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Abstract

In this thesis, it has been managed to analyze the entropy generation during the

peristaltic transport of creeping viscous nanofluid in an axisymmetric channel.

The peristaltic pumping is incorporated in frame of two basic scenarios: (i) a

peristaltic wavelength is assumed to be very large compared with the channel

width, and (ii) a sufficiently small Reynolds number is considered, which indi-

cates inertia free flow. The flow is provoked as a result of metachronal waves,

which are produced, when a group of cilia operate together. These metachronal

waves moves together in the direction of an effective stroke to transport the fluid

and transmit wavy or beating motion. The flow is assumed to be two dimen-

sional, incompressible, and linear viscous (Newtonian). The momentum analysis

is performed under the impact of various pertinent flow parameters such as Hall

current, gravitational force, porous medium, transverse and inclined magnetic field

with horizontal and vertical channel. Further, the energy analysis is performed

in the presence of thermal radiation, viscous dissipation, Joule heating and in-

ternal heat source phenomena. All of the above body forces are taken along the

horizontal, vertical and inclined channel flow. Moreover, entropy generation due

to heat transfer, thermal radiation, viscous dissipation and magnetic effects has

been encountered. The mathematical modeling is reflected in the form of a non-

linear coupled partial differential equations. The governing differential equations

is transformed into ordinary differential equations by considering some suitable

dimensionless variables. Exact solutions in the closed form have been computed

for the momentum, pressure gradient and temperature profiles. Graphical results

have been carried out to interpret the pertinent parameters of interest. The main

goal i.e. the reduction of the entropy generation of the second law of thermody-

namics is achieved by decreasing the magnitude of Brinkmann number, Hartmann

number and dimensionless temperature difference. Fluid velocity is reduced by an

increasing the magnitude of Hartmann number and Darcy number. Further, the

trapping phenomenon is also portrayed through streamlines pattern for certain

flow parameters.
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Chapter 1

Introduction

This chapter provides comprehensive literature review of fluid, entropy, peristalsis,

nanofluid, magnetohydrodynamics and porous medium to the reader in order to

have excellent understating of this thesis.

1.1 Background

The recent developments in science and technology have classified the fluid flow

models into two categories; the hydraulic systems which deal with the develop-

ment of experimental studies and the hydrodynamics that deals with the theo-

retical studies. A few characteristics of physical interest of the hydraulics and

the hydrodynamics are density, viscosity, temperature, pressure, etc. Due to such

characteristics both the hydraulics and the hydrodynamics are merged into a sin-

gle discipline called the fluid mechanics. It has countless practical applications

in mechanical industry, chemical industry, bio-medical industry, etc. In mechan-

ics, the fluid flow is organized as compressible (all gases) and incompressible (all

liquids) flow on the basis of density. On the broader side there are basically two

types of flow; the internal and external flows. If a fluid flows thorough confined

boundaries; it is known as an internal flow such as flow in ducts, nozzles, pipes,

and vessels, otherwise the flow is known as an external flows such as ocean flow,

1
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flow over an airplane. All of these flow categories are of tremendous importance in

our daily life. Flow of any fluid flowing is not as much smooth as it is seen. There

are numerous factors influencing the progression of fluid (e.g viscosity, density,

and velocity of the fluid) and thus energy is not fully transferred into work. In

modern physics, 2nd law of thermodynamics is used to calculate this loss in terms

of entropy.

The mechanics of every engineering machine containing thermofluid strongly relies

upon the structure and the running temperature of the functioning fluid. Since

the energy transfer is an irreversible mechanism, therefore, for the outstanding

performance of system, it is mandatory to scrutinize the entropy of fluid system.

The 2nd law of thermodynamics is used to scrutinize the irreversibilities in a sys-

tem in terms of entropy. When the transfer of heat takes place through a chemical

reaction, fluid friction and finite temperature, it causes an irreversibility in the

system, which generates entropy. The entropy comprises of two principal parts:

1 - the thermal irreversibility and 2 - the energy losses due to frictional factors.

From a birds eye view, entropy appears as a result of the heat transport. Physi-

cally, when the heat transfer takes place, some supplementary changes happen at

a molecular level such as resistance, vibration, unstained expansion, displacement

and spin moment which cause the loss of effective heat and thus energy cannot

be transmitted effectively into work. It should be noted that this type of energy

fall cannot be earned back, therefore entropy is also called the measure of irre-

versibilities. The entropy generation is associated with a number of energy related

applications such as geothermal power systems, cooling of modern electronic sys-

tems and solar power collectors.

The latest studies have demonstrated that the second law investigation approach

is an effective and productive approach for reducing the system entropy. Firstly,

Bejan [1] described the science of entropy in energy transport and in flow systems.

Robert [2], Xu et al. [3], Bejan [4], Nada [5], Qudais and Nada [6], Naterer and

Camberos [7], Mahmud and Fraser [8], Nada [9], Romatschke [10], Aksoy [11],
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Srinivasacharya and Bindu [12], Kamran et al. [13], Hussain et al. [14], Anjum

et al. [15], Saleem and El-Aziz [16], etc, have contributed significantly in this

useful area of entropy analysis by considering different physical and engineering

scenarios. The analysis of entropy generation in peristaltic flows has attracted the

attention of many researchers in last two decades.

Peristalsis is a procedure of pumping the fluid, when a progressive wave shrinkage

or development proliferates along the boundaries of the tube possessing a fluid.

In this pumping process, the fluid moves like the sinusoidal waves travelling along

the walls in the direction of their propagation during the contraction/expansion

of the wave. This process of pumping the fluid is significant in multiple fields of

sciences, including physiological, engineering and biochemical industry [17]. The

requirement of peristalsis emerges, when it is that fascinating to evade utilizing any

moving unit inside the structure, for example, pistons in the pumping mechanism.

Further, the peristaltic transport is a normal phenomenon of shifting the substance

inside empty solid structures by progressive constriction of their strong fibers.

It happens in gulping nourishment through the throat, development of chyme,

transport of urine and lymph in the lymphatic vessel. In fluid transport, the

peristaltic pumping has turned out very purposeful over short distances avoiding

the fluid from being contaminated. The fundamental principle of peristalsis for

the transport of fluids has been practiced by the engineers in the manufacturing of

multiple industrial and biological instruments involving roller, finger pumps, blood

pumps and dialysis machines [18]. The mechanism of peristaltic flow is also applied

in the nuclear industry for the movement of caustic fluids, where the mixing of fluid

with the component of machines is restricted. Some more expolarity investigations

in this broader area can be found in Weinberg et al. [19], Srivastava and Srivastava

[20], Siddiqui et al. [21], Srivastava and Saxena [22], Srinivasacharya et al. [23],

Srinivas and Pushparaj [24], Vajravelu et al. [25], Tripathi [26], Kamel et al. [27],

Hayat et al. [28], Mekheimer et al. [29], Ellahi et al [30], etc.

In the last decade, as the energy crises are emerging rapidly, there has been a

massive need for new techniques which can increase the thermal efficiency of the
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working fluid and thus reduce the overall energy crises. In order to overcome the

energy crises, the vibration phenomenon [31], micro channels [32], wavy surfaces

[33], etc are developed by the researchers and engineers to reinforce the heat trans-

fer rate.

In 1995, Choi [34] initially introduced the term nanofluid which describes that

the heat transfer rate can be strengthened by boosting the thermal attitude of the

base fluids. Actually, the base fluids, like pure water, lubricants etc., possess a

finite heat transfer strength, because of their low thermal abilities, on contrary,

the nanoparticles hold dramatically higher thermal strength as compared to the

base fluids. Moreover, nanofluids offer their potential application in pharmaceu-

tical industry such as drug delivery microchip [35], nanomedicine applications of

nanogels [36], in detergents industry [37, 38], and in cooling industry [39]. It is a

very common practice in circumpolar world where the temperature is almost less

then 40◦ throughout the years to use nanoparticles with water as a heat transfer

fluid in order to maintain the daily life activities.

Based on the these useful applications of nanoparticle, several studies in this di-

rection have been undertaken using different flow conditions. Flow induced by

linear stretching with convective heating was presented by Makinde and Aziz [40].

Stagnation point flow under the influence of porous medium was studied by Al-

saedi et al. [41]. Brownian motion and thermophoresis effects over an exponential

stretching surface were demonstrated by Nadeem and Lee [42]. Characteristics of

unsteady flow over an infinite plate were examined by Turkyilmazoglu and Pop

[43]. Natural convection flow under the action of MHD was discussed by Sheik-

holeslami et al. [44]. Third grade nanofluid flow in the presence of unifrom MHD

and the Maxwell model for the convective cooling were studied by Awais et al.

[45, 46]. Consequences of forced convection heat transfer in an annuls and free

convection heat transfer in a cubic cavity was presented by Sheikholeslami et al.

[47, 48].

Impulsive motion of free convective flow under the influence of thermal radiation



Introduction 5

was analyzed by Das and Jana [49]. Mixed convection flow in a symmetric duct

was introduced by Abbasi et al. [50]. The impact of thermal radiation in a flow

of suspended nanoparticles was demonstrated by Hayat et al. [51]. A comprehen-

sive review of the under study solid nanoparticles i.e. carbon nanotubes, titanium

dioxide and magnetite is provided in next three paragraphs.

Carbon nanotubes fall in a new class of nanocarrier structures, which are respon-

sible for enhancing the thermal performance of the conventional fluids. CNTs are

best fitted in the group of fullerene structures and incorporate amazing carbon

particles which contain high length to diameter ratio. These marvelous character-

istics of carbon nanotubes make them interesting. The structure of CNTs gives

them absolutely surprising electrical and physical properties. CNTs take the form

of cylindrical carbon molecules and have unique characteristics such as electrical

and thermal conductivity, electron emission, energy storage, expansion, and as-

pect ratio. These characteristics make them highly advantageous in a number of

applications in molecular electronics, thermal materials, structural materials, fab-

rics, fibers, catalyst supports, biomedical, water filtration, conductive plastics and

ceramics. Carbon nanotubes were first found by Iijima [52]. Moreover, carbon

nanotubes are subdivided into two unique classes; the single wall carbon nan-

otubes (SWCNT) and the multi wall carbon nanotubes (MWCNT). Apart from

their rare existence, CNTs find their utilization as added substance in structural

materials, for instance, golf stub, water-boat, airship, and engine-bicycles. Also,

CNTs are extensively used in electrical gadgets [53, 54], compound goods [55, 56]

hydrogen stockpiling [57, 58] and many others. Thermally, CNTs hold immense

thermal abilities. As far as electrical properties are concerned, CNTs can be ei-

ther metallic or semiconducting, dependent upon the presentation of the network

with respect to the tube center. The transport properties of nanofluids are not

just susceptible on volume fraction of nanoparticle, these also depend upon the

particle shape, size and mixture combinations, etc. Earlier studies clearfy clarify

that the thermal properties as well as the viscous nature of fluid can be improved

by considering the nanofluid instead of the conventional fluids. The subject of

heat transfer with nanofluids is investigated by many e.g., Nallusamy et al. [59],
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Sabhia et al. [60], Eshgarf et al. [61], Baratpour et al. [62], Akbar et al. [63],

Bahiraei et al. [64], shahsavani et al. [65], etc.

Titanium dioxide (TiO2) nanoparticles achieve their best performance in biolog-

ical, chemical and environmental engineering, for instance, in drugs, foodstuff,

skin goods, toothpastes, skin care products, cosmetic, sunscreens, paints, nail pol-

ishes, plastics, printing inks, and ceramic glazes. These nanoparticles have great

potential for remediation of waste water. Furthermore, they also reduce the prob-

ability of skin tumors, skin smolder, and untimely maturing. Based on the above

applications of TiO2 nanoparticles, several studies in this direction have been un-

dertaken using different flow conditions like application of free convection was

given by Dongsheng and Yulong [66], heat transport analysis of natural convec-

tion was presented by Wen et al. [67], heat transport enhancement in a tube was

investigated by Duangthongsuk et al. [68], thermal efficiency of heat pipes was

experminetally studied by Saleh et al. [69], energy transport analysis of Nusselt

number in a duct was studied by Arulprakasajothi et al. [70], etc.

The magnetite (Fe3O4) offers its potential applications in biological, chemical

and environmental engineering, for instance, high gradient magnetic separation

[71], pharmaceutical transport [72], restoration of harmful wastes [73], magnetic

resonance technology [74], safe drinking water [75], antimicrobial behavior [76],

crude petroleum collector for oil spills [77], anticorrosion coatings [78]. Moreover,

food and health authorities endorse the clinical utilization of magnetite due to its

diverse characteristics and compatibility with medical science as it naturally exists

in the human body organs, like heart, spleen, liver, etc. Based on the above useful

applications of magnetite nanoparticles, the subject of nanofluids with different

geometries has been discussed by a very big number of researchers e.g. Hiergeist

and Andr [79], Odenbach [80], Voelker and Odenbach [81], Xuan et al. [82], Jafari

and Tynj [83], Rosensweig and Ronald [84], and Sandeep et al. [85].

In modern physics, magnetic field is applied to the flowing fluid in order to manage

the flow. Magnetohydrodynamics describes the study of motion of electrically con-

ducting fluid e.g. liquid metals and plasmas. The basics of MHD was first given
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by Hannes Alfven [86]. In the plenty of industrial mechanisms, magnetic effects

are used to mix up, pump, levitate and heat liquid metals. The earth’s magnetic

field, insulating the surface from toxic radiation, is generated by the motion of the

earths liquid core. Sunspots and solar flares are generated by the solar magnetic

field which influences the formation of stars from interstellar gas clouds. We use

the word Magnetohydrodynamics (MHD) for all of these phenomena, where the

magnetic field and the velocity field are coupled, given that there is an electrically

conducting and non-magnetic fluid. The MHD peristaltic flow is very meaning-

ful in biological systems having conductive fluids, such transport phenomena are

blood pumps, magnetic resonance imaging (MRI), aimed transport of medicines

by means of magnetic units as drug carriers and blood therapy. These interesting

engineering applications of MHD, have pulled the consideration of mathematicians

and engineers. Several studies on MHD peristaltic transport with different flow

geometries have been undertaken. Flow through homogenous porous medium in a

planer channel with insulated walls was investigated by Mekheimer and Al-Arabi

[87]. Two dimensional flow of Johnson-Segalman fluid along the walls of a flexible

duct was presented by Elshahed and Haroun [88]. The peristalsis flow analysis

of viscous fluid in a vertical tube was examined by Mekheimer and Elmaboud

[89]. Heat transfer analysis of MHD persitaltic flow along the walls of an asym-

metric channel was examined by Srinivas and Kothandapani [90]. Exact solution

of MHD peristaltic flow over a symmetric channel was studied by Nadeem and

Akram [91]. Mixed convective flow over a vertical porous medium was studied by

Srinivas and Muthuraj [92]. Flow of an Oldroyd-B fluid in symmetric duct was

studied by Zakaria and Amin [93]. Analysis of MHD, viscous dissipation and Joule

heating inside the compliant walls was studied by Hayat et al. [94]. The magnetite

nanofluid flow over an asymmetric channel was explained by Prakash et al. [95].

In any engineering procedure, there are many ways to increase the rate of heat

transfer, one of them is using porous media in heat transfer appliances. Porous

materials come across everywhere in daily life, in technology and in nature. A

material or structure must posses these two properties in order to entitle as a

porous medium: i) it must contain spaces, so-called voids or pores, free of solids,
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embedded in the solid or semi-solid matrix. ii) It must be permeable to a variety

of fluids, i.e., fluids should be able to penetrate through one face of a sample of

material and emerge on the other side. The process of using porous material has

been the core subject of multiple studies and has taken a rational appreciation.

This appreciation is because of the fact that this type of structure is highly accept-

able in many engineering applications, such as thermal insulation, oil flow, ground

water, power stations, etc. Porous medium is specially applied in such kinds of

engineering devices, where the cooling or heating is mandatory [96].

The scope of this thesis is to analyze the entropy generation during the peristaltic

transport of nanofluids. Motivated by the significance and fascinating applications

of peristaltic pumping in a flow system, peristalsis flow is considered. Chapter 2

provides introduction to some important terminologies. The detail analysis of

entropy generation in the presence of Hall current and thermal radiation induced

by cilia waves in a vertical tube is given in chapter 3. Chapter 4 covers the entropy

analysis of cilia transport under the influence of magnetic field in a horizontal tube.

