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Abstract

Due to the exponential growth of information on the Internet, Web Search Engines

(WSEs) have become indispensable for the effective retrieval of information. In

order to provide the results most relevant to the user, WSEs store the users’ profile

that may contain sensitive information including the users age, gender, health con-

dition, personal interests, religious or political affiliation, etc. However, this raises

serious concerns for the privacy of the user since the identity of a user may get

exposed and misused by third parties. To address the issue of privacy infringement

while using WSE, researchers have proposed several techniques such as anonymiz-

ing networks, profile obfuscation, private information retrieval (PIR) protocols.

In the anonymizing network, the user’s query is forwarded to the WSE through

a chain of routers. In profile obfuscation technique, fake queries are forwarded

with the user’s query in order to mislead the WSE. While one well-known solu-

tion to preserve privacy is a Private Information Retrieval (PIR) protocol called

Useless User Profile (UUP) that issues the queries via Peer nodes, thereby hiding

user’s identity from the WSE. Despite the fact that the aforementioned meth-

ods improve the user privacy, yet some previous studies using a machine learning

algorithm and user profile show that an adverse WSE is able to break profile ob-

fuscation and anonymizing network methods. However, it is not clear if an adverse

WSE is able to break UUP using machine learning techniques.

This thesis investigates the protection offered by UUP. To evaluate the effectiveness

of UUP in privacy protection, we propose QuPiD (Query Profile Distance) Attack.

QuPiD Attack is a machine learning based attack that determines the distance

between the user’s Profile (web search history) and upcoming query using a novel

feature vector. The proposed feature vector is composed of a set of numeric values

of 10 major topics acquired from uClassify service. The results show that the

proposed QuPiD attack associates more than 40% queries to the correct user with

a precision of over 70%. Moreover, during the investigations, the proposed QuPiD

attack behave unexpectedly in some cases, affecting its precision and recall. Upon

detail investigation, three reasons are found responsible for that behavior: (i)



x

variable similarity score between incoming query and user profile, (ii) lack of traces

of incoming query in the user profile, and (iii) presence of more than one matching

user profiles. We call this behavior as ProQSim (Profile Query Similarity) Effect.

Based on the results, it is concluded that UUP does not provide satisfactory pro-

tection to users. We, therefore, develop PEM (Privacy Exposure Measure), a

technique that minimizes the privacy exposure of a user while using the PIR pro-

tocols. PEM assesses the similarity between the user’s profile and query before

posting to WSE and assists the user to avoid further privacy exposure. The pri-

vacy evaluation experiments with PEM (Privacy Exposure Measure) demonstrates

that a user profile created with a web search engine through PEM is 95.97% dif-

ferent as compare to the usual user’s profile and thus offers more privacy to the

user even in the case of machine-learning attack for mpeT = 10%. (Maximum

privacy exposure (mpeT ) is the threshold value set by the user for exposure of

his/her profile to the web search engine). We have established empirically that

our proposed privacy protection mechanisms (PEM) significantly improves per-

formance with regard to preserving privacy. Finally, we conclude this thesis with

our perspectives and point out some key future research issues in the areas of PIR

protocols, adverse models, and our suggested module PEM.
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”Privacy isn’t about hiding something. It’s about being able to control how we
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— Bruce Schneier (Cryptography and Security Specialist)

”Privacy is not an option, and it shouldn’t be the price we accept for just getting

on the Internet.”
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”We don’t need you to type at all. We know where you are. We know where

you’ve been. We can more or less know what you’re thinking about.”
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Chapter 1

Introduction

1.1 Introduction and Motivation

Online users’ privacy is a delicate issue that has been unfortunately largely over-

looked by technology corporations and especially general public since from the

birth of the Internet. Many online businesses and services such as web search

engines (WSE), online retailers and social network sites exploit the user’s per-

sonal data for profit [1]. This collection of personal data possessed by these com-

panies are often used for targeted advertisements and marketing [2]. Although

these companies claimed that they maintain the user’s profile in order to deliver

them relevant and personalized results. However, the indiscriminate collection

and exploitation of users’ information without their knowledge is an indecent act.

Worryingly, the terms and conditions of these online services are intentionally kept

vague as a precautionary measure. Similarly, when it comes to web search engines,

the issue of the user’s privacy becomes more critical and complex. Such as the

Google’s current terms and conditions which narrate that they got the license to

store, reproduce, modify and use the contents uploaded, submitted, stored, sent or

received by the user through their service [3]. For that reason, many online services

introduced user privacy setting options. However, a study on Facebook shows that

these privacy setting cannot offer protection to the user’s privacy in practice due

1
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to either complex privacy setting or lack of desired options [4]. Moreover, another

study found that the privacy policies of online service providers are usually not

aligned with the user’s privacy values [5]. This matter became even worse after

President Trump signed the legislation enabling internet service providers to sell

user data without their consent [6]. However, the European Union took this matter

more seriously by passing laws regarding users’ privacy [7]. The Court of Justice

of the European Union (CJEU) even forced Google to introduce the ”right to be

forgotten” options [8, 9]. In 2016, the European Union has revamped the data

protection laws and bound Web service providers to enforce third parties that a

person wants his/her information to be deleted [10]. However, these privacy rules

and regulation are applicable in Europe only and Web service providers chose not

to generalize for them globally [11, 12].

With the beginning of World Wide Web services, diverse kind of computer man-

ageable data is pouring in from various sources, whereby recent advancements in

the communication networks facilitate users to access and share a large volume of

information in a minimum amount of time [13]. The service starting based on the

concept of a global information system, has now became a huge pile of information

of almost every sort [14]. In order to find relevant and specific information over

the internet efficiently, web search engines were introduced in 90’s [15]. Before the

invention of Web Search Engines, it was an enormous challenge for internet users

to find the relative and topic-specific information in the globally scattered data

sources. First ever web search engine was introduced in September 1993 with the

name W3Catalog [15]. Presently, the most popular web search engines are Google,

Bing, and AOL, etc. According to Pew Internet & American Life Project report

2012, 91% of users always find correct information when searching in the net. The

same survey claimed that the use of search engines increased by 6% during the

last decade (between 2002 and 2012) which was 85% and 91%, respectively.

Due to the exponential growth of information on the World Wide Web, Web

Search Engines have become indispensable for the efficient and accurate retrieval

of information. Considering this fact, web search engines usually collect a wide

range of information about the user. Maintaining a user profile is very helpful for
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ranking relevant search results according to the user’s interests and past history.

It is also helpful for recommendation systems provided by many websites and

used to remember customized user settings. However, the user profile may contain

personal and sensitive data which may cause critical privacy breaches. While using

WSE, users often do not understand that they expose themselves to a massive leak

of information. This issue of users’ privacy breach received significant attention

in 2005 when the US department of Justice compelled Google to submit records

of users’ queries [16]. Later America Online (AOL) released (pseudo-anonymized)

20 million queries of more than 650,000 users submitted in three months of time

without user consent for research purpose [17]. Although they replace the users’

identifiers (e.g. email id, name, IP address, etc.) with fictitious ID, the New York

Times was able to deduce some of the users correctly based on their search query

patterns [18]. Apart from the scandal, this release of data enabled researchers to

explore numerous important areas such as user behavior analysis and prediction

[19, 20], query reformulation strategies [21, 22], web user privacy analysis [23],

etc. Similarly, the focus of some studies was to extract the explicit and implicit

personal information of the users from queries [18, 23]. For example, the New

York Times managed to identify the person behind the user # 4417749. User #

4417749 was 62-year-old single women Thelma Arnold living in Lilburn, Georgia

with her three dogs [18, 24]. Explicit personal information contains facts that can

reveal user identity or behavior. For example, in the query ”Jarrett arnold eugene

oregon” sent by Thelma Arnold, we understand that she is searching about one

member of her family in Oregon State. Implicit information is extracted from the

whole user profile using advanced methods (such as data mining, etc.) [23, 25].

For example, we can deduce the user’s age, gender, the standard of living, wealth,

location, sexual orientation, political and religious affiliation, health condition, etc.

There is a misconception among the people about the term ”Privacy”. Usually,

people think that privacy is the ability of an individual to isolate themselves or it’s

a person right to control access to her personal information. Researchers usually

argue that disclosing users’ personal information is not a problem as they have

nothing to hide. However, according to Solove [26], privacy is not just about the
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Figure 1.1: Web Search Engine collects User’s queries for Selling and Targeted
Advertisements. [28]

revelation of secret information but it also includes the exploitation of user’s per-

sonal information. Similarly, Schneier advised users to take this matter seriously as

the exploitation of personal information may lead to disastrous consequences [27].

For example, in the context of a Web Search, an Adverse Web Search Engine can

disclose or sell user personal queries (such as health and wealth-related queries) to

the insurance companies, banks, and advertising agencies (see Fig. 1.1). Fig. 1.1

shows that the user is using different services provided by the web search engine

(such as search engine, map, smart phone apps etc.) and most of his/her queries

are related to the condition of diabetes. Based on the analysis user’s activities in

different Web Search Engine services, Web Search Engine infers that the user is

probable a diabetic. Web Search Engine then may use this inferred information

for targeted advertisements and sell it to other interested companies.

As many popular and commercial web search engines lack dedicated privacy pre-

serving features to ensure user’s privacy, alternative search engines have emerged

such as DuckDuckGo1 , Qwant2 , Start-Page3 , etc. The aforementioned search

engines do not provide any specific mechanism for privacy preservation, instead,

1https://duckduckgo.com
2https://www.qwant.com/?l=en
3https://www.startpage.com
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they claim that they do not maintain user profiles and do not collect users’ per-

sonal information. According to their terms and conditions, they affirm that they

only collect search queries without identifying information. However, as could be

seen in the AOL scandal, that even an anonymized log cannot provide sufficient

privacy to the users [23]. Besides, these search engines cannot be trusted as their

implementation is not publicly available.

To overcome these issues of privacy infringement, researchers have proposed several

techniques and alternatives. Using these schemes, users can query the web search

engine without revealing the query content. However, these solutions rely on

cryptographic algorithms which increases the computation cost for both users and

service provider. Moreover, web search service providers have no interest to deploy

such schemes as their business model is based on the exploitation of personal data.

As the deployment of these solutions seems unrealistic, the focus of this thesis is

client-side solutions for privacy-preserving web search.

As popular commercial web search engines are not interested in providing privacy

preservation mechanisms. Therefore, researchers have proposed various client-side

solutions for privacy-preserving web search. These solutions can be classified into

four major classes i.e., user anonymizing networks, profile obfuscation, private

information retrieval (PIR) protocols, and hybrid techniques. In the anonymizing

network (e.g., RAC [29], Onion Routing [30], Dissent [31, 32], and Tor [33], etc.),

the user’s query is forwarded to the web search engine through a chain of routers for

anonymous communication. They are also referred to as unlinkability solutions or

anonymous communication protocols [2] as they attempt to hide the user’s identity.

In the profile obfuscation technique (e.g. TrackMeNot [34, 35], GooPIR [36], etc.),

fake queries are forwarded with the user’s queries in order to mislead the web search

engine. These techniques are also referred to as indistinguishability solutions and

their main aim is to alter the user’s search pattern [2]. In PIR protocols (e.g. UUP

[37–40], UPIR [41, 42], Crowds [43]), a group of users exchange their queries with

each other and submit it to the web search engine in order to preserve the privacy,

while hybrid techniques (e.g., PEAS [44], X-Search [28]) are a combination of more

than one aforementioned techniques.
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All the aforementioned proposed techniques for privacy-preserved web-search have

some advantages and disadvantages. For instance, user anonymization techniques

can offer protection on the network layer by hiding user’s network layer identifiers,

however, web search engines maintain users profile based on various other identi-

fiers such as cookies and device fingerprints, etc. Moreover, user anonymization

techniques are feeble to machine learning attacks [45, 46]. Similarly, profile ob-

fuscation techniques offer relatively better privacy by misleading the web search

engine about users’ intentions and interests. In these techniques, however genera-

tion of realistic fake queries is a challenging task. As machine learning algorithms

can easily identify machine-generated queries [14]. The Private Information Re-

trieval (PIR) protocols offer even more privacy by submitting user’s query to the

web search engine through other trusted user and can avoid problems related to

fake query and profiling [47].

1.2 Research Gap and Problem Statement

Machine learning based attacks have been proven to be the most effective and

successful attacks for all privacy major preservation techniques. Machine learning

based attacks need user’s profile (web search history) and classification algorithm

to build a prediction model for the classification of upcoming queries. There are

several studies available that evaluate the effectiveness of privacy preservation

techniques using machine learning attack. In these studies [2, 14, 45, 46], machine

learning attacks are used to classify fake and real queries in case of profile ob-

fuscation techniques or identification of the query originator node in case of the

anonymizing network. However, to the best of our knowledge PIR protocols have

never been evaluated using machine learning attacks.

Apart from the fact that PIR protocols are bit expensive in terms of time and

hardware resources as compere to the profile obfuscation and user anonymization

techniques, yet they are considered to be the most secure privacy-persevering web

search techniques [47]. This is due to the fact that these protocols do not rely on
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fake machine generated queries or unknown proxy users. Instead these protocols

works with legitimate users and their legitimate queries. However, this is also a

noticeable fact that the effectiveness of these protocols in terms of privacy have

never been tested against machine learning attacks to the best of our knowledge.

The major aim of machine learning attack is to associate the queries to their

original users in an anonymized log. Therefore, the performance evaluation and

effectiveness of PIR protocols against machine learning attack and improvement

in the existing protocols regarding attack is a researchable issue.

The aim of this thesis is to evaluate the effectiveness of the PIR protocols in terms

of privacy using machine learning attacks and to propose an improvement in the

existing protocol for better protection. For the evaluation of privacy, web search

engines are assumed to be an entity whose goal is to work against the privacy-

preserving solution and to identify the User of Interest (UoI) queries for profiling

purposes. It is assumed that a web search engine is equipped with the user’s

search history. The user profile contains queries submitted by the user in the past

without using any PIR protocol.

1.3 Research Objectives and Questions

Based on available literature, it is clear that most of the popular solutions for

privacy-preserving web search (e.g., anonymizing networks and profile obfuscation

techniques) are vulnerable to machine learning attacks. However, to the best of

our knowledge PIR protocols have never been evaluated using machine learning

attacks. Therefore, the major issues addressed in this thesis are related to the

evaluation of PIR protocols under machine learning attacks. Moreover, it is an

obvious fact that the dynamics of PIR protocols are different from other privacy-

preserving web search techniques. For instance, PIR protocols use a group of

users who have variable querying behaviors and frequency. Similarly, the size of

the user profile (for building prediction model) also varies due to different user

behavior. Therefore, in order to test the capabilities of our proposed machine
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learning attacks from various angles, we address the following research questions

in this thesis:

1. What are the effects of machine learning attacks on the privacy of

Private Information Retrieval protocols?

(a) To what extent Private Information Retrieval protocols can successfully

protect user’s privacy in case of machine learning attack?

(b) Which machine learning algorithm is more suitable for successful ma-

chine learning attack?

(c) What will be the impact of profile size on the results?

(d) What will be the impact of the session window size on the results?

(e) What will be the impact of different feature vectors on the results?

(f) Identification of factors that can influence the success rate of machine

learning attacks.

2. How can we improve the effectiveness and performance of the Pri-

vate Information Retrieval protocols in the presence of Machine

Learning Attack?

(a) Which similarity measure is more suitable for the proposed improvement

of the Private Information Retrieval protocols in order to minimize the

effect of machine learning attack?

1.4 Contributions

Regarding the first research question, the baseline was established in previous

studies by Peddinti and Saxena [14, 45, 48] and Petit et al. [2, 44, 46]. How-

ever, the targets of these studies were anonymizing networks (Tor, GooPIR) and

profile obfuscation schemes (TMN) since the dynamics of the PIR protocols are

different from anonymizing networks and profile obfuscation techniques, and ad-

ditionally the machine learning attacks proposed for these solutions cannot be
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adopted directly. For these reasons, we designed a novel attack, the QuPiD At-

tack (Query Profile Distance Attack), which is a machine learning based attack

that evaluates the effectiveness of the Private Information Retrieval protocol in

privacy protection. The QuPiD Attack determines the distance between the user’s

Profile (web search history) and upcoming query using a novel feature vector. The

results showed that the proposed QuPiD attack is successfully able to break the

users’ privacy, and thus showed that PIR protocols cannot provide satisfactory

protection to the users.

Regarding the sub-questions of Research Question 1 (Chapter 3), we have identi-

fied some factors that can influence the overall capability of the proposed attack.

Although the proposed attack bears better results in breaking the users’ privacy

provided by PIR protocols. We identified an interesting behavior of the proposed

attack that predominantly affects the rate of recall and precision in some cases.

Upon detailed investigation, it is found that this behavior occurs due to three

reasons: (i) variable similarity score between incoming query and user profile (his-

tory), (ii) lack of traces of incoming query in the user profile, and (iii) presence of

more than one almost similar user profiles. We named this behavior the ProQSim

effect (Profile Query Similarity).

To answer the Research Question 2 (Chapter 4), we propose the PEM (Privacy

Exposure Measure) step as an improvement in PIR protocols. Privacy exposure

measure is a privacy estimation mechanism that assesses the similarity between

the user’s profile and query before posting to WSE assisting the user to avoid

further privacy exposure. According to the mechanism of a privacy exposure

measure, the user is initially asked to set the privacy exposure threshold. After

setting the privacy exposure threshold, the similarity of every user query is then

calculated against the user profile. If the similarity between the user profile and

the query is above the threshold, the user is asked to reconsider the query. As

a consequence, the low similarity between queries and users profile prevents the

machine learning attack to expose user’s privacy accurately. The Performance of

PEM is evaluated in terms of Profile Similarity, Cross-Entropy loss and Kullback-

Liebler (KL) divergence.
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Figure 1.2: Our contributions presented in a single scenario (Shown in Yellow
color).

We summarize our two major contributions presented in this thesis through the

scenario presented in Fig. 1.2 (Shown in yellow color). A user sends a query

through private information retrieval protocols. Our proposed step PEM (Privacy

Exposure Measure) assesses the profile exposure. If the exposure is more than the

threshold value, the query is sent back to the user for reconsideration. Otherwise,

the query is forwarded to the web search engine. Finally, the web search engine

(adverse entity) uses QuPiD attack to expose the user privacy provided by the

private web search solution.

1.5 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 contains a review of

the state of the privacy-preserved web search techniques. Chapter 3 and Chapter

4 describe the major contributions developed in this thesis and Chapter 5 presents

the conclusion of thesis and future work.

A more detail overview of the content of each chapter follows:

1. Chapter 2 is divided into four major sections. In the first section, we dis-

cussed all the available private web search solutions that are reported in the
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literature along with their shortcomings. In the second section, we discussed

all the available attacks and adverse models proposed for the evolution of

private web search solutions. In the next two sections, we discussed metrics

used to calculate the effectiveness of private web search solutions and query

categorization techniques.

2. In Chapter 3, we present QuPiD attack in order to answers the Research

Question 1 and its subparts. The QuPiD attack is a machine learning based

attack that is used to evaluate the effectiveness of PIR protocols in terms

of privacy protection. QuPiD Attack determines the distance between the

user’s Profile (web search history) and upcoming query using a novel feature

vector. We also discuss the design and working of QuPiD attack along

with experimental results in detail. Moreover, Chapter 3 also contains a

discussion about ProQSim affect its causative factors and results of related

experiments. ProQSim effect is an effect that can influence the performance

of the proposed QuPiD attack.

3. In Chapter 4, we present PEM (Privacy Exposure Measure) in order to

answer the Research Question 2 and its sub-part. PEM is a privacy expo-

sure minimizing technique for Private Web Search. PEM facilitates users

to control their privacy exposure while using PIR protocols. PEM assesses

the similarity between the user’s profile and query before posting to the Web

Search engine and assists the user in avoiding privacy exposure. In this chap-

ter, we also discuss the design and working of PEM along with experimental

results in detail.

4. In the last chapter (Chapter 5, we summarize and discuss the major contri-

butions of our thesis in detail. We also gave possible future directions related

to our contributions.
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State of the Art

Online user’s privacy is a delicate issue from the user’s point of view. Unfortunately

for web search engines, user privacy is just a behavior tracking and used for mul-

tiple purposes including profit. To address the issue of privacy infringement while

using WSE, researchers have proposed several techniques and alternatives. This

chapter presents an overview of the existing private information retrieval solutions

along with adversarial models and privacy attacks in detail. We also discuss the

methods through which their performance was assessed in terms of privacy pro-

tection and performance. Moreover, this section also contains a discussion about

different query categorization techniques.

2.1 Private Web Search and Solutions

Solutions for private web retrieval can be categorized into four major categories

(i) systems that use Private Information Retrieval Protocols to ensure privacy (ii)

systems that try to contaminate the user profile or history using indistinguishabil-

ity techniques (iii) systems that break the binding between query and user using

unlinkability techniques, and (iv) Hybrid systems. As the focus of this research

is Private Information Retrieval Protocols, we will discuss Private Information

Retrieval Protocols in detail as compared to the rest of the solutions.

