York Times, vol. 9, no. 2008, pp. 1–8, 2006.

[23] A. Arampatzis, G. Drosatos, and P. S. Efraimidis, “Versatile query scrambling

for private web search,” Information Retrieval Journal, vol. 18, no. 4, pp. 331–

358, 2015.

[24] R. Khan, M. A. Islam et al., “Quantification of pir protocols privacy,” in 2017

International Conference on Communication, Computing and Digital Systems

(C-CODE). IEEE, 2017, pp. 90–95.

[25] R. Khan, M. Ullah, and M. A. Islam, “Revealing pir protocols protected

users,” in 2016 Sixth International Conference on Innovative Computing Tech-

nology (INTECH). IEEE, 2016, pp. 535–541.

Bibliography 152

[26] M. Rasch, “Google’s data minefield,” The Register, 2006, last accessed

December 20, 2018. [Online]. Available: http://www.theregister.co.uk/2006/

01/31/googlesubpoenausgovernment/

[27] R. Khan, A. Ahmad, A. O. Alsayed, M. Binsawad, M. A. Islam, and M. Ullah,

“Qupid attack: Machine learning-based privacy quantification mechanism for

pir protocols in health-related web search,” Scientific Programming, vol. 2020,

p. DOI: https://doi.org/10.1155/2020/8868686, 2020.

[28] K. Hafner and M. Richtel, “Google resists us subpoena of search data,” New

York Times, vol. 20, pp. 1–3, 2006.

[29] S. T. Peddinti and N. Saxena, “Web search query privacy: Evaluating query

obfuscation and anonymizing networks 1,” Journal of Computer Security,

vol. 22, no. 1, pp. 155–199, 2014.

[30] J. Yang, M. M. H. Onik, N.-Y. Lee, M. Ahmed, and C.-S. Kim, “Proof-of-

familiarity: A privacy-preserved blockchain scheme for collaborative medical

decision-making,” Applied Sciences, vol. 9, no. 7, pp. 1370–1394, 2019.

[31] K. Mathews-Hunt, “Cookieconsumer: Tracking online behavioural advertis-

ing in australia,” Computer Law & Security Review, vol. 32, no. 1, pp. 55–90,

2016.

[32] R. Esguerra, “Google ceo eric schmidt dismisses the importance of

privacy,” Electronic Frontier Foundation, vol. 10, 2009, last accessed

March 22, 2019. [Online]. Available: https://www.eff.org/deeplinks/2009/

12/google-ceo-eric-schmidt-dismisses-privacy/

[33] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation

onion router,” Naval Research Lab Washington DC, Tech. Rep., 2004.

[34] A. Petit, T. Cerqueus, S. B. Mokhtar, L. Brunie, and H. Kosch, “Peas:

Private, efficient and accurate web search,” in 2015 IEEE Trustcom/Big-

DataSE/ISPA, vol. 1. IEEE, 2015, pp. 571–580.

[35] S. B. Mokhtar, A. Boutet, P. Felber, M. Pasin, R. Pires, and V. Schiavoni,

“X-search: revisiting private web search using intel sgx,” in Proceedings of the

18th ACM/IFIP/USENIX Middleware Conference. ACM, 2017, pp. 198–208.

http://www.theregister.co.uk/2006/01/31/google subpoena us government/
http://www.theregister.co.uk/2006/01/31/google subpoena us government/
https://www. eff. org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy/
https://www. eff. org/deeplinks/2009/12/google-ceo-eric-schmidt-dismisses-privacy/

Bibliography 153

[36] A. Arampatzis, P. Efraimidis, and G. Drosatos, “Enhancing deniability

against query-logs,” in European Conference on Information Retrieval.

Springer, 2011, pp. 117–128.

[37] A. Petit, T. Cerqueus, A. Boutet, S. B. Mokhtar, D. Coquil, L. Brunie, and

H. Kosch, “Simattack: private web search under fire,” Journal of Internet

Services and Applications, vol. 7, no. 1, pp. 1–17, 2016.