Chapter 5 gives the detailed analysis of entropy formation during the peristaltic

movement of ferrofluids in the presence of Joule heating and viscous dissipation

phenomena. The entropy analysis of SWCNT and MWCNT flow induced by

collecting beating of cilia in porous medium is given in chapter 6. Chapter 7 is

focused on the concluding remarks of this thesis.



Chapter 2

Preliminaries

2.1 Introduction

This chapter contains some basic definitions of fluid flow, fundamental concepts

and ideas of fluid and dimensionless numbers regarding the presented work.

2.1.1 Fluid [97]

“A substance in the liquid or gas phase is referred to as a fluid. Distinction between

a solid and a fluid is made on the basis of the substance’s ability to resist an applied

shear (or tangential) stress that tends to change its shape. A solid can resist an

applied shear stress by deforming, whereas a fluid deforms continuously under the

influence of shear stress, no matter how small. In solids stress is proportional to

strain, but in fluids stress is proportional to strain rate. When a constant shear

force is applied, a solid eventually stops deforming, at some fixed strain angle,

whereas a fluid never stops deforming and approaches a certain rate of strain”.

2.1.2 Stress [97]

“Stress is defined as force per unit area and is determined by dividing the force

by the area upon which it acts. The normal component of the force acting on a

surface per unit area is called the normal stress, and the tangential component of

9
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a force acting on a surface per unit area is called shear stress). In a fluid at rest,

the normal stress is called pressure”.

2.1.3 Mechanics [97]

“Mechanics is the oldest physical science that deals with both stationary and

moving bodies under the influence of forces. The branch of mechanics that deals

with bodies at rest is called statics, while the branch that deals with bodies in

motion is called dynamics. The subcategory fluid mechanics is defined as the

science that deals with the behavior of fluids at rest (fluid statics) or in motion

(fluid dynamics), and the interaction of fluids with solids or other fluids at the

boundaries. Fluid mechanics is also referred to as fluid dynamics by considering

fluids at rest as a special case of motion with zero velocity (see Figure 2.1)”.

Figure 2.1: Fluid mechanics flow chart

2.1.4 Viscosity [97], [98], [99]

“Viscosity is a quantitative measure of a fluids resistance to flow. More specifically,

it determines the fluid strain rate that is generated by a given applied shear stress.

We can easily move through air, which has very low viscosity. Movement is more

difficult in water, which has 50 times higher viscosity then air. Still more resistance

is found in Society of Automotive Engineers (SAE) 30 oil, which is 300 times more
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viscous than water. Fluids may have a vast range of viscosities. The viscosity of

liquids decreases with the increase of temperature and while the viscosity of gases

increases with the increase of temperature. Viscosity is caused by cohesive forces

between the molecules in liquids and by molecular collisions in gases. There is no

fluid with zero viscosity, and thus all fluid flows involve viscous effects to some

degree (see Figure 2.2). Flows in which the frictional effects are significant are

called viscous flows.

Mathematically:

µ =
τ(
du

dy

) , (2.1)

where µ is called the constant of proportionality, and is known as the coefficient

of dynamic viscosity or only viscosity, τ is the shear stress and du/dy represents

the velocity gradient or rate of shear deformation. Thus viscosity is also defined

as shear stress required to produce unit area of strain. The unit of viscosity is

centipoise (cP ). The viscosity of water at 20◦C is 1 centipoise”.

Figure 2.2: Viscosity

2.1.5 Kinematics Viscosity [99]

“It is defined as the ratio between dynamic viscosity and density if fluid. It is

denoted by Greek letter ν. Thus, mathematically,

ν =
viscosity

density
=
µ

ρ
, (2.2)

the SI unit of kinematics viscosity is m2/sec”.
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2.1.6 Newton’s Law of Viscosity [99]

“It states that shear stresses (τ) on a fluid element layer is directly proportional

to the rate shear strain. The constant of proportionality is called the coefficient

of viscosity.

Mathematically, it is expressed as given by the equation:

τ = µ
du

dy
, (2.3)

in the above equation, µ is the viscosity and
du

dy
is the deformation rate. Fluids

which obey the above relation are known as Newtonian fluids and the fluids which

do not obey the above relations are called non-Newtonian fluids”.

2.1.7 Thermodynamic Properties of a Fluid [98]

“The three most common thermodynamic properties of a fluid are:

2.1.7.1 Pressure [98]

The pressure (P ) is the most dynamic variable in fluid mechanics. Pressure is

defined as a normal force exerted by a fluid per unit area. We speak of pressure

only when we deal with a gas or a liquid. The counterpart of pressure in solids

is normal stress. Differences or gradients in pressure often drive a fluid flow,

especially in ducts.

2.1.7.2 Temperature [98]

Temperature (T ) is a measure of the kinetic energies of the particles such as the

molecules or atoms of a substance. In a liquid or gas, the kinetic energy of the

molecules is due to their random translational motion as well as their vibrational

and rotational motions. The higher the temperature, the faster the molecules move

and the higher the number of such collisions, and the better the heat transfer.

2.1.7.3 Density [98]

The density of a fluid, denoted by ρ, is its mass per unit volume. Density is highly
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variable in gases and increases nearly proportionally to the pressure level. The

most liquid flows are treated analytically as nearly incompressible”.

2.1.8 Uniform and Non-uniform Flows [98]

“The flow is said to be uniform if the magnitude and direction of flow velocity are

the same at every point and flow is said to be non-uniform if the velocity is not

the same at each point of the flow, at a given instant (see Figure 2.3)”.

Figure 2.3: Uniform and non-uniform flows

2.1.9 Steady and Unsteady Flows [98]

“A flow whose flow state expressed by velocity, pressure, density, etc, at any

position, does not change with time, is called a steady flow. A flow whose flow

state does change with time is called an unsteady flow”.

2.1.10 Compressible and Incompressible Flows [98]

“Flow in which variations in density are negligible is termed as incompressible

other wise it is called compressible. The most common example of compressible

flow is the flow of gases, while the flow of liquids may frequently be treated as

incompressible. Mathematically,

Dρ

Dt
= 0, (2.4)
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where ρ denotes the fluid density and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+ V.O, (2.5)

in above equation, V denotes the velocity of the flow and O is the differential

operator. In Cartesian coordinate system, O is given as:

O =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂”. (2.6)

2.1.11 Types of Fluid [99]

“The fluids may be classified into following five types (see Figure 2.4):

2.1.11.1 Ideal Fluid [99]

A fluid which is incompressible and having no viscosity, is known as ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity.

2.1.11.2 Real Fluid [99]

A fluid, which possesses viscosity, is known as real fluid. All the fluids, in actual

practice, are real fluid.

2.1.11.3 Newtonian Fluid [99]

A real fluid, in which the shear stress is directly proportional to rate of shear strain

(or velocity gradient), is known as Newtonian fluid.

2.1.11.4 Non-Newtonian Fluid [99]

A real fluid, in which the shear stress is not directly proportional to rate of shear

strain (or velocity gradient), known as non-Newtonian fluid.

2.1.11.5 Ideal Plastic Fluid [99]

A fluid, in which the shear stress is more than the yield value and shear stress
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is proportional to the rate of shear strain (velocity gradient), is known as ideal

plastic fluid (also called Bingham plastic fluid)”.

Figure 2.4: Types of fluid

2.1.12 Boundary Layer Flow [98]

“The concept of boundary layer was first introduced by Ludwig Prandtl, a German

aerodynamicist, in 1904. Prandtl introduced the basic idea of the boundary layer

in the motion of a fluid over a surface. Boundary layer is a flow layer of fluid close

to the solid region of the wall in contact, where the viscosity effects are significant

(see Figure 2.5). The flow in this layer is usually laminar. The boundary layer

thickness is the measure of the distance apart from the surface. There are two

types of boundary layers:

2.1.12.1 Hydrodynamic (Velocity) Boundary Layer [98]

A region of a fluid flow, where the transition from zero velocity at the solid surface

to the free stream velocity at some extent far from the surface in the direction

normal to the flow takes place in a very thin layer, is known as the hydrodynamic

boundary layer.

2.1.12.2 Thermal Boundary Layer [98]

The heat transfer exchange surface and the free stream a liquid or a gaseous
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agent for heat transfer. From wall to free stream we come across the change of

temperature of heat transfer agent. It increases from wall to the main stream.

The surface temperature is assumed to be equal to the temperature of the fluid

layer closed to the wall inside the boundary and this temperature is equal to the

temperature of the bulk at some point in the fluid”.

Figure 2.5: Boundary layer flow

2.1.13 Nanofluid [101]

“A nanofluid is the mixture of nanoparticles suspended in the base fluid. It is an

advanced heat transfer fluid that possesses superior heat transfer properties. Re-

cent developments in nanotechnology bring out fluids that possess better thermal

properties than conventional fluids. The inherent properties like the larger rela-

tive surface area of nanoparticles and superior thermal conductivity makes them

a choice for thermal engineers over conventional fluid. A suspended nanoparticle

significantly improves heat transfer capabilities and stability of the suspension.

Nanofluids possess wide range of possibilities as it can enhance heat transfer per-

formance in comparison to that of pure liquids and hence can be considered as

next generation heat transfer fluids. The most recent popular nanoparticles which

are used to produce nanofluids are aluminum oxide (Al2O3), copper oxide (CuO),

copper (Cu). While the most common base fluids which are being employed for

producing nanofluids are water, oil, decene, acetone and ethylene glycol”.
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2.1.14 Magnetohydrodynamics [102]

“Magnetohydrodynamics describe the study of motion of electrically conducting

fluid (e.g. liquid metals and Plasmas) in the presence of a magnetic field. The

key hypothesis behind magnetohydrodynamic is that magnetic fields can generate

current in a moving conductive fluid, which sequentially produce a force on the

fluid and also alter the magnetic field itself. The basic equations of magnetohy-

drodynamics have been proposed by Hannes Alfven, who realized the importance

of the electric currents carried by a plasma and the magnetic field they generate.

Alfven combined the equations of fluid dynamics with Faradays and Amperes laws

of electrodynamics, thus obtaining a novel mathematical theory, which helped un-

derstanding space plasmas in earth and planetary magnetospheres, as well as the

physics of the sun, solar wind, and stellar atmospheres”.

2.1.15 Heat Transfer [100]

“Heat is the form of energy that can be transferred from one system to another as

a result of temperature difference. The basic requirement for heat transfer is the

presence of a temperature difference (see Figure 2.6). There can be no net heat

transfer between two mediums that are at the same temperature. The temperature

difference is the driving force for heat transfer, just as the voltage difference is

the driving force for electric current flow and pressure difference is the driving

force for fluid flow. The rate of heat transfer in a certain direction depends on

the magnitude of the temperature gradient (the temperature difference per unit

length or the rate of change of temperature) in that direction. The larger the

temperature gradient, the higher the rate of heat transfer”.

2.1.16 The First Law of Thermodynamics [100]

“The first law of thermodynamics, also known as the conservation of energy prin-

ciple, states that energy can neither be created nor destroyed; it can only change

forms. The conservation of energy principle (or the energy balance) for any system

undergoing any process may be expressed as follows: The net change (increase or
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Figure 2.6: Heat transfer

decrease) in the total energy of the system during a process is equal to the dif-

ference between the total energy entering and the total energy leaving the system

during that process”.

2.1.17 Thermal Conductivity [100]

“The rate of heat transfer through a unit thickness of the material per unit area per

unit temperature difference. The thermal conductivity of a material is a measure of

the ability of the material to conduct heat. A high value for thermal conductivity

indicates that the material is a good heat conductor, and a low value indicates

that the material is a poor heat conductor or insulator”.

2.1.18 Specific Heat [100]

“The product ρcp, which is frequently encountered in heat transfer analysis, is

called the heat capacity of a material. Both the specific heat (cp) and the heat

capacity (ρcp) represent the heat storage capability of a material. But cp expresses

it per unit mass, whereas ρcp expresses it per unit volume”.

2.1.19 Entropy [103]

“Entropy is a Greek terms means change. It is a measure of disorder or randomness

of molecular motion of the system (see Figure 2.7). It is a thermal property of
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a system, which remains constant as long as no heat enters or leaves the system.

Entropy of a system increases if heat flows into the system at constant temperature

and decreases, if leaves the system at constant temperature. Noted that such kind

of energy loss can not be regained so system and surrounding cannot come to its

initial state without doing any extra work on it be. Therefore, entropy is called the

measure of irreversibilities. In nature there is no reversible process due to friction

and heat transfer. So every thermodynamic process is irreversible”.

Figure 2.7: Entropy

2.1.20 Peristalsis [100]

Peristalsis means centrifugally symmetric tightening and slackening of muscles

which proliferates in the form of a wave (see Figure 2.8). Peristalsis commonly

occurs in the digestive system of living organisms to propel food material, gastro-

intestinal tract, the bile tube, etc. Peristaltic transport happens, when the fluid

moves as a result of a sinusoidal wave travel on the tube walls in the direction of

their propagation during the contraction and expansion of the wave. This funda-

mental principle of peristalsis for the transport of fluids has been practiced by the

engineers in the manufacturing of multiple industrial and biological instruments

involving roller, finger pumps, blood pumps in heart lung and dialysis machines.

The mechanism of peristaltic flow is also applied in the nuclear industry for the

movement of corrosive fluids, where the connection of the fluid with the machinery

is restricted.
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Figure 2.8: Mechanism of peristalsis

2.1.21 Dimensionless Physical Quantities [104]

“In physics and mathematics, dimensionless physical quantities have been widely

used. Some of these quantities, which are usefull in this thesis are:

2.1.21.1 Reynolds Number [104]

Reynolds Number (Re) expresses the ratio of the fluid inertia force to that of

molecular friction (viscosity). It characterizes the hydrodynamic conditions for

viscous fluid flow. It determines the character of the flow (laminar, turbulent and

transient flows).

2.1.21.2 Bejan Number [104]

Bejan number (Be) expresses the ratio of heat transfer unreturnability to the total

unreturnability caused by heat transfer and fluid friction.

2.1.21.3 Entropy Generation Number [104]

Entropy number (Eg) characterizes the fluid entropy change in laminar streaming

of viscous incompressible fluid through an inclined canal with isothermic walls. It

was determined from the analysis of the second law of thermodynamics.
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2.1.21.4 Hartmann Number [104]

Hartmann number (Ha) expresses the ratio of the induced electrodynamic (mag-

netic) force to the hydrodynamic force of the viscosity. It characterizes the mag-

netic field influence on the flow of viscous, electrically conducting fluid. With

small Ha values, the motion proceeds as if no magnetic field were acting. With

great Ha values, the viscosity forces act only on a thin layer of the electrically

conducting fluid (ionized gas) which adheres closely to a by-passed wall surface.

2.1.21.5 Brinkmann Number [104]

Brinkmann number (Br) expresses the ratio of the heat arising due to viscous

friction of a fluid to the heat transferred by molecular conduction. It characterizes

the heat conduction in viscous fluid flow. For high fluid viscosity values and low

thermal conductivity values (e.g. molten polymers), the value is Br � 1”.



Chapter 3

Entropy Analysis of Hall Current

and Thermal Radiation

Influenced by Cilia with

Suspended CNTs

3.1 Introduction

This chapter investigates the significance of creeping viscous nanofluid in an ax-

isymmetric channel influenced by metachronical waves containing MHD and Hall

current. Heat transport analysis is also computed along with the impact of ther-

mal radiation and internal heat source phenomena. Mathematical formulations

have been established which result into a set of coupled partial differential equa-

tions. The governing system is transformed into a system comprising of ordinary

differential equations by considering the similarity transformation. Exact solution

in the closed form is computed for the obtained nonlinear system of coupled or-

dinary differential equations. Moreover, entropy development because of energy

transfer, thermal radiation, and magnetic effects has been encountered. Graphical

22
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results have been carried out to interpret sundry parameters of interest. Stream-

lines are also graphed against the multi wall carbon nanotubes. For the validation

of our results, a comparison table is presented. It is also seen that the entropy of

the system increases whereas the Bejan number reduces by an increment in the

Brinkmann number.