12
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2.1.1 Private Information Retrieval Protocols

The concept of private information retrieval narrates that user can get information

from the source without revealing the retrieved item [49, 50]. Normally this facility

should be offered by the web search engine and many web search engines already

claim to provide this facility1234. In this regard, Pang et al. [51] proposed web

search engines oriented user privacy preservation. The authors suggested that the

query should be decomposed into multiple buckets of terms and each bucket must

be encrypted with some homomorphic encryption algorithm. The homomorphic

property states that the product of two encrypted text Enc(a) and Enc(b) is equal

to the encryption of the product of two plain-texts Enc(a× b) (shown in Equation

2.1).

Enc(a)× Enc(b) = Enc(a× b) (2.1)

The WSE will provide the relevance score each each encrypted bucket (without

knowing the content as it is encrypted). In the end, the user will de-crypt the

result and find the relevant documents based on the score. However, in terms of

time complexity, homomorphic algorithms are costly [52]. Moreover, many pre-

vailing web search engines collect user information and use it for various purposes.

Therefore the problem of getting information privately must be dealt with at the

user side. Therefore, in order to provide anonymity to the user, the first ever

scheme proposed was Private Information Retrieval (PIR) by Chor et al. in 1998

[49, 50]. This scheme was proposed to get the data from the replicated copies

of the database. Their solution was to break the user’s query into small select

queries and send all queries to different copies of the same database and gather

results of all queries. Thus, the user intention will remain secret. However, the

computational cost of the solution was too high [41]. Additionally, this solution

was proposed for SQL databases.

1www.duckduckgo.com
2www.startpage.com
3www.ixquick.com
4www.yippy.org
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According to Pfitzmann and Waidner [53], three types of anonymity can be pro-

vided in anonymous communication: sender anonymity, receiver anonymity, and

unlinkability between sender and receiver. In the first case, the sender will remain

hidden during communication, in the second case the receiver will remain hid-

den while in third case both the sender and receiver can be identified. However,

in the latter case they cannot be identified as communicating with each other.

Therefore, in light of Pfitzmann and Waidner explanation of private information

retrieval (PIR), the system must provide sender anonymity while the rest can be

provided as needed. Similarly, according to Petit et al. [2], a PIR protocol must

have the following three algorithms: (i) query construction and protection (using

encryption at least), (ii) retrieval of information privately, and (iii) reconstruction

of results for the user.

The Peer-to-Peer solution uses a complete decentralized architecture to hide user

identity. In Peer-to-Peer schemes [38–40, 54–58], users who wanted to submit

queries privately create a collaborative group and submit the queries on behalf of

each other. These solutions are often called user-based solutions [2] as they use

collaborative users. There are many techniques available to users to collaborate

and get information privately. Some techniques use shared memory locations,

while some use encrypted query exchange and other methods. These methods can

provide better privacy, but the response time of the bigger group is worse [2]. This

section contains discussion and working of all available PIR protocols.

2.1.1.1 Crowds

Reiter and Rubin gave peer to peer web PIR concept [43] in 1998, and they used

public peers to ensure privacy in web transactions. Their approach was based on

the idea ”blend into a crowd” and for that reason, they called their system the

”Crowds”. In addition to the scheme, authors also proposed a scale for anonymity,

which provides different degrees of anonymity ranging from ”Absolute Privacy”

to ”Provably Exposed”. In the proposed scheme, the crowd is the collection of

users who want to perform web transactions anonymously. A user can join the
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Figure 2.1: Paths in a Crowds. [43]

process by starting the application named ”Jondo”. Once ”Jondo” is started on

the user’s computer, it contacts the server, which they named ”blender”. The

”blender” keeps the record of all online clients (who use ”Jondo”). After that, the

user will set Jondo as default proxy server and all requests will be sent directly

to Jondo. After this phase, the system is ready for anonymous web transactions.

Every request a user has made is send to the other active Jondo by picking a

random member in the Crowd Rm. The Rm′s Jondo will run a biased coin flip-

a-coin algorithm to decide whether to forward that request to the web server or

forward it to another Jondo. During this whole process, each Jondo will keep

the record of all requests it forwarded which record is then used for the reply

phase. The flip-a-coin algorithm is very effective in preserving user’s privacy, as

the intermediate user of the communication was aware of the content but not

the identity of the requester. They have also characterized the user’s anonymity

properties using degree of anonymity scale. The paths of the requests in ”Crowds”

are shown in Fig. 2.1.

Wright et al. [59] proposed a predecessor attack to find weaknesses in Crowds.

They noted that the Crowds system stood weakly against it. In that attack, a
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number of attacking nodes join the Crowds and record all the queries which passed

through them. After getting a large number of entries, the attackers simply tally

their log and find the victim. Similarly, Viejo et al. [40] reported that a lengthy

path, blender, and encryption and decryption at each node will introduce a notable

delay in the overall procedure. Moreover, as the system acts as a complete graph,

each edge will need a separate symmetric key which will be greater in number.

From the user point of view, the profile of the group for optimized search can only

be possible if group members share the same interests and if a user has to hide

his/her own information as Crowds only protects the transport of the data. Viejo

et al. [40] also proposed a solution to deal with the nodes that refused to forward

any query (selfish node).

2.1.1.2 Useless User Profile Protocol

Castella-Roca et al. proposed the Useless User Profile (UUP) [37], a more secure

technique than Crowds [43] for private information retrieval. In UUP, they intro-

duced a group concept and used a group encryption for query hiding other than

in ”Crowds”. UUP is composed of four sub-protocols i.e. Group setup, Group key

generation, anonymous query retrieval, and query submission and retrieval. The

process starts with the group setup step, during which the user Ui sends a request

to the central node Cn to join a group. The central node acts as a facilitator

and generates groups from the individual users. When a central node receives n

requests from n users, it creates a group of n users. In the next step, group keys

are generated. Each user generates an ElGamal [60] single public key and also gen-

erate a random private key. The common public key is then generated by adding

the public keys of all group members. All users in the group encrypt their queries

with the common public key and send them to each other. Each user permutes

and re-mask his/her query and sends it to the next user. When the last user of the

group re-masks the queries, all the ciphered queries in the group are broadcasted

in the group whereby each user receives its assigned ciphered query and submits

it to the web search engine. As the query requester became anonymous due to

multiple re-masking, the results of the query are then broadcasted in the group.
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Unlike Crowds the UUP provides more privacy. However, the cryptographic oper-

ations introduce about 6.8 seconds delay in the whole process [2]. To minimize the

delay, Romero-Tris et al. [39] proposed some modification in the process. They

suggested to decrypt queries before the last broadcast and for all users to submit

all queries to the search engine including their own as the last step will remove

the last step of result broadcast. By introducing these modifications, they reduce

the delay from 6.8 seconds to 3.2 seconds [2].

Lindell et al. [47] found that the UUP stood weakly against adversary nodes.

They studied the behavior of protocol under various attacks that were launched

by adversary nodes present in the group. The attacks include denial of service,

replacement attacks, and cryptography attacks. Lindell et al. pointed out that the

shuffling mechanism proposed by the UUP, cannot guarantee that users will follow

the protocol correctly. They launched four different attacks i.e. ”Targeted public-

key attack”, ”Stage-skipping attack”, ”Input-replacement attack”, and ”Input-

tagging attack” during the private shuffle phase. The result showed that UUP was

vulnerable to these attacks. For that reason, Lindell et al. proposed a verification

step to ensure that none of the users cheats during shuffling. They suggested an

onion-layered two phases encryption (El-Gamal [60] and CCA2-Secure [61]) for

query results and symmetric key encryption for data. After the shuffle, each user

checks whether his query is present in the encrypted text or not. If found then

the user will send true. If all parties send true then it means that no malicious

behavior was reported during the shuffle. Although they solved the problem of

malicious nodes, Romero-Tris et al. [38] indicate that this improvement introduces

more than 6.8 seconds delay (worse than the first version of the UUP).

In order to improve privacy with a minimum delay, Romero-Tris et al. [38] pro-

posed a new protocol, the Multi-party private web search, with untrusted partners

(MPWS-UP). The MPWS-UP protocol is also composed of four steps. The first

step is a group set-up during which every node wishing to send a query in private,

requests the central node for group joining the group. When the central node

received n requests, it creates a group. After the group creation, an Optimized

Arbitrary Size (OAS) Benes network [62] is used for secure and efficient shuffling.
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OAS Benes networks gives permutation of n inputs with 2× 2 switches. Romero-

Tris et al. used t OAS Benes network where t shows the number of trusted users

in the system. For the verification step, they used zero-knowledge proof proto-

cols using PEP [63] (Plain-text Equivalence Proof) and DISPEP [63] (Disjunctive

Plaintext Equivalence Proof) based on ElGamel [60]. By improving the shuffling

process, they obtained a two times lower delay then the Lindell et al. [47] proposed

improvement.

Cao et al. [64] noted that in Lindell et al. [47] the proposed scheme can suffer

from the malicious node. They claimed that an adverse node can submit a fake

or modified query to the search engine and then broadcast the results of a fake

or modified query in the group. Cao et al. also suggested that the user should

permute his query with n − 1 other queries and then submit them in the group.

In this way, the malicious user can identify true query with the probability of 1
n
.

Another problem in the Lindell et al. [47] proposed schemes was that although

it can detect that some user went malicious, it cannot identify the actual culprit.

Corrigan-Gibbs et al. proposed Dissent [31, 32], having the capability to identify

the malicious node and provide better protection. Compered to Lindell et al., Dis-

sent used the different shuffling algorithm. First each user encrypts the query Q

with the secondary public keys of each member Qs. Then Qs is re-encrypted with

the primary public key of each user (Qs)p. After receiving (Qs)p, the double en-

crypted queries, they are then sent other group members. Each member deciphers

the data with a primary private key, permutes and re-masks the internal ciphered

queries and sends it to another group member. Finally, the last user broadcasts

the final permuted data to all group members. Each user can verify the correctness

of the protocol by finding their own query in the results. Otherwise, the user will

start the blame phase and will find the culprit by comparing the messages. With

all these improvements in privacy, Mokhtar et al. [29] reported that Dissent does

not perform well with a higher number of nodes. One of the major issues in the

entire family of these protocols is to find trusted partners and personalized results

against the query. To handle this issue, Viejo et al. [56] suggested involving the

social network friends of the user to get information privately. They proposed an
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intermediary approach between privacy and search result personalization. Viejo et

al. consider a user U who wants to execute some query q in a secure manner, could

exploit the existence of online friends present on the social network. The user U

may forward the query q to some online friend, the friend may submit the query

to the WSE or forward it to another friend in the circle and the process continues.

The working of this scheme is very similar to the UUP protocol, except that for

the group creation process that has already been created between the friends, no

central node is needed.

Privacy-wise this is more secure, as the user will become anonymous in the circle

of friends. Similarly, as friends normally share hobbies and interests, the user can

get personalized results.

In continuation of this, Erola et al. [65] proposed an enhanced version of the pro-

tocol which assists users to select the final forwarding node based on the measure

”Profile Exposure Level” (PEL). Similarly, they also enable the final forward-

ing node to accept or reject the query for forwarding based on another measure

”Selfishness Test”. Similarly, Rebollo-Monedero et al. [66] give a mathematical

analysis of a situation in which the user part of his/her query through other user

and submits the other part to himself/herself. Rebollo-Monedero et al. use a

probability distribution to model user behavior and analyze the privacy leakage

using Shannon entropy [67].

2.1.1.3 User Private Information Retrieval Protocol

Domingo-Ferrer et al. [41, 42] proposed a shared memory based private informa-

tion retrieval protocol UPIR. The UPIR considers a group of cooperative users

who want to retrieve the information privately by submitting queries on behalf

of each other. Unlike Crowds [43] and UUP [38–40, 56], none of the group mem-

bers contacts another group member, instead they use a shared memory location

to submit the query and retrieve the answer. For group creation and handling,

a facilitator node was used which they called Cn. The process starts with the

group setup step, during which user U sends a request to the central node Cn
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to join a group. After the creation of the group, the dealer node creates v keys

and distributes those keys among b blocks of size k. Then the dealer sends one

block of k keys to each other through a secure manner (using the public key of

each user). Once each user has received the keys of one block, the dealer erases

the v keys from its memory, where v represents the set of users, b represents the

memory spaces, and k represents the memory space consisting of k users. These

keys are then used to encrypt the query and query answer. For query submission,

any user ui wanting to submit some query qi randomly selects one key xij from

the k keys from his block. In the next step user ui reads the memory sector mij

which is corresponding to the key selected by the user i.e. xij. After reading the

data from the position mij it is decrypted by xij. The decryption outcome leads

to five cases:

1. If garbage value is retrieved, it means the memory is ready to accept the

query. In this case, the use ui encrypt the query qi with the key xij and

place it at sector mij.

2. If some other query qj is retrieved, it means that some other user uj placed

the query for ui to submit it on behalf of uj. In this case user ui submits the

query qj to the search engine, encrypts the query reply with xij and places it

at the same location mij. After this procedure, the user ui start the process

again from the first step i.e. key selection.

3. If the answer of some old query qjprv that was submitted by uj is retrieved,

it means that user uj hasn’t read the answer yet (as each user supposed to

erase the memory after reading the answer). In this case, user ui starts the

process again from the initial step.

4. If some old query qiprv issued by user ui is retrieved, it means this query is

waiting to be entertained by some user of the group U . In this case, user ui

will have restart the process beginning with step one.

5. If the answer of some old query qiprv issued by ui is retrieved, it means that

this was an old query issued by ui and its answer has not yet been collected.
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In this case, the user ui will collect the answer, encrypt his new query with

the xij key and will then place it at same memory location mij.

In order to collect the answer of the query, the user ui keeps reading the memory

location mij with regular intervals. When the answer of query qi is found, the user

ui collects the answer and erases the memory location. However, if the answer

does not appear in a specified time interval and time out occurs, the ui selects a

new key from the key pool and starts the query submission process again from

initial step.

Nevertheless this solution not only hides users but it also makes the user in the

group anonymous. However, one of the major drawbacks of this solution is its

response time. According to Petit et al. [2], its best and worst time is 5.13

seconds and 30.74 seconds (network latency not included). Similarly, Viejo et al.

[56] noted that authors haven’t studied the memory space requirements as the

protocol must be capable to manage a high volume of information. Moreover, the

frequent access of the memory sector by the user will introduce a notable overhead

to the network. Romero-Tris et al. [40] also claim that this protocol is vulnerable

to a predecessor attack.

Stokes and Bras-Amorós [68] proposed an optimized configuration UPIR protocol.

They discussed two main configurations of the protocol i.e. a single memory

location (equation 2.2) shared by all the group members [41, 42] and multi-memory

location (equation 2.3) for each communication. In a multi-memory location, each

user shares a different memory location with every other user and users can split

and place their query on memory locations [68]. The configuration of both the

scheme are given as follow:

SingleMemoryLocation nc = 1, du = 1, dc = nu (2.2)

MultiMemoryLocation
nu(nu− 1)

2
, du = nu− 1, dc = 2 (2.3)



State of the Art 22

where, nc represents the memory locations, nu represents users, du represents the

database accessed by users and dc represents a pair of users who share the common

memory location. In an optimal configuration, their proposed main configuration

is shown in Equation 2.4:

nc du = nc dc (2.4)

With the use of this configuration the following tasks could be achieved: as the

number of dc grows, the memory sectors and required keys will decrease providing

storage efficiency. As the number of dc increases, the expected waiting time for

query submission and retrieval will be decreased providing time efficiency. Simi-

larly privacy-wise, the increase in du will secure the user in front of other users as

the query will be distributed to the wider subset of memory. The profile of the

specific user will be hidden or diffused in the du(du− 1) users, which will provide

privacy to the user in front of the web search engine. Stokes and Bras-Amorós

mentioned some deficiencies in both schemes, the single memory location (SML)

schemes and multi memory location (MML). This means that the WSE will not be

able to find the original source of the query, however, every group member knows

what query is been posted by whom and group members can find the source node

of the query using the ”replacement attack” [47]. Similarly, the multi-memory

location scheme is also vulnerable to the ”replacement attack” and is additionally

expensive in terms of cost.

One of UPIR’s major problems is that it does not have a mechanism to deal with

a situation in which all members refuse to submit a query present on the memory

location or in which the query is not entertained within a maximum due time. To

deal with this problem, Stokes and Bras-Amorós proposed a self-query submission

feature in UPIR and provided two new variations of the same protocols [69]. The

first protocol configuration deals with the problem of the privacy of the user in

front of the server. Stokes and Bras-Amorós defined three terms (i) Real profile,

which contains actual queries submitted by the user u, (ii) apparent profile which

contains the queries posted by the user u (queries of other users) and (iii) collinear
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users who are neighbors of user u who submitting the query N(u). Stokes and

Bras-Amorós considered a scenario in which the user repeatedly sent requests for

rare queries and his requests were entertained very quickly. The user u will be

entertained by N(u) each and since the neighbor is limited and known to the

server (according to the assumption made in [69]), user u id will never be the part

of the rare query that makes it suspect. To solve this problem, they proposed

the second variation in the protocol [69]. They changed step two and three of

the previous query submission protocol with the following step: ”if the memory

sector contains a query posted by either the user himself or another user, then u

forwards the query to the server, gets the result and writes it on the same memory

location after encrypting and restarting the protocol for posting a new query”.

This process provided an edge to the user u to hide in 1
N(u)

users provided by all

users posting queries with regular intervals. However, in a scenario where user u

posts queries with regular intervals and neighbors do not, there are more chances

to infer the u real profile from the apparent profile.

Similarly, the third variation of the protocol provided the solution to the problem

found in the second variation. In the third variation, only step three of the query

submission part is replaced with the following step: ”if the memory sector contains

the query posted by the user u himself, then u will forward the query to the server

with a probability function to decide whether or not to submit his/her own query.

If the decision probability is affirmed, then u will send the query to the server, get

the result and write it after the encryption. In any case, u will start the protocol

again for a new query” [69]. The same shortcoming was exploited by Stinson and

Swanson [70], who named the ”intersection attack”. However, they suggested that

if in (v, b, r, k) the configuration v = r(k− 1) + 1 is used, this design will resist the

intersection attack. Where v represents, the set of users, b represents the memory

spaces, k represents the memory space consisting of k users and r represents the

users associated with memory spaces [41, 42, 68–70]. The decision probability

factor makes the third variation more secure than the previous one [69].

To avoid the risk of an intersection attack [70], Stinson and Swanson proposed

multiple variations of the User Private Information Retrieval (UPIR) protocol [71].
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Stinson and Swanson called the new scheme the Pairwise Balanced Design (PBD)

protocol. Additionally, they introduced a new parameter in the configuration λ

(every pair of the distinct point is in exactly λ blocks and λ is a fixed positive

integer). (i) In the first and basic protocol of PBD, users follow the following steps

for the combination (v, b, r, k, λ). First user Ui selects him/herself as his/her own

proxy and submits the query to the server with the probability 1
v
. Otherwise, user

Ui selects some random memory space Sl to which it is associated. Then the user

selects any group member Uj to submit his/her query from the memory location

Sl. This version affords a luxury to the user to choose the forwarder. This facility

was absent in previous protocols. (ii) In this version the first step is different

while the remainder of the protocol works the same as the first one. In the first

step, Ui selects himself/herself as his/her own proxy with the probability 1
v

and

then randomly selects one of the memory locations Sl from the set of memory r

and sends his/her own query to the server. Otherwise, it repeats the second step

mentioned before. Stinson and Swanson consider a dynamic Private Information

Retrieval (UPIR) scheme in which users can join and leave the scheme. In this

case, they proposed an extension to both aforementioned protocols. According to

the extension they proposed for both protocols, the user can leave the protocol. In

that case, the user will simply be deleted from all the memory locations to which

he/she belongs and the keys of those group will be recalculated. However, to add

a new user, the protocol will have to fulfill the following prerequisites. It will first

find any set of memory spaces whose union contains all users. Then new users will

be added into the memory spaces according to the configuration [70, 71].

2.1.2 Indistinguishability Solutions

Indistinguishability techniques are used to distort user interests in such a way

that web search engine cannot collect user’s accurate profile. The most promi-

nent indistinguishability solutions use machine-generated fake queries techniques

to distort a user profile, while the other techniques include user profile splitting,

query scrambling or transformation, etc.
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Table 2.1: Comparison between Peer-to-Peer Private Information Retrieval
Solutions.
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Crowds [43] S Static 3 N.A 3 7 3 7 3 ¸

UPIR [41, 42] S Static 3 S 7 7 7 3 3 ¸

UUP [37] S/M Dynamic 3 N.A 3 3 7 7 3 ·

UPIR (Optimal Configuration) [68] S/M Static 3 S/M 7 7 7 3 3 ·

UUP (Lindell et al.) [47] S/M Dynamic 3 N.A 3 3 7 3 3 ·

UUP Social Network [56] S Static 7 N.A 3 N.A 3 7 3 ¹

UPIR (Self-Query) [69] S/M Static 3 S/M 7 7 3 3 3 ·

PBD [70] S/M Dynamic 3 S/M 7 7 3 3 3 ·

UUP (Untrusted Partner) [38] S/M Dynamic 3 N.A 3 3 7 3 3 ·

UUP Social Network Selfish User [65] S Static 7 N.A 3 N.A 3 7 3 ¹

Dissent [31, 32] S/M Dynamic 3 N.A 3 3 7 3 3 ·

The 3 shows the availability of the feature while 7 shows non-availability of the feature. A qualitative
comparison is indicated using the following five symbols: ¶ shows very bad, · shows bad, ¸ shows
neutral, ¹ shows good, and º shows very good scores. S = Single; S/M = Single and Multiple;
NA = Not Applicable.