[38] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transactions,”

ACM transactions on information and system security (TISSEC), vol. 1, no. 1,

pp. 66–92, 1998.

[39] J. Domingo-Ferrer, M. Bras-Amorós, Q. Wu, and J. Manjón, “User-private

information retrieval based on a peer-to-peer community,” Data & Knowledge

Engineering, vol. 68, no. 11, pp. 1237–1252, 2009.

[40] J. Castellà-Roca, A. Viejo, and J. Herrera-Joancomartí, “Preserving user’s

privacy in web search engines,” Computer Communications, vol. 32, no. 13-

14, pp. 1541–1551, 2009.

[41] C. M. Swanson and D. R. Stinson, “Extended combinatorial construc-

tions for peer-to-peer user-private information retrieval,” arXiv preprint

arXiv:1112.2762, 2011.

[42] C. Swanson and D. R. Stinson, “Extended results on privacy against coalitions

of users in user-private information retrieval protocols,” Cryptography and

Communications, vol. 7, no. 4, pp. 415–437, 2015.

[43] A. Viejo and J. Castellà-Roca, “Using social networks to distort users’ profiles

generated by web search engines,” Computer Networks, vol. 54, no. 9, pp.

1343–1357, 2010.

[44] A. Erola, J. Castellà-Roca, A. Viejo, and J. M. Mateo-Sanz, “Exploiting social

networks to provide privacy in personalized web search,” Journal of Systems

and Software, vol. 84, no. 10, pp. 1734–1745, 2011.

[45] J. Domingo-Ferrer, S. Martínez, D. Sánchez, and J. Soria-Comas, “Co-utile

p2p anonymous keyword search,” in Co-utility. Springer, 2018, pp. 51–70.

Bibliography 154

[46] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and

pseudonymity—a proposal for terminology,” in Designing privacy enhancing

technologies. Springer, 2001, pp. 1–9.

[47] S. Brier, “How to keep your privacy: Battle lines get clearer,”

The New York Times, vol. 13, January 1997, last accessed on May

16, 2019. [Online]. Available: www.nytimes.com/1997/01/13/business/

how-to-keep-yourprivacy-battle-lines-get-clearer.html

[48] D. C. Howe and H. Nissenbaum, “Trackmenot: Resisting surveillance in web

search,” Lessons from the Identity trail: Anonymity, privacy, and identity in

a networked society, vol. 23, pp. 417–436, 2009.

[49] S. T. Peddinti and N. Saxena, “On the privacy of web search based on query

obfuscation: a case study of trackmenot,” in International Symposium on

Privacy Enhancing Technologies Symposium. Springer, 2010, pp. 19–37.

[50] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca, “h (k)-private informa-

tion retrieval from privacy-uncooperative queryable databases,” Online Infor-

mation Review, vol. 33, no. 4, pp. 720–744, 2009.

[51] M. Juarez and V. Torra, “Dispa: An intelligent agent for private web search,”

in Advanced Research in Data Privacy. Springer, 2015, pp. 389–405.

[52] G. Weinberg, “Privacy, simplified.” 2008, last accessed on Feb 17, 2019.

[Online]. Available: https://duckduckgo.com/

[53] P. Bradley, “Search engines:’ixquick’, a multi-search engine with a difference,”

Ariadne, vol. 23, 2000.

[54] A. Raza, K. Han, and S. O. Hwang, “A framework for privacy preserving,

distributed search engine using topology of dlt and onion routing,” IEEE

Access, vol. 8, pp. 43 001–43 012, 2020.