3.2 Mathematical Analysis

In this study, consideration has been given to peristaltic transport of Newtonian

flow of carbon nanotubes in a flexible duct. Metachronical waves are developed

by wavy motion of cilia, which directs the flow. Uniform magnetic field B0 is

applied in the transverse direction. The cylindrical coordinate system (R̄, Z̄) has

been introduced to present the geometry of the problem. Figure 3.1 depicts the

systematic view of the under discussion peristaltic fluid flow.

Figure 3.1: Geometrical view of the physical model
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The shape of the cilia tips is supposed to obey the following pattern [105, 106]:

R̄ = h̄ = f̄
(
Z̄, t̄
)

= e+ eε cos

(
2π

λ
(Z̄ − ct̄)

)
,

Z̄ = ḡ
(
Z̄, Z̄0, t̄

)
= e+ eεα sin

(
2π

λ
(Z̄ − ct̄)

)
,

 (3.1)

where e denotes the mean radius of the tube, ε the wave amplitude, Z0 the reference

position of cilia, c the wave speed, λ the wavelength, and α the measure of the

eccentricity. No slip condition indicates that the cilia tips and fluid closed to it,

have equal velocity, thus radial and axial velocities are given as:

Ū =

(
∂R̄

∂t̄

)
Z̄0

=

(
∂f̄

∂t̄

)
+

(
∂f̄

∂Z̄

)(
∂Z̄

∂t̄

)
=

(
∂f̄

∂t̄

)
+

(
∂f̄

∂Z̄

)
W̄ ,

W̄ =

(
∂Z̄

∂t̄

)
Z̄0

=

(
∂ḡ

∂t̄

)
+

(
∂ḡ

∂Z̄

)(
∂Z̄

∂t̄

)
=

(
∂ḡ

∂t̄

)
+

(
∂ḡ

∂Z̄

)
W̄ ,

 (3.2)

combining (3.1) and (3.2), the radial and axial velocities of the cilia are given as:

Ū =

(
2π
λ

) [
εαce sin

(
2π
λ

(Z̄ − ct̄)
)]

1− 2π
λ

[
εαe cos

(
2π
λ

(
Z̄ − ct̄

))] ,

W̄ =

(−2π
λ

) [
εαce cos

(
2π
λ

(Z̄ − ct̄)
)]

1− 2π
λ

[
εαe cos

(
2π
λ

(
Z̄ − ct̄

))] .


(3.3)

The governing bounadry layer equations for the laminar, viscous nanofluid flow in

a fixed frame are given as [107]:

∂Ū

∂R̄
+
Ū

R̄
+
∂W̄

∂Z̄
= 0. (3.4)

ρnf

[
∂Ū

∂t̄
+ Ū

∂Ū

∂R̄
+ W̄

∂Ū

∂Z̄

]
=− ∂P̄

∂R̄
+ µnf

[
2
∂2Ū

∂R̄2
+

2

R̄

(
∂Ū

∂R̄
− Ū

R̄

)]
+ µnf

[
∂

∂Z̄

(
∂Ū

∂R̄

)
+
∂2W̄

∂Z̄2

]
− σbfB

2
0

1 +m2

[
Ū −mW̄

]
. (3.5)
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ρnf

[
∂W̄

∂t̄
+ Ū

∂W̄

∂R̄
+ W̄

∂W̄

∂Z̄

]
=− ∂P̄

∂Z̄
+ 2µnf

[
∂2W̄

∂Z̄2
+

1

R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
+ µnf

[
∂

∂R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
− σbfB

2
0

1 +m2

[
W̄ +mŪ

]
+ ρbf g α

∗ (T̄ − T̄0

)
. (3.6)

(ρcp)nf

[
∂T̄

∂t̄
+ Ū

∂T̄

∂R̄
+ W̄

∂T̄

∂Z̄

]
=knf

[
1

R̄

∂

∂R̄

(
R̄
∂T̄

∂R̄

)
+
∂2T̄

∂Z̄2

]
+Q0

+
16σ∗T 3

∞
3k∗

[
1

R̄

∂

∂R̄

(
R̄
∂T̄

∂R̄

)]
. (3.7)

The flow is unsteady in a fixed frame of reference (R̄, Z̄), whereas the flow develops

to be steady in a wave frame (r̄, z̄). The following variables are meaningful to

convert the flow from unsteady to steady flow.

Z̄ = z̄ + ct̄, R̄ = r̄, P̄ (Z̄, R̄, t̄) = p̄(z̄, r̄, t̄), (3.8)

where the velocities between the two frames are:

Ū = ū, W̄ = w̄ + c. (3.9)

The derived fundamental system of equations after invoking the above variables,

is of the form:
∂ū

∂r̄
+
ū

r̄
+
∂w̄

∂z̄
= 0, (3.10)

ρnf

[
ū
∂ū

∂r̄
+ (w̄ + c)

∂ū

∂z̄

]
=µnf

[
2
∂2ū

∂r̄2
+

2

r̄

(
∂ū

∂r̄
− ū

r̄

)
+

∂

∂z̄

(
∂ū

∂r̄

)
+
∂2w̄

∂z̄2

]
− σbfB

2
0

1 +m2
[ū−m(w̄ + c)]− ∂p̄

∂r̄
, (3.11)

ρnf

[
ū
∂w̄

∂r̄
+ (w̄ + c)

∂w̄

∂z̄

]
=2µnf

[
∂2w̄

∂z̄2
+

1

r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)
+

∂

∂r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
+ ρbfgα

∗ (T̄ − T̄0

)
− σbfB

2
0

1 +m2
[(w̄ + c) +mū]− ∂p̄

∂z̄
,

(3.12)
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(ρcp)nf

[
ū
∂T̄

∂r̄
+ (w̄ + c)

∂T̄

∂z̄

]
=knf

[
1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
+
∂2T̄

∂z̄2

]
+Q0

+
16σ∗T 3

∞
3k∗

[
1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)]
. (3.13)

The boundary conditions are:

w′(r) = 0, θ′(r) = 0, at r = 0,

w =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1, θ = 0 at r = h(z) = 1 + ε cos(2πz).

 (3.14)

Here ū and w̄ are the velocity elements in the radial (r̄) and axial (z̄) directions

respectively, σ the electric conductivity, B0 the applied magnetic field, α∗ the co-

efficient of linear thermal expansion, Q0 the internal heat source coefficient, g the

acceleration due to gravity, m the Hall parameter, ρnf the effective density, µnf

the effective viscosity, (ρcp)nf the heat capacitance, σ∗ the Stefan-Boltzmann con-

stant, k∗ the Rosseland mean absorption coefficient, and knf the effective thermal

conductivity, given as [108]:

(ρcp)nf = (1− φ)(ρcp)bf + φ(ρcp)CNT ,

ρnf = (1− φ)ρbf + φρCNT , µnf = µbf (1− φ)−2.5,

knf = kbf

(1− φ) +
2φkCNT

kCNT − kbf
log

(
kCNT + kbf

2kbf

)
(1− φ) +

2φkbf
kCNT − kbf

log

(
kCNT + kbf

2kbf

)
 ,


(3.15)

where the subscripts bf , s and nf represents the base fluid, solid nanoparticles

and nanofluid, respectively. Thermophysical properties [109, 110] of the base fluids

and nanoparticles are given in Table 3.1. The following transformations are found

successful to convert the model into the dimensionless form.

r =
r̄

e
, z =

z̄

λ
, w =

w̄

c
, u =

λū

ec
, p =

e2p̄

cλµbf
, t =

ct̄

λ
, θ =

(T̄ − T̄0)

T0

, (3.16)

where a is the electric charge, na the number density of electrons. Substituting

(3.16) into (3.10)-(3.13), the mathematical model gets the following form.
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A1Reβ
3

[
u
∂u

∂r
+ (w + 1)

∂u

∂z

]
=− ∂p

∂r
+ β2

[
2

(1− φ)2.5

] [
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+

[
β3

(1− φ)2.5

] [
∂2u

∂r∂z
+
∂2w

∂z2

]
− β Ha2

1 +m2

[
β u−m(w + 1)

]
, (3.17)

A1Reβ

[
u
∂w

∂r
+ (w + 1)

∂w

∂z

]
=

1

(1− φ)2.5

[
1

r

(
β2∂u

∂z
+
∂w

∂r

)
+ β2 ∂

2u

∂r∂z

]
− ∂p

∂z
+ β2

[
1

(1− φ)2.5

]
∂2w

∂z2
+Gr θ(r)

− Ha2

1 +m2

(
w + 1 + β mu

)
+

1

(1− φ)2.5

∂2w

∂r2
,

(3.18)

(ρcp)nf e c β

[
u
∂θ

∂r
+ (w + 1)

∂θ

∂z

]
= knf

[
∂2θ

∂r2
+

1

r

∂θ

∂r
+ β2∂

2θ

∂z2

]
+
Q0 e

2

T0

+
16σ∗ T 3

∞
3k∗

[
∂2θ

∂r2
+

1

r

∂θ

∂r

]
, (3.19)

where

Ha2 =
σbfB

2
0e

2

µbf
, Gr =

ρbf g α
∗e2T0

cµbf
, m =

σbfB0

ana
, β =

e

λ
, h =

h̄

e
,

Rn =
4σ∗

k∗kbf
T 3
∞, Ω =

Q0e
2

kbfT0

, Re =
e ρbf
µbf

, A1 = 1− φ+ φ
ρs
ρbf

.

 (3.20)

Here φ is the solid volume fraction, Gr the Grashof number, Ω the internal heat

source and Rn the radiation parameter. To attain the general solution of the Eqs.

(3.17)-(3.19), we shall restrict this study under the assumptions of long wavelength

i.e. (λ→∞) and low Reynolds number i.e. (Re � 1). The set of Eqs. (3.17)-

(3.19) after employing the above assumptions is reduced to the following set of

equations:

dp

dr
= 0, (3.21)

dp

dz
− 1

(1− φ)2.5

(
1

r

dw

dr
+
d2w

dr2

)
+

Ha2

1 +m2
(w + 1)−Gr θ(r) = 0, (3.22)

d2θ

dr2

(
Ψ3.1 +

4

3
Rn

)
+

1

r

dθ

dr

(
Ψ3.1 +

4

3
Rn

)
+ Ω = 0. (3.23)
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The boundary conditions are given as:

w′(r) = 0, θ′(r) = 0, at r = 0,

w =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1, θ = 0 at r = h(z) = 1 + ε cos(2πz).

 (3.24)

Table 3.1: Thermophysical properties of base fluids and nanoparticles.

Physical
properties

ρ(kg/m3) cp(J/kgK) k(W/mK)

Water 997.1 4179 0.613

SWCNT 2600 425 6600

MWCNT 1600 796 3000

Engine Oil 884 1910 0.144

Ethylene Glycol 1110 2382 0.256

3.2.1 Second Law Analysis Non-equilibrium situation emerges as a

result of exchange of momentum, temperature and magnetic effects within the

fluid and at the walls which motivates a continuous entropy generation.

The volumetric entropy generation term (SG) can be calculated as follows [111]:

SG =
1

θ̄2
0


EH︷ ︸︸ ︷

knf

(
∂T̄

∂r̄

)2

+

ERn︷ ︸︸ ︷
16σ∗T 3

∞
3k∗

(
∂T̄

∂r̄

)2

+

EM︷ ︸︸ ︷
σbfB

2
0

θ̄0(1 +m2)

(
(w̄ + c) +mū

)2

,

(3.25)

Eq. (3.25) reflects the contribution of three different factors causing the entropy

generation. These factors are heat transfer EH , the thermal radiation ERn, and

the magnetic field EM . Entropy gives the degree of disorder of the system and its

surroundings and the rate of dimensionless entropy formation is given by

EG =
SG
Sg

=

[
Ψ3.1 +

4

3
Rn

](
∂θ

∂r

)2

+ ΛBr

[
Ha2

1 +m2

]
(w + 1)2, (3.26)
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where

Sg =
kbfT

2
0

θ̄2
0e

2
,

Λ =
θ̄0

T0

,

Br =
c2µbf
kbfT0

.


(3.27)

Here Λ is the dimensionless temperature difference and Br the Brinkmann number.

To figure out the irreversibility distribution, another diemnsionaless number, Bejan

number Be, was introduced by Bejan [1] and is given as:

Be =
EH

EH + ERn + EM
. (3.28)

3.3 Exact Solutions

This section reflects the exact solutions to the coupled ordinary differential Eqs.

(3.22) and (3.23) together with the wall condition (6.24). The governing boundary

layer equations incorporates momentum and energy equation. The exact analytical

solution to the ordinary differential system is obtained by using a computational

software called “MATHEMATICA”.

3.3.1 Mechanism to Reach Solution of the Temperature

Equation

• Introduction of the reduction of order scheme:

– Order of the differential equation is reduced by introducing the dummy

variable:

y(r) =
dθ

dr
and y′(r) =

d2θ

dr2
.

– 1st order differential equation is obtained.
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• As a crucial step in the solution of the differential equation, integrating factor

is applied.

• Convert the solution into the form containing the original variable.

• The closed form solution for the temperature distribution is:

θ(r, z) =


3 (h2 − r2)

12

(1− φ) +
2φkCNT

kCNT − kbf
log

(
kCNT + kbf

2kbf

)
(1− φ) +

2φkbf
kCNT − kbf

log

(
kCNT + kbf

2kbf

)
+ 16Rn


Ω. (3.29)

3.3.2 Mechanism to Reach Solution of the Momentum Equa-

tion

• Assume the trial solution in the form:

w(r) =
∞∑
n=0

bnr
x+n, b0 6= 0, r > 0.

• Substitute w(r), w′(r) and w′′(r) in the momentum equation:

• Work out the constants b0, b1, b2...bn.

• The closed form exact solution for the momentum profile is:

w(r, z) =

(
1 +m2

Ha

)Ψ3.2 +

(
Ha

1 +m2
+

[
Ψ3.3 +

dp

dz

]
Ψ3.4

)
Ψ3.10

Ψ3.4 0F1

[(
Ha

1 +m2

)
h2

4 (1− φ)2.5

]
 . (3.30)
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The flow rate is described as:

Q = 2

h(z)∫
0

rw(r)dr. (3.31)

Now using (3.30) into (3.31), we have solution of dp/dz i.e.

dp

dz
=


Ψ3.5Ψ3.7 + 8h2

0F2

[(
Ha

1 +m2

)
h2

4 (1− φ)2.5

]
(4Ψ3.8 + 3Ψ3.9)(

Ha

1 +m2

)2

h4Ψ3.4

(
(1− φ)2.5)2

Ψ3.11

 . (3.32)

where the expression for (Ψi, i = 3.1− 3.11) are given as:

Ψ3.1 =

(1− φ) +
2φkCNT

kCNT − kbf
log

(
kCNT + kbf

2kbf

)
(1− φ) +

2φkbf
kCNT − kbf

log

(
kCNT + kbf

2kbf

)
 ,

Ψ3.2 =

(
Ha

1 +m2

)
+

3 (h2 − r2) Ω

4(3Ψ3.1 + 4Rn)
Gr − dp

dz
,

Ψ3.3 =
Ha

1 +m2
− 3 (h2 − r2) Ω

4(3Ψ3.1 + 4Rn)
Gr,

Ψ3.4 =
(
1− 2πα β ε cos(2π z)

)
,

Ψ3.5 = −Ψ3.4 0F1

[(
Ha

1 +m2

)
h2

4 (1− φ)2.5

]
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(
Ha

1 +m2

)2 (
F + h2

)
,

Ψ3.6 = Rn(1− φ)2.5 − 3Grh2

(
−8 +

(
Ha

1 +m2

)
h2(1− φ)2.5

)
,

Ψ3.7 = Ψ3.6Ω24

(
Ha

1 +m2

)2 (
F + h2

)
(1− φ)2.5 Ψ3.1,

Ψ3.8 =

(
Ha

1 +m2

)2

Rn (−1 + Ψ3.4) (1− φ)2.5 + 3GrΨ3.4Ω

Ψ3.9 =

(
Ha

1 +m2

)2

(−1 + Ψ3.4) (1− φ)2.5 Ψ3.1,

Ψ3.10 = 0F1

[(
Ha

1 +m2

)
r2

4 (1− φ)2.5

]
,

Ψ3.11 = 0F3

[(
Ha

1 +m2

)
h2

4 (1− φ)2.5

]
(3Ψ3.1 + 4Rn).