Fake query based indistinguishability techniques use fake queries to contaminate

the user profile or the history. The user interests are distorted, which results in

a misleading user profile with the web search engine. Most of the solutions use

machine-generated queries to distort the user profile. However, one of the main

challenges for these solutions is the generation of realistic fake queries. It is essen-

tial that the fake queries are closely related to the user’s interests, otherwise the

search engine will be able to filter real queries from user profile [72]. Most fake

query based solutions ensure that generated fake queries must be closely related to

the user profile. Most prominent fake query based solutions are PRAW (Privacy-

Aware Web) [73–75], PDS (Plausibly Deniable Search) [76], GooPIR (Google Pri-

vate Information Retrieval) [36], TMN (TrackMeNot) [34, 35], and others.
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Table 2.2: Comparison of Indistinguishability Solutions for Private Web
Search.
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Fake Queries

PRAW [73–75] Web Page N.A 3 ¸ ¹ ¸ 3

PDS [76] Web Page N.A 3 ¸ ¹ ¸ 3

Social Media
Profiling

Social
Network

N.A 7 ¸ ¹ ¸ 3

GooPIR [36] Dictionary N.A 7 ¸ º · 3

TMN [34, 35] RSS Feeds N.A 3 ¸ º ¸ 3

Viejo et al. [55] Wordnet, ODP N.A 3 · ¹ ¸ 3

Query
Transformation

Query
Scrambling [79]

N.A Statistical 7 ¸ ¹ ¶ 3

Dispa [80–82] N.A
Generic
Cookies

3 ¸ ¹ ¹ 3

Profile
Obfuscation

Hierarchical
User Profile

N.A
Interests
Tree

3 ¸ N.A N.A 3

UPS [77] Wikipedia, ODP
Interests
Tree

7 ¸ N.A N.A 3

The 3 shows the availability of the feature while 7 shows non-availability of the feature. A qualitative
comparison is indicated using the following five symbols: ¶ shows very bad, · shows bad, ¸ shows
neutral, ¹ shows good, º shows very good scores, and NA = Not Applicable.

Similarly, profile obfuscation techniques aim to give privacy preserved personalized

results by sending an obfuscated profile with the user query. These profiles help

web search engines to create personalize results. However, these solutions need the

cooperation of the web search engine, while query transformation techniques use

query scrambling or multiple cookies techniques to preserve user’s privacy. The

most prominent example of the profile obfuscation technique is UPS [77], while the

most prominent example of query transformation techniques are query scrambling

[78, 79] and Dispa [80–82]. Table 2.2 shows the summary and comparison between

major indistinguishability solutions present in section 2.1.2.
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Table 2.3: Comparison of Unlinkability Solutions for Private Web Search.
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Sender Receiver

Proxy [89] 7 7 · ¸ 7 3 3

VPN [90] 7 7 · ¸ 7 3 3

Mixed Network [91] 7 7 · · 7 3 3

Web Mixes [92] 3 3 · · 7 3 3

Tor [33] 7 7 · · 7 3 3

RAC [29] 3 3 · ¶ 3 3 3

The 3 shows the availability of the feature while 7 shows
non-availability of the feature. A qualitative comparison is
indicated using the following five symbols: ¶ shows very bad,
· shows bad, ¸ shows neutral, ¹ shows good, and º shows
very good scores.

2.1.3 Unlinkability Solutions

One kind of solution to keep user privacy intact with regard to adverse and curious

search engines, is to break the binding between query and user. There are several

ways to track and identify users including the IP address, browsers setting and

plugins, device fingerprints, cookies, HTTP headers and others [83, 84]. However,

these identifiers are sometimes not sufficient to identify the user uniquely and

therefore, these identifiers are often used in combination [46]. These identifiers

could also be removed [85–87] or altered [88] to confuse adverse entities. Never-

theless, these techniques could not be applied to network layer addressing schemes

[2, 46] and users would still be feeble to machine learning attacks [45]. Moreover,

these solutions introduce a notable delay in communication due to cryptographic

operations.

There are many techniques available to achieve unlinkability such as proxy service

[89] or Virtual Private Network (VPN) service [90]. These services serve as a
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relay and submit a query on behalf of the user to the search engines and send

the results back to the user. This solution provides perfect anonymity thereby

protecting the user against the search engine. However, proxy servers maintain

their own logs which is an even more serious threat as the user has to trust proxy

servers. Similarly, most of these services do not use HTTPS connections which

is a huge problem as user conversation is open for attackers and eavesdroppers.

Moreover, proxy server may contain malicious malware and they could steal the

user’s cookies. The most common examples of these sort of services are Mixed

Network [91], Web Mixes [92], The Onion Routing (Tor) [33], RAC [29], and

others.

Table 2.3 shows the summary and comparison between major unlinkability solu-

tions present in section 2.1.3.

2.1.4 Hybrid Solutions

Besides the indistinguishability and unlinkability techniques, there are some tech-

niques that use the combination of above-mentioned solutions to provide privacy

to the user while using a web search engine. In this regard, one of the prominent

example is PEAS (Private, Efficient and Accurate web Search), which is proposed

by Petit et al. [44]. PEAS took the identity concealment feature from unlinkabil-

ity and query masking from indistinguishability methods to offer better privacy to

the users. Although PEAS provide better user privacy with personalized results.

However, the development of PEAS is based on the assumption that both the

query issuer node and the query receiver node are non-colluding nodes and that

they will never share their information of identity and query content of the user.

While, in a non-trusted proxy condition, user privacy cannot be guaranteed. To

solve the problem of the non-trusted proxy block, Mokhtar et al. [28] proposed

X-Search with a trusted proxy block for safe query execution. They used Software

Guard Extension (SGX) [93], an Intel’s hardware technology to provide a trusted

environment for submitting queries. Table 2.4 shows the summary and comparison

between major hybrid solutions present in section 2.1.4.
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Table 2.4: Comparison of Hybrid Solutions for Private Web Search.
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PEAS [44]
Disjoint set
of Group Profile

3 3 3 3 7 ¸ ¹ ¸ N.T

X-Search [28]
Disjoint set
of Group Profile

3 3 3 3 SGX [93] ¹ ¸ ¸ N.T

The 3 shows the availability of the feature, 7 shows non-availability of the feature. While N.T
stands for not tested yet. A qualitative comparison is indicated using the following five symbols:
¶ shows very bad, · shows bad, ¸ shows neutral, ¹ shows good, and º shows very good scores.

2.2 Privacy Attacks and Evaluation Models

To evaluate the performance of private web search techniques, many attacks, ad-

verse models and systems are available in the literature. Privacy attacks can be

categorized into two major categories based on their working i.e., active attacks

and passive attacks. In active attacks, the adversary attempts to breach user

privacy on runtime such as DoS attack, Flooding attack and others. In passive

attacks, adversary launches its attack on query logs. Passive attacks are usually

based on machine learning techniques and are often used in adverse evaluations

models to evaluate the performance of private web search solutions such as SimAt-

tack, Machine-Learning attack and other. The details of different types of active

and passive attacks are given as follow.

2.2.1 Active Attacks

In a private web search, active attacks are those attacks in which an adversary

attempt to breach the user privacy in runtime by altering the working of the
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privacy protection mechanism. The details of some of the active attacks available

in the literature are discussed as follows.

2.2.1.1 Timing Attack

Timing attack [94, 95] was proposed to disclose the user information by measuring

the time taken by the user accessing a specific web page. Usually, most of the

web browsers use the caching system to reduce the bandwidth and time needed

to access needed contents. Therefore, an adversary can exploit the repeatedly

requested content for de-anonymization of the user.

2.2.1.2 Congestion Attack

Congestion attack [96] observe the changes in traffic patterns for de-anonymizing

the users’ identities. This attack uses to identify the Tor [33] relay routers using

congestion on various paths followed by Tor users. Once the path of the commu-

nication is identified, the user anonymity provided by these schemes is broken.

2.2.1.3 Predecessor Attack

Wright et al. [59] proposed a predecessor attack to find weaknesses in Crowds

[43]. Authors noted that Crowds system stood weakly against it. In that attack,

a number of attacking nodes join the Crowds and record all the queries which

passed through them. After receiving a large number of entries, attackers simply

tally their log and find the victim.

2.2.1.4 Flooding Attack

This attack is used to expose the identity of the originator (user) of a certain

message in Web Mixes [92] and Crowds solutions [43]. In this attack, an attacker

floods the whole anonymity service with messages to reveal the identity of the

originator (user) of a certain message.
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2.2.2 Passive Attacks

In a private information retrieval, passive attacks are those attacks in which adver-

sary use Machine-Learning techniques over different kinds of server logs to uncover

users’ identities. These attacks use either unsupervised Machine-Learning algo-

rithms (clustering algorithms such as K-Means [97], Expectation Maximization

(EM) Cluster [98]) or supervised Machine-Learning algorithms (classification al-

gorithms such as Logistics Regressions [99], Support Vector Machine (SVM) [100])

to uncover user’s identity. The details of some supervised and unsupervised algo-

rithms used for passive attacks are discussed as follows:

2.2.2.1 K-Means

K-Means is an unsupervised Machine-Learning algorithm, use to split a set of ob-

servations into K number of clusters using the minimum distance from the centroid

of the cluster. More precisely, in a given set of observations (O1, O2, O3, .....On),

K-Means split this data in k sets (Set1, Set2, Set3, .....Setk) by calculating the

minimum square sum distance from µi (the mean of the observations in Seti or

centroid of the cluster) as shown in Equation 2.5. This algorithm is usually used

to cluster fake and real queries from the queries set.

k∑
i=1

∑
O∈Seti

||O − µi||2 (2.5)

2.2.2.2 Expectation Maximization (EM) Cluster

The Expectation Maximization (EM) clustering algorithm uses the maximum

probability feature to cluster observations. EM allocates a probability distribution

to each observation showing the probability of it belonging to each of the clusters

[98]. EM clustering algorithm usually uses a Gaussian Mixture Model (GMM)

to improve the density of a single-density approximation technique using multiple

Gaussian probability density functions to model the data. Principally, the EM
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clustering algorithm uses the following steps to get the optimal model. Initially,

for each observation x, the system calculated the membership probability in each

cluster (also called an Expectation step). Then in the next step, the probability

weights are readjusted and the previous step is repeated (this step is also called a

Maximization step). First steps are repeated until the stopping criteria (the third

step) is satisfied [101].

2.2.2.3 Logistic Regression

The logistic regression model is usually used for binary classification problem [99].

Logistic regression use probability to classify the observation x to positive class

Cp.

Pr(Y = Cp|X = ~x) (2.6)

Where, Y shows the predicted output variable, Y belongs to either positive class

Cp or negative class Cn. While X is the input variable or feature vector. In

the simplest form the probability of ~x belonging to positive class Cp is defined

as a linear function. However, since linear functions cannot be bounded between

one and zero, the logistic function is used to remove range restrictions (shown in

Equation 2.7:

logit
(
p(Cp|~x)

)
= log

(
p(Cp|~x)

1− p(Cp|~x)

)
(2.7)

After mapping the probabilities ~x, shown below (Equation 2.8):

log

(
p(Cp|~x)

1− p(Cp|~x)

)
= θo + ~x · ~θ (2.8)

where θo shows the error term and shows the regression co-efficient. The resultant

probability of p(Cp|~x) is expressed as (Equation 2.9):
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(
p(Cp|~x)

)
=

1

1 + eθo+~x·~θ
(2.9)

The event classification can be defined using the threshold value of 0.5 such as if

p(Cp|~x) ≥ 0.5 then the observation ~x belongs to a positive class.

2.2.2.4 Support Vector Machine

The Support Vector Machine (SVM) is a supervised machine learning algorithm

that uses a non-probabilistic binary linear classifier for data classification. In the

case of binary classification, SVM computes hyper-plane to separate two classes.

More precisely, let us suppose a hyper-plane equation (Equation 2.10):

~w · ~x− b = 0 (2.10)

where ~w is normal vector and b
||~w|| shows the distance from its origin along the

normal vector ~w. However, two classes may not be separable linearly. Therefore

Vapnik and Cortes. [100] introduce the concept of soft-margin (Equation 2.11).

yi(~w · ~x− b) ≥ 1− εi and εi 0,∀ ∈ J1, nK (2.11)

where εi shows slack variable (introduced by Vapnik and Cortes. [100] ), n shows

the number of points and ~x is a data point belonging to the class yi.

2.2.2.5 Vector Space Model

Vector Space Model (VSM) is a supervised machine learning algorithm that treats

text documents as vectors [102]. In VSM, all terms in a document are represented

as a vector (Equations 2.12 and 2.13):

Up = [t1,a, t2,a, t3,a, .......tn,a] (2.12)
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Q = [t1,b, t2,b, t3,b, .......tn,b] (2.13)

where Up shows user profile, Q shows query and t(x, x) shows terms in each docu-

ment. If a term occurs in a document, its value in the document vector is non-zero.

There are different mechanisms available to compute the value such as Term Fre-

quency Inverse Document Frequency (TF-IDF) [103], Boolean Model[104] etc. For

similarity calculation between two documents, Cosine similarity is usually used.

The Cosine similarity is shown in Equation 2.14.

cosθ =
Up ·Q∣∣|Up|∣∣ ∣∣|Q|∣∣ (2.14)

where Up. Q is a dot product of two vectors and
∣∣|Up|∣∣ and

∣∣|Q|∣∣ represent the

norm of a user profile query. The norm is calculated as follow (Equation 2.15):

∣∣|Q|∣∣ =

√√√√ n∑
i

Q2
i (2.15)

2.2.2.6 Random Forest

Random Forest is a supervised machine learning algorithm that classifies the data

using a multitude decision tree [105]. In a random forest, the decision tree is

created from a randomly selected subset of training data. Following it uses votes

from different decision trees to classify the test object.

2.2.2.7 Alternating Decision Tree

Alternating Decision Tree (AD-Tree) is a supervised machine learning algorithm

that consists of an alternation of decision nodes to classify the data [106]. An AD-

Tree consists of decision and prediction nodes. The decision node specifies a base

condition, where as the prediction node contains a predicted number. The basic
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element of AD-Tree is the rule and each rule is consists of three components. These

components are precondition, condition and two scores. Where a precondition is a

logical conjunction of conditions, and the condition is a predicate and two values

show possible outcomes of a base condition. The AD-Tree is the generalization of

the voted decision tree, decision tree, and voted decision stumps.

2.2.2.8 Zero Rule

Zero Rule (Zero R) is a rule-based supervised machine learning algorithm that

learns or evolve rules and then uses them for classification. It is the simplest clas-

sification technique, which relies on the target and ignores all predictors. Usually,

Zero R is used as a baseline or benchmark for other classification algorithms. For

rule creation, the most frequent value is used [12].

2.2.3 Adverse Evaluation Models

Adverse models are the conceptual design of the systems developed to evaluate

the performance of privacy mechanisms. Adverse models are composed of different

modules including the attack module, which is usually (not necessarily) based on

machine learning techniques. The major purpose of the adverse models is to

provide a testing platform to the researchers to evaluate their proposed private

web search techniques in terms of privacy. This section contains detail discussion

about all available adverse models for the evaluation of various private web search

solutions.

2.2.3.1 Peddinti and Saxena Model

Peddinti and Saxena [14, 45, 48] proposed their adverse model to evaluate two

popular unlinkability (anonymizing networks) and indistinguishability (profile ob-

fuscation) private web search solutions i.e., Tor [33] and TMN [34, 35, 95]. In their

proposed adverse model, WSE is supposed to be an entity whose work is to break
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the privacy-preserving solutions to identify users and their queries for profiling

purpose. They devise a different strategy for both Tor and TMN. In both cases,

they use machine learning algorithms and user’s previous search history (user pro-

file that contains user’s previous queries) for training and testing of the machine.

The authors used WEKA for machine learning model creation and AOL dataset.

The AOL dataset is spread over three months period in which queries of the first

two months were used as training data and last month’s queries are used as testing

data. The details of their adverse model for both TMN and Tor are discussed as

follow.

In the case of TMN, the aim of Peddinti and Saxena’s Model was to investigate

whether it is possible (and to what extent) for an adverse WSE to filter out TMN

queries. For this purpose, they conducted experiments with 60 users selected from

AOL dataset. They use PlanetLAB [107], a globally distributed research network

to simulate TMN over 60 virtual machines. For fake query generation, they ini-

tially use news RSS feeds and then use search results to generate further fake

queries. Each virtual machine is configured to maintain its user profile. These

user profiles are then used as testing data for the machine learning model. For

machine learning model, they consider both supervised and unsupervised machine

learning algorithms with defaults parameter settings. However, due to the poor

performance of unsupervised algorithms (they employed K-Means and EMClus-

ter) with default parameters, they defer that task for future work. In supervised

machine learning algorithms, they select Logistic Regression, Alternating Decision

Tree (ADT), Random Forest, Random Tree, and ZeroR. The results showed that

their proposed adverse model was able to recognize user queries with an average

true positive rate of 48.88%.

In the case of Tor, the aim of Peddinti and Saxena’s Model was to associate queries

coming out of Tor nodes to the users who issued these queries. For this purpose,

they again conducted experiments with 60 users selected from AOL dataset. They

assumed that WSE has the list of potential Tor users who are identifiable based on

their search query pattern and cookies [108]. They generated Tor-based simulated

WSE logs using different settings such as N=100 and 1000, where N shows the
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number of Tor nodes between user and WSE. For machine learning model they

again initially consider unsupervised algorithms, however then shifted their work

to supervised algorithms due to the poor performance of unsupervised algorithms.

Based on the textual nature of the queries data, Support Vector Machine (SVM) is

used as a classification algorithm. The results showed that their proposed adverse

model was able to recognize user queries with an average true positive rate of

25.95% for N=100 and 18.95% for N=1000.

2.2.3.2 Balsa’s Model

Balsa et al. [109] proposed an abstract model and analysis framework to evalu-

ate the privacy provided by six major profile obfuscation techniques: TMN [35],

GooPIR [36], PDS [76], PRAW [75], OQF-PIR [66], and NISPP [110]. Their anal-

ysis framework uses DCA (Dummy Classification Algorithm: an algorithm used to

detect fake queries), PFA (Profile Filtering Algorithm), and SCA (Semantic Clas-

sification Algorithm) to evaluate the selected profile obfuscation schemes. The

aim of their analysis framework was to identify the crucial elements that must be

considered for security analysis and to evaluate the effectiveness of a fake query

generation process. They reported that TMN, GooPIR, PDS, and NISPP are

vulnerable to DCA based attacks. Similarly, TMN, PDS, PRAW, OQF-PIR, and

NISPP are found vulnerable to PFA (Profile Filtering Algorithm) based attacks.

2.2.3.3 Gervais’s Model

Gervais et al. [111] proposed the Linkage Attack to quantify the level of privacy

provided by the popular indistinguishability solution i.e., TMN. They proposed a

generic model to determine the relation between user and queries using the user’s

web search behavior. Their proposed model uses a similarity score to identify the

source of the query. To model the user search behavior and to find a link between

user and queries, they used 5 parameters. These parameters are user identity u,

query q, query time t, reply of WSE r, and set of pages clicked by the user c. For
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example if e is an event that is composed of all previously mentioned information

(as shown in Equation 2.16), then the linkage function is used to calculate the

similarity between two events. As shown in Equation 2.17.

e = (u, q, t, r, c) (2.16)

LinkageFunction(ei, ej) (2.17)

2.2.3.4 SimAttack

Petit et al. proposed an adverse model based on their proposed SimAttack [2, 46]

to evaluate the level of protection offered by three well-known unlinkability and

indistinguishability solutions for private web search i.e., TMN, Tor, and GooPIR.

Furthermore, they also evaluate combined indistinguishability over unlinkability

solution using SimAttack. They used the vector space model (VSM) to compute

the similarity between the user profile (web search history) and query. In SimAt-

tack, each query modeled as a binary vector (Equation 2.18):

q = (vt1, vt2, vt3, .....vtk) (2.18)

where vt1, vt2, vt3, .....vtk are a binary value that shows the presence of different

terms t1, t2, t3, t4.....tk in a query q. Similarly, the user profile Pu (Equation 2.19)

is a set of non-protected queries sent by the user u before using the protection

mechanism.

Pu = (q1, q2, q3, .....qj) (2.19)

For a similarity calculation between user profile Pu and query q(sim(Pu, q)), they

considered the Jaccard index (Equation 2.20 [112], Cosine similarity (Equation
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2.21 [113], and Dice’s coefficient (Equation 2.22 [114]. However, Dice’s coefficient

gave maximum precision and recall rate, therefore they used the Dice’s coeffi-

cient as similarity calculation metric. All three similarity metrics are expressed as

follows:

Jaccard(a, b) =
a · b∣∣|a|∣∣2 +
∣∣|b|∣∣2 − a · b (2.20)

Cosine(a, b) =
a · b∣∣|a|∣∣ · ∣∣|b|∣∣ (2.21)

Dice′sCoefficient(a, b) = 2 · a · b∣∣|a|∣∣2 +
∣∣|b|∣∣2 (2.22)

In the case of unlinkability (Tor), the aim of the SimAttack was to identify the

requestor of a specific query or query of interest (QoI). For this purpose, Petit

et al. used a similarity metric to calculate the similarity between the query and

the profiles of the suspected user list. The profile with maximum similarity was

considered as query requestor. Petit et al. conducted unlinkability attack exper-

iments with three subsets of AOL datasets containing 100, 200, and 300 users.