[55] R. Pires, D. Goltzsche, S. B. Mokhtar, S. Bouchenak, A. Boutet, P. Felber,

R. Kapitza, M. Pasin, and V. Schiavoni, “Cyclosa: Decentralizing private web

search through sgx-based browser extensions,” in 2018 IEEE 38th Interna-

tional Conference on Distributed Computing Systems (ICDCS). IEEE, 2018,

pp. 467–477.

www.nytimes.com/1997/01/13/business/how-to-keep-yourprivacy-battle-lines-get-clearer.html
www.nytimes.com/1997/01/13/business/how-to-keep-yourprivacy-battle-lines-get-clearer.html
https://duckduckgo.com/

Bibliography 155

[56] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information

retrieval,” in Proceedings of IEEE 36th Annual Foundations of Computer

Science. IEEE, 1995, pp. 41–50.

[57] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single database,

computationally-private information retrieval,” in Proceedings 38th Annual

Symposium on Foundations of Computer Science. IEEE, 1997, pp. 364–373.

[58] R. Ostrovsky and W. E. Skeith, “A survey of single-database private infor-

mation retrieval: Techniques and applications,” in International Workshop

on Public Key Cryptography. Springer, 2007, pp. 393–411.

[59] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” IEEE transactions on information theory, vol. 31, no. 4,

pp. 469–472, 1985.

[60] Y. Lindel l and E. Waisbard, “Private web search with malicious adversaries,”

in International Symposium on Privacy Enhancing Technologies Symposium.

Springer, 2010, pp. 220–235.

[61] D. Chaum, “Untraceable electronic mail, return addresses and digital

pseudonyms,” in Secure electronic voting. Springer, 2003, pp. 211–219.

[62] R. Cramer, G. Hanaoka, D. Hofheinz, H. Imai, E. Kiltz, R. Pass, A. Shelat,

and V. Vaikuntanathan, “Bounded cca2-secure encryption,” in International

Conference on the Theory and Application of Cryptology and Information

Security. Springer, 2007, pp. 502–518.

[63] Z. Cao, L. Liu, and Z. Yan, “An improved lindell-waisbard private web search

scheme.” IJ Network Security, vol. 18, no. 3, pp. 538–543, 2016.

[64] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “The predecessor

attack: An analysis of a threat to anonymous communications systems,” ACM

Transactions on Information and System Security (TISSEC), vol. 7, no. 4,

pp. 489–522, 2004.

[65] G. Navarro-Arribas, Advanced Research in Data Privacy. Springer Interna-

tional PU, 2016, vol. 567.

Bibliography 156

[66] C. Romero-Tris, A. Viejo, and J. Castellà-Roca, “Multi-party methods for

privacy-preserving web search: Survey and contributions,” in Advanced Re-

search in Data Privacy. Springer, 2015, pp. 367–387.

[67] K. Stokes and M. Bras-Amorós, “Optimal configurations for peer-to-peer user-

private information retrieval,” Computers & mathematics with applications,

vol. 59, no. 4, pp. 1568–1577, 2010.

[68] N. Kaaniche, S. Masmoudi, S. Znina, M. Laurent, and L. Demir, “Privacy pre-

serving cooperative computation for personalized web search applications,” in

Proceedings of the 35th Annual ACM Symposium on Applied Computing, 2020,

pp. 250–258.

[69] J. Domingo-Ferrer, A. Viejo, F. Sebé, and Ú. González-Nicolás, “Privacy

homomorphisms for social networks with private relationships,” Computer

Networks, vol. 52, no. 15, pp. 3007–3016, 2008.

[70] J. Karmeshu, Entropy measures, maximum entropy principle and emerging

applications. Springer Science & Business Media, 2003, vol. 119.

[71] C. Diaz, S. Seys, J. Claessens, and B. Preneel, “Towards measuring

anonymity,” in International Workshop on Privacy Enhancing Technologies.

Springer, 2002, pp. 54–68.

[72] M. Ullah, R. Khan, and M. A. Islam, “Poshida, a protocol for private in-

formation retrieval,” in 2016 Sixth International Conference on Innovative

Computing Technology (INTECH). IEEE, 2016, pp. 464–470.

[73] U. Mohib, R. Khan, and M. A. Islam, “Poshida ii, a multi group distributed

peer to peer protocol for private web search,” in 2016 International Conference

on Frontiers of Information Technology (FIT). IEEE, 2016, pp. 75–80.