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The mean flow rate can be calculated as

F = Q−
[
0.5 +

ε2

4

]
, (3.33)

3.4 Results

This section encloses the physical aspects of various significant parameters on ve-

locity field, temperature field, pressure gradient, thermal conductivity and stream-

lines.

Table 3.2 and 3.3 are prepared to validate our numerical results. An excellent com-

parison is found between the present results and those of Akbar and Butt [112].

Results are obtained by keeping Rn = 0.0 = m and the rest of the parameters the

same as in [112].

Effects of Hartmann number Ha on w(r, z) are shown in Figures 3.2 and 3.3 for

SWCNT and MWCNT respectively. It is recorded that as Ha increases, there

is a decrease in the fluid velocity. From the physical point of view, an increase

in the magnetic field accelerates the strength of the Lorentz force, which is an

opposing force, therefore additional resistance is offered to the fluid motion which

consequently reduces the flow velocity.

The effect of flow rate Q on w(r, z) is shown in Figures 3.4 and 3.5 for SWCNT

and MWCNT respectively. It is found that Q is directly proportional to the flow

field. Moreover, the fluid earns its maximum velocity at the middle i.e. r = 0.0

and minimum near the ciliated walls.

The impact of thermal radiation Rn on θ(r, z) is plotted in Figures 3.6 and 3.7

for SWCNT and MWCNT respectively. It is seen that the fluid energy reduces as

there is an increase in Rn. Physically, an advancement in the radiative parameter

Rn increases the mean absorption coefficient k∗ which reduces the fluid tempera-

ture significantly.

The impact of Ω on θ(r, z) is depicted in Figure 3.8 and 3.9 for SWCNT and

MWCNT respectively. It is found that Ω is directly proportional to θ(r, z). More-

over, the fluid earns its maximum energy at the middle i.e. r = 0.0 and minimum
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near the walls. Futhermore, no temperature variation is seen, when Ω is kept zero.

The impact of α on dp/dz against the axial direction is shown in Figures 3.10 and

3.11 for single and multi wall carbon nanotubes, respectively. Response of dp/dz

to a variation in β against the axial direction is displayed in Figures 3.12 and 3.13

respectively. It is depicted that the pressure gradient distribution is small for α

and β in the regions [−1,−0.75], [−0.25, 0.25] and [0.75, 1], whereas huge pressure

gradient is recorded in [−0.75,−0.25] and [0.25, 0.75]. Physically, small pressure

gradient regions indicate the area through which fluid can pass easily without fac-

ing a trouble, whereas large pressure gradient regions will resist the fluid to pass.

Thermal conductivity is the ability of a material to conduct heat. We can clearly

see a meaningful variation in the thermal conductivities of these basefluids, where

the pure water having the maximum and engine oil having the minimum thermal

conductivity for both SWCNT and MWCNT as depicted in Figures 3.14 and 3.15.

In Figures 3.16 and 3.17, attention has been given to observe the behavior of en-

tropy for the increasing magnitude of Brinkmann number Br against SWCNT and

MWCNT. It is seen that, entropy of the system grows rapidly with an enhance-

ment in Br. Physically, as Br increases, heat transfer influences the fluid viscosity

within the tube, increasing the entropy of the system. Maximum entropy is noted

at the center i.e. at r = 0.

Figures 3.18 and 3.19 show the influence of the dimensionless temperature differ-

ence Λ on the entropy. It is visualized that entropy of flow develops for higher

magnitude of Λ.

Figures 3.20 and 3.21 show that an increment in Br causes a reduction in Be at

the center, whereas an increment close to the ciliated walls can be noticed. Bejan

number is a decreasing function of Λ as noticed from Figures 3.22 and 3.23. It is

because of the fact that the heat transfer irreversibility is small as compared with

the total irreversibility.

A very attractive phenomenon in peristaltic movement, called trapping, is shown

with respect to a change in various parameters. In Figures ?? and ??, it is clear

that with an increment in the magnitude of α, the bolus size reduces, however

the number of trapped bolus grows. Figures ?? and ?? reflect that the bolus size
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increases rapidly, however the number of trapped bolus start decreasing.

Figure 3.2: The impact of Ha on w(r, z)

Figure 3.3: The impact of Ha on w(r, z)

Figure 3.4: The impact of Q on w(r, z)



Entropy Formation Analysis Cilia with Suspended CNTs 35

Figure 3.5: The impact of Q on w(r, z)

Figure 3.6: The impact of Rn on θ(r, z)

Figure 3.7: The impact of Rn on θ(r, z)
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Figure 3.8: The impact of Ω on θ(r, z)

Figure 3.9: The impact of Ω on θ(r, z)

Figure 3.10: The impact of α on dp/dz
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Figure 3.11: The impact of α on dp/dz

Figure 3.12: The impact of β on dp/dz

Figure 3.13: The impact of β on dp/dz
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Figure 3.14: The impact of base fluids on knf

Figure 3.15: The impact of base fluids on knf

Figure 3.16: The impact of Br on Eg
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Figure 3.17: The impact of Br on Eg

Figure 3.18: The impact of Λ on Eg

Figure 3.19: The impact of Λ on Eg
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Figure 3.20: The impact of Br on Be

Figure 3.21: The impact of Br on Be

Figure 3.22: The impact of λ on Be



Entropy Formation Analysis Cilia with Suspended CNTs 41

Figure 3.23: The impact of λ on Be

Fig. 3.24: Streamlines for Q = 0.2 Fig. 3.25: Streamlines for α = 2.0

Fig. 3.26: Streamlines for Q = 0.2 Fig. 3.27: Streamlines for Q = 0.4
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Table 3.2: Numerical computation of the velocity against SWCNT with ε =
0.1, α = 0.1, β = 0.2, Ω = 0.5, z = 0.5, φ = 0.3, Rn = 0.0,m = 0.0.

Q M Gr
w(r, z) Present solution w(r, z) Akbar and Butt [112]

r = 0.0 r = 0.25 r = 0.5 r = 0.0 r = 0.25 r = 0.5

0.3 2.0 0.5 0.448967 0.346254 0.030112 0.448954 0.346236 0.0301363

0.4 0.689396 0.569413 0.200434 0.689394 0.569486 0.200482

0.5 0.929843 0.792723 0.370835 0.929834 0.792735 0.370827

1.0 0.968034 0.819956 0.660112 0.968022 0.819977 0.660109

3.0 0.872516 0.751459 0.367037 0.872505 0.751464 0.367044

5.0 0.729409 0.646107 0.354189 0.729404 0.646104 0.354192

1.0 0.729441 0.646183 0.354199 0.729435 0.646127 0.354194

3.0 0.729567 0.646209 0.354212 0.729559 0.646217 0.354204

5.0 0.729698 0.646312 0.354209 0.729683 0.646307 0.354214

Table 3.3: Numerical computation of the velocity against MWCNT with ε =
0.1, α = 0.1, β = 0.2, Ω = 0.5, z = 0.5, φ = 0.3, Rn = 0.0,m = 0.0.

Q M Gr
w(r, z) Present solution w(r, z) Akbar and Butt [112]

r = 0.0 r = 0.25 r = 0.5 r = 0.0 r = 0.25 r = 0.5

0.3 2.0 0.5 0.448945 0.346256 0.0301398 0.448957 0.346239 0.0301365

0.4 0.689378 0.569467 0.200425 0.689397 0.569488 0.200482

0.5 0.929824 0.792745 0.370882 0.929837 0.792738 0.370827

1.0 0.968045 0.819945 0.372923 0.968026 0.819979 0.372998

3.0 0.872512 0.751447 0.367068 0.872508 0.751466 0.367044

5.0 0.729402 0.646104 0.354199 0.729407 0.646106 0.354192

1.0 0.729439 0.646129 0.354189 0.729441 0.646131 0.354195

3.0 0.729568 0.646219 0.354201 0.729576 0.646229 0.354205

5.0 0.729715 0.646313 0.354209 0.729711 0.646327 0.354216



Chapter 4

Entropy Analysis in a Cilia

Transport of Nanofluid under the

Influence of Magnetic Field

4.1 Introduction

In this chapter, an analysis of the entropy generation is performed during the

cilia transport of water-based titanium dioxide nanoparticles in the presence of

viscous dissipation. Moreover, thermal heat flux is considered at the surface of

a channel with ciliated walls. Mathematical formulation is established in terms

of a system comprising of nonlinear partial differential equations. The governing

system is transformed into ordinary differential equations by considering the sim-

ilarity transformation. Exact solution in the closed form has been computed for

the obtained system of equations. Graphical illustrations for the emerging flow

parameters such as Hartman number Ha, Brinkmann number Br, radiation pa-

rameter Rn and flow rate Q have been prepared. The main goal i.e. the reduction

of the entropy generation of the second law of thermodynamics is achieved by

decreasing the magnitude of Br, Ha and Λ.

43
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4.2 Mathematical Analysis

Let us consider ciliary transport of two dimensional axisymmetric flow of a tita-

nium dioxide water nanofluid in a horizontal tube. The inner layer of the duct is

ciliated with metachronal waves. Flow is provoked as a result of these metachronal

waves, which are formed due to wavy or beating motion cilia. A uniform magnetic

field of strength B0 is applied at an inclination angle Θ. It is an angle between

a magnetic field line and axial axis which is measured in anticlockwise direction.

Heat transfer is targeted to be analyzed in the presence of viscous dissipation effect.

Figure 4.1: Geometry of the problem

The shape of the cilia tips is supposed to obey the following pattern [105]-[106]:

R̄ = h̄ = f̄
(
Z̄, t̄
)

= e+ eε cos

(
2π

λ
(Z̄ − ct̄)

)
,

Z̄ = ḡ
(
Z̄, Z̄0, t̄

)
= e+ eεα sin

(
2π

λ
(Z̄ − ct̄)

)
,

 (4.1)

where e denotes the mean radius of the tube, ε the wave amplitude, Z0 the reference

position of cilia, λ the the wavelength, α the measure of the eccentricity, and c the

wave speed. No slip condition is assumed which implies that the cilia tips and the

fluid closed to it, have equal velocity. Therefore the radial and axial velocities are
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given as:

Ū =

(
∂R̄

∂t̄

)
Z̄0

=

(
∂f̄

∂t̄

)
+

(
∂f̄

∂Z̄

)(
∂Z̄

∂t̄

)
=

(
∂f̄

∂t̄

)
+

(
∂f̄

∂Z̄

)
W̄ ,

W̄ =

(
∂Z̄

∂t̄

)
Z̄0

=

(
∂ḡ

∂t̄

)
+

(
∂ḡ

∂Z̄

)(
∂Z̄

∂t̄

)
=

(
∂ḡ

∂t̄

)
+

(
∂ḡ

∂Z̄

)
W̄ .

 (4.2)

Combining (4.1) and (4.2), the radial and axial velocities of the cilia are given as:

Ū =

(
2π
λ

) [
εαce sin

(
2π
λ

(Z̄ − ct̄)
)]

1− 2π
λ

[
εαe cos

(
2π
λ

(
Z̄ − ct̄

))] ,

W̄ =

(−2π
λ

) [
εαce cos

(
2π
λ

(Z̄ − ct̃)
)]

1− 2π
λ

[
εαe cos

(
2π
λ

(
Z̄ − ct̄

))] .


(4.3)

The fundamental boundary layer equations in the fixed frame can be written as

[107]:

Continuity equation:

∂Ū

∂R̄
+
Ū

R̄
+
∂W̄

∂Z̄
= 0. (4.4)

Momentum equation in radial direction:

ρnf

[
∂Ū

∂t̄
+ Ū

∂Ū

∂R̄
+ W̄

∂Ū

∂Z̄

]
=− ∂P̄

∂R̄
+ µnf

[
2
∂2Ū

∂R̄2
+

2

R̄

(
∂Ū

∂R̄
− Ū

R̄

)]
+ µnf

[
∂

∂Z̄

(
∂Ū

∂R̄

)
+
∂2W̄

∂Z̄2

]
. (4.5)

Momentum equation in axial direction:

ρnf

[
∂W̄

∂t̄
+ Ū

∂W̄

∂R̄
+ W̄

∂W̄

∂Z̄

]
=− ∂P̄

∂Z̄
+ 2µnf

[
∂2W̄

∂Z̄2
+

1

R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
+ µnf

[
∂

∂R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
− σbfB2

0 cos(Θ)
(
W̄ + c

)
. (4.6)
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Energy equation:

(ρcp)nf

[
∂T̄

∂t̄
+ Ū

∂T̄

∂R̄
+ W̄

∂T̄

∂Z̄

]
=

[
knf +

16σ∗T 3
∞

3k∗

]
1

R̄

∂

∂R̄

(
R̄
∂T̄

∂R̄

)
+ knf

[
∂2T̄

∂Z̄2

]
+ µnf

[
2

(
∂Ū

∂Z̄

)2

+ 2

(
∂W̄

∂R̄

)2
]

+Q0

+ µnf

(
∂Ū

∂R̄
+
∂W̄

∂Z̄

)2

. (4.7)

The flow is unsteady in a fixed frame of reference (R̄, Z̄), whereas it develops to

be a steady flow in a wave frame (r̄, z̄). The following variables are meaningful to

move the flow regime from unsteady to steady.

Z̄ = z̄ + ct̄

R̄ = r̄

P̄ (Z̄, R̄, t̄) = p̄(z̄, r̄, t̄),

 (4.8)

the velocities inside the two frames are:

Ū = ū,

W̄ = w̄ + c.

 (4.9)

The derived fundamental system of equations after invoking the above variables,

is of the form:

∂ū

∂r̄
+
ū

r̄
+
∂w̄

∂z̄
= 0, (4.10)

ρnf

[
ū
∂ū

∂r̄
+ (w̄ + c)

∂ū

∂z̄

]
=µnf

[
2
∂2ū

∂r̄2
+

2

r̄

(
∂ū

∂r̄
− ū

r̄

)
+

∂

∂z̄

(
∂ū

∂r̄

)
+
∂2w̄

∂z̄2

]
− ∂p̄

∂r̄
, (4.11)

ρnf

[
ū
∂w̄

∂r̄
+ (w̄ + c)

∂w̄

∂z̄

]
=2µnf

[
∂2w̄

∂z̄2
+

1

r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)
+

∂

∂r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
− σbfB2

0 cos(Θ) (w̄ + c)− ∂p̄

∂z̄
, (4.12)
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(ρcp)nf

[
ū
∂T̄

∂r̄
+ (w̄ + c)

∂T̄

∂z̄

]
=

[
knf +

16σ∗T 3
∞

3k∗

]
1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
+ knf

[
∂2T̄

∂z̄2

]
+ µnf

[
2

(
∂w̄

∂r̄

)2

+

(
∂ū

∂r̄
+
∂w̄

∂z̄

)2
]

+ 2µnf

(
∂ū

∂z̄

)2

+Q0. (4.13)

The boundary conditions are given as:

∂w

∂r
= 0,

∂θ

∂r
= 0, at r = 0,

w =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1, θ = 0 at r = h(z) = 1 + ε cos(2πz),

 (4.14)

where ū and w̄ are the velocity elements in the r̄ and z̄ directions, respectively.

Further, B0 represents the magnetic field, Θ the angle of inclination and Q0 the in-

ternal heat generation coefficient. Further, the physical properties of the nanofluid

are given as [113]:

µnf =
µbf

(1− φ)2.5
,

ρnf = (1− φ)ρbf + φρs,

(ρcp)nf = (1− φ)(ρcp)bf + φ(ρcp)s,

knf =
ks + 2kbf + 2 (ks − kbf )φ (1 + γ)3

ks + 2kbf − 2 (ks − kbf )φ (1 + γ)3kbf ,


(4.15)

where γ represents the ratio of the nanolayer thickness to the original particle

radius.

Table 4.1: Thermophysical properties of H2O and TiO2 ([114, 115]).

item ρ(kg/m3) cp(J/kgK) k(W/mK)

TiO2 4250.0 686.2 8.9538

H2O 997.1 4179.0 0.613

Now introducing the following dimensionless transformations, which are fruitful

to transform the partial differential equation into ordinary differential equation:
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r =
r̄

e
, z =

z̄

λ
, u =

λū

ec
, p =

e2p̄

cλµbf
, h =

h̄

e
, Br =

c2µbf
kbfT0

,

Re =
eρbf
µbf

, w =
w̄

c
, β =

e

λ
, Ha2 =

e2B2
0σbf
µbf

, Ω =
Q0e

2

kbfT0

,

θ =
(T̄ − T̄0)

T0

, Rn =
16σ∗

3k∗kbf
T 3
∞.