They evaluated the unlinkability solutions from a different angle such as the im-

pact of the number of users in the system, the number of the user profile, size

of the user profile, etc. In terms of privacy, SimAttack was successfully able to

identify the original requestor of 36.8% queries with 41.4% precision.

In the case of indistinguishability (TMN and GooPIR), the aim of SimAttack

was to differentiate between the user query and the fake query. For this purpose,

Petit et al. again used Dice’s coefficient based similarity matrix to compute the

similarity between the user profile and set of queries that contained both fake

and original queries. For a fake query generation in case of TMN, they used RSS

feed while in case of GooPIR, they used dictionary created from queries of AOL

dataset. For experimentation, they used a subset of AOL dataset with 100 users.

In the case of TMN, SimAttack was successfully able to classify 46.9% real and
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Table 2.5: Comparison of Adverse Models for Private Web Search.
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Tree, Random Forest,
Random Tree, Zero R

Balsa et al. [109] 7

TMN, PDS,
PRAW, NISSP
OQF-PIR,

7

Dummy Classification
Algorithm, Semantic
Classification Algorithm
Profile Filtering
Algorithm

Gervais et al. [111] 7 TMN 7 Linkage Function

Petit et al. [2] Tor
TMN,
GooPIR

7 SimAttack

7 stands for not designed for this Technique.

fake queries with the precision of 87.1%. In the case of GooPIR, SimAttack was

able to identify more than 50% fake queries.

Apart from indistinguishability and unlinkability solutions, Petit et al. also con-

ducted some experiments to evaluate the performance of their SimAttack in case

of indistinguishability over unlinkability protection mechanism. For this purpose,

they simulated the TMN over the unlinkability solution (Tor) to protect the get

the anonymized log. Next, the authors combined both the SimAttacks proposed

for indistinguishability and unlinkability solutions. They reported that SimAttack

was able to identify 35.4% real queries to the correct user with the precision of

14.7%.

Table 2.5 shows the summary and comparison of Adverse Models presented in

Section 2.2.3 with their target Private Web Search Technique.
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2.3 Private Web Search Metrics

Private web search techniques are based on a large number of methods (e.g.,

proxy service, query modification, query exchange, etc.). This variety of techniques

prompted the researchers to evaluate their work differently. This section introduces

the metrics used to evaluate user privacy (protection). Moreover, this section also

introduces the metrics used to evaluate the performance of privacy attacks and

theoretical evaluation approaches.

2.3.1 Privacy Quantification Metrics

The privacy quantification methods are used to quantify the knowledge, which the

adverse search engine has obtained with and without privacy protection mecha-

nisms. Thus these methods calculate the privacy exposure. Several methods have

been proposed in the literature:

2.3.1.1 Entropy

Entropy is a well-known measure to estimate the quantity of information rep-

resented by random discrete variable [115]. In terms of privacy quantification,

entropy measures the amount of information an adversary has about a user of in-

terest. The user of interest is modeled by a discrete random variable. For instance,

X is the user of interest and the set of keywords used by the user {x1, x2, x3, .....xn}

is the sample space, then the entropy of H(X) is expressed as follows (Equation

2.23):

H(X) = E
[
− log2

(
p(X)

)]
= −

n∑
i=1

p(xi) · log2 p(xi) (2.23)

where, p shows the probability mass function of the user of interest (UoI) or

discrete random variable X. In other words, the probability that a keyword xi

was used by the user of interest (UoI).
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2.3.1.2 Degree of Anonymity

The entropy is also used by Diaz et al. to calculate the degree of anonymity

provided by unlinkability techniques [116]. The degree of anonymity is used to

calculate the ability of an adverse web search engine to associate the query back

to its original requester. Let X represents the requester (i.e. discrete random

variable), the entropy of X is shown in Equation 2.23 where p(xi) shows the

probability that the user xi is the original requester of the query. Let the maximum

entropy of the system is represented by HM (Equation 2.24) and n represents the

total number of users in the system. The degree of anonymity DA is shown in

Equation 2.25.

HM = log2(n) (2.24)

DA = 1− HM −H(X)

HM

=
H(X)

HM

(2.25)

In other words, the degree of anonymity shows the quantity of information learned

by the adverse web search engine using user’s queries. The value of the degree

of anonymity varies between 0 and 1 (zero shows that one user is identified as

requestor with the probability of 1 (i.e., minimum privacy)). While 1 shows that

all users are potential requestor (i.e., maximum privacy) with the probability of

1
n
.

2.3.1.3 Search Engines Results Assessment

Another method used to quantify privacy is to assess the quality of results evolved

with the introduction of fake queries. Unlike other web search engines, Yahoo!

provides the lists of interests infers from user queries. TrackMeNot (TMN) [34]

uses these interests lists to study the effectiveness of its mechanism. They quantify

the evolution in the user’s interests after using TrackMeNot (TMN) using the lists

published by well-known web search engine Yahoo!.
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2.3.1.4 Profile Exposure Level

As the entropy is used to calculate the knowledge about the users that an ad-

verse web search engine obtained. However, this knowledge needs to be compared

with the knowledge obtained without any privacy preserving technique. For this

purpose, Viejo et al. propose Profile Exposure Level (PEL) [56, 65] metric which

is used to measure the percentage of exposed information. Let we consider two

random variables X and Y where X represents the queries sent by the user with-

out any protection technique and Y represents the queries sent through protection

technique. The PEL is defined as follow (Equation 2.26):

PEL =
I(X, Y )

H(X)
· 100 (2.26)

where, H(X) shows the entropy of the original set while I(X, Y ) shows the mutual

information between variable X and Y .

2.3.1.5 Kullback-Leibler (KL) Divergence

Kullback-Leibler (KL) Divergence is used to measure the difference between one

probability distribution with other reference probability distributions [117]. It is

also known as relative entropy and Rebollo-Monedero and Jordi Forné used this

measure to find the divergence between prior and posterior distribution [118]. In

other words, they used KL Divergence to find divergence between to profile to

assess the privacy leakage. Let we consider two probability distributions P and Q

on some probability space X, the KL divergence of Q from P is shown in Equation

2.27:

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(2.27)

Similarly for calculating average divergence between two vectors (User profile and

query), the formula for Kullback-Leibler Divergence is shown in Equation 2.28:
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DAvgKL(P,Q) =

n∑
j=1

(
αP ×

(
WjP × ln

(
WjP

Wj

))
+ αQ ×

(
WjQ× ln

(
WjQ

Wj

)))
(2.28)

where for jth term

αP =
WjP

WjP+WjQ
, αQ =

WjQ

WjP+WjQ
and Wj = αp ×+WjP + αQv ×WjQ

and j represents the components of the vector.

2.3.1.6 Cross-Entropy Loss

Cross-Entropy Loss is used to measure the difference between two probability

distributions. In the case of privacy exposure, Cross-Entropy Loss can be used

to determine the difference or loss between the user’s actual profile and profile

created through any privacy protection mechanism [119]. Let us consider P as the

user’s actual profile and Q is the profile created through any privacy protection

mechanism. Then the Cross-Entropy Loss between P and Q is shown in Equation

2.29:

H(P,Q) = −
n∑
i=1

(Pi) · log (Qi) (2.29)

2.3.2 Metrics used in Machine-Learning Based Privacy At-

tacks

Machine-learning attacks are based on supervised and unsupervised machine learn-

ing algorithms. The aim of the attack varies with respect to the privacy-preserving

solutions. In some cases, the aim of the attack is to identify the originator of the

anonymous query, while in some cases the attack is used to identify the fake and

real queries. In the case of supervised learning [45, 48], the machine is trained

with prior knowledge. The prior knowledge is the user search history (in the case

of anonymous queries) and set of fake queries (in case of indistinguishability tech-

niques). Similarly, in unsupervised learning [48, 95, 111], no prior knowledge is
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Figure 2.2: Confusion Matrix

required. The unsupervised learning algorithm splits queries into two groups: one

for real queries and one for fake queries.

The performance of these attacks is usually evaluated in terms of precision and

recall. However, in some cases, the F-Measure (harmonic means of precision and

recall), Accuracy, and True positive rate are also used for evaluation. The values of

precision and recall are using confusion matrix of error matrix [120]. The confusion

matrix is a special type of contingency table use to visualize the performance of

machine learning algorithms (as shown in Figure 2.2).

Precision =
TP

TP + FP
(2.30)

Recall =
TP

TP + FN
(2.31)

The true positive (TP ) shows the number of instances correctly predicted as pos-

itive by the machine, while false positive (FP ) shows the number of instances

incorrectly predicted as positive by the machine. Similarly, false negative (FN)

shows the number of instances incorrectly predicted as negative by the machine

while true negative (TN) shows the number of instances correctly predicted as

negative by the machine [121]. The terminologies derived from the Confusion Ma-

trix are (Precision (Equation 2.30), Recall (Equation 2.31), F-Measure (Equation

2.32) and Accuracy (Equation 2.33).
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F ·Measure = 2× Precision×Recall
Precision+Recall

(2.32)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.33)

2.3.3 Theoretical Analysis

Apart from statistical analysis, some private Information retrieval solutions also

use theoretical properties (such as unlinkability between users and their queries)

to evaluate the performance of their proposed solutions in terms of privacy. These

properties can be verified theoretically using different protocol verifiers such as

Avispa [122] and ProVerif [123]. In these verifiers, the protocols are modeled using

domain-specific languages Pi Calculus (π-calculus) and testing data is supplied to

the developed model. The verifier model derives all possible states in the protocols.

The major drawback of these verifiers is the modeling of protocols since the small

difference might hide the potential flaw. Well known protocol verification tools

are Avispa [122] and ProVerif [123]

2.4 Query Categorization Techniques

Query categorization or classification are used for various purposes in a private

web search domain. For instance, sensitive query detection [2], interest extraction

[28, 72, 77, 80, 124], fake query generation [34, 44, 79, 109, 110], de-anonymization

[14, 46, 72, 111] etc. Initially, query classification was studied and used for the

improving quality of the web search engine’s results. Many web search services

providers use different query categorizers to remove irrelevant results. Query cate-

gorization problem was highlighted in 2005 when SIGKDD (Special Interest Group

on Knowledge Discovery and Data Mining) organized a competition (KDDCUP

2005) on Internet user Search and query categorization. The aim of the competi-

tion was the classification of 800,000 queries into 67 categories. Since then, many
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query classification techniques have been developed that use different online direc-

tories query classification. This section contains discussion about popular online

directories that are used for query classification.

2.4.1 Query Categorization using Open Directory Project

Open Directory Project (also known as Directory Mozilla (DMOZ5)) is the largest

human-edited index of the websites in which web pages are categorized under

hierarchical ontology of topics. Against each query, ODP return most relevant

web pages and then ontology is used to map the list of categories. In the end,

categories are ranked according to the frequency and the major and sub-categories

are returned to the user.

2.4.2 Query Categorization using Wikipedia

Another approach for query classification is based on Wikipedia. This technique

was proposed by Alemzadeh et al. [125]. In this technique, the Wikipedia6 page

is extracted against each word of the query. Then using density function, all

categories associated with the Wikipedia pages are extracted.

2.4.3 Query Categorization using uClassify

uClassify7 is another online service that provides different classifiers for age, topics,

language, gender detection, and many others. The Topics classifier of uClassify

service offer the numeric values of 10 categories against each topic. The topic clas-

sifier uses a subset of topics from the Open Directory Project (ODP) directory in

which topics are placed in a hierarchy. The classes are Arts, Business, Computers,

Games, Health, Home, Recreation, Science, Society, and Sports. The classifier

provides the percentage of each query in each category.

5http://dmoz-odp.org
6https://www.wikipedia.org
7https://www.uclassify.com



Chapter 3

QuPiD Attack for Private Web

Search

3.1 Introduction

This chapter presents the QuPiD attack, an attack to evaluate the prominent Pri-

vate Information Retrieval (PIR) protocols i.e., User Private Information Retrieval

(UPIR) [41, 42, 68] and Useless User Profile (UUP) [37, 38, 40]. Both UUP and

UPIR shuffle protocols the queries in user groups in order to hide the identity of

the user. In both protocols, the web search engine receives the user query, how-

ever with a different identity and thus, Web Search Engine cannot identify the

originator of the queries. We set out to investigate whether it is possible (and if

so to what extent) for an adverse Web Search Engine equipped with users’ web

search profiles (histories), to link queries coming from the UUP exit-user to the

original users and thus, undermine the privacy provided by Private Information

Retrieval protocols. We propose an approach that targets Private Information

Retrieval protocols. To the best of our knowledge, no existing approach has been

published that evaluates the performance of PIR protocols using a machine learn-

ing approach. Therefore, we designed a machine learning based attack (QuPiD

Attack) to investigate the robustness of PIR protocols for private web search.

48
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In this chapter, we have discussed the design of QuPiD Attack in detail along

with the detail discussion about experimental setup including datasets, data pre-

processing, selected machine learning algorithms, and evaluation method and met-

rics. The results of experimental evaluations from different angles are discussed in

the last section of this chapter.

3.2 Design of QuPiD Attack

This section presents a detail design discussion about QuPiD attack, an attack

against prominent private web search solutions, i.e., User Private Information

Retrieval (UPIR) [41, 42, 68] and Useless User Profile (UUP) [37, 38, 40]. In PIR

protocols, a group of users exchanges queries with each other in such a way that

the identity of the query originator node remains hidden from other group mates.

In the next step, all group members submit the received queries to the WSE

and results are broadcasted in the group. On the WSE side, the user’s query is

received in plain text but with a different identity and thus, WSE cannot identify

the originator of the queries. We set out to investigate whether it is possible

(and to what extent) for an adverse WSE equipped with users’ web search profiles

(histories) to link the queries coming from the UUP exit-user to the original users

and thus, undermine the privacy provided by UUP. The QuPiD Attack determines

the distance between the user’s Profile (web search history) and upcoming query

using a novel Feature Vector and machine learning algorithm. The attack uses

the user’s web search history to train the classification model (created using a

supervised machine learning algorithm). The classification model is then used to

associate the upcoming queries to their relevant users and thus de-anonymizes the

identity of the actual query originator.

As mentioned earlier, WSE received user queries with different identity due to the

shuffling process. Therefore, the entries of the queries will never appear with their

true originator in the weblog. However, the weakness of this protocol is the timing

of query submission by all group members. After query shuffling step, every group
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Figure 3.1: Queries Entry in Weblog and Session window.

member submits the received query to WSE almost at the same time. Due to

which their entries appeared close to each other in the weblog. Fig. 3.1 illustrates

an example of query entries in the weblog. Figure 3.1, exhibit 1 shows the users’

queries before shuffling process while exhibit 2 shows the queries after the shuffling

process. After shuffling, the queries are submitted to WSE (exhibit 3).

In the proposed adverse model, WSE is assumed to be an entity whose goal is to

work against the privacy-preserving solution and to identify the user of interest

(UoI) queries for profiling purposes. It is assumed that WSE is equipped with

the user’s search history (i.e., user profile) PU . The user profile contains queries

submitted by the user in the past without using any UUP protocol as shown in

Equation 3.1 (where Pqi shows the queries in the UoI profile).

PU = {Pq1, Pq2, Pq3, ......Pqn} (3.1)

The user profile PU is used as training data for building the classification model.

As the dataset used for experimentation is spread across three months duration,

the first two months data is used as a training set. While the UUP protocol is

simulated using the third-month data to create an anonymized log (as shown in
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Figure 3.1, exhibit 3). The anonymized log is used as the test set. For testing,

all session windows of the UoI are drawn out from the query logs. The session

window is a block of records (queries entries in the log) in an anonymized log that

contains the entry of UoI, but with another user [72, 124]. In other words, the

session window is composed on the selected number of queries’ entries in the WSE

query log, appeared immediately before and after the query of UoI. As shown in

Figure 3.1 (exhibit 4), UoI is ”User 3” and the session window size is 15 records

(7 records before UoI and 7 after UoI). In this thesis, we have used different

kinds and size of windows depending on the need for the experiments. The details

of different types of session windows are given in Section 3.3. Let the total size

of the window be n + 1 then each session window Swin is composed of n
2

queries

appearing before and n
2

queries after the query of UoI. A generic session window

Swin is shown in Equation 3.2 (where qi represents a query in the session window).

The collection of all session windows GSwin is shown in Equation 3.3.

Swin = {q1, q2, q3, ......qn
2
, qUoI , qn

2
+1, ......qn} (3.2)

GSwin = {Swin 1, Swin 2, Swin 3, .....Swin n} (3.3)

As in the query log, the target user who uses any PIR protocol will remain hidden

since his/her query is exchanged with a query of another user in the group. There-

fore, a session window is used to reduce the testing data. Both PU (training set)

and GSwin (testing set) are used as input to the algorithm of the adverse model.

The working of the adverse model is presented in Algorithm 1 and depicted in Fig.

3.2. The working of the algorithm is as follow:

1. In the first step, the user profile PU Feature Vector is acquired for train-

ing purposes. The user profile with the Feature Vector PUv is shown in

Equation 3.4. The Feature Vector is acquired from the uClassify service, a

machine learning web service that provides numerous different classifiers for
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Figure 3.2: Operation of the Adverse Model.

Algorithm 1 Associating incoming query to the user using prior profile.

Input: User Profile (PU), All Session Windows belongs to user (GSwin).
Output: Expected User Label (Lu)

1: procedure Query Association(PU , GSwin)
2: for Pqi ∈ PU do
3: PUv ← get Feature Vector for (Pqi)

4: PModel ← Classification Algorithm (PUv)
5: for Swini ∈ GSwin do
6: for qk ∈ Swinj do
7: qkv ← get Feature Vector for (qk)
8: Lu ← PModel(qkv)

9: return Lu

text classification. We have selected the ”Topics” classifier that gives the

score of each phrase or query in 10 major classes.

2. In the second step, a classification model PModel is built using PUv and

supervised machine learning algorithms. To test the response of the data

with different classification techniques, various machine learning algorithms

are used. The details of these algorithms are given in Section 3.4.6.

3. After the classification model PModel, the third step is to acquire the Feature

Vector Swin v (shown in Equation 3.5) for the queries of session window Swin

from uClassify for testing data.
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4. In the last step, each query of Swin v is provided to the classification model

for the expected label Lu. The label Lu shows whether the incoming query

belongs to UoI or not.

PUv = {Pq1v, Pq2v, Pq3v, .....Pqnv} (3.4)

Swin v = {q1v, q2v, q3v, .....qnv} (3.5)

3.3 Session Window

The session window is a block of records in which query/queries associated with the

target user are present but might be with together with other user ids (depending

on the protocol). In other words, the session window is composed of the selected

number of entries (or records) in the web search engine query log which appeared

immediately before and after the query of UoI or QoI. The session window is used

to reduce the number of records to be tested for associating with queries to the

correct user. We have proposed and conducted various types of session window

techniques such as query of interest (QoI) based [124], the user of interest (UoI)

based [72], and time-based. In QoI based method, a session window comprises

of a block of the specified number of records, appearing before and after QoI

in the log [124], while in UoI based method, a session window is a block of the

specified number of records, appearing before and after UoI in the log [72]. It

was concluded from previous investigations that the session window size of 300

offers better results in associating queries to the correct user [72, 124]. Both types

of session windows are based on a fixed number of records, which is appropriate

for limited datasets. However, as an ordinary user takes 2 to 3 minutes interval

between two queries, a session window of 300 records might miss the actual user.

Therefore, we proposed the time-based session window to cover all the queries of

users submitted in a specified time using any PIR protocol.
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Figure 3.3: Traffic and Distinct Query Pattern.

In the time-based session window, a single day is divided into 24 session windows

and each window represents an hour of the day. The traffic pattern of a day is

shown in Figure 3.3. The pattern is generated from the traffic of randomly selected

one week from the AOL dataset. Figure 3.3 contains two patterns: one represents

the average queries submitted in a corresponding hour while the other represents

average distinct queries submitted during the respective hour.

3.4 Experimental Setup

This section provides a detailed description of the experimental setup, dataset,

feature selection procedure, and classification algorithms selection process. The

experiments include among others performance evaluation of classification algo-

rithms, significance of Feature Vectors, the impact of group size, the impact of the

number of queries, the impact of profile size and the impact of the session win-

dow size. The performance of the attack is assessed in terms of precision, recall,

f-measure, and other metrics. All experiments were conducted on a workstation

with a 4.1 GHz Core i7 processor and 16 GB RAM.
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3.4.1 Dataset

This section contains the detail discussion about the dataset and its subsets we

used in this research for evaluation of the proposed attack. We used AOL web

search log for conducting the experiments. The AOL web search logs consist of

queries submitted by over 6.5 million users during the three months period from

March 2006 to May 2006. All the queries in the log belong to real users, however,

their identity is replaced with the fictitious number and referred as anonymous

ID. The dataset is consists of five attributes user ID, query, date and time of the

query, clicked content rank and clicked URL. All queries in the dataset include

five attributes:

1. AnonID: A fictitious number which was assigned to each user instead of

their real identity (to ensure anonymity of the users) and represent each

user uniquely.

2. Query String: The query string which is issued by the user.

3. QueryTime: The Date and time of the query which represents at which

time the query issued.