[74] A. Waksman, “A permutation network,” Journal of the ACM (JACM), vol. 15,

no. 1, pp. 159–163, 1968.

[75] C. Carpineto and G. Romano, “A review of ten year research on query log

privacy.” in 7th Italian Information Retrieval Workshop, 2016.

Bibliography 157

[76] A. Kumar, Web Usage Mining Techniques and Applications Across Industries.

IGI Global, 2016.

[77] M. Kamvar and S. Baluja, “A large scale study of wireless search behavior:

Google mobile search,” in Proceedings of the SIGCHI conference on Human

Factors in computing systems, 2006, pp. 701–709.

[78] P. Arora, A. Singh, and H. Tyagi, “Evaluation and comparison of security

issues on cloud computing environment,” World of Computer Science and

Information Technology Journal (WCSIT), vol. 2, no. 5, pp. 179–183, 2012.

[79] G. Singh, “A study of encryption algorithms (rsa, des, 3des and aes) for in-

formation security,” International Journal of Computer Applications, vol. 67,

no. 19, pp. 33–38, 2013.

[80] A. Siddharthan, “Christopher d. manning and hinrich schutze. foundations of

statistical natural language processing. mit press, 2000. isbn 0-262-13360-1.

620 pp. $64.95£ 44.95 (cloth).” Natural Language Engineering, vol. 8, no. 1,

pp. 91–92, 2002.

[81] N. Senthilkumar and P. R. Ch, “Prediction of user interest fluctuation using

fuzzy neural networks in web search,” International Journal of Intelligent

Unmanned Systems, 2020.

[82] DMOZ, “Odp, open directory project,” 2013 (accessed March 15, 2017).

[Online]. Available: http://www.dmoz.org/

[83] A. Viejo, J. Castella-Roca, O. Bernadó, and J. M. Mateo-Sanz, “Single-party

private web search,” in 2012 Tenth Annual International Conference on Pri-

vacy, Security and Trust. IEEE, 2012, pp. 1–8.

[84] G. Sterling, M. Beck, and A. Gesenhues, “Stats: comscore archives,”

accessed on May 27, 2019. [Online]. Available: https://searchengineland.

com/library/stats/stats-comscore

[85] K. Stokes and M. Bras-Amorós, “On query self-submission in peer-to-peer

user-private information retrieval,” in Proceedings of the 4th International

Workshop on Privacy and Anonymity in the Information Society. ACM,

2011, p. 7.

http://www.dmoz.org/
https://searchengineland.com/library/stats/stats-comscore
https://searchengineland.com/library/stats/stats-comscore

Bibliography 158

[86] A. Dey, Theory of block designs. J. Wiley, 1986.

[87] A. Huang, “Similarity measures for text document clustering,” in Proceed-

ings of the sixth new zealand computer science research student conference

(NZCSRSC2008), Christchurch, New Zealand, vol. 4, 2008, pp. 9–56.

[88] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The weka data mining software: an update,” ACM SIGKDD explorations

newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[89] P. Bhatia, Data Mining and Data Warehousing: Principles and Practical

Techniques. Cambridge University Press, 2019.

[90] J. Wu, Advances in K-means clustering: a data mining thinking. Springer

Science & Business Media, 2012.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Standalone Methods
	1.3 Third-party Infrastructure
	1.4 Hybrid Technique
	1.5 Query Scrambling
	1.6 Distributed Schemes
	1.7 Objectives and Significance
	1.8 Research Question / Problem statement
	1.9 Contribution
	1.10 Dissertation Organization

	2 Literature Review
	2.1 Standalone Schemes
	2.1.1 TrackMeNot
	2.1.2 GooPIR
	2.1.3 Dissociating Privacy Agent (DisPA)

	2.2 Third-party Infrastructure
	2.2.1 Scroogle
	2.2.2 TOR (The Onion Routing)
	2.2.3 Privacy-Preserving Framework using DLT and TOR