(4.16)

Substituting (4.16) into Eqs. (4.10)-(4.13), we obtain the following non-dimensional

system:

A1Reβ
3

[
u
∂u

∂r
+ (w + 1)

∂u

∂z

]
=− ∂p

∂r
+ β2

[
2

(1− φ)2.5

] [
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+

[
β3

(1− φ)2.5

] [
∂2u

∂r∂z
+
∂2w

∂z2

]
, (4.17)

A1Reβ

[
u
∂w

∂r
+ (w + 1)

∂w

∂z

]
=− ∂p

∂z
+ β2

[
1

(1− φ)2.5

]
∂2w

∂z2

+
2

(1− φ)2.5

[
1

r

(
β2∂u

∂z
+
∂w

∂r

)
+ β2 ∂

2u

∂r∂z
+
∂2w

∂r2

]
−Ha2 cos(Θ) (w + 1) , (4.18)

(ρcp)nf e c β

[
u
∂θ

∂r
+ (w + 1)

∂θ

∂z

]
=knf

[
∂2θ

∂r2
+

1

r

∂θ

∂r
+ β2∂

2θ

∂z2

]
+
Q0 e

2

T0

+ µnf

[
2c2

T0

(
∂w

∂r

)2
]

+
16σ∗ T 3

∞
3k∗

[
∂2θ

∂r2
+

1

r

∂θ

∂r

]

+ µnf c
2

[
2e2

(
∂u

∂z

)2

+

(
∂u

∂r

)2

+

(
∂w

∂z

)2
]
β2

+ 2

[
∂u

∂r

∂w

∂z

]
β2, (4.19)

where

A1 = 1− φ+ φ
ρs
ρbf

. (4.20)

To attain the general solution of Eqs. (4.17)-(4.19), we shall restrict this study

under the assumptions of long wavelength and low Reynolds number. The non-

dimensional equations can be written as:

dp

dr
= 0, (4.21)
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dp

dz
− 1

(1− φ)2.5

(
1

r

dw

dr
+
d2w

dr2

)
+Ha2 cos(Θ) (w + 1) = 0, (4.22)

(
Ψ4.10 +

4

3
Rn

)(
d2θ

dr2
+

1

r

dθ

dr

)
+

2Br

(1− φ)2.5

(
dw

dr

)2

+ Ω = 0. (4.23)

The convenient boundary conditions are:

∂w

∂r
= 0,

∂θ

∂r
= 0, at r = 0,

w =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1, θ = 0 at r = h(z) = 1 + ε cos(2πz).

 (4.24)

4.2.1 Second Law Analysis The volumetric entropy generation term

SG can be written as follows [116]:

SG =
knf

θ̄2
0

((
∂T̄

∂r̄

)2

+

(
∂T̄

∂z̄

)2
)

+
Φ̄

θ̄0

+
σbfB

2
0

θ̄0

cos(Θ)(w̄ + c)2. (4.25)

The dimensional viscous dissipation term Φ̄ is given as

Φ̄ = µnf

[
2

(
∂ū

∂z̄

)2

+ 2

(
∂w̄

∂r̄

)2

+

(
∂2ū

∂r̄
+
∂2w̄

∂z̄

)2
]
, (4.26)

whereas the dimensionless entropy generation rate Eg is given as:

Eg =
SG
Sg

=Ψ4.10

(
∂θ

∂r

)2

+
ΛBr

(1− φ)2.5

(
∂w

∂r

)2

+ ΛBrHa2 cos(Θ) (w + 1)2 , (4.27)

or

Eg = EH + EV + EM . (4.28)

Eq. (4.25) clearly displays the three different roots for the generation of entropy:

• First term appears due to heat transfer EH irreversibility.
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• Second term appears because of the presence of the viscous dissipation EV

effect.

• Third term develops because of the magnetic field EM .

The characteristic entropy generation, the finite temperature difference and Hart-

man number are given, respectively, as:

Sg =
kbfT

2
0

θ̄2
0e

2
, Λ =

θ̄0

T0

, Ha2 =
e2B2

0σbf
µbf

. (4.29)

Bejan number is introduced to examine the irreversibility distribution [107].

Be =
heat transfer irreversibility

total irreversibility

=
EH

EH + EV + EM
. (4.30)

4.3 Exact Solution

This segment presents the closed form exact solutions to the ordinary differential

Eqs. (4.22) and (4.23) together with the boundary condition (4.24). The constitu-

tive boundary layer equations for the considered flow analysis are coupled nonlinear

partial differential equations. Similarity variables have been introduced to trans-

form the governing system into the ordinary differential equations. The obtained

system is now linear, 2nd order inhomogeneous ordinary differential system. The

exact solution of ordinary differential system presented in Eqs. (4.31), (4.33) and

(4.34) is acquired by the function “DSolve” designed in the computational software

MATHEMATICA. The general solution of inhomogeneous differential equations

comprises of the complementary and particular parts. For complementary solu-

tion, “DSolve” chooses the Bessel functions, because the homogeneous part of

Eq. (4.22) corresponds to the standard form of Bessel equation of order zero., i.e.

r2w′′(r) + rw′(r) + r2w(r) = 0. Once, we are successful in obtaining the comple-

mentary solution, “DSolve” straightforwardly proceeds for the particular solution

using variation of parameter method. The general solution of the temperature
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Eq. (4.23) is obtained by using reduction of order technique. The “reduction of

order technique” is a technique for transforming any linear differential equation to

another linear differential equation of lower order, and then formulating the gen-

eral solution to the principal differential equation. The expressions of the velocity,

pressure gradient and temperature are computed as:

w(r, z) =

FΨ4.2I0

[
Ψ4.3Ha

√
Ψ4.1

√
cos Θ

]
− (Ψ2

4.3 + FΨ4.2) I0

[
r Ha

√
Ψ4.1

√
cos Θ

]
Ψ2

4.3Ψ4.2I2[Ψ4.3Ha
√

Ψ4.1

√
cos Θ



+ Ψ2
4.3

 0F̄1

[
2,

1

4
Ψ2

4.3Ha
2Ψ4.1 cos Θ

]
Ψ2

4.3Ψ4.2I2[Ψ4.3Ha
√

Ψ4.1

√
cos Θ

 . (4.31)

The flow rate is given as [107]:

Q = 2

h(z)∫
0

rw(r, z)dr. (4.32)

Now using (4.31) into (4.32), we have solution of dp/dz i.e.

dp

dz
=
Ha2 cos Θ (Ψ2

4.3 − F ) Ψ4.2I0

(
HaΨ4.3

√
Ψ4.1

√
cos Θ

)
Ψ2

4.3I2

[
Ψ4.3Ha

√
Ψ4.1

√
cos Θ

]
(1− 2πεαβ cos[2πz])

+

Ψ2
4.3 (Ψ4.2 − 1) 0F̄1

[
2,

1

4
Ψ2

4.3Ψ4.1 cos Θ

]
Ψ2

4.3I2

[
Ψ4.3Ha

√
Ψ4.1

√
cos Θ

]
(1− 2πεαβ cos[2πz])

. (4.33)

θ(r, z) =

(
Br (Ψ2

4.3 + FΨ4.2)
2

(Ψ4.4 +Ha2Ψ4.1Ψ4.11 cos Θ) + Ψ4.9

)
(

4Ψ4
4.3Ψ2

4.2Ψ4.1I2[hHa
√

Ψ4.1

√
cos Θ]2 (Rn+ Ψ4.10)

) . (4.34)

The mean flow rate and the pressure rise can be calculted as [107]:

F = Q−
[
0.5 +

ε2

4

]
, (4.35)

∆P =

1∫
0

dp

dz
dz, (4.36)
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where the expressions for (Ψi, i = 4.1− 4.11) are given as:

Ψ4.1 = (1− φ)2.5 ,

Ψ4.2 = 1− 2πεαβ cos[2πz],

Ψ4.3 = 1 + ε cos[2πz],

Ψ4.4 = 2I0[Ψ4.3Ha
√

Ψ4.1

√
cos Θ]2 − 2I0[r Ha

√
Ψ4.1

√
cos Θ]2,

Ψ4.5 = −2I1[Ψ4.3Ha
√

Ψ4.1

√
cos Θ] + 2I0[Ψ4.3Ha

√
Ψ4.1

√
cos Θ],

Ψ4.6 =
(
I0[Ψ4.3Ha

√
Ψ4.1

√
cos Θ] + I2[Ψ4.3Ha

√
Ψ4.1

√
cos Θ]

)
,

Ψ4.7 = −2I1[r Ha
√

Ψ4.1

√
cos Θ]2 + 2I0[r Ha

√
Ψ4.1

√
cos Θ]2,

Ψ4.8 =
(
I0[r Ha

√
Ψ4.1

√
cos Θ] + 2I2[r Ha

√
Ψ4.1

√
cos Θ]

)
,

Ψ4.9 = Ψ4
4.3

(
Ψ2

4.3 − r2
)

Ψ4.1Ψ4.2ΩI2[Ψ4.3Ha
√

Ψ4.1

√
cos Θ]2Ψ4.10,

Ψ4.10 =
kp + 2kbf + 2 (kp − kbf )φ (1 + γ)3

kp + 2kbf − 2 (kp − kbf )φ (1 + γ)3 ,

Ψ4.11 =
(
−Ψ2

4.3 (Ψ4.5Ψ4.6) + r2 (Ψ4.7Ψ4.8)
)
.



(4.37)

4.4 Results and Discussion

The primary focus, here is to study the influence of Hartman number Ha, flow

rate Q, radiation parameter Rn, Brinkmann number Br, angle of inclination Θ,

wave number β and cilia length ε on the velocity field w(r, z), temperature field

θ(r, z), pressure gradient dp/dz, pressure rise ∆P , entropy number Eg and Bejan

number Be.

For this purpose, the velocity field is plotted for different values of Ha and Q.

Figure 4.2 clearly shows that as Ha develops the fluid velocity reduces effectively,

because of the fact that the viscous forces are highly dominant against the elec-

tromagnetic forces, which retard the flow. It can be seen that velocity is at its

maximum at r = 0 and the velocity starts to decrease near the ciliated walls.

Figure 4.3 shows that for higher values of Q the fluid flow increases rapidly.

The energy profile is portrayed in Figures 4.4 and 4.5 for increasing values of Rn

and Br. It is illustrated in Figure 4.4 that by an increasing the magnitude of the
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radiation the temperature of the fluid starts to decrease. Physically, an increment

in Rn implies a decrease in k∗, therefore less energy is absorbed by the fluid. On

the other side, the θ(r, z) significantly increases for higher values of Brinkmann

number as visualized from Figure 4.5. This behavior is obvious, as Brinkmann

number Br describes the conduction of heat from a wall to a flowing fluid. So, as

Br increases, the temperature profile also increases.

Figures 4.6 and 4.7 depict the pressure gradient versus the axial direction for dif-

ferent flow parameters. Increasing effect of Ha on dp/dz is recorded in the regions

[0.5, 1.0] and [1.5, 2], whereas an opposite effect is seen in the regions [0, 0.5], [1, 1.5]

and z ∈ [2, 2.5] in Figure 4.6. Similarly, an increase in angle of the inclination Θ

causes more rapid flow, which implies high pressure gradient as noticed from Fig-

ure 4.7.

Figures 4.8 and 4.9 portrays the variation of the ∆P versus Q for the flow param-

eter wave number β and the non-dimensional measure of cilia length ε. Figure

4.8 shows that an increase in β causes to decrease the pressure rise. Figure 4.9

shows that ε directly influences ∆P . The capability of flow increases, when ε is

increased.

Figures 4.10 to 4.13 are developed to show the physical behavior of entropy in

the radial direction for different parameters, i.e Brinkmann number, Hartmann

number, dimensionless temperature difference and radiation parameter. Figures

4.10 to 4.12 show that by an increasing Br,Ha and Λ the entropy number also

increases. As Br increases, heat transfer dominates fluid viscosity within the chan-

nel, which causes increase of the entropy. Small entropy is recorded at the bottom

of the tube and larger entropy is recorded near the ciliated walls in all cases. The

influence of the thermal radiation is examined in Figure 4.13. It is seen that, with

the increase in Rn = 0.0, 1.0, 2.0, 3.0 the entropy number decreases but the values

are almost same at the bottom of tube. From the graphical illustration, it is quite

clear that the Eg is directly proportional to the Ha, Br and Λ, and inversely

proportional to the radiation parameter.
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Figures 4.14 to ?? are prepared to illustrate the physical insight of Be for increas-

ing values of Ha, Br, Λ and Rn. It is found that Be is the increasing function of

Br and decreasing function of Ha,Λ and Rn.

Trapping phenomenon is shown in Figures 4.18 to 4.21. From Figures 4.18 and

4.19 it is clear that by an increasing the inclination angle the bolus size shrinking,

however the counting of trapped boluses increases. Figures 4.20 and 4.21 demon-

strates that the amount of trapped boluses reduces and the bolus size enhances

with an increment in the flow rate.

The variations in velocity and temperature profiles for multiple values of φ are

presented in Table 4.2. The variation of entropy generation for numerous values

of Rn and φ are presented in Table 4.3.

Figure 4.2: The impact of Ha on w(r, z)

Figure 4.3: The impact of Q on w(r, z)
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Figure 4.4: The impact of Rn on θ

Figure 4.5: The impact of Br on θ

Figure 4.6: The impact of Ha on dp/dz
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Figure 4.7: The impact of Θ on dp/dz

Figure 4.8: The impact of β on ∆P

Figure 4.9: The impact of ε on ∆P
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Figure 4.10: The impact of Br on Eg

Figure 4.11: The impact of Ha on Eg

Figure 4.12: The impact of Λ on Eg
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Figure 4.13: The impact of Rn on Eg

Figure 4.14: The impact of Br on Be

Figure 4.15: The impact of Ha on Be
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Figure 4.16: The impact of Λ on Be

Figure 4.17: The impact of Rn on Be

Figure 4.18: Streamlines for Θ = 0.5
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Figure 4.19: Streamlines for Θ = 1.0

Figure 4.20: Streamlines for Q = 0.1

Figure 4.21: Streamlines for Q = 0.3
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Table 4.2: Variation in w and θ for different values of φ while keeping the
other particulars constant (z = 0.1, ε = 0.1, α = 0.2, β = 0.5,Θ = 0.5, Q =

0.3, Ha = 3.0., γ = 0.1, Rn = 0.5,Ω = 0.5.)

φ = 0.0 φ = 0.3 φ = 0.5

r w θ w θ w θ

-1.00 -0.85876 0.00000 -0.86246 0.00000 -0.86395 0.00000

-0.75 -0.17509 0.18429 -0.18011 0.14054 -0.18216 0.00920

-0.50 0.29395 0.26639 0.29919 0.21019 0.30131 0.03167

-0.25 -0.17509 0.29631 -0.18011 0.23980 -0.18216 0.05147

0.00 0.65790 0.30310 0.67784 0.24766 0.68599 0.05912

0.25 -0.17509 0.29631 -0.18011 0.23980 -0.18216 0.05147

0.50 0.29395 0.26639 0.29919 0.21019 0.30131 0.03167

0.75 -0.17509 0.18429 -0.18011 0.14054 -0.18216 0.00920

1.00 -0.85876 0.00000 -0.86246 0.00000 -0.86395 0.00000

Table 4.3: Variation in Eg for various values of Rn and φ while setting the
other particulars constant (z = 0.5, ε = 0.1, e = 0.5, Q = 0.5, Ha = 0.5, γ =

1.0, β = 1.0,Θ = 0.1,Λ = 0.1,Ω = 0.5, Br = 1.0).