4. ItemRank: The rank of the item over which user clicked from result page

against the requested query. Most of the records don’t have this field.

5. ClickURL: The URL of the page which was selected by the user in the

result page. Most of the records don’t have this field.

We only used three attributes for experiments including the AnonID, Query and

Query Time of the AOL dataset. For each query, we also obtained the Feature

Vector from the uClassify1 service. uClassify is an online service that provides

different kinds of text classifiers such as sentiment analysis, topics, language de-

tection, news classification, spam classification, gender analyzer and many others.

The details of the preprocessing steps, Feature Vector, user selection, and subset

creation are discussed as follow.
1www.uclassify.com
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3.4.2 Data Preprocessing

Real-world data is usually in raw form and cannot be exploitable for experimen-

tation. We used various preprocessing steps to transform the data into the ex-

ploitable form. Initially, we removed irrelevant data from the query string. Most

of the queries were composed on meaningless data such as ”dfdf”, ”-”, ”asd”, empty

spaces etc. After removing meaningless queries, we used ”stop words removal fil-

ter” for further cleaning. The list of the stop words is given in Appendix A. After

cleaning the data from meaningless queries and stop words, we used uClassify to

acquire the score of queries in ten major topics for the training of machine learning

model.

3.4.3 Feature Vector Extraction

As mentioned previously, the dataset is composed of five features: user ID, sub-

mitted query, query date and time, the rank of the clicked content, and URL

clicked. In the past, several exercises were made to predict the class or cluster

of the upcoming query based on the previous history. Peddinti and Saxena used

the attributes available in the query log [14, 45, 48]. Gervais et al. used multiple

tools and methods to find the distance between the queries like Jaccard, TF/IDF,

Levenshtein, ODP categories, and others [111]. Gervais et al. also used ”query

date and time” and clicked URL attributes to predict the queries, whereas Petit

et al. [2, 46] devised their own mechanism SimAttack which uses Dice’s coefficient

[114]. In most of the works, string similarity mechanisms are prevailing for build-

ing the classification models. In this research, however, three major attributes:

user ID, submitted query, query date and time are used along with ten acquired

attributes that are used to classify the user query into 10 major topics. These

ten attributes are acquired from uClassify online service for every query in the

dataset. uClassify provides multiple kinds of services for text classification like

language detection, gender, topics, age, sentiments, and other criteria. For this

research, Topics2 classifier is used which classifies the textual data into ten major

2https://www.uclassify.com/browse/uclassify/topics
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Table 3.1: Percentage of Query ”Soft Drink” Acquired from uClassify in 10
Major Topics.

Recreation Health Home Games Business Arts Computers Science Sports Society

0.2206 0.1980 0.1689 0.0938 0.0683 0.0631 0.0560 0.0549 0.0398 0.0363

topics i.e., Health, Recreations, Arts, Home, Business, Society, Games, Sciences,

Computers, and Science. The classifiers provide the percentage of given text data

in each above-mentioned category. For instance, the percentage for query ”soft

drink” is shown in Table 3.1. From this place on-wards, we will call the newly

acquired Feature Vector as ”Topics Score”.

In order to get the better model, we build classification with three sets of features

i.e. (i) Strings (Queries), (ii) Topic Score, and (iii) Strings + Topic Score. It was

found that the model build with users’ queries and topic score attributes bears

good results. The details of these experiments are given section 3.5.2.

3.4.4 User Selection and Subsets Description

The dataset used for the experiments is the query log released by AOL in August

2006. The dataset is composed of 36389567 queries submitted by 657426 users

during the period of three months (i.e., March 2006 to May 2006), while the total

number of distinct queries were 10154630 [17]. The attributes of the dataset are

user ID, query, query time and date, the rank of the clicked item, and the clicked

URL.

In the entire dataset, only 3.29% of users issued more than 300 queries while about

86% of users submitted less than 100 queries. Fig. 3.4 shows the number of queries

submitted by the users in the whole dataset. In light of the experiments conducted

by Petit et al. [2, 46], only 18,164 were found as active users and suitable for the

experiments. According to Petit et al., active users are those users who submitted

queries for at least 61 days (two-thirds of the dataset) with a consecutive period

of 45 days (half of the dataset period). Therefore, out of 18,164 users, a dataset is
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Figure 3.4: Distribution of the Number of Queries issued per User in AOL
Dataset.

Figure 3.5: Distribution of Number of Queries submitted by per User in
Different Datasets.

created that contains top 1000 users with respect to query count, naming as AOL-

1000. As the size of AOL-1000 is still huge to conduct experiments, four subsets

are created by picking random 100, 200, 300, and 500 users from AOL-1000. The

random selection is made to preserve the statistical properties of the data. Fig.

3.5 shows the cumulative distribution of all datasets.
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3.4.5 Anonymized Log Creation

As mentioned earlier, the AOL data spans across three months. For experimen-

tation purpose, we have considered the first two months data as the clean history

of UoI available to the search engine and last month data as new queries to be

classified. We used last month data for the anonymized log. For the creation of

the anonymized log, the first step was the protocol parameter setting. The proto-

col parameters considered in this research are group size, number of queries. As

mentioned previously, both the Useless User Profile and User Private Information

Retrieval protocols create a group of users, thus the group size is one of the major

parameters, although none of the protocols deployed completely due to high com-

putation and communication overheads [14]. However, the Useless User Profile

protocol was simulated on a group size of 3, 4, 5, 10 users [37, 38, 54]. Thus for

conducting our experiments with regard to the impact of group size and impact of

the number of queries, we created logs with different settings. The details of the

selected parameters for each experiment are discussed in the description of each

experiment in the evaluation section. The code for the log creation is available on

Git-Hub3.

3.4.6 Machine-Learning Algorithms

Machine Learning (ML) algorithm is a very integral part of the proposed model

as they are used for building the classification model. In several previous studies,

Peddinti et al. [14, 45] and Petit et al. [2] used Random forest, AD Tree, Zero

R, Regression, and SVM algorithms for the classification of the data queries. In

both studies the classification model was bi-class, i.e., the query is machine or

user-generated. Moreover, the model was built based on two attributes like query

and assigned label. However, in our work, the classification model is multiclass,

i.e., in the testing data the model will decide which query belongs to which user

and ML model is based on twelve attributes. Initially we select 10 off-the-shelf

3https://github.com/rafiyz/PIR-protocols
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(default setting) classification algorithms form different families such as J48 [126]

and Logistic Model Tree (LMT) [127] from the tree-based family, Decision Table

[128], JRip [129] and OneR [130] from Rule-based family, IBK [131] and KStar

[132] from Lazy-Learner family, Bagging [133] and XGBoost [134] from Meta-

heuristic family (Ensemble Learning) and Näıve Bayes [135] from Bayes family.

Rep Tree [136] and Regression are used as base classifiers for Begging algorithm.

However, due to the poor performance of many algorithms, we selected the top five

algorithms, i.e. Näıve Bayes, IBk, Bagging, XGBoost, and J48. (The performance

comparison of all 10 selected algorithms is available in Appendix B). Parameters

of all selected machine learning algorithms are shown in Table 3.2. Moreover, in

order to test the performance of the QuPiD attack with advance and sophisticated

machine learning algorithms, the QuPiD attack is also tested with Artificial Neural

Network (ANN) and results are shown in section 3.5.1.4. A brief introduction of

each classifier is provided below:

• Näıve Bayes: This algorithm belongs to the probabilistic class of the clas-

sifiers which predicts the chance of occurring an event-based analysis of past

events [137]. The popular applications of this classifiers are medical diagnos-

tics, spam identification, and text classification [138]. In this research, the

most generic version is used with default parameters.

• IBK: This algorithm belongs to the distance-based group of the classifiers.

It uses k-nearest neighbor classifier to find the distance between two vectors

[131]. In this research, the algorithm used to a searching nearest neighbor is

”Linear-NN-Search” which works on ”Euclidean Distance”. The rest of the

parameters remain default.

• Bagging: Bootstrap Aggregation (Bagging) is meta-heuristic algorithms

which use different machine learning algorithms to achieve better prediction

[133]. It divides the training data into small datasets and creates classifiers

for each dataset based on the selected classifier. The results of all small

datasets are then combined using average or majority voting or other meth-

ods. For this research, REPTree algorithm is used as base learner.
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• XGBoost: XGBoost stands for extreme gradient boost is an ensemble ma-

chine learning algorithm, used to deal with classification and regression prob-

lems. XGBoost is evolved from decision trees algorithm that uses gradient

boosting techniques to minimize the error in sequential prediction tree [134].

Extreme Gradient Boost is the evolved version of Gradient Boosting tech-

nique that offer parallel processing, tree-pruning, and missing values han-

dling techniques.

• J.48: J.48 is tree-based classifier which is based on the C4.5 algorithm [126]

(a decision tree based classification algorithm developed by Ross Quinlan).

J.48 is a statistical classifier which creates a decision tree-based on informa-

tion entropy. It is considered as the most prominent and most widely used

algorithm for machine learning activities.

• Artificial Neural Network (ANN): Artificial Neural Network (ANN) is

a computing system inspired by the simplification of neurons in an animal

brain [139]. Artificial Neural Network is based on a network of artificial neu-

rons or nodes like a biological brain. Each node receives a signal, processes

it, and can send the signal to other neurons connected to it. In ANN signal

at connection is a real number and output of each neuron is calculated us-

ing some non-linear function of the sum of its input. Usually, neurons are

aggregated into layers and each layer may perform different transformations

to the input.

ANN can be classified into six major categories: Radial basis function Neural

Network, Feedforward Neural Network, Recurrent Neural Network (RNN),

Kohonen Self Organizing Neural Network, Modular Neural Network, and

Convolutional Neural Network (CNN). Usually, for problems like identifi-

cation of picture, CNN is used while for the problems such as sequence to

sequence translations (speech or handwriting recognition), RNN is used with

Long Short-Term Memory (LSTM). Unlike the simple ANN, in Recurrent

Neural Network, a concept of Long Short-Term Memory (LSTM) is used

which has the feedback mechanism. This feedback mechanism allows the

network to process an entire sequence of the data [140].
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Table 3.2: Parameters of Selected Classifiers used in QuPiD Attack.

Classifier Parameters

Näıve Bayes
Batch size = 100
Kernel Estimator = False

IBk
Batch Size =100
KNN value =1 - 7
NN search algorithm = Linear NN Search (Euclidean Distance)

Bagging

Bag Size= 100
Batch Size =100
Iterations = 10
Classifier = REP Tree
Seed = 1
Num Folds = 3
Max Depth = -1

XG Boost

Verbosity = 1
Iteration = 250
Learning Rate = 0.3
Seed = 1
Sub Sample = 0.5

J48

Confidence Factor = 0.25
Seed =1
No of Folds = 3
Batch size = 100
Pruning = False

ANN

Type = Recurrent Neural Network
Layer = LSTM
Activation Function = Activation ReLU
Gate Activation Function = Activation Sigmoid
No of Epochs = 5, 10, 15, 20, 25, 30, 50, and 100

Where Batch Size shows the number of instances to process in case of batch

prediction. Kernel Estimator is a weighting function used in non-parametric

technique. KNN value shows the number of neighbors to used for calculation.

NN Search Algorithm is the Algorithm used to find the nearest neighbor. Bag

Size is used to define the size of bag for training data. Iterations parameter

is used to specify the number of iterations to be performed by the algorithm.

Classifier parameter specifies the base Classifier used by in bagging classifier.

Seed parameter is used for randomize the data. Num folds specifies the amount

of data used for pruning. Max Depth shows the maximum tree depth (-1 shows

no restriction). Verbosity shows whether to print the early stopping information

or not. Learning Rate shows that how quickly the error is corrected from each

tree to the next. Sub Sample means that XGBoost would randomly sample half

of the training data prior to growing trees to avoid the problem of over-fitting.

Confidence Factor is used for tree pruning. No of folds specifies the amount
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of data used to reduced-error pruning. Type shows the class of Artificial Neural

Network used. Layer specifies the type of layer used. Activation Function of

a node defines the output of that node given an input or set of inputs. Gate

Activation Function defines the activation function to use for the gates. No of

Epochs is the number of complete passes through the training dataset.

3.4.7 Evaluation Metrics

To measure the efficiency of the adverse model (QuPiD Attack) with different

classification algorithms, three well-known metrics i.e., precision (Equation 3.6,

recall (Equation 3.7), and f-measure (Equation 3.8) are used. The mathematical

representations of all three metrics are as follow:

precision(j) =
TP (j)

TP (j) + FP (j)
(where j ∈ U) (3.6)

recall(j) =
TP (j)

Q(j)
(where j ∈ U) (3.7)

f ·measure = 2
precision(j) · recall(j)
precision(j) + recall(j)

(where j ∈ U) (3.8)

where U represented the set of UoI (User of Interest) and Q(j) represented the

set of queries issued by the user using any PIR protocol. TP (j), the subset of

Q(j) represented the set of queries submitted by the user U(j) and successfully

retrieved by the Adversarial Model. While FP (j) representing the set of those

queries which did not belong to Q(j) but were mistakenly considered as queries of

U(j), f ·measure is a harmonic mean of precision and recall representing the trade-

off between recall and precision. As the data set was too large and it was difficult

to represent precision, recall, and f · measure of all users, the weighted average

of all three (weighted precision, recall, and f-measure) measures were considered.

They are mathematically defined as follow:
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weighted average precision =
1

Q

∑
j∈U

precision(j) ·
(
TP (j) + FP (j)

)
(3.9)

weighted average recall =
1

Q

∑
j∈U

recall(j) ·
(
TP (j) + FP (j)

)
(3.10)

weighted average f ·measure =
1

Q

∑
j∈U

f ·measure(j) ·
(
TP (j) + FP (j)

)
(3.11)

where Q represents the total number of queries issued by all Users of Interest

(UoI).

3.5 Evaluation

In this section, we evaluate the privacy protection offered by PIR protocols with

QuPiD attack. We conducted four major experiments to assess the capabilities of

QuPiD attack under various situations. The experiments included the impact of

group size, the impact of the number of the queries, the impact of profile size, and

impact of session window size. In addition, we conducted two additional exper-

iments, one to evaluate the classifier and Feature Vector for the selection of the

best classifier, and one to assess the performance significance of different Feature

Vectors. During the investigations, an unexpected behavior of the proposed model

was observed in some cases, which predominantly affected the rate of recall and

precision. We call this behavior a ProQSim (Profile to Query Similarity) Effect.

The details of ProQSim Effect are also discussed in this chapter.

3.5.1 Classifier Evaluation

This section contains the results and discussions about the various experiments

conducted with varying parameters to evaluate the performance of QuPiD at-

tack and the performance of selected protocols in terms of privacy provided from

different angles. In pursuit of the best classification algorithm, all five selected
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Table 3.3: Classifiers Evaluation.

Classifier Precision Recall F-Measure
Model
Build Time (Sec)

Testing
Time (Sec)

IBk 0.766 0.451 0.514 0.01 15.12
XGBoost 0.745 0.440 0.488 10.2 4.17
Bagging 0.743 0.430 0.487 4.3 0.2
J48 0.709 0.422 0.477 2.13 0.55
Näıve Bayes 0.743 0.388 0.452 0.72 0.77

classification algorithms were tested on 20 different sample datasets. Each sample

dataset consisted of 37000 records with a ratio of 66:34 for Training and Testing.

The results of the experiments are shown in Table 3.3, Fig. 3.6, and Fig. 3.7

in terms of average precision, average recall, model build time, and testing time.

Moreover, in order to avoid the problems like over-fitting and selection bias, the

results of experiments regarding 10-Fold Cross Validation for each classifier are

discussed in section 3.5.1.1.

The results show that Bagging, IBK, and XGBoost give almost similar and max-

imum precision among all selected classifiers, but IBK gives better recall. J.48 is

another potential candidate with a slightly lower rate of precision and recall rate.

The performance of Näıve Bayes was a complete disappointment both in terms

of precision and recall, although we had hoped for better results as it works on

probability. In terms of time, the performance of every algorithm was fabulous.

Model building and testing time were almost negligible for every classifier except

XGBoost with 10.2 seconds for model building and IBK with 15.12 seconds to test

the data.

From the results, it is clear that the performance of IBk is better than the rest

of the selected classifiers. However, In order to further investigate the perfor-

mance of the QuPiD attack with selected classifiers, we also conducted some other

experiments as well including 10-fold cross-validation, variable training, and test-

ing ratio, the performance of IBk with different K values and performance of the

QuPiD attack with Artificial Neural Network (ANN). The conclusions of experi-

mental evaluations of classifiers are discussed in section 3.5.1.5.
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Figure 3.6: Classifier Accuracy Evaluation.

Figure 3.7: Classifiers Time Evaluation.

3.5.1.1 Performance of QuPiD Attack under Selected Classifiers with

10-Fold Cross Validation

Cross-validation is a statistical technique used to evaluate the ability of machine

learning models. It is usually used for the prediction models to estimate the

accuracy of the model in practice. The goal of cross-validation is to test the

ability of the perdition model in order to avoid problems such as selection bias

and over-fitting [141]. Cross-validation is a re-sampling procedure used to evaluate
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Table 3.4: Performance of Classifiers with 10-Fold Cross-Validation.

Classifier Precision Recall F-Measure

IBk 0.773 0.462 0.526
XGBoost 0.749 0.444 0.503
Bagging 0.709 0.418 0.471
J48 0.678 0.408 0.459
Näıve Bayes 0.701 0.344 0.48

Figure 3.8: Performance of Classifiers with 10-Fold Cross-Validation.

machine learning models on a limited data sample. The procedure has a single

parameter called ”k” that refers to the number of groups that a given data sample

is to be split into. As such, the procedure is often called ”k-fold” cross-validation.

When a specific value for k is chosen, it may be used in place of ”k” in the reference

to the model, such as k=10 becoming 10-fold cross-validation [142]. In this section,

we discussed the ability of the selected classifiers with 10-Fold Cross-Validation.

The results show that IBk performed better as compare to the rest of the classifi-

cation algorithms both in terms of precision and recall. While the performance of

XG Boost and Bagging was comparatively better than the J48 and Näıve Bayes.

It can be easily concluded from the results that the QuPiD attack performed well

with the IBk classification algorithm. The results of the 10-Fold Cross-Validation

of all selected classification algorithms are shown in Table 3.4 and Fig. 3.8.
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Table 3.5: Performance of Classifiers with Different Training and Testing
Ratios.

Training and Testing Ratio Bagging IBk J 48 Näıve Bayes XG Boost

Precision

60:40 0.727 0.777 0.722 0.701 0.727
70:30 0.76 0.77 0.721 0.7 0.76
80:20 0.779 0.812 0.753 0.702 0.779
90:10 0.799 0.825 0.772 0.701 0.799

Recall

60:40 0.409 0.44 0.409 0.306 0.419
70:30 0.417 0.45 0.419 0.309 0.427
80:20 0.422 0.454 0.422 0.32 0.432
90:10 0.429 0.456 0.427 0.35 0.439

Figure 3.9: Performance of Selected Classifiers with Different Training and
Testing Ratios.

3.5.1.2 Performance of Selected Classifiers with Different Training and

Testing Ratios

It is one of the main requirements in machine learning to build a model with high

prediction as possible but generalization capabilities [143]. In supervised learning

(classification), a prediction model is built to predict the output of unknown data

based on the training examples. However, the success rate of the prediction model

is dependent upon the amount of training data. Therefore in order to test the

capabilities of the selected classification algorithms, we conducted the experiments

with different training and testing ratios including 60:40, 70:30, 80:20, and 90:10.

The results of these experiments are shown in Table 3.5 and Fig. 3.9.
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Table 3.6: Performance of QuPiD Attack under Different K Values of IBk
Algorithm

K Value Precision Recall F-Measure
K = 1 0.766 0.451 0.514
K = 2 0.7 0.415 0.469
K = 3 0.656 0.391 0.438
K = 4 0.624 0.373 0.416
K = 5 0.598 0.36 0.399
K = 6 0.578 0.348 0.384
K = 7 0.561 0.339 0.373

The results show that IBk yields better results as compared to other selected classi-

fication algorithms both in terms of precision and recall in all scenarios. However,

the rate of recall for IBk fluctuates between 0.44 and 0.456 which is almost similar.

Therefore it is safe to conclude from the results that IBk bears almost the same

result with ratios between 60:40 and 90:10 with slight improvement.

3.5.1.3 Performance of QuPiD Attack under Different K Values of IBk

Algorithm

From the experiments reported in previous sections, it was concluded that the

performance of the QuPiD attack is better with the IBk classifier. IBk is a distance-

based algorithm and uses the K-Nearest Neighbor (KNN) algorithm to find the

distance between two vectors. Where ”K” is a parameter that refers to the number

of nearest neighbors to include in the majority of the voting process. ”K” value

is used to deal with the effect of noise on the classification process [144]. This

section contains the discussion about the performance of the QuPiD attack with

K=1 to K=7. The results of these experiments are shown in Table 3.6 and Fig.

3.10.

The results show that the performance of the QuPiD attack is getting worse with

the increase in K value. The precision and recall rate is 0.766 and 0.451 respec-

tively with K=1 while with the increase in K value, the rate of precision and recall

is gradually dropping. Therefore it is concluded from the results that the QuPiD

attack gives better results with K=1.
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Figure 3.10: Performance of QuPiD Attack under Different K values of IBk
Algorithm.