	2.3 Query Scrambling
	2.4 Hybrid Techniques
	2.4.1 Private Efficient and Accurate Web Search (PEAS)
	2.4.2 X-Search

	2.5 Distributed Schemes
	2.5.1 Indistinguishability Solutions
	2.5.2 Unlinkability Solutions
	2.5.3 Implementation of Distributed Protocols

	2.6 Summary of Distributed Protocols and Research Gap
	2.7 Privacy Evaluation Metrics
	2.7.1 Entropy
	2.7.2 Degree of Anonymity
	2.7.3 Profile Exposure Level (PEL)

	3 ObScure Logging (OSLo).
	3.1 Introduction
	3.2 ObScure Logging (OSLo)
	3.3 OSLo Execution Process
	3.3.1 Connection Setup
	3.3.2 SQFC Selection
	3.3.3 Query Sending Process
	3.3.4 Query Shuffling
	3.3.5 Query Sending to WSE and Result Retrieval
	3.3.6 Result Decryption Process

	3.4 Dataset
	3.4.1 Dataset 1
	3.4.2 Dataset 2

	3.5 Privacy Mechanism
	3.5.1 Adversary Model
	3.5.2 Mechanism to Achieve Local Privacy
	3.5.3 Mechanism to Achieve Profile Privacy

	3.6 Privacy Evaluation
	3.6.1 Local Privacy Evaluation

	3.7 Results and Discussion
	3.7.1 Profile Privacy Evaluation
	3.7.2 Time delay of OSLo
	3.7.3 Performance Comparison of UUP(e) vs. OSLo

	3.8 Limitation of OSLo
	3.9 Conclusion

	4 Multi-Group ObScure Logging (MG-OSLo)
	4.1 Multi-Group ObScure Logging (MG-OSLo)
	4.1.1 Entities
	4.1.2 MG-OSLo Execution Process

	4.2 Privacy Evaluation of MG-OSLo
	4.2.1 Local Privacy
	4.2.2 Profile Privacy

	4.3 Results and Discussion
	4.3.1 Profile Privacy of MG-OSLo: Self-Query Submission not Allowed Dataset 1
	4.3.2 Profile Privacy of MG-OSLo: Self-Query Submission Allowed Dataset 1
	4.3.3 Profile Privacy of MG-OSLo: Self-Query Submission Allowed Dataset 2
	4.3.4 Profile Privacy of MG-OSLo: Self-Query Submission not Allowed Dataset 2
	4.3.5 MG-OSLo VS OSLo VS Co-utile: Self-Query Submission Allowed Dataset 1
	4.3.6 MG-OSLo VS OSLo VS Co-utile: Self-Query Submission Allowed for Dataset 2
	4.3.7 MG-OSLo vs UUP(e) and OSLo: Self-Query Submission not Allowed Dataset 1
	4.3.8 MG-OSLO VS UUP(e) and OSLo: Self-Query Submission not Allowed at Dataset 2
	4.3.9 Time Complexity of MG-OSLo

	4.4 Conclusion

	5 Profile aware ObScure Logging (PaOSLo)
	5.1 PaOSLo Description
	5.1.1 User Profile Construction
	5.1.2 Measuring Similarity between the User Profiles
	5.1.3 Cosine Similarity
	5.1.4 Profile Clustering

	5.2 PaOSLo Execution Process
	5.3 Privacy of PaOSLo
	5.3.1 Local Privacy of PaOSLo
	5.3.2 Profile Privacy of PaOSLo
	5.3.3 Profile Privacy Comparison of UUP(e), OSLo and PaOSLo

	5.4 Conclusion

	6 Conclusion and Future Work
	6.1 ObScure Logging (OSLo)
	6.2 Multi Group ObScure Logging (MG-OSLo)
	6.3 Profile Aware ObScure Logging (PaOSLo)
	6.4 Limitation of Proposed Work
	6.5 Future Work

	Bibliography