Rn φ r = ±1.0 r = ±0.75 r = ±0.5 r = ±0.25

0.0 0.0 15.66690 3.52975 0.68267 0.13833

1.0 04.99361 1.48760 0.45298 0.12839

2.0 03.01717 1.10985 0.41045 0.12644

3.0 02.32539 0.97751 0.39557 0.12578

0.0 0.1 00.86073 1.01024 0.46434 0.13054

1.0 00.52566 0.99819 0.45824 0.12351

2.0 -00.01107 0.97891 0.44845 0.11225

3.0 -00.95100 0.94513 0.43133 0.09254



Chapter 5

Entropy Formation Analysis for

the Peristaltic Motion of

Ferrofluids in the Presence of

Joule Heating and Fluid Friction

Phenomena in a Plumb Duct

5.1 Introduction

This chapter has been managed to evaluate the entropy growth during the peri-

staltic transport of ferrofluids in a plumb duct. The selected ferrofluids are made

of magnetite Fe3O4 nanoparticles and engine oil. Moreover, heat transfer anal-

ysis is performed with Joule heating, thermal radiation and viscous dissipation

effects. Mathematical formulation has been completed, which results into a set of

ordinary differential equations. Closed form solutions has been computed for the

momentum, energy and pressure gradient. Moreover, entropy formation because

of heat transfer, thermal radiation, viscous dissipation and magnetic effects has

been encountered. Graphical illustrations for the emerging flow parameters like

62
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Hartmann number, Brinkmann number, radiation parameter and dimensionless

temperature difference have been prepared in order to study the physical sense

of these particulars. The central point of the second law of thermodynamics is

achieved by increasing the magnitude of the radiation parameter.

5.2 Problem Statement

Considering, the peristaltic transport of two dimensional, incompressible axisym-

metric flow of a magnetite nanofluid in a finite horizontal tube. A uniform mag-

netic field B0 is applied normal to the circular tube. The selected ferrofluids are

made of engine oil and magnetite nanoparticles. Heat transfer is targeted to be

analyzed in the presence of Joule heating, viscous dissipation and thermal radi-

ation. Cylindrical coordinate system (R̄, Z̄), is selected in such a manner such

that R̄-axis is perpendicular to the tube and Z̄-axis lies along the center of the

tube. The sinusoidal wave proliferates along the walls with a velocity c and wave-

length λ. Figure 5.1 displays the physical aspects of the presented model and the

coordinate system. The wall geometry is expressed as [116]:

R̄wall = h̄(Z̄, t̄) = e+ ε sin
(2π

λ

(
Z̄ − ct̄

) )
, (5.1)

where e and ε are the mean radius of the tube and amplitude of the wave respec-

tively.

Figure 5.1: Geometrical view of the physical model
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The governing model is expressed as [107]:

Continuity equation:
∂Ū

∂R̄
+
Ū

R̄
+
∂W̄

∂Z̄
= 0. (5.2)

Momentum equation in radial direction:

ρnf

[
∂Ū

∂t̄
+ Ū

∂Ū

∂R̄
+ W̄

∂Ū

∂Z̄

]
=− ∂P̄

∂R̄
+ µnf

[
2
∂2Ū

∂R̄2
+

2

R̄

(
∂Ū

∂R̄
− Ū

R̄

)]
+ µnf

[
∂

∂Z̄

(
∂Ū

∂R̄

)
+
∂2W̄

∂Z̄2

]
. (5.3)

Momentum equation in axial direction:

ρnf

[
∂W̄

∂t̄
+ Ū

∂W̄

∂R̄
+ W̄

∂W̄

∂Z̄

]
=− ∂P̄

∂Z̄
+ 2µnf

[
∂2W̄

∂Z̄2
+

1

R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
+ µnf

[
∂

∂R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
− σbfB2

0

[
W̄ + c

]
. (5.4)

Energy equation:

(ρcp)nf

[
∂T̄

∂t̄
+ Ū

∂T̄

∂R̄
+ W̄

∂T̄

∂Z̄

]
=

[
knf +

16σ∗T 3
∞

3k∗

]
1

R̄

∂

∂R̄

(
R̄
∂T̄

∂R̄

)
+ knf

[
∂2T̄

∂Z̄2

]
+ µnf

[
2

(
∂W̄

∂R̄

)2

+

(
∂Ū

∂R̄
+
∂W̄

∂Z̄

)2
]

+ σbfB
2
0

[
W̄ + c

]2
+ 2µnf

(
∂Ū

∂Z̄

)2

. (5.5)

The transformation between the frames are:

Z̄ = z̄ + ct̄, R̄ = r̄, P̄ (Z̄, R̄, t̄) = p̄(z̄, r̄, t̄), (5.6)

and the velocities inside the frames are:

Ū = ū, W̄ = w̄ + c. (5.7)

The derived fundamental system of equations after invoking the above variables,

is of the form:
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∂ū

∂r̄
+
ū

r̄
+
∂w̄

∂z̄
= 0, (5.8)

ρnf

[
ū
∂ū

∂r̄
+ (w̄ + c)

∂ū

∂z̄

]
=µnf

[
2
∂2ū

∂r̄2
+

2

r̄

(
∂ū

∂r̄
− ū

r̄

)
+

∂

∂z̄

(
∂ū

∂r̄

)
+
∂2w̄

∂z̄2

]
− ∂p̄

∂r̄
, (5.9)

ρnf

[
ū
∂w̄

∂r̄
+ (w̄ + c)

∂w̄

∂z̄

]
=2µnf

[
∂2w̄

∂z̄2
+

1

r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)
+

∂

∂r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
− σbfB2

0(w̄ + c)− ∂p̄

∂z̄
, (5.10)

(ρcp)nf

[
ū
∂T̄

∂r̄
+ (w̄ + c)

∂T̄

∂z̄

]
=

[
knf +

16σ∗T 3
∞

3k∗

]
1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
+ knf

[
∂2T̄

∂z̄2

]
+

[
2

(
∂ū

∂z̄

)2

+ 2

(
∂w̄

∂r̄

)2

+

(
∂ū

∂r̄
+
∂w̄

∂z̄

)2
]
µnf

+ σbfB
2
0 [w̄ + c]2 . (5.11)

The boundary conditions:

∂w

∂r
= 0,

∂θ

∂r
= 0, at r = 0,

w = −1, θ = 0 at r = h(z) =
e+ ε sin(2πz)

e
,

 (5.12)

where ū and w̄ are the velocity components in the radial and axial directions re-

spectively. Further, B0 the magnetic field, σbf the effective electrical conductivity.

Thermal properties of the nanofluid are defined as follows [113].

µnf =
µbf

(1− φ)2.5
,

ρnf = (1− φ)ρbf + φρbf ,

(ρcp)nf = (1− φ)(ρcp)bf + φ(ρcp)s,

knf =
ks + 2kbf + 2 (ks − kbf )φ (1 + γ)3

ks + 2kbf − 2 (ks − kbf )φ (1 + γ)3kbf ,


(5.13)
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Thermophysical properties of the engine oil and magnetite are presented in Table

5.1. The following transformations are found successful to convert the model into

the dimensionless form:

r =
r̄

e
, z =

z̄

λ
, w =

w̄

c
,

u =
λū

ec
, p =

e2p̄

cλµbf
,

h =
h̄

e
, θ =

(T̄ − T̄0)

T0

t =
ct̄

λ
,


(5.14)

using (5.14) into (5.8)-(5.11), the mathematical model gets the following form:

A1Reβ
3

[
u
∂u

∂r
+ (w + 1)

∂u

∂z

]
= −∂p

∂r
+ β2

[
2

(1− φ)2.5

] [
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+

[
β3

(1− φ)2.5

] [
∂2u

∂r∂z
+
∂2w

∂z2

]
, (5.15)

A1Reβ

[
u
∂w

∂r
+ (w + 1)

∂w

∂z

]
= −∂p

∂z
+ β2

[
1

(1− φ)2.5

]
∂2w

∂z2
+

1

(1− φ)2.5

×
[

1

r

(
β2∂u

∂z
+
∂w

∂r

)
+ β2 ∂

2u

∂r∂z
+
∂2w

∂r2

]
− σbfB

2
0e

2

µbf
(w + 1), (5.16)

(ρcp)nf e c β

[
u
∂θ

∂r
+ (w + 1)

∂θ

∂z

]
=knf

[
∂2θ

∂r2
+

1

r

∂θ

∂r
+ β2∂

2θ

∂z2

]
+

2c2µnf
T0

(
∂w

∂r

)2

+ β2c2

[
2e2

(
∂u

∂z

)2

+

(
∂u

∂r

)2

+

(
∂w

∂z

)2
]
µnf

+ β2c2

[
2
∂u

∂r

∂w

∂z

]
+ µnf

σbfB
2
0c

2e2

T0

(w + 1)2

+
16σ∗ T 3

∞
3k∗

[
∂2θ

∂r2
+

1

r

∂θ

∂r

]
, (5.17)

where

Br =
c2µbf
kbfT0

, Rn =
4σ∗

k∗kbf
T 3
∞, Ha2 =

σbfB
2
0e

2

µbf
,

β =
e

λ
, Jh =

σbfc
2e2

kbfT0

B2
0 , A1 = 1− φ+ φ

ρs
ρbf

.

 (5.18)

Here Jh is the Joule heating parameter. To achieve the general solution of the

Eqs. (5.17)-(5.19), we shall restrict this study under the following assumptions:
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• Long wavelength: the length of the wave is assumed to be infinite (λ→∞)

as compared to the tube width.

• Low Renyolds number: inertial free flow (Re � 1) is considered i.e.

inertial forces are minute as compared to viscous forces.

The set of Eqs. (5.15)-(5.17) after employing the above assumptions is reduced to

the following set of equations:

dp

dr
= 0, (5.19)

dp

dz
− 1

(1− φ)2.5

(
1

r

dw

dr
+
d2w

dr2

)
+Ha2 (w + 1) = 0, (5.20)

d2θ

dr2

(
1 +

4Rn

3Ψ5.1

)
+

1

r

dθ

dr

(
1 +

4Rn

3Ψ5.1

)
+

1

Ψ5.1

Br

(1− φ)2.5

(
dw

dr

)2

+
1

Ψ5.1

Jh (w + 1)2 = 0, (5.21)

where

Ψ5.1 =
ks + 2kbf + 2 (ks − kbf )φ (1 + γ)3

ks + 2kbf − 2 (ks − kbf )φ (1 + γ)3 . (5.22)

The wall conditions are given as:

∂w

∂r
= 0,

∂θ

∂r
= 0, at r = 0,

w = −1, θ = 0 at r = h(z) =
e+ ε sin(2πz)

e
.

 (5.23)

Table 5.1: Thermophysical properties of magnetite and engine oil ([117, 118]).

item ρ(kg/m3) cp(J/kgK) k(W/mK)

Magnetite 5180 670 9.7

Engine Oil 884 1910 0.144

5.2.1 Second Law Analysis Non-equilibrium situation emerges as a

result of exchange of momentum, temperature and magnetic field within the fluid

and at the walls, which consequently produces the entropy. The volumetric entropy
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generation rate SG can be calculated by using the following formulae [116].

SG =
1

θ̄2
0


EH︷ ︸︸ ︷

knf

(
∂T̄

∂r̄

)2

+

ERn︷ ︸︸ ︷
16σ∗T 3

∞
3k∗

(
∂T̄

∂r̄

)2

+

EM︷ ︸︸ ︷
σbfB

2
0

θ̄0

(w̄ + c)2

+
µnf
θ̄0


EV︷ ︸︸ ︷

2

(
∂ū

∂z̄

)2

+ 2

(
∂w̄

∂r̄

)2

+
∂2ū

∂r̄2
+
∂2w̄

∂z̄2
+ 2

(
∂ū

∂r̄

∂w̄

∂z̄

) . (5.24)

Eq. (5.24) reflects the contribution of four different factors causing the entropy

generation. These are the heat transfer EH , the thermal radiation ERn, the mag-

netic field EM and the viscous dissipation EV . Entropy gives the degree of disorder

of the system and its surroundings and is given as:

Eg =

(
knf
kbf

+
4

3
Rn

)(
∂θ

∂r

)2

+
2ΛBr

(1− φ)2.5

(
∂w

∂r

)2

+ ΛBrHa2(w + 1)2, (5.25)

where

Sg =
kbfT

2
0

θ̄2
0e

2
, (5.26)

Λ =
θ̄0

T0

. (5.27)

The dimensionless Eg is computed on dividing SG by Sg. Bejan number is intro-

duced to investigates the irreversibility distribution:

Be =
EH

EH + ET + EV + EM
. (5.28)

5.3 Exact Solutions

In this segment, the exact solutions to the coupled ordinary differential Eqs. (5.20)

and (5.21) together with the wall condition (5.23) are presented. The constitutive
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boundary layer equations for the considered flow analysis incorporates continu-

ity, momentum and energy equations. The exact solution of ordinary differential

system presented in Eqs. (5.29), (5.31) and (5.32) is acquired by the function

“DSolve” designed in the computational software MATHEMATICA. The general

solution of inhomogeneous differential equations comprises of the complementary

and particular parts. For complementary solution, “DSolve” chooses the Bessel

functions, because the homogeneous part of Eq. (5.20) corresponds to the stan-

dard form of Bessel equation of order zero i.e. r2w′′(r)+rw′(r)+r2w(r) = 0. Once,

we are successful in obtaining the complementary solution, “DSolve” straightfor-

wardly proceeds for the particular solution using variation of parameter method.

The general solution of the temperature (5.21) is obtained by using reduction of

order technique. The expressions for velocity, pressure gradient and temperature

are computed as:

Velocity distribution:

w(r, z) =

−1 +
(dp/dz)

Ha2
+

(dp/dz)I0

[
rHa

√
1− φ2.5

]
Ha2I0

[
hHa

√
1− φ2.5

]
 . (5.29)

Flow rate [107]:

Q = 2π

∫ h(z)

0

rwdr. (5.30)

Pressure gradient:

Substituting (5.29) in (5.30), we have

dp

dz
= −

Ha2 (F + h2π) I0

(
hHa

√
1− φ2.5

)
h2πI2

(
hHa

√
1− φ2.5

) . (5.31)

Temperature distribution:

θ(r, z) =
(
F + h2π

)2

 (Ψ5.2 (h2Ψ5.3 + Jhr
2 (1− φ2.5))) I0

(
hHa

√
1− φ2.5

)2

4h4Ha2π2 (1− φ2.5) I2

(
h
√

1− φ2.5Ha
)2

(Rn+ Ψ5.1)


+
(
F + h2π

)2

I0

(
hHa

√
1− φ2.5

)(
Ψ5.4 + Ψ5.5I1

(
hHa

√
1− φ2.5

))
4h4Ha2π2 (1− φ2.5) I2

(
h
√

1− φ2.5Ha
)2

(Rn+ Ψ5.1)


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+
(
F + h2π

)2

 HaΨ5.6I1

(
rHa

√
1− φ2.5

)2

+ Ψ5.7I1

(
h
√

1− φ2.5
)

4h4Ha2π2 (1− φ2.5) I2

(
h
√

1− φ2.5Ha
)2

(Rn+ Ψ5.1)



+
(
F + h2π

)2

Ψ5.8

(
h2I1

(
hHa

√
1− φ2.5

)2

− r2I2

(
rHa

√
1− φ2.5

))
4h4Ha2π2 (1− φ2.5) I2

(
h
√

1− φ2.5Ha
)2

(Rn+ Ψ5.1)

 .

(5.32)

Expressions for (Ψi, i = 5.2, ..., 5.8) are given as:

Ψ5.2 = −8Jh + 2BrHa2 −Ha2,

Ψ5.3 = −3Jh + 2BrHa2,

Ψ5.4 = JhI0

(
rHa

√
1− φ2.5

)
,

Ψ5.5 = 2hHa
(
−Jh +BrHa2

)√
1− φ2.5,

Ψ5.6 =
(
−Br − Jh +BrHa2

)
r2
√

1− φ2.5,

Ψ5.7 =
(
Jh −BrHa2

)
r
√

1− φ2.5I0

(
h
√

1− φ2.5
)
,

Ψ5.8 = Ha
(
Jh −BrHa2

) (√
1− φ2.5

)
.



(5.33)

5.4 Result and Discussion

An arrangement of figures in this section has been displayed to get a physical

insight into the problem. Figure 5.2 displays the influence of Ha on w against the

radial distance. It is found that as Ha increases the fluid velocity decreases. Actu-

ally, higher magnitude of Ha implies large Lorentz force (resistive force), therefore

huge amount of resistance is faced by the fluid and hence retards the fluid motion.