3.5.1.4 Performance of QuPiD Attack with Artificial Neural Network

Apart from the selected five best classification algorithms, we also tested the per-

formance of the QuPiD attack with Recurrent Neural Network (RNN) one of the

famous algorithms of ANN used for a sequence to sequence translation. In RNN,

we used Long Short-Term Memory (LSTM) architecture that uses a feedback

mechanism for better classification. LSTM can process both single data points

and sequence data. Initially, we tested the performance of the QuPiD attack un-

der LSTM with the same dataset and attributes (Feature Vector) i.e. topic score.

However, the results show that the performance of the QuPiD attack with LSTM

under topic score Feature Vector was a complete disappointment both in terms

of precision (0.211) and recall (0.135), although we had hoped for better results.

Upon investigation, it was found that LSTM misclassified most of the queries due

to overlapping classes in the prediction model. We, therefore, consider textual

data (query string) instead of the topic score Feature Vector to get better results.

We used the ”Word2Vec” tool from ”Affective Tweets” [145] weka package to pro-

duce Word Embedding [146] and then used Dl4MlpClassifier package [147] to train

the model using LSTM. In this research, we conducted experiments with 5, 10, 15,
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Epochs Precision Recall
5 0.936 0.432
10 0.95 0.457
15 0.936 0.462
20 0.936 0.463
25 0.936 0.462
30 0.934 0.467
50 0.932 0.459
100 0.934 0.466

Table 3.7: Performance of QuPiD Attack with Artificial Neural Network.

Figure 3.11: Performance of QuPiD Attack with Artificial Neural Network.

20, 25, 30, 50, and 100 epochs to observe the performance of the model. (Other

parameters are mentioned in Table 3.2).

The results show that the performance of the QuPiD attack with LSTM is far

better with textual data as compared to the topic score in terms of precision and

recall and it is even close to the results of our best classifier i.e. IBk. With the

same textual data, IBk gave 0.49 recall with the precision of 0.934 while LSTM

gave 0.432 recall with 0.936 precision when the epoch value is set to 5. While the

performance of the LSTM model getting better with the increase in the number of

epochs. The results of the experiments are shown in Table 3.7 and Fig. 3.11. The

maximum recall we got is 0.467 with 30 number of epochs. While the recall rate
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for the rest of the epochs fluctuates between 0.432 and 0.463. From the results, it

is concluded that the performance of LSTM is slightly inferior then IBk and it can

be improved by the fine-tuning of other parameters and functions used to build

the prediction model.

3.5.1.5 Conclusion of Classifier Evaluation

The whole exercise was performed to find a suitable classifier which that is com-

patible with the nature of the dataset. Given the results, it turns out that IBK,

Bagging, J.48, and XGBoost are the most suitable candidates for successful QuPiD

Attack. However, IBK gave maximum precision, recall, and f-measure followed by

XGBoost with over 48% f-measure score. Moreover the results of RNN with Long

Short-Term Memory (LSTM) are also promising and can be improved with fine

tuned parameters and functions. Based on results, we will therefore discuss the

results of IBK in the rest of the evaluations in Section 3.5.

3.5.2 Significance of Feature Vector

In the field of machine learning, features play an important role in the identification

of a certain entity or event. The Feature Vector is a set of different features

(i.e., numeric, text, pixels and others depend on the domain of the problem),

representing an object or an event. As most of machine learning algorithms are

based on statistical formulae, they need most of the problems to be presented in

a numeric form. In previous attempts, Petit et al. [2, 46] proposed the SimAttack

based on Dice’s coefficient for finding the similarity between the user profile and the

query [114]. SimAttack uses the query attribute to find similarity between the user

profile and query using Dice’s coefficient. Peddinti and Saxena [14] used ”query”

and ”date” attribute as a Feature Vector. They converted date attribute into a

numeric attribute using ”WEKA DATE” tool. For the query, Peddinti and Saxena

used ”String To Word Vector” preprocessing filter provided by WEKA. Gervais

et al. [111] proposed a Linkage function for finding the similarity between query
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Figure 3.12: Ability of Feature Vector: Comparative analysis of precision and
recall of Machine Trained with three different Feature Vectors: Strings, Topic

Score, and Strings + Topic Score.

event and history of the user. The Feature Vector used for similarity comprised

user identity, query time, query string, ranked list of SERPs (search engine results

pages) and links of pages clicked by the user from SERP (search engine results

pages).

In previous works [2, 14, 45, 46], all attributes available in AOL dataset were used

for breaching user privacy. For this research, a new Feature Vector (Topics Score)

was used, adding a new dimension to query identity in the features inventory. Topic

Score is composed of score of query in 10 major topics acquired from uClassify

Service. An experiment was conducted on different datasets (AOL-100, AOL-200,

AOL-300, and AOL-500) to compare the performance of the classification model

over different data sets trained with (i) Strings (Query Strings), (ii) Topic Score,

and (iii) Both Query Strings and Topic Score. The results show that the Topic

Score recall rate is much better as compared to Strings. However, we can get better

results while using them together as shown in Fig. 3.12. With the ability to de-

anonymize 52% to 55% users and their queries on the average with the accuracy

of up to 83% in some cases, Topic Score proved itself a potential candidate for the

future research. We will discuss the results of models build on Strings + Topics

Score in the rest of the evaluation section (Section 3.5).
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3.5.3 Impact of Group Size

The behavior of group size is taken as an important parameter in many previous

studies. Petit et al. reported that the probability of query association with the

correct user is inversely proportional to the number of users in the system [46].

The same observation has also been reported by Khan et al. [72, 124]. In this case,

the query association probability divided among the number of users appeared in

a session window. Therefore, in order to study the influence of group size over

the query association, four group size 3, 6, 10, and 20 were considered. While in

order to avoid random error, five experiments are conducted for each group size

but with different users. Fig. 3.13 portrays the average impact of group size in

terms of precision and recall, while Fig. 3.14 portrays the standard deviation in

precision and recall.

For the group size of 3 users, IBK associates 36.5% queries to the real user with the

precision of 86.58%. For the group size of 6 users, IBK associates 35.7% queries

to the real users with a precision of 76.1%. Similarly, for the group size of 10

users, IBK associates 35.5% queries with the precision of 56.32%. For the group

size of 20 users, IBK associates 21.62% queries with the precision of 94.88% to the

original user. The drop of precision at a 10 user’ group size shows the influence

of the ProQSim Effect (Section 3.6). Although the precision fluctuates between

55% and 90% for different group sizes, recall shows a somewhat nonlinear decline

behavior. This behavior of recall with an increase in group size indicates that a

bigger group offers better security. However bigger group size is not feasible for

PIR protocols as it introduce notable delay to result retrieval process.

3.5.4 Impact of Number of Queries

This experiment is conducted to study the impact of the number of queries sub-

mitted by UoI on his/her privacy in a session using PIR protocols. It is conducted

with a group of 20 users with a varying number of queries between 10, 13, 15, 18,
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Figure 3.13: Impact of Group Size (Average). The Blue Color line represents
the Average precision Value for Different Number of Users (i.e. 3 Users, 6 Users,
10 Users, and 20 Users). While the Red Color Line represents the Average recall
Value for Different Number of Users (i.e. 3 Users, 6 Users, 10 Users, and 20

Users).

Figure 3.14: Impact of Group Size (Standard Deviation). The Blue Color line
represents the Standard Deviation in precision Value for Different Number of
Users (i.e. 3 Users, 6 Users, 10 Users, and 20 Users). While the Red Color Line
represents the Standard Deviation in the recall Value for Different Number of

Users (i.e. 3 Users, 6 Users, 10 Users, and 20 Users).
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Figure 3.15: Impact of Number of Queries (Average).

Figure 3.16: Impact of Number of Queries (Standard Deviation).

and 20. While in order to avoid the random error, five experiments are conducted

for each selected number of queries but with different queries each time. Fig. 3.15

portrays the average impact of number of queries in terms of precision and recall,

while Fig. 3.16 portrays the standard deviation of precision and recall.

The results show that the rate of recall increases with the increase in the number

of queries while a slight drop is recorded in precision rate with the increase of the
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Figure 3.17: Comparison of Four subsets of Training Data.

number of queries. In a nutshell, the number of queries has a very significant effect

on the association of queries with a real user. However, the group size of fewer

than 20 users might bear different results.

3.5.5 Impact of User Profile Size

This experiment was conducted to study the impact of the size of training data on

the classification process. As in the previous experiments (Section 3.5.2, 3.5.3, and

3.5.4), the first two months data of AOL dataset was used for machine learning

model training and the last month data was used for testing [14, 46, 72, 111].

Consequently, to conduct this experiment, we randomly selected a group of 20

users from AOL-100. Out of this training dataset, we created four subsets. The

first subset contained 25% randomly selected queries of each user submitted in

the first 61 days. Similarly, the second and third subset contained 50% and 75%

randomly selected queries of each user submitted during the same period. While

the whole 2 months data of the selected user was used as a 100% subset. All four

subsets were used as training data and last month’s data was as testing data.

Fig. 3.17 shows the comparison of all four subsets in terms of precision and recall.

The result shows that the rate of recall is getting better with the increase in
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the size of training data except for 100% profile. The possible explanation for

this behavior of 100% profile is the presence of ProQSim effect. QuPiD Attack

associates more than 30% queries correctly in all scenarios. The pattern of recall

improves with the increase in profile size except for 100% profile, which seems

to be slightly affected by the ProQSim effect. On the basis of these results, it

is concluded that the accuracy of the classification model is mildly dependent on

the size of the training data. However, this experiment is conducted on limited

dataset (3 months data) which is also fairly old. Moreover, we cannot restrict the

users interests into 10 major classes.

3.5.6 Impact of Session Window Size

The experiment is conducted with 5 groups, whereby each group was composed of

20 users. Every user of the group submitted 20 queries in each hour of the day.

The aim of this experiment is to study the effect of the session window size on

the user de-anonymizing process and the effectiveness of the QuPiD attack during

different times of the day. For each hour, we used the time-based session window.

In the time-based session window, a single day is divided into 24 session windows

and each window represents an hour of the day. The details of time-based session

window is available in Section 3.3.

Fig. 3.18 depicts the impact of the session window size in the process of associating

queries to the original users. If further shows that QuPiD attack is successful both

in terms of precision and recall with respect to the user session window size. From

1 am to 6 am the rate of recall is getting better with the decrease in traffic as

compared to the rest of the day. The reflection of this observation can also be

seen in the rate of precision during the above stated period. The maximum recall

rates achieved by the QuPiD Attack are 45.7% for the queries related to 6 am

timespan. After 6 am, a decline in recall rate is observed. After 10 am the rate of

recall becomes somewhat steady. From 10 am to 11 pm the recall rate fluctuates

between 28% and 34%, respectively. Consequently, the results validate the fact

that the rate of recall and precision both are significantly dependent on the size
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Figure 3.18: Impact of Session Window Size.

of the window. These experiments also have traces of ProQSim effect shown at 8

am and 12 am. The details of ProQSim effect are discussed in section 3.6.

3.6 ProQSim Effect

This section contains detailed discussion about the discovery of an effect found

during experimentation stage. During experimentation, we discovered unexpected

behavior of the proposed QuPiD attack in multiple experiments, greatly affecting

the rate of recall and precision. We referred to this behavior as ProQSim (Profile

to Query Similarity) Effect. In order to understand and study this behavior at

data level, we conducted experiments with 5 groups (each group contains 20 users

randomly selected from the AOL-100 dataset) simulated with same day traffic.

The results of these experiments in terms of precision and recall are shown in Fig.

3.19 and Fig. 3.20, respectively.

The precision and recall rate of all five groups (each group contains 20 users

randomly selected from the AOL-100 dataset) showed an unsteady behavior on

various points. Rendering it difficult to draw conclusions, especially from the
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Figure 3.19: Precision of 5 Groups, Illustration ProQSim Effect.

Figure 3.20: Recall of 5 Groups, Illustration ProQSim Effect.

point of view of recall rate where the fluctuation is recorded in results. This

sort of irregular and strange behavior is recorded at most of the positions for all

five groups as shown in Fig. 3.19 and Fig. 3.20 in terms of precision and recall

respectively. To find the reason behind this strange behavior, we conducted a data

level analysis and found three factors responsible for this behavior.
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i. The first reason was the lack of traces of incoming query in the user profile.

It showed that the user profile on which the machine is trained (training

data) is not rich enough to cover all interests of the user. For example, in

the user profile all queries are related to either health or sports but in the

testing data, the user queries are changed to arts or business-related queries,

which are also real queries of the user. In such a case, the traces of the new

queries will not be present in the users training profile and when testing, the

machine, they will be wrongly classified as other user queries. This is due

to the limited dataset; since, as mentioned earlier, the machine is trained

only on two months of data representing only a small portion of the user’s

interests.

ii. Similarly, the second reason for the irregular behavior is the immense differ-

ence between the user’s training profile and their own testing profile. This

is due to the limitation of both the dataset and the Feature Vector, as the

dataset represents only a small portion of the user’s interests. The Fea-

ture Vector classifies the user profile into ten major topics, which cannot

encompass all the user’s interests.

iii. The third reason for this irregular behavior is the presence of more than

one similar user profile. This limitation is connected to a Feature Vector

assigning the user profile to ten major classes, e.g., causing features to be

similar.

To support the founded responsible factors discovered, a pixel diagram of cosine

similarity between training and testing of the same users at a different hour of

the day is shown in Fig. 3.21. Likewise, the pixel diagram of Cosine similarity

between the users’ training profiles are shown in Fig. 3.22.

Each pixel of Fig. 3.21 shows the Cosine similarity [113] between the history of

the user’s (training profile) and the set of queries submitted by the same user,

using any PIR protocol (testing data) in 24 hours. Green color represents the

most similarity while red color represents the least similarity. Fig. 3.21 shows the
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Figure 3.21: AOL-100 Training and Testing Data Cosine Similarity Pixel
Map.

cosine similarity between the training profile and testing profile of all selected users

plotted in 24 hours. The figure is mostly populated with yellow and red pixels,

which shows that in many cases, the similarity between training and testing profiles

of the user is less than 50%. This variable and less than 50% similarity (in many

cases) is one of the reasons for irregular behavior of the Adversarial Model (QuPiD

Attack). Similarly, red pixels show complete dissimilarity between training and

testing profile of the users. Therefore it is safe to conclude that users profile is not

rich enough to encompass all users’ interests.

Similarly, Fig. 3.22 represents the cosine similarity between histories of the user

(training profiles of all user) with each other. This figure is mostly populated

with yellow and red pixels showing that user profiles are dissimilar. However,

the presence of mild green and green pixels shows that the profile of some users

is closely similar to profile other selected users. These similarities in the users’

profile also influence the results seriously.

3.7 Conclusion

In this chapter, we present QuPiD Attack: a machine learning based attack that

quantifies the level of protection provided by the popular PIR protocol UUP and

is able to break its privacy. The QuPiD attack uses a classification algorithm and
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Figure 3.22: AOL-100 User to User Cosine Similarity Pixel Map.

the history of the user to classify an incoming query. We empirically showed that

using user’s real previous profile and the adverse web search engine can successfully

breach the user’s privacy provided by PIR protocols. For classification, unlike

previous research [14, 46, 111], a new ”Topic Score” Feature Vector was used with

query strings. This research was also the test case of ”Topic Score” Feature Vector,

which presented 95% recall with above 80% precision in some cases, proving it

to be the reliable and potential candidate for future studies. We studied the

level of privacy provided by PIR protocols under varying parameters and multiple

scenarios. The experiments included evaluation of classifier, evaluation of Feature

Vector, the impact of group size, the impact of the number of queries, the impact of

profile size, the impact of session window size, and peak and valley time analyses.
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For the selection of the best classification algorithm, we conducted experiments

with ten classification algorithms from different families including Tree-Based,

Rule-Based, Lazy-Learner, Meta-heuristic family and Bayes family. The results

showed that IBK is the most appropriate algorithm if the ”strings + categories”

Feature Vector is used. We also tested the performance of the QuPiD attack with

Artificial Neural Network (ANN) however, the maximum recall recorded was 0.211

with learning rate of 0.2 which is poor as compere to the recall of rest of selected

classifiers. In order to evaluate the impact of group size over the user’s privacy,

we conducted experiments with the group size of 3, 6, 10, and 20 users. The

results showed that a bigger group size offers more privacy to the user. Similarly,

in order to evaluate the impact of training data size, we conducted experiments

with 25%, 50%, 75%, and 100% profile size of the available data. It was found

that the increase in profile has a mild effect on the disclosure of the user’s privacy.

However, this experiment confirms the obvious fact that a bigger user profile size is

more prone to maximum privacy disclosure. In the next experiment, we evaluated

the effect of a number of queries submitted by the user in a session over a user’s

privacy disclosure. The results showed that the accuracy of QuPiD attack is almost

the same in the revelation of user queries. In the last experiment, we evaluated

the performance of the QuPiD attack during different times of the day. In other

words, this experiment shows that at what time of a day (24 hours), the user is

more vulnerable to privacy exposure. It was found that the user is more vulnerable

to privacy attack between 1 am and 9 am.

During the experimentation, we discovered an unexpected unsteady behavior of

QuPiD attack that was captured in the recall rate of the attack. We referred to this

behavior as the ProQSim (Profile to Query Similarity) Effect. Upon investigation,

it was found that this behavior of the QuPiD attack was mainly due to two reasons.

(i) The first reason was the lack of traces of the incoming query in the user profile.

(ii) The second reason was the presence of more than one user profile that was

almost similar. The reason behind these major issues is the limited user profile.

However, as compared to the SimAttack [46], the QuPiD attack is still more robust

due to the ”Topics Score” Feature Vector.



Chapter 4

PEM: A Privacy Exposure

Minimizing Technique

Privacy is a sensitive issue from the user’s point of view. Unfortunately for web

search engines, user privacy is just a behavior tracking and used for multiple pur-

poses including profit. To address the issue of privacy infringement while using

WSE, researchers have proposed several techniques and alternatives. These tech-

niques can be classified into four major classes i.e., user anonymizing networks,

profile obfuscation, private information retrieval (PIR) protocols, and hybrid tech-

niques. The focus of this thesis is to test the performance of PIR protocols in terms

of privacy. In the previous chapter, we proposed QuPiD attack to test the per-

formance of PIR protocols and it was found that PIR protocols cannot provide

satisfactory privacy to the user in case of QuPiD attack. Therefore, we propose a

novel mechanism for query placement in the existing private information retrieval

solutions that will enhance the privacy of the user. We propose a PEM (privacy

exposure measure), which is a technique that minimizes the privacy exposure of

the user while using the PIR protocols.

In this chapter, we introduce PEM (privacy exposure measure), a privacy exposure

estimation module for private information retrieval protocols to reduce the user’s

privacy exposure. PEM assesses the similarity between the user’s profile and

85
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the query before posting to the WSE and it assists the user in avoiding privacy

exposure. As the web search engine already has the user’s real profile (history),

we use a privacy exposure threshold value in PEM that will facilitate the user

to avoid QuPiD attack and thus avoid further privacy exposure. This way the

success rate of the user identification remains low in the case of a QuPiD attack.

We used Jaccard similarity [148], Cosine similarity [113], and Euclidean distance

[149] for similarity calculation, in order to find a suitable similarity measure. For

privacy evaluation, we used QuPiD attack, Profile similarity, Kullback-Liebler

(KL) divergence [150], and Cross-Entropy loss [119].

In this chapter, we will discuss the following: 1. detail design of PEM, 2. proposed

Algorithm of PEM, 3. experimentation setup, 4. similarity mechanisms used in

PEM, and 5. performance evaluation metrics. We will conclude this chapter with

conclusions and some recommendations.

4.1 Detail Design of Privacy Exposure Measure

In this section, we present PEM (privacy exposure measure), a technique that

minimizes the privacy exposure of user while using the PIR protocol. In PIR

protocol, the generic steps for private information retrieval are [40]:

1. Group creation/joining;

2. Queries shuffling among group members;

3. Query submission to WSE;

4. Results Dissemination.

Due to the shuffling of queries between group members, WSE cannot identify the

real users of the queries. However, WSE can build a classification model using

the user’s previous profile and supervised learning algorithms and can classify

the incoming queries with adequate accuracy. In order to minimize the privacy



PEM: A Privacy Exposure Minimizing Technique 87

Figure 4.1: Operation of PEM.

exposure in case of QuPiD attack (or any other machine learning attack), we

propose PEM before queries shuffling step. PEM measures the similarity between

the user profile and the new query. If the similarity between the user profile and

the query is above the threshold, the user is asked to reconsider the query. As

a consequence, the low similarity between queries and users profile prevents the

machine learning attack to classify accurately. The working of Privacy Exposure

Measure (PEM) is shown in Fig. 4.1.

For working, PEM needed (i) user maximum privacy exposure threshold mpeT ,

(ii) profile feature vector UPv, and (iii) user query Q. The user is assumed to

be equipped with his/her own previous profile UP . The user profile UP contains

queries submitted by the user previously (as shown in Equation 4.1). In an initial

step, the user is asked to set the mpeT value (in this research we conducted

our experiments with three mpeT values i.e., 40%, 50%, and 60%). The mpeT

value allows the user to set his/her desired privacy exposure such as 40% mpeT

value means 60% user profile will remain hidden. For profile feature vector UPv,

uClassify service is consulted. uClassify is a web-based service that provides a

score of each query in 10 classes. The collection of user queries with the feature

vector is represented as UPv (as shown in Equation 4.2).
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UP = {Uq1, Uq2, Uq3, .......Uqn} (4.1)

UPv = {Uq1v, Uq2v, Uq3v, .......Uqnv} (4.2)

Algorithm 2 Privacy exposure measure.

Input: User profile with feature vector (UPv), New Query (Q), Max Privacy
Exposure Threshold (mpeT ).

1: procedure Query Similarity(UPv,mpeT ,Q)
2: Qv ← get feature Vector for (Q)
3: for qi ∈ Uqv do
4: qsim ← Similarity (qi, Qv)
5: if qsim > mpeT then
6: Ask user to reconsider query (Q)
7: if user reconsider = yes then
8: return (Q) to user
9: else

10: UPv ← add(Qv)
11: Send query (Q) for shuffling process

12: else
13: UPv ← add(Qv)
14: Send query (Q) for shuffling process

The working of the PEM Algorithm (Algorithm 2) and depicted in Fig. 4.1. The

working of the algorithm is as follow:

1. First, the user is asked to set the maximum privacy exposure threshold value

mpeT . (Input line)

2. In the second step, the feature vector for users’ new query Qv is acquired

from uclassify service. (line 2)

3. After acquiring the feature vector, the third step is to find the similarity

between new query Qv and user profile queries UPv. To evaluate different

similarity calculation methods, we conducted our experiments with Cosine

similarity, Jaccard similarity, and Euclidean Distance. The details of simi-

larity calculation methods are discussed in Section 4.2.2. (lines 3-4)
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4. After the similarity calculation, in the next step, the query similarity score

qsim is checked with maximum privacy exposure threshold valuempeT . (line

5)

5. If the value of qsim is less than mpeT , the query Q is forwarded for the

shuffling process and query vector Qv is added to the user profile UPv.

(lines 5, and lines 12-14)

6. If the value of qsim is greater than mpeT , the user is asked to either recon-

sider the query or submit the query without any modification to the shuffling

process. (lines 5,6)

(a) If the user select ”query reconsiders” option, the query (Q) is sent

back to the user for modification. (lines 7,8)

(b) If user select ”query shuffling process”, the query is forwarded for

shuffling process with privacy exposure warning and query vector Qv is

added toser profile UPv. (line 7, 10, 11)

For query modification, a user can adopt different methods available such as

”generic queries” [77, 151], and ”query scrambling” [78]. In order to evaluate

the performance of PEM-powered-PIR protocol, we choose UUP, a prevailing PIR

protocol. The experiments are conducted using AOL dataset. For the recommen-

dation of suitable similarity, the experiments are conducted with three similarity

methods i.e., Cosine, Jaccard, and Euclidean under mpeT values 40%, 50%, and

60%. Similarly, QuPiD attack is then used for privacy exposure evaluation for

each setting. The details of the experiments are discussed in Section 4.3.

4.1.1 Time and Space Complexity of PEM

As mentioned earlier, Privacy Exposure Measure (PEM)is proposed as additional

privacy step in the already existed Private Information Retrieval (PIR) protocols

(such as Useless User Profile (UUP)) [37], therefore PEM-powered-PIR will inherit

the time and space complexity from its base protocol. However, based on the
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algorithm steps, the worst-case running time of only Privacy Exposure Measure

(PEM) step is O(n) or linear. Similarly the worst case space complexity of Privacy

Exposure Measure (PEM) step is also O(n). Where n shows the number of queries

present in the user’s profile or history. Based on the algorithmic time and space

complexity analysis, it is concluded that Privacy Exposure Measure (PEM) added

very small delay to the entire private information retrieval process.

4.1.2 User Profile

The user profile contains the queries sent by the user previously with feature vector

values acquired from uClassify services. According to the working of Privacy

Exposure Measure (PEM), the similarity between each new user query Qv and

every query present in the user profile UPv is calculated. If the similarity between

all the queries and the new query is less than the threshold value, then the query

is forwarded to the Private Information Retrieval (PIR) protocol and query Qv is

added to the user profile. If the similarity between user new query Qv and user

profile UPv is greater than or equal to the maximum privacy exposure threshold

value (mpeT value). Then the new user query Qv is sent back to the user for

either to reconsider the query or submit the query without any modification to

Private Information Retrieval (PIR) protocol.

4.1.3 Maximum Privacy Exposure (mpeT) Value

Maximum privacy exposure (mpeT ) is the threshold value set by the user for expo-

sure of his/her profile to the web search engine. Although users use Private Infor-

mation Retrieval (PIR) protocols to ensure their while using web search engines.

However, as described previously Private Information Retrieval (PIR) protocols

are vulnerable to QuPiD attack and cannot offer maximum privacy. Therefore,

with Privacy Exposure Measure (PEM) user is enabled to set his/her maximum

privacy exposure and to avoid privacy exposure in case of QuPiD attack.
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4.2 Experimental Setup

In this section, we present the experimental evaluation of Privacy Exposure Mea-

sure (PEM). We first describe the dataset and the user selection process we used

in Section 4.2.1. Then we present the profile and query similarity calculation

methods used in this research (Section 4.2.2). In the last section 4.2.3, we present

the machine learning attack and performance evaluation methods that we use to

assess PEM. To perform these experiments, we used two-third of user queries as

user profile (UP ) for similarity calculation and training data for machine learn-

ing attack. While the rest of the data is used as new queries (Q) of the user in

similarity calculation and testing data for machine learning attack. Nine experi-

ments are conducted to test the effectiveness of the proposed modification in the

Private Information Retrieval (PIR) protocols with three similarity methods. The

effectiveness of the proposed model Privacy Exposure Measure (PEM) with all

three similarity calculation methods is evaluated in terms of permissible queries,

profile similarity, and machine learning attack. All experiments were conducted

on a workstation with a 4.1 GHz intel Core i7 processor and 16 GBs memory.

4.2.1 Dataset and User Selection

We used AOL web search log for conducting the experiments. The AOL web search

logs consist of queries submitted by 6.5 million users (approximately) during the

three months period from March 2006 to May 2006. The dataset consists of five

attributes user ID, query, date and time of the query, clicked content rank, and

clicked URL. For experimentation, we only consider user query attribute of the

AOL dataset. For each query, the feature vector is obtained from the uClassify

service. uClassify is an online service that provides different kinds of text classifiers

such as sentiment analysis, topics, language detection, and many others. For

the experiments, topics classifier is used that classifies the query string into 10

major topics. The topics are Sports, Arts, Society, Business, Science, Computers,

Recreation, Games, Home, and Health. uClassify gives the score of the query in
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Table 4.1: Score of Query ”Heart Failure” from uClassify.

Health Society Home Arts Games Business Computers Science Recreation Sports

0.381 0.161 0.070 0.068 0.062 0.058 0.055 0.054 0.049 0.042

Table 4.2: Dataset Properties.

Total selected users 50
Total queries 35835
Total queries used as training data (UP ) 23366
Total queries used as testing data (Q) 12469
Max queries by a single user 2490
Min queries by a single user 183
Time duration 3 Months (01 March 2006 31 May 2006)

Figure 4.2: Number of Queries submitted by Selected User.

previously mentioned topics. For example, for query ”Heart Failure”, the score

for each topic is shown in Table 4.1.

The user selection was made based on the activity of the user during the entire

span of the dataset. Instead of concentrating on all users, we randomly choose 50

users who have submitted a minimum 180 during the entire 3 months period for

experiments. The query count of selected 50 users during three months is shown

in Fig. 4.2. The data of the first two months is used as user profile (UP ), while

last month data is used as new queries (Q). the summary of the selected dataset

is provided in Table 4.2.
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4.2.2 Similarity Methods

As discussed earlier, one of the objectives of this work is to recommend a suitable

similarity algorithm. Therefore, we used Cosine, Jaccard, and Euclidean methods

for similarity calculation. As these methods are applicable to vector data, therefore

we model the queries from the user profile (qi) and new query (Qv) as a vector

(composed on score acquired from uClassify for both (qi) and (Qv)). The Cosine,

Jaccard and Euclidean similarities between two vectors qi and Qv are defined in

Equations 4.3, 4.4, and 4.5, respectively.

CosineSimilarity(qi, Qv) =

∑n
j=1 qij Qvj√∑n

j=1(qij)2
√∑n

j=1(Qvj)2
(4.3)

JaccardSimilarity(qi, Qv) =

∑
jMin(qij,Qvj)∑
jMax(qij,Qvj)

(4.4)

EuclideanDistance(qi, Qv) =

√√√√ n∑
j=1

(qij −Qvj)2 (4.5)

where, vector qi represents the ith query of the user profile while Qv represents

a new query of the user. Similarly, qij and Qvj shows the jth component of the

profile and the new query vector.

4.2.3 Performance Evaluation Methods

For the evaluation of PEM-Powered-PIR protocol (UUP protocol with PEM)

in terms of privacy, Initially, we used QuPiD attack. As discussed previously,

PIR protocols do not allow web search engines to build the user’s actual profile.

However, our proposed QuPiD attack can break the user’s privacy by associating

queries to the correct user in an anonymized log. Therefore, in order to evaluate the

privacy of PIR protocols with our suggested modification, we used QuPiD attack

as privacy quantification model of PIR protocols. For building the classification
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model, we used UPv (users history) as training data and IBK as classification al-

gorithm. For evaluating the proposed scheme, we simulate the PEM-Powered-PIR

protocol with 50 selected users and create the anonymized log. The anonymized

log is used as testing data. The performance of the protocol is then evaluated in

terms of precision, recall, and f-measure.

Although QuPiD attack is able to evaluate the privacy of the PIR protocols,

however, it calculates the success rate based on the queries sent by the user. As the

chief goal of the PEM is to minimize the user’s profile exposure by restricting the

queries whose similarity is greater than the threshold (mpeT ) value. Therefore, we

used Profile Similarity, Cross-Entropy loss and Kullback-Liebler (KL) divergence

to calculate the similarity, information loss and divergence between user profiles

made with and without PEM. The Euclidean distance is defined in Equation 4.5

while the Cross-Entropy loss and the KL divergence is defined in Equation 4.6 and

Equation 4.7 respectively.

H(P,Q) = −
n∑

i=1

(Pi) · log (Qi) (4.6)

DAvgKL(qi,Qv) =

10∑
j=1

(
αqi×

(
Wjqi× ln

(
Wjqi

Wj

))
+αQv×

(
WjQv× ln

(
WjQv

Wj

)))
(4.7)

where for jth term

αqi =
Wjqi

Wjqi+WjQv
, αQv =

WjQv

Wjqi+WjQv
and Wj = αqi ×+Wjqi+ αqv ×WjQv

where j, represents the value of the vector acquired from uclassify. Kullback-

Liebler (KL) divergence is used to measure the difference between a probability

distribution with a reference probability distribution. In our case, KL divergence is

used to measure the difference between the user profiles created with and without

(PEM) Privacy Exposure Measure) in various settings (such as the mpeT value of

40%, 50%, and 60%). While Cross Entropy is used to calculate the information loss

between the user profiles created with simple PIR (Private Information Retrieval)

Protocols and PEM-Powered-PIR protocols in various settings.
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Similarly, in order to measure the effectiveness of machine-learning attack (QuPiD

Attack) against PEM-powered-PIR protocol, we consider standard performance

evaluation metric precision, recall, and f-measure. The mathematical representa-

tion of precision, recall, and f-measure is defined in Equation 4.8, Equation 4.9,

and Equation 4.10 respectively.

precision =
TruePositive

TruePositive+ FalsePositive
(4.8)

recall =
TruePositive

TruePositive+ FalseNegative
(4.9)

f ·measure = 2× precision× recall
precision+ recall

(4.10)

where, True Positive and False Positive represents the portions of positive and

negative cases that correctly classify as positive and negative by the classification

model. While False Positive represents the portions of negative cases that classify

as positive by the classification model.

4.3 Results and Discussion

This section contains the discussion about the results of the experiments we con-

ducted to evaluate the effect of our proposed technique Privacy Exposure Measure

(PEM) for privacy-preserved web search. The experiments are conducted with

three similarity methods i.e., Cosine, Jaccard, and Euclidean in order to find a suit-

able similarity calculation method for Privacy Exposure Measure (PEM). These

methods are further analyzed using three max privacy exposure threshold (mpeT )

of 60%, 50%, and 40% for each similarity method. This section divided into three

subsections based on different privacy preservation angles offered by Privacy Ex-

posure Measure (PEM). In first section we discussed the performance of Privacy

Exposure Measure (PEM) under selected similarity measures (i-e Cosine, Jaccard,
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and Euclidean) with different mpeT values. In second section we discussed the

performance of Privacy Exposure Measure (PEM) in case of QuPiD attack. While

in third section we evaluate the performance of Privacy Exposure Measure (PEM)

in terms of three privacy measures i-e. Profile Similarity, Cross-Entropy loss and

Kullback-Liebler (KL) divergence.

4.3.1 Similarity Measure Evaluation

This section contains the results and discussion about the various experiments

conducted to evaluate the performance of PEM with selected similarity measures

measure (i-e Cosine, Jaccard, and Euclidean) with three max privacy exposure

threshold (mpeT ) of 60%, 50%, and 40% for each similarity method. Table 4.3

illustrate the number of permissible queries by PEM under the selected similarity

techniques (i.e., Cosine, Jaccard, and Euclidean) with a mpeT value of 60%, 50%,

and 40%. The results show that Cosine similarity allows 96.31%, 99.60%, and

100% queries under the mpeT value of 40%, 50%, and 60% respectively. Sim-

ilarly, Jaccard similarity allows 33.50%, 49.71%, and 67.80% queries under the

mpeT value of 40%, 50%, and 60%, respectively. While Euclidean distance permit

20.40%, 25.61%, and 35.58% queries under the mpeT value of 40%, 50%, and 60%,

respectively. These figures clearly show that the Euclidean distance method out-

performed other selected similarity methods (i.e., Cosine and Jaccard) by allowing

a small number of queries, thus provide comparatively better privacy. Jaccard sim-

ilarity, on the other hand, provides mild privacy by allowing more queries than

Euclidean distance under each max privacy exposure threshold. Fig. 4.3 shows

the permissible queries by Privacy Exposure Measure (PEM) with various settings

and permissible queries without Privacy Exposure Measure (PEM).

These results show that PEM is more sensitive to the profile exposure as compere

to the UUP protocol. In case of PEM, user profile is more obfuscated as compared

to the user profile created using UUP and thus offer more privacy to the user.

Although PEM permit few queries and also increase the computational cost of the

protocol, however it also empowers UUP to offer more privacy to the user.
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Table 4.3: Permissible Queries by PEM under Selected Similarity Methods
and mpeT Values.

Similarity Method mpeT Permissible Queries Permissible Queries %

Cosine Similarity
40% 12009 96.31%
50% 12419 99.60%
60% 12469 100%

Jaccard Similarity
40% 4177 33.50%
50% 6198 49.71%
60% 8454 67.80%

Euclidean Distance
40% 2538 20.40%
50% 3193 25.61%
60% 4436 35.58%

UUP - 12469 100%

Figure 4.3: Permissible Queries by PEM under Selected Similarity Methods
and mpeT Values.

4.3.2 Robustness of PEM Against QuPiD Attack

As one of the major objective of this research, we proposed QuPiD attack for

the privacy evaluation of PIR protocols. This section contains the results and

discussion about the experiments conducted to evaluate the robustness of UUP

and PEM against QuPiD Attack.

As mentioned previously, we trained our classification model on UPv (history of

selected users) and supplied the anonymized log that contains new queries (Qv)

as testing data. Fig. 4.4 shows the efficiency of the model with various testing
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Figure 4.4: Precision, Recall, and F-Measure of QuPiD under Selected Simi-
larity Methods and mpeT Values.

Table 4.4: Correctly Classified Queries by QuPiD Attack under Selected Sim-
ilarity Methods and mpeT Values.

Similarity Method mpeT Correctly Classified Queries Correctly Classified Queries %

Cosine Similarity
40% 4851 40.3947
50% 5061 40.7521
60% 5136 40.9145

Jaccard Similarity
40% 1772 42.4228
50% 2427 39.1578
60% 3315 39.2122

Euclidean Distance
40% 874 34.4366
50% 1275 39.9311
60% 1815 40.9152

UUP - 5089 40.8132

data (i.e. similarity methods and mpeT values) in terms of precision, recall, and

f-measure. According to the Fig. 4.4, the performance of the model in case of

cosine similarity is almost similar to the performance of the PIR protocol without

PEM in every scenario. While in the case of Jaccard similarity, the performance

of the model is improved as compared to UUP scenario both in terms of precision

and recall. However, in the case of Euclidean distance, the precision, and recall of

the model decrease with the decrease in mpeT value. This decrease in precision

and recall shows the PEM offers more privacy to the users with Euclidean distance

even in case of machine learning attack. Table 4.4 and Fig. 4.5 shows the number

of correctly classified queries by QuPiD attack under various mpeT values.
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Figure 4.5: Correctly Classified Queries by QuPiD Attack under Selected
Similarity Methods and mpeT Values.

These results show that performance of the QuPiD Attack is significantly reducing

in the presence of PEM as compered to UUP. We show that PEM clearly out

performed UUP in case of QuPiD attack by reducing the attack precision and

recall by 9.9% and 6.4% respectively.

4.3.3 Privacy Evaluation of PEM

In this section we discuss performance of Privacy Exposure Measure (PEM) and

Useless User Profile (UUP)in terms of privacy metrics. We evaluate the privacy

provided by PEM-powered-UUP and UUP in terms of Profile Similarity, Cross-

Entropy loss and Kullback-Liebler (KL) divergence.

4.3.3.1 Profile Similarity

Profile similarity is one of the basic measure that calculate similarity between two

profiles. In these experiments, we calculate the similarity between two profiles

created through PEM and UUP. For similarity calculation we used Euclidean
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Figure 4.6: User Profile Similarity under Selected Similarity Methods with
mpeT = 60%.

distance (shown in Equation 4.5). The similarity is shown between ”0” and ”1”

where ”0” shows no similarity and ”1” shows maximum similarity.

Fig. 4.6, Fig. 4.7, and Fig. 4.8 illustrate the similarity between selected users

profiles created through PEM under mpeT value of 60%, 50%, and 40% and UUP.

Fig. 4.6 shows the user’s profile similarity built with selected similarity methods

when mpeT is set to 60%. According to Fig. 4.6, the similarity between PEM and

UUP profiles with cosine is 100%, which means 100% privacy exposure. However,

the profile similarity in Jaccard similarity and Euclidean distance is less than 100%

for every user.

Similarly, Fig. 4.7 depicts the user profile similarity with the mpeT is set to 50%.

Fig. 4.7 shows that except cosine, the profile created through Jaccard similarity

and Euclidean distance is too much different as compared to UUP profile. In most

cases, the profile built by Euclidean distance offers more privacy to the user as

compared to cosine similarity and Jaccard similarity. While according to Fig. 4.8

when mpeT is set to 40%, we can observe a significant distance between PEM and

without PEM based user profile in all similarity methods. Moreover, Euclidean

distance again out performed Jaccard similarity and cosine similarity methods.



PEM: A Privacy Exposure Minimizing Technique 101

Figure 4.7: User Profile Similarity under Selected Similarity Methods with
mpeT = 50%. Where the Red Color line shows the Profile Similarity of UUP
(Useless User Profile) Protocol. The Blue Color line shows the Profile Simi-
larity of PEM with Cosine Similarity. The Green Color line shows the Profile
Similarity of PEM with Jaccard Similarity. While The Purple Color line shows

the Profile Similarity of PEM with Euclidean Distance.

Figure 4.8: User Profile Similarity under Selected Similarity Methods with
mpeT = 40%. Where the Red Color line shows the Profile Similarity of UUP
(Useless User Profile) Protocol. The Blue Color line shows the Profile Simi-
larity of PEM with Cosine Similarity. The Green Color line shows the Profile
Similarity of PEM with Jaccard Similarity. While The Purple Color line shows

the Profile Similarity of PEM with Euclidean Distance.
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Figure 4.9: Pixel Map of Profile Similarity of all Users.

Figure 4.10: Average Profile Similarity.

In the overall performance, the average profile similarity between Privacy Exposure

Measure (PEM) and UUP protocol scenario in the case of cosine similarity is

98.4%, 99.8%, and 100% for the mpeT value of 40%, 50%, and 60%, respectively.

Similarly, in the case of Jaccard similarity, the average profile similarity is 76.5%,

80.5%, and 92.4% for the mpeT value of 40%, 50%, and 60%, respectively. In the

case of Euclidean distance, the average profile similarity recorded as 62.8%, 69.7%,

and 77.4% for the mpeT value of 40%, 50%, and 60%, respectively. Fig. 4.9 shows

the pixel diagram of profile similarity between the profiles made with and without

PEM. The pixel in dark green color shows the minimum similarity while the pixel

in red color shows maximum similarity. Similarly, the average profile similarity in

each scenario is shown in Fig. 4.10.
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Figure 4.11: User Profile KL Divergence under Selected Similarity Methods
with mpeT = 60%.