Figure 5.3 shows the impact of the flow rate Q on the w(r, z). It is found that Q

is directly proportional to the flow field. The increasing trend of thermal radia-

tion parameter on the temperature field is shown in Figure 5.4. This graph shows

that fluid temperature decreases gradually as radiation increases more quickly.

Physically, an increase in Rn increases the mean absorption coefficient k∗ which



Entropy Formation Analysis for the Peristaltic Movement of Ferrofluids 71

consequently reduces the temperature. The behavior of the Joule heating parame-

ter Jh on the temperature profile against the radial distance is presented in Figure

5.5. Basically, the effect of MHD produces the Joule heating effect. It is visualized

that the temperature distribution enhances significantly for larger values of Joule

heating. Effects of flow rate and amplitude ratio are portrayed in Figures 5.6 and

5.7 respectively. It is seen that the advancing flow rate gradually weakening the

pressure gradient profile. Whereas, a uniform fluctuating behavior is examined

in case of the amplitude ratio. Increasing trend of ε on the dp/dz is recorded in

the regions z ∈ [0, 0.5], z ∈ [1, 1.5] and z ∈ [2, 2.5], whereas an opposite trend is

seen in the regions z ∈ [0.5, 1.0] and z ∈ [1.5, 2] in Figure 5.7. Figures 5.8 and

5.9 exhibits the variation of ∆P versus Q for wave number β and the Hartmann

number Ha. Figure 5.8 shows that an increase in the β results causes to decrease

the pressure rise. Figure 5.9 shows that ∆P is the decreasing function of Ha.

Physically, when Ha is increased, the ability of fluid to flow is reduced, and so

∆P decreases automatically.

It is viewed in Figure 5.10 that the formation of entropy enhances with higher Ha.

Moreover, maximum entropy is seen at the mid of tube, because in this portion

the velocity is at its extreme and thus contribution to MHD flow is also at its

extreme. Similarly, when Ha is large, low entropy is viewed near the walls of the

tube, because high Ha implies low fluid friction irreversibility.

The influence of the thermal radiation Rn is demonstrated in Figure 5.11, we no-

ticed that an increment in the radiation results to reduces the entropy. Physically,

an increment in Rn give rise to a low buoyancy force which consequently decreases

the entropy. Figure 5.12 depicts that the formation of entropy increases with the

increasing Br.

Figure 5.13 shows the influence of the dimensionless temperature difference Λ on

the entropy generation. It is seen that the entropy number increases for the in-

creasing values of Λ.

Figures 5.14 to 5.17 are graphed to examine the nature of Be under the varia-

tions in different parameters. It is seen that the magnitude of Be reduces with

an increase in the magnitude of Ha,Rn,Br and Λ, because the heat transfer
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irreversibility EH is small as compared with the total irreversibility i.e. Eg =

EH + ET + EV + EM .

A very fascinating phenomenon in peristaltic movement, called trapping, is shown

with respect to change in various parameters. Figures 5.18 and 5.19 reflect that

the bolus size enlarges rapidly, however, the amount of trapped bolus start de-

creasing in size, as we increase the Q from 0.1 to 0.5. From Figures 5.20 and 5.21,

it is clear that by increasing the ε from 0.3 to 0.5, the bolus size increases inside

the streamlines but the count of trapped bolus reduces.

The variations in the velocity and temperature profiles for various values of φ is

presented in Table 5.2. The variations in the temperature profile for various values

of the Rn is presented in Table 5.3. Table 5.4 presents the dynamics of entropy

for different values of Λ and Br.

Figure 5.2: The impact of Ha on w(r, z)

Figure 5.3: The impact of Q on w(r, z)
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Figure 5.4: The impact of Rn on θ(r, z)

Figure 5.5: The impact of Jh on θ(r, z)

Figure 5.6: The impact of Q on dp/dz
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Figure 5.7: The impact of ε on dp/dz

Figure 5.8: The impact of β on ∆P

Figure 5.9: The impact of Ha on ∆P
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Figure 5.10: The impact of Ha on Eg

Figure 5.11: The impact of Rn on Eg

Figure 5.12: The impact of Br on Eg
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Figure 5.13: The impact of Λ on Eg

Figure 5.14: The impact of Ha on Be

Figure 5.15: The impact of Rn on Be
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Figure 5.16: The impact of Br on Be

Figure 5.17: The impact of Λ on Be

Figure 5.18: Streamlines for Q = 0.1
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Figure 5.19: Streamlines for Q = 0.5

Figure 5.20: Streamlines for ε = 0.3

Figure 5.21: Streamlines for ε = 0.5
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Table 5.2: Variation in w and θ profiles for different values of φ while keeping
the other particulars constant (z = 0.5, ε = γ = 0.1, Q = 0.5 = Rn,Ha =

3.0, Br = Jh = 0.3).

φ = 0.0 φ = 0.3 φ = 0.5

r w θ w θ w θ

-1.00 -1.00000 0.00000 -1.00000 0.00000 -1.00000 0.00000

-0.75 -0.04152 1.25485 -0.08511 1.96078 -0.10689 5.11789

-0.50 0.43928 1.64699 0.47203 2.59566 0.48678 6.87813

-0.25 0.66228 1.64270 0.77119 2.62741 0.82599 7.12241

0.00 0.72709 1.75940 0.86539 2.77002 0.93630 7.33409

0.25 0.66228 1.64270 0.77119 2.62741 0.82599 7.12241

0.50 0.43928 1.64699 0.47203 2.59566 0.48678 6.87813

0.75 -0.04152 1.25485 -0.08511 1.96078 -0.10689 5.11789

1.00 -1.00000 0.00000 -1.00000 0.00000 -1.00000 0.00000

Table 5.3: Variation in θ profile for various values of Rn while setting the
other particulars constant (z = Q = 0.5, ε = γ = 0.1, Ha = 2.0, Br = 3.0, φ =

Jh = 0.01).

r Rn = 0.0 Rn = 1.0 Rn = 3.0 Rn = 5.0

-1.00 0.00000 0.00000 0.00000 0.00000

- 0.75 1.93097 0.95292 0.47338 0.31490

- 0.50 2.49715 1.23232 0.61218 0.40724

- 0.25 2.60932 1.28768 0.63967 0.42553

0.00 2.61663 1.29128 0.64147 0.42672

0.25 2.60932 1.28768 0.63967 0.42553

0.50 2.49715 1.23232 0.61218 0.40724

0.75 1.93097 0.95292 0.47338 0.31490

1.00 0.00000 0.00000 0.00000 0.00000



Entropy Formation Analysis for the Peristaltic Movement of Ferrofluids 80

Table 5.4: Variation in Eg for various values of Λ and Br while setting the
other particulars constant (z = 1.0, ε = 0.1, Q = 0.5, Ha = 4.0, γ = 0.1, Rn =

0.4, φ = 0.01, Jh = 0.01).

Λ Br r = ±1.0 r = ±0.75 r = ±0.5 r = ±0.25

0.0 1.0 0.00000 1.75142 2.36536 2.47188

1.0 111.927 68.2709 100.303 120.618

2.0 223.855 134.790 198.242 238.765

3.0 335.782 201.310 296.180 356.912

0.5 0.5 9.32729 5.59728 8.23972 9.93161

1.0 18.6545 11.2896 16.6053 19.9926

1.5 27.9818 17.0771 25.0976 30.1845

2.0 37.3091 22.9599 33.7165 40.5072



Chapter 6

Entropy Analysis of SWCNT &

MWCNT Flow Induced by

Collecting Beating of Cilia with

Porous Medium

6.1 Introduction

This chapter considers the thermodynamics analysis of creeping viscous nanofluid

flow in a horizontal ciliated tube containing uniform magnetic field and porous

medium. Moreover, energy analysis is performed in the presence of internal heat

source and thermal radiation phenomena. The thermal conductivity of base fluid

water is strengthened by considering the carbon nanotubes (CNTs). Mathemati-

cal formulations is established which result into a set of coupled partial differential

equations. The governing differential system is transformed into ordinary differen-

tial system by considering the suitable similarity variables. Exact solution in the

closed form is computed for the temperature, momentum and pressure gradient

profiles. In this study, special attention is devoted to the term electrical conductiv-

ity of the considered CNTs. Streamlines patterns are also discussed to witnessed

81
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the flow lines for different parameters. Thermodynamics analysis shows that en-

tropy of the current flow system is increasing function of Brinkmann number,

magnetic parameter, nanoparticle concentration parameter and Darcy number.

6.2 Problem Statement

This chapter investigates the axisymmetric flow of viscous nanofluid in a ciliated

flexible horizontal tube. When the group of cilia operate together metachronal

waves are produced, which move in the direction of effective stroke. These wave

have wavy and beating motion. Flow is developed as a consequences of these wavy

or beating motion of metachronal waves and due to no slip condition fluid is mov-

ing with the wave speed c. Further, the effects of uniform magnetic field, porous

medium, internal heat source coefficient and thermal radiation are also considered.

The cylindrical coordinate system (R̄, Z̄) has been introduced to present the ge-

ometry of the problem. Figure 6.1 depicts the systematic view of the under study

peristaltic fluid model.

Figure 6.1: Geometrical view of the physical model
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The shape of the cilia tips is supposed to obey the following pattern [105]-[106]:

R̄ = h̄ = f̄(Z̄, t̄) = e+ eε cos

[
2π

λ
(Z̄ − ct̄)

]
,

Z̄ = ḡ(Z̄, Z̄0, t̄) = e+ eεα sin

[
2π

λ
(Z̄ − ct̄)

]
,

 (6.1)

where e denotes the mean radius of the tube, ε the wave amplitude, Z0 the reference

position of cilia, c the wave speed, λ the wavelength, and α the measure of the

eccentricity. No slip condition indicates that the cilia tips and fluid closed to it,

have equal velocity, thus radial and axial velocities are given as:

Ū =

(
∂R̄

∂t̄

)
Z̄0

=

(
∂f̄

∂t̄

)
+

(
∂f̄

∂Z̄

)(
∂Z̄

∂t̄

)
=

(
∂f̄

∂t̄

)
+

(
∂f̄

∂Z̄

)
W̄ ,

W̄ =

(
∂Z̄

∂t̄

)
Z̄0

=

(
∂ḡ

∂t̄

)
+

(
∂ḡ

∂Z̄

)(
∂Z̄

∂t̄

)
=

(
∂ḡ

∂t̄

)
+

(
∂ḡ

∂Z̄

)
W̄ .

 (6.2)

Combining (6.1) and (6.2), the radial and axial velocities of the cilia are given as:

Ū =

(
2π
λ

) [
εαce sin

(
2π
λ

(Z̄ − ct̄)
)]

1− 2π
λ

[
εαe cos

(
2π
λ

(
Z̄ − ct̄

))] ,

W̄ =

(−2π
λ

) [
εαce cos

(
2π
λ

(Z̄ − ct̄)
)]

1− 2π
λ

[
εαe cos

(
2π
λ

(
Z̄ − ct̄

))] .


(6.3)

The governing bounadry layer equations for the laminar, viscous nanofluid flow in

a fixed frame are given as [107]:

∂Ū

∂R̄
+
Ū

R̄
+
∂W̄

∂Z̄
= 0. (6.4)

ρnf

[
∂Ū

∂t̄
+ Ū

∂Ū

∂R̄
+ W̄

∂Ū

∂Z̄

]
=− ∂P̄

∂R̄
+ µnf

[
2
∂2Ū

∂R̄2
+

2

R̄

(
∂Ū

∂R̄
− Ū

R̄

)]
+ µnf

[
∂

∂Z̄

(
∂Ū

∂R̄

)
+
∂2W̄

∂Z̄2

]
− σnfB2

0

(
Ū + c

)
. (6.5)
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ρnf

[
∂W̄

∂t̄
+ Ū

∂W̄

∂R̄
+ W̄

∂W̄

∂Z̄

]
=− ∂P̄

∂Z̄
+ 2µnf

[
∂2W̄

∂Z̄2
+

1

R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
+ µnf

[
∂

∂R̄

(
∂Ū

∂Z̄
+
∂W̄

∂R̄

)]
−
(
σnfB

2
0 +

µnf
K

) (
W̄ + c

)
+ ρnfgα

∗(T̄ − T̄0). (6.6)

(ρcp)nf

[
∂T̄

∂t̄
+ Ū

∂T̄

∂R̄
+ W̄

∂T̄

∂Z̄

]
=knf

[
1

R̄

∂

∂R̄

(
R̄
∂T̄

∂R̄

)
+
∂2T̄

∂Z̄2

]
+Q0

+
16σ∗T 3

∞
3k∗

[
1

R̄

∂

∂R̄

(
R̄
∂T̄

∂R̄

)]
. (6.7)

The transformation between the frames are:

Z̄ = z̄ + ct̄, R̄ = r̄, P̄ (Z̄, R̄, t̄) = p̄(z̄, r̄, t̄), (6.8)

and the velocities inside the two frames are:

Ū = ū, W̄ = w̄ + c, (6.9)

the derived fundamental system of equations after invoking the above variables

are of the form:
∂ū

∂r̄
+
ū

r̄
+
∂w̄

∂z̄
= 0, (6.10)

ρnf

[
ū
∂ū

∂r̄
+ (w̄ + c)

∂ū

∂z̄

]
=µnf

[
2
∂2ū

∂r̄2
+

2

r̄

(
∂ū

∂r̄
− ū

r̄

)
+

∂

∂z̄

(
∂ū

∂r̄

)
+
∂2w̄

∂z̄2

]
− ∂p̄

∂r̄
− σnfB2

0 (ū+ c) , (6.11)

ρnf

[
ū
∂w̄

∂r̄
+ (w̄ + c)

∂w̄

∂z̄

]
=2µnf

[
∂2w̄

∂z̄2
+

1

r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)
+

∂

∂r̄

(
∂ū

∂z̄
+
∂w̄

∂r̄

)]
− ∂p̄

∂z̄
−
(
σnfB

2
0 +

µnf
K

)
(w̄ + c)

+ ρnfgα
∗(T̄ − T̄0), (6.12)
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(ρcp)nf

[
ū
∂T̄

∂r̄
+ (w̄ + c)

∂T̄

∂z̄

]
=knf

[
1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂z2

]
+Q0

+
16σ∗T 3

∞
3k∗

[
1

r

∂

∂r

(
r
∂T

∂r

)]
. (6.13)

The boundary conditions are:

w′(r) = 0, θ′(r) = 0, at r = 0,

w =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1, θ = 0 at r = h(z) = 1 + ε cos(2πz).

 (6.14)

Here ū and w̄ are the velocity elements in the radial r̄ and axial z̄ directions,

B0 the total magnetic field, σnf the electric conductivity of nanofluid, K the

permeability parameter, ρnf the effective density, kbf the thermal conductivity of

the fluid fraction, kCNT the thermal conductivity of the solid nanoparticle, and

knf the effective thermal conductivity, given as [119]:

µnf =
µbf

(1− φ)2.5
,

ρnf = (1− φ)ρf + φρCNT ,

(ρcp)nf = (1− φ)(ρcp)bf + φ(ρcp)CNT ,

σnf = σbf

1 +

3

(
σCNT
σbf

− 1

)
φ(

σCNT
σbf

+ 2

)
−
(
σCNT
σbf

− 1

)
φ

 ,

knf = kbf

(1− φ) +
2φkCNT

kCNT − kbf
log

(
kCNT + kbf

2kbf

)
(1− φ) +

2φkbf
kCNT − kbf

log

(
kCNT + kbf

2kbf

)
 .



(6.15)

Thermophysical properties of the base fluids and nanoparticles are given in Table

6.1. The following transformations are found fruitful to convert the model into

the dimensionless form:

r =
r̄

e
, z =

z̄

λ
, w =

w̄

c
, u =

λū

ec
,

p =
e2p̄

cλµbf
, t =

ct̄

λ
, θ =

(T̄ − T̄0)

T0

,

 (6.16)
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substituting (6.16) into Eqs. (6.10)-(6.13), the mathematical model gets the fol-

lowing form:

Ψ6.2Reβ
3

[
u
∂u

∂r
+ (w + 1)

∂u

∂z

]
= −∂p

∂r
+ β2

[
2

(1− φ)2.5

] [
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
+

[
β3

(1− φ)2.5

] [
∂2u

∂r∂z
+
∂2w

∂z2

]
−Ψ6.1 β

(
σbf
µbf

)
B2

0e
2(β u+ 1), (6.17)

Ψ6.2Reβ

[
u
∂w

∂r
+ (w + 1)

∂w

∂z

]
=β2

[
1

(1− φ)2.5

]
∂2w

∂z2
−Ψ6.1

σbfB
2
0e

2

µbf
(w + 1)

− µnf
µbf

e2

K
+
ρbf
µbf

ge2

c
Ψ6.2 α

∗ T0 θ −
∂p

∂z

+

[
1

r

(
β2∂u

∂z
+
∂w

∂r

)
+ β2 ∂

2u

∂r∂z
+
∂2w

∂r2

]
× 1

(1− φ)2.5 , (6.18)

(ρcp)nf e c β

[
u
∂θ

∂r
+ (w + 1)

∂θ

∂z

]
=knf

[
∂2θ

∂r2
+

1

r

∂θ

∂r
+ β2∂

2θ

∂z2

]
+
Q0e

2

T0

+
16σ∗ T 3

∞
3k∗

[
∂2θ

∂r2
+

1

r

∂θ

∂r

]
, (6.19)

where

β =
e

λ
, Da =

K

e2
, Ha2 =

σbfB
2
0e

2

µbf
, Re =

ceρbf
µbf

, h =
h̄

e
,

Gr =
ρbfgα

∗e2T0

cµbf
, Ω =

Q0e
2

kbfT0

, Rn =
4σ∗

k∗kbf
T 3
∞.

 (6.20)

To achieve the general solution of the Eqs. (6.17)-(6.19). we shall restrict this

study under the following assumptions:

• Long wavelength: the length of the wave is assumed to be infinite (λ→∞)

as compared to the tube width.

• Low Renyolds number: inertial free flow (Re � 1) is considered i.e.

inertial forces are minute as compared to viscous forces.

dp

dr
= 0, (6.21)
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dp

dz
−
(

1

r

dw

dr
+
d2w

dr2

)
1

(1− φ)2.5
+

(
Ψ6.1Ha

2 +
Da−1

(1− φ)2.5

)
(w + 1)

−Ψ6.2Gr θ = 0, (6.22)

d2θ

dr2

(
Ψ6.3 +

4

3
Rn

)
+

1

r

dθ

dr

(
Ψ6.3 +

4

3
Rn

)
+ Ω = 0, (6.23)

where

Ψ6.1 = 1 +

3

(
σCNT
σbf

− 1

)
φ(

σCNT
σbf

+ 2

)
−
(
σCNT
σbf

− 1

)
φ

,

Ψ6.2 = 1− φ+ φ
ρCNT
ρbf

,

Ψ6.3 =

(1− φ) +
2φkCNT

kCNT − kbf
log

(
kCNT + kbf

2kbf

)
(1− φ) +

2φkbf
kCNT − kbf

log

(
kCNT + kbf

2kbf

)
 .



(6.24)

Here Gr is the Grashof number, Da the Darcy number and Ω the internal heat

source parameter. The boundary conditions are given as:

w′(r) = 0, θ′(r) = 0, at r = 0,

w =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1, θ = 0 at r = h(z) = 1 + ε cos(2πz).

 (6.25)

Table 6.1: Thermophysical properties of CNTs and water ([120]

Physical properties ρ(kg/m3) cp(J/kgK) k(W/mK) σ (S/m)

SWCNT 2600 425 6600 1400

MWCNT 1600 796 3000 300

water 997.1 4179 0.613 0.05

6.2.1 Second Law Analysis Non-equilibrium situation emerges as a

result of exchange of momentum, temperature and magnetic effects within the fluid

and at the walls which causes a continuous entropy generation. The volumetric
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entropy generation term SG can be calculated as follows:

SG =
1

θ̄2
0

knf
EH︷ ︸︸ ︷(
∂T̄

∂r̄

)2

+

ERn︷ ︸︸ ︷
16σ∗T 3

∞
3k∗

(
∂T̄

∂r̄

)2

+

EM︷ ︸︸ ︷
σnfB

2
0

θ̄0

(
w̄ + c

)2

. (6.26)

Eq. (6.26) reflects the contribution of three distinct factors causing the entropy

generation. These factors are heat transfer EH , thermal radiation ERn and the

magnetic field EM . Entropy basically gives the degree of disorder of the system

and its surroundings and the rate of dimensionless entropy formation Eg =
SG
Sg

is:

Eg =

(
Ψ6.3 +

4Rn

3

)(
∂θ

∂r

)2

+ Ψ6.1 ΛBrHa2 (w + 1)2 , (6.27)

where

Sg =
kbf T̄ 2

0

θ̄2
0e

2
,

Br =
c2µbf
kbf T̄0

,

Λ =
θ̄0

T̄0

,


(6.28)

here Λ is the dimensionless temperature difference, Br the Brinkmann number.

To figure out the irreversibility distribution, Bejan number Be, was introduced by

Bejan, and is given as:

Be =
EH

EH + ERn + EM
. (6.29)

6.3 Exact Solutions

In this segment, the exact solutions to the coupled ordinary differential Eqs. (6.20)

and (6.21) together with the wall condition (6.23) are computed. The governing

boundary layer equations includes continuity, momentum and energy equation.

The exact analytical solution to the ordinary differential system is acquired by
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using a computational software MATHEMATICA.

Temperature distribution:

θ(r, z) =


3(h− r)(h+ r)Ω

16Rn+ 12

(1− φ) +
2φkCNT
kCNT − kf

log

(
kCNT + kf

2kf

)
(1− φ) +

2φkf
kCNT − kf

log

(
kCNT + kf

2kf

)



. (6.30)

velocity distribution:

w(r, z) =


−1−Ψ6.4Da(1− φ)2.5 +

(
1 + Ψ6.4DaΨ6.6 + Ψ6.5Da

)
I0[
√

Ψ6.4]r

I0[
√

Ψ6.4]h

Ψ6.4Da


,

(6.31)

the flow rate is described as

Q = 2

h(z)∫
0

rw(r)dr, (6.32)

now substituting Eq. (6.20) into Eq. (6.21) and then we have solution of dp/dz

dp

dz
=

(−8(F + h2)Ψ6.10Ψ6.7Ψ6.2Ω) Ψ6.8 + 8h2

(
3Da2GrTΨ6.2Ω

)
Ψ6.9

h4(1− φ)2.5

(
(1 +DaHa(1− φ)2.5Ψ6.1)2

)
(4Rn+ 3Ψ6.3)Ψ6.9

 . (6.33)

The mean flow rate can be calculated as:

F = Q−
[
0.5 +

ε2

4

]
, (6.34)
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where the expression for (Ψi, i = 6.4− 6.10) are given as:

Ψ6.4 = Ha(1− φ)2.5Ψ6.1 +
1

Da
,

Ψ6.5 =
dp

dz
+HaΨ6.1 −Ψ6.2Gr

(
3(h− r)(h+ r)Ω

16Rn+ 12Ψ6.3

)
,

Ψ6.6 =
−2πεαβ cos(2πz)

1− 2πεαβ cos(2πz)
− 1,

Ψ6.7 = (4Rn+ 3Ψ6.3) + 3DaGrh2(1− φ)2.5(h2 +Da(−8 +HaΨ6.1)),

Ψ6.8 = I0

[
h

√
1

Da
Ha(1− φ)2.5Ψ6.1

]
+ 8h2

(
(1 +DaHa(1− φ)2.5Ψ6.1)2

)
,

Ψ6.9 = 0F1

[
h2

4

(
1

Da
Ha(1− φ)2.5Ψ6.1

)]
,

Ψ6.10 =

(
1 +DaHa(1− φ)2.5Ψ6.1

)2

.


(6.35)

6.4 Result and Discussion

This segment highlights the dynamics of various pertinent flow parameters on

streamlines, velocity field, temperature field, pressure gradient, and entropy num-

ber.

Consequence of Darcy number Da on momentum profile is depicted in Figure

6.2, and it is observed that the fluid velocity increases with an increase in Da.

Physically, an increases in Da enhances the permeability of the medium, which

corresponds to greater permeability and thus increases the velocity. Variation of

magnetic parameter Ha on w(r, z) is graphed in Figure 6.3. It is judged that an

enhancement in Ha reduces the fluid velocity for both SWCNT and MWCNT.

Physically, an increase in Ha accelerates the strength of the Lorentz force, which

is a resistive force, therefore more resistance is offered to the fluid motion which

consequently reduces the fluid velocity.

The variation of Ω and Rn on θ(r, z) is depicted in Figure 6.4 and 6.5. It is noted

that when Ω is kept zero the over all heat transfer rate is zero, which is obvious

see Eq. (6.27), while increasing behavior of fluid energy is found for Ω > 0 for
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both SWCNT and MWCNT see Figure 6.4. Figure 6.5 displays the effect of Rn

on energy profile. It is seen that the fluid temperature decreases rapidly as there

is an increase in the radiation parameter. Physically, an increase in the radiative

parameter Rn increases the mean absorption coefficient k∗ which reduces the fluid

temperature significantly.

Figures 6.6 and 6.7 show the influence of Darcy parameter Da and flow rate Q

on the pressure gradient profiles. The pressure gradient is a physical quantity

that characterize in which direction and at what rate the pressure raises the most

rapidly. It is witnessed that a uniform oscillating behavior is found for increasing

values of Da and Q (for both SWCNT and MWCNT). Figure 6.6 shows that with

higher values of Darcy number, the permeability of the medium also enhances,

which correspondingly enhances the pressure gradient profile. Figure 6.7 shows

that the pressure profile is decreasing function of flow rate.

Figure 6.8 shows that the entropy of the fluid system increases with an increase

in the magnitude of the Brinkmann number Br. As Br enhances, energy trans-

fer influences the viscosity of fluid within the tube, therefore increases the total

entropy. Figure 6.9 shows that the fluid entropy increases for the greater values

of the magnetic number Ha. Moreover, maximum entropy is seen at the central

portion of the tube, because in this portion the velocity is at its extreme and thus

contribution to MHD flow is also at its extreme. The impact of nanoparticles

concentration φ on Eg is plotted in Figure 6.10. It is seen that the maximum

entropy is noted at the boundaries and at the center of tube, which is due to the

fact that the concentration of CNTs is minimum at these regions. The impact of

Darcy number Da on Eg is plotted in Figure 6.11. It is seen that the total entropy

of the system increases for variation in Darcy number.

A very interesting part of peristaltic motion, called trapping, is presented with re-

spect to change in the various parameters. An internal circulating bolus is formed

during the peristaltic transport which is forced to move in the direction of waves.

The trapping phenomenon for variation in α and Gr is shown in Figures 6.12-6.15.

It is seen that with an increase in α and Gr the number of bolus increases and

size of bolus reduces while considering SWCNT and MWCNT, respectively.
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Figure 6.2: The impact of Da on w(r, z)

Figure 6.3: The impact of Ha on w(r, z)

Figure 6.4: The impact of Ω on θ(r, z)
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Figure 6.5: The impact of Rn on θ(r, z)

Figure 6.6: The impact of Da on dp/dz

Figure 6.7: The impact of Q on dp/dz
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Figure 6.8: The impact of Br on Eg

Figure 6.9: The impact of Ha on Eg

Figure 6.10: The impact of φ on Eg
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Figure 6.11: The impact of Da on Eg

Figure 6.12: Streamlines for α = 0.5

Figure 6.13: Streamlines for α = 1.0
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Figure 6.14: Streamlines for Gr = 10.0

Figure 6.15: Streamlines for Gr = 15.0

Table 6.2 and 6.3 represents the numerical values of solid volume fraction of

nanoparticle and Brinkmann number. It is seen that with an increase in solid

volume fraction and Brinkmann number the irreversibility distribution parameter

Bejan number decreases.
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Table 6.2: Bejan profile for both SWCNT and MWCNT for variation in in-
creasing values of solid volume fraction (φ) while setting β = z = 0.2, Q =

0.5, α = ε = 0.3, Ha = Gr = Ω = 0.5, Rn = Da = Br = 0.3, Λ = 0.1.

φ = 0.1 φ = 0.2 φ = 0.3

r SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT

± 1.00 0.97385 0.97307 0.97288 0.97216 0.96891 0.96826

± 0.75 0.67197 0.66547 0.66352 0.65775 0.63120 0.62647

± 0.50 0.31161 0.30545 0.30336 0.29811 0.27417 0.27033

± 0.25 0.07779 0.07576 0.07503 0.07334 0.06572 0.06456

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 6.3: Bejan profile for both SWCNT and MWCNT for variation in in-
creasing values of Brinkmann number (Br) while setting β = z = 0.2, Q =

0.5, α = ε = 0.3, Ha = Gr = Ω = 0.5, Rn = Da = 0.3, Λ = 0.1, φ = 0.2.

Br = 0.1 Br = 0.2 Br = 0.3

r SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT

± 1.00 0.99154 0.99131 0.98323 0.98277 0.97505 0.97438

± 0.75 0.85791 0.85474 0.75118 0.74633 0.66807 0.66233

± 0.50 0.56111 0.55496 0.38996 0.38405 0.29881 0.29362

± 0.25 0.18849 0.18479 0.10405 0.10180 0.07186 0.07025

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000



Chapter 7

Conclusion and Future Work

7.1 Introduction

This thesis is managed to analyze the entropy generation during the peristaltic

transport of creeping viscous nanofluid in an axisymmetric channel. The general

solution of the governing equations are obtained under the assumptions of long

wavelength and low Renyolds number. Below, we conclude the present study and

indicate some possible future directions.

7.1.1 Conclusion This thesis investigates the significance of creeping vis-

cous nanofluid in an axisymmetric channel influenced by metachronical waves of

cilia. The momentum analysis is performed along with the effects of uniform and

inclined magnetic field, Hall current and gravitational field. Heat transport anal-

ysis is also computed while considering the impacts of thermal radiation, viscous

dissipation, Joule heating and internal heat source phenomenons. Mathemati-

cal formulation have been operated and graphical results are also discussed. In

some cases, present results are also compared with already published results. The

fundamental points of the present investigation are:

• It is found that the flow field, the temperature field and the entropy gener-

ation are symmetric about the radial axis.

98
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• It is acknowledged that extreme velocity happens at the middle of tube and

falls off closed to the boundary.

• It is found that increasing magnitude of Hartmann number and Darcy num-

ber retards the fluid motion.

• It is seen that velocity field is the increasing function of flow rate parameter.

• It is observed that temperature profile is inversely proportional to the radi-

ation parameter.

• A meaning full increment in the temperature profile is noticed with an in-

crease in internal heat source parameter, Brinkmann number and Joule heat-

ing parameter.

• No temperature variation is seen, when the coefficient of internal heat source

is kept zero.

• It is witnessed that pressure gradient exhibits uniform oscillating behavior

against an increasing values of measure of the eccentricity, wave number and

wave amplitude.

• We see that Hartmann number and angle of inclination both are increasing

function of pressure gradient.

• Rapid decline is noticed in pressure rise against the higher magnitude of the

wave and Harmtmann number.

• The engine oil is having the maximum thermal conductivity, where as the

pure water have the least.

• By decreasing the magnitude of the Brinkmann number, Hartmann number,

dimensionless temperature difference, solid volume fraction of nanopartlcles

and Darcy parameters, we can achieve the main goal of the 2nd law of

thermodynamics, i.e., the minimization of entropy generation.

• It is seen that entropy generation significantly reduces with variation in

radiation parameter.
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• It is seen that the total irreversibility distribution is high as compared with

the heat transfer irreversibility.

• It is visualize that the number of trapped boluses decreases and the size

bolus increases with an increment in the value of flow rate.

• Streamlines patterns for variation in Grashof number shows that number of

bolus increases, while the size of bolus decrease for MWCNT.

7.1.2 Future Work In our daily life fluids are all around us, from a morn-

ing coffee to an evening bath. The industrial significance of peristalsis fluids flow

are discussed in introduction and literature review section. In future, I have plan

to explore the consequences of peristalsis fluids flow with non-Newtonian models.

In short, I would like to proceed in the following possible directions:

• Entropy analysis of the peristalsis flow for Jeffery model in an inclined duct.

• Entropy analysis of the peristalsis flow of Williamson model in an inclined

tube.

• Second law analysis of peristaltic flow of hyperbolic tangent fluid model in

a duct.

• Entropy analysis of the peristaltic flow of Johnson- segalman model in an

inclined tube.
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