4.3.3.2 Kullback-Liebler (KL) Divergence

This section contains discussion about Kullback-Liebler (KL) Divergence between

user profiles created through PEM and UUP. KL Divergence is also known as

relative Entropy that is used to measure the divergence between one probability

distribution with other reference probability distribution. In these experiments,

reference probability distribution is the user’s profile created through UUP.

Fig. 4.11, Fig. 4.12, and Fig. 4.13 shows the KL Divergence between User’s UUP

profile and PEM profile with selected mpeT values. Figure 4.11, depicts the KL

Divergence between user’s UUP profile and PEM profile when mpeT value is set to

60%. The results showed that the profiles created through Euclidean distance of

almost every user is more diverged as compere to Jaccard and cosine. The profiles

created through cosine is almost same to the reference profiles (i-e UUP profiles).

While the profiles created through Jaccard is slightly diverged from the reference

profiles of the users.

Similarly in case of mpeT value of 50% and 40%, the users’ profiles created through

cosine and Jaccard are less diverged from the reference profiles as compere to the
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Figure 4.12: User profile Kullback-Liebler (KL) Divergence under Selected
Similarity Methods with mpeT = 50%. Where the Red Color line shows the
Kullback-Liebler (KL) Divergence of User Profile with Jaccard Similarity. The
Blue Color line shows the Kullback-Liebler (KL) Divergence of User Profile with
Cosine Similarity. While the Green Color line shows the Kullback-Liebler (KL)

Divergence of User Profile with Euclidean Distance.

Figure 4.13: User Profile Kullback-Liebler (KL) Divergence under Selected
Similarity Methods with mpeT = 40%. Where the Red Color line shows the
Kullback-Liebler (KL) Divergence of User Profile with Jaccard Similarity. The
Blue Color line shows the Kullback-Liebler (KL) Divergence of User Profile with
Cosine Similarity. While the Green Color line shows the Kullback-Liebler (KL)

Divergence of User Profile with Euclidean Distance.
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Figure 4.14: Pixel Map of KL Divergence between Profiles of all Users.

profiles created through Euclidean distance (as shown in Fig. 4.12 and Fig. 4.13).

Similarly, Fig. 4.14 shows the pixel diagram of KL Divergence. Each pixel shows

the KL Divergence between the profiles made with and without PEM. The pixel in

dark green color shows the maximum divergence while the pixel in red color shows

minimum divergence. Maximum KL Divergence shows the maximum distance

between profiles or maximum user privacy. The results show that for the mpeT

value of 40%, the KL Divergence between the user’s profiles is maximum with

Euclidean distance. This shows that the maximum user’s privacy in Euclidean

distance with the mpeT is 40%. Similarly, for the mpeT value of 50% and 60%

with the Euclidean distance, the value of KL Divergence is greater than Jaccard

and Cosine similarity. The average profile KL Divergence in each scenario for

each user is shown in Fig. 4.15. Form the results, it is concluded that PEM with

Euclidean distance and lower mpeT value offers better privacy to the user.

4.3.3.3 Cross-Entropy Loss

This section contains discussion about Cross Entropy Loss between user profiles

created through PEM and UUP. Usually Cross-Entropy loss is used to measure the

difference between two probability distributions. However, in the case of privacy

exposure, Cross-Entropy loss is used to determine the difference or loss between the

user’s actual profile and profile created through any privacy protection mechanism.

In this research, Cross Entropy Loss is used to measure the difference or loss

between user’s actual profile (created through Privacy Exposure Measure (PEM))

and profile created through Useless User Profile (UUP) protocol.
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Figure 4.15: Average Profile KL Divergence.

Fig. 4.16, Fig. 4.17, and Fig. 4.18 shows Cross-Entropy loss between User’s

UUP profile and PEM profile with selected mpeT values. Fig. 4.16, depicts the

Cross-Entropy loss between user’s UUP profile and PEM profile when mpeT value

is set to 60%. The results showed that the profiles created through Euclidean

distance is have more information loss as to Jaccard and Cosine. The profiles

created through Cosine is almost same to the reference profiles (i-e UUP profiles).

While the profiles created through Jaccard have low information loss.

Similarly in case of mpeT value of 50% and 40%, the users’ profiles created through

cosine and Jaccard have less information loss from the reference profiles as compere

to the profiles created through Euclidean distance (as shown in Fig. 4.17 and Fig.

4.18).

In a nutshell, it can be concluded that for the mpeT value of 40%, the Cross-

Entropy loss of the users’ profiles is maximum with Euclidean distance. This

shows that the maximum user’s privacy in Euclidean distance with the mpeT is

40%. Similarly, for the mpeT value of 50% and 60% with the Euclidean distance,

the value of information loss is greater than Jaccard and Cosine similarity. The

average Cross-Entropy loss in each scenario for each user is shown in Fig. 4.19.

Form the results, it is concluded that PEM with Euclidean distance and lower

mpeT value offers better privacy to the user as compere to UUP.
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Figure 4.16: User Profile Cross-Entropy Loss under selected Similarity Meth-
ods with mpeT = 60%. Where the Red Color line shows the Cross-Entropy Loss
of User Profile with Jaccard Similarity. The Blue Color line shows the Cross-
Entropy Loss of User Profile with Cosine Similarity. While the Green Color line

shows the Cross-Entropy Loss of Users profiles with Euclidean Distance.

Figure 4.17: User Profile Cross-Entropy Loss under Selected Similarity Meth-
ods with mpeT = 50%. Where the Red Color line shows the Cross-Entropy Loss
of User Profile with Jaccard Similarity. The Blue Color line shows the Cross-
Entropy Loss of User Profile with Cosine Similarity. While the Green Color line

shows the Cross-Entropy Loss of Users profiles with Euclidean Distance.
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Figure 4.18: User Profile Cross-Entropy Loss under Selected Similarity Meth-
ods with mpeT = 40%. Where the Red Color line shows the Cross-Entropy Loss
of User Profile with Jaccard Similarity. The Blue Color line shows the Cross-
Entropy Loss of User Profile with Cosine Similarity. While the Green Color line

shows the Cross-Entropy Loss of Users profiles with Euclidean Distance.

Figure 4.19: User Profile Average Cross-Entropy Loss under Selected Similar-
ity Methods. Where the Red Color line shows the Cross-Entropy Loss of User
Profile with Jaccard Similarity. The Blue Color line shows the Cross-Entropy
Loss of User Profile with Cosine Similarity. While the Green Color line shows

the Cross-Entropy Loss of Users profiles with Euclidean Distance.
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4.3.4 Performance of PEM with Various mpeT Values

In Privacy Exposure Measure (PEM), mpeT value plays an important role to en-

sure user’s privacy as it is used by the users to set their maximum privacy exposure

to the adversarial web search engine. In the previous section, we discussed the

results of the mpeT value of 40%, 50%, and 60% which yields better results in

terms of privacy provided to the user. However, the mpeT value of 40%, 50%,

and 60% gives us the average picture of the user’s privacy exposure in the case of

Privacy Exposure Measure (PEM). As the user has the luxury to set any mpeT

value between 0% and 100% therefore, to investigate the users’ privacy exposure

in the case of Privacy Exposure Measure (PEM), we conducted the experiments of

Privacy Exposure Measure (PEM) with mpeT values between 10% and 100% and

Euclidean Distance. Fig. 4.20 shows the number of permissible queries by Privacy

Exposure Measure (PEM) with mpeT values between 10% and 100%. While Fig.

4.21 depicts the profile similarity of all users when mpeT values between 10% and

100% are used.

The results show that the number of permissible queries is very low (4.03%) when

mpeT value is set to 10% which means maximum privacy. However, with the

increase of mpeT value, the number of permissible queries increases and the risk

of privacy exposure is high. Similarly, Fig. 4.21 depicts the profile similarity of

all users when mpeT values between 10% and 100% are used with their non-PEM

profile. The pixel in dark green color shows the minimum similarity while the pixel

in red color shows maximum similarity. According to the Fig. 4.21, most of the

pixels of mpeT value 10%, 20%, 30%, and 40% are in dark green color which shows

that profiles created with these mpeT values have minimum similarity with the

profiles of the same users created when Privacy Exposure Measure (PEM) is not

used. While for mpeT value of 80% and 90%, almost every pixel is red or orange

which shows maximum similarity or maximum privacy exposure. Although it is a

tough question for the user to decide the privacy exposure value as it also prevents

the user from submitting desired queries due to high exposure. However, this is

the price user have to pay in order to get high privacy while using PEM.
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Figure 4.20: Permissible Queries by PEM with mpeT Values between 10%
and 100%.

Figure 4.21: Profile similarity of all users when mpeT Values between 10%
and 90%.

4.3.5 Trade-off Between Privacy and Retrieved Results

Privacy is a sensitive issue from the user’s point of view. Unfortunately for web

search engines, user privacy is just a behavior tracking and used for multiple

purposes including profit. However, unfortunately, profiling user behavior is also

important for the quality of the results retrieved by the web search engine. Ac-

cording to the working of the web search algorithm the retrieval and ranking of

query results depend upon the user’s history [152]. Web search engine uses users’

history to understand their preferences automatically. Therefore in order to get

the most relevant results against a query, a proper user profile is needed that

inevitably can breach user’s privacy as well.
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In the case of PEM, users can set their profile exposure level in order to limit

their privacy exposure. However, PEM provides privacy to the user by limiting

the number of queries. According to the working of PEM, if a query’s exposure

level is greater the mpeT value then it is reverted to the user for reconsideration.

Users can either change the query or can stay with the same query. It is a tough

question for the user to decide the privacy exposure value as it also prevents the

user from submitting desired queries due to high exposure.

The lower mpeT value can provide higher privacy to the user but it can affect the

quality of the retrieved results. As PEM put a limit on the number of queries,

therefore it might also affect the result ranking process. Consequently, the user will

have to think about every query in order to avoid the privacy exposure threshold

which may ultimately put users in an annoyed state. Refer to Fig. 4.20, if mpeT

value is set to 20% or 30% then only 8.8% or 13.21% queries will be forwarded

freely. While the user will have to think about the rest of the 91.2% or 86.79%

queries and will also get a lower quality of results. However, this is the drawback

of this technique which user have to endure in order to get high privacy.

4.3.6 Limitations of PEM

In the previous chapter, we showed that our proposed QuPiD attack can success-

fully break the privacy provided by the PIR protocols. While in order to improve

the effectiveness of the PIR protocol in terms of privacy and against the QuPiD

attack, we proposed PEM in this chapter. PEM improved the privacy provided by

the PIR protocols effectively. However, PEM has some limitations as well. These

limitations are discussed as follow:

1. One of the major limitations of the PEM is the quality of the retrieved

results. As the web search engine uses the user’s history to refine the result

and due to PEM the history of the user may be imperfect.

2. It may put the user in an annoying state if the user is asked each time to

reconsider his/her query due to higher exposure.
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3. It may also affect the ranking process of the result due to limited web search

history.

4. The user profile is created and tested based on 10 major classes of interest.

This is one of the vital limitations of PEM as user’s interests cannot be

restricted to ten topics.

4.4 Conclusion

In this chapter, we present Privacy Exposure Measure (PEM), a privacy expo-

sure minimization technique for the private information retrieval protocols against

QuPiD attack. Privacy Exposure Measure (PEM) is used to estimate the user’s

privacy exposure by calculating the similarity between a user’s profile and query.

Moreover, a user can also set his/her maximum privacy exposure threshold (mpeT )

value.

To evaluate the performance of PEM in terms of privacy, we conducted experi-

ments with three similarity methods (i.e., cosine, Jaccard, Euclidean) under the

mpeT value of 60%, 50%, and 40%, respectively. For performance evaluation,

we used, QuPiD attack, profile similarity, Kullback-Liebler (KL) Divergence, and

Cross-Entropy loss. The results showed that Euclidean distance permits very few

queries with all three mpeT values as compare to Jaccard and cosine. Upon data

level analysis it was revealed that our data is composed of vector quantities and

Euclidean distance use component to component matching. Due to this component

to component matching, Euclidean distance is more sensitive as compere to Cosine

and Jaccard similarity. Regarding the success of QuPiD attack, PEM performed

better than UUP, as the precision and recall of QuPiD attack in case of PEM was

9.9% and 6.4% less respectively then UUP. Overall, the success rate (f-measure)

of QuPiD attack recorded between 30.5% and 40.5% in different scenarios. The

performance of PEM is also evaluated for mpeT values between 10% and 100%

and Euclidean Distance and it was concluded that low mpeT value provides higher

privacy to the user but it can affect the quality of the retrieved results.
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Similarly, in case of privacy evaluation the performance of PEM (Privacy Expo-

sure Measure) and UUP (Useless User Profile) is evaluation in three measures

i-e. Profile Similarity, KL Divergence, and Cross-Entropy loss. We show that

the users’ profiles created through PEM are different and diverged as compered

to the profiles created through UUP (Useless User Profile). Moreover the profile

created through euclidean distance has much information loss as compered to pro-

file created through UUP (Useless User Profile). Therefore, from the results it

is concluded PEM (Privacy Exposure Measure) offer more privacy to the user as

compered to UUP (Useless User Profile) and can effectively preserve user privacy.



Chapter 5

Conclusion and Perspectives for

Future Work

5.1 Conclusion

Controlling private data is becoming increasingly important in today’s world. The

technological advancements in the field of information technology enabled online

service providers to easily process the huge amount of data. These online service

providers collect and analyze the information from billions of users. Although

they claimed that the collection is used to improve service and user experience.

However, online service providers mainly use the collected information for target

advertisement and track personal data for insurance companies and similar busi-

nesses. This is especially a problem with web search services where billions of

users submit queries to find their desired information on the web on a daily basis.

These queries may contain privacy-sensitive information (such as health, invest-

ment, etc.) or information that can be used to infer user’s age, gender, health

condition, personal interests, religious or political affiliation, etc. This indiscrimi-

nate collection of users’ information may cause critical privacy breach. To address

the issue of privacy infringement, researchers have proposed several techniques and

alternatives that help users to control their privacy exposure. These techniques

114



Conclusion and Perspectives for Future Work 115

can be classified into four major classes, i.e., user anonymizing networks, profile

obfuscation, private information retrieval (PIR) protocols, and hybrid techniques.

Similarly, there are several studies and privacy attacks available that indicate that

these techniques and solutions cannot offer satisfactory privacy to the user. In

this thesis, we studied such type of techniques, deficiencies, and attacks. More

precisely, the focus of this thesis is to study the weakness and the level of protec-

tion offered by the Private Information Retrieval (PIR) protocols. To study the

effectiveness of the Private Information Retrieval (PIR) protocols, we assumed

that a web search engine is an adverse entity that is interested in gathering user

information (queries). Furthermore, it is also assumed that the web search engine

has the users’ previous (non-protected) queries i.e., before the users employ any

privacy preservation solution.

5.1.1 Robustness of Existing PIR Protocols

In the third chapter of the thesis, we have evaluated the performance of the avail-

able Private Information Retrieval (PIR) protocols in terms of privacy. In the lit-

erature, there are some attacks available for the performance evaluation of privacy

preserve web search or private web search. However, these attacks are proposed

to evaluate the performance of indistinguishability and unlinkability solutions.

Moreover, these attacks cannot be used for the evaluation of Private Information

Retrieval (PIR) protocols as they are classification model was bi-class. Therefore,

we proposed a QuPiD attack: a machine learning based attack that evaluates the

effectiveness of PIR protocols in privacy protection. The primary aim of QuPiD at-

tack is to associate the query to the correct user (in case of PIR protocol). QuPiD

Attack determines the distance between the user’s Profile (web search history) and

upcoming query using a novel feature vector. The QuPiD attack succeeds in as-

sociating a larger proportion of queries to the correct user in a minimum amount

of time. For instance, the most successful classifier (IBk) of the QuPiD attack

took 15.13 seconds to classify associate the queries of 100 users’ dataset with the

accuracy of 45.1%. In addition to that, unlike other privacy evaluation models
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that only used user queries strings for training, we used queries strings and topic

score feature vector which improve the accuracy of the attack.

Furthermore, we evaluated the performance of PIR protocol from different aspects

(using QuPiD attack) including the impact of group size, training data size, and

number queries submitted in a session by the user over the privacy exposure. The

results show that a bigger group size offers more protection to the user. However,

PIR protocols cannot offer bigger group size due to latency in practical. Therefore,

even with the group size of 10 users, QuPiD attack successfully able to associate

48.83% queries to the correct user. Similarly, in the next experiment, we evaluated

the effect of a number of queries submitted by the user in a session over a user’s

privacy disclosure. The results showed that the accuracy of QuPiD attack is almost

the same in the revelation of user queries. To evaluate the impact of training data

size, we conducted experiments with 25%, 50%, 75%, and 100% profile size of the

available data. It was found that the increase in profile has a mild effect on the

disclosure of the user’s privacy. However, this experiment confirms the obvious

fact that a bigger user profile size is more prone to maximum privacy disclosure.

In the last experiment, we found that PIR protocols are more prone to the QuPiD

attack between 1:00 am and 9:00 am due to low traffic.

We confirmed by evaluating the PIR protocol using a dataset of real queries re-

leased by AOL from different angles that QuPiD attack can effectively infringe

the user’s privacy. We, therefore, concluded in a satisfactory manner that PIR

protocol stood weak against QuPiD attack and cannot provide adequate privacy

to the user.

5.1.2 Topics Score: A Potential Addition in Feature Vec-

tor Inventory

In machine learning, features play an important role in the identification of a cer-

tain entity or event. The feature vector is a set of different features (i.e., numeric,

text, pixels and others depend on the domain of the problem), representing an
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object or an event. As most of the machine learning algorithms are based on sta-

tistical formulae, therefore, they need most of the problems to be presented in a

numeric form. Despite the previous attempts, we proposed Topics Score feature

vector for the classification model. In previous works, all attributes available in

AOL dataset were used to build the classification model. However, they mostly

depend on the query strings and the decisions were made based on string similar-

ity which cannot compute semantic similarity between strings due to which the

performance of the attack affected. Therefore, we proposed a Topics Score fea-

ture vector to improve the effectiveness of the attack. We conducted experiments

to evaluate the performance of the classification model trained with (i) Strings

(Queries), (ii) Topic Score, and (iii) Strings + Topic Score over datasets of 100,

200, 300, and 500 users. The results showed that the performance of the Topic

Score feature vector is 2.83% performed better as compared to the strings feature

vector on the average. However, if we use both Topic Score and Strings as feature

vector the performance of the attack is increased by 6.93% on the average. This

increase in the performance shows that the Topic Score is a potential candidate to

be used as a feature vector in the future. Moreover, the Topic Score feature vector

also enabled QuPiD attack to use semantics in the similarity calculation process

and thus increases the capability of the attack.

5.1.3 Session Window

Another major contribution of this work is estimating the appropriate size of the

session window for QuPiD attack. Session window is a block of records in which

query/queries associated with the target user are present but might be against

another user (depending on the protocol). In other words, the session window

is composed on the selected number of entries (or records) in the web search

engine query log, appeared immediately before and after the query of UoI or QoI.

Session window is used to reduce the number of records to be tested for associating

with queries to the correct user. We have proposed time-based and record (query

entries) based session windows for different situations.
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5.1.4 A Privacy Exposure Minimizing Technique for Pri-

vate Information Retrieval Protocols

Since the PIR protocol cannot offer adequate privacy to the user, we designed

the PEM, a privacy exposure estimation module for private information retrieval

protocols to reduce the user’s privacy exposure. PEM assesses the similarity be-

tween the user’s profile and the query before posting to the shuffling process of the

PIR protocol and assists the user in avoiding privacy exposure. The advantage of

the proposed approach is that the user can avoid QuPiD attack by restricting the

queries with higher profile exposure. Since the web search engine already has the

user’s real profile (history); we used a reactive approach in the PEM by allowing

those queries whose similarity is less than the threshold value. In this way, the

success rate of user identification remains low in case of QuPiD attack.

We empirically evaluate the performance of the PEM-powered-PIR protocol using

AOL data. The privacy evaluation of PEM-powered-PIR protocol is conducted us-

ing QuPiD attack and furthermore evaluated using profile similarity and Kullback-

Liebler (KL) divergence. PEM-powered-PIR protocol is tested under three max-

imum privacy exposure Threshold (mpeT ) values i.e. 60%, 50% and 40% using

three similarity methods i.e. Cosine, Jaccard, and Euclidean. The results showed

that Euclidean similarity permits very few queries with all three mpeT values as

compare to Jaccard and Cosine. The success rate of QuPiD attack was between

33% and 41% in different scenarios. However, due to low number of permissible

queries in some scenarios maximum profile distance and the KL divergence proved

that PEM-powered-PIR protocol can effectively preserve user privacy. Moreover,

it can offer ample privacy to the user even in the case of QuPiD attack.

Although, Privacy Exposure Measure (PEM) improved the privacy provided by

the Private Information Retrieval (PIR) protocols effectively. However, PEM has

some limitations as well. One of the major limitations of the PEM is the quality

of the retrieved results. As the web search engine uses the user’s history to refine

the result and due to PEM the history of the user may be imperfect. It may also

affect the ranking process of the result due to limited web search history.
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5.2 Perspectives for Future Work

Privacy of online user is a delicate problem and now taken as an important is-

sue in every field especially after the emergence of web search engines and social

media. As the web search engines collect user’s personal information for many

legitimate and illegitimate reasons such as result ranking and profit. Therefore,

many techniques have been proposed that ensure user privacy while using web

search engines. This thesis presents the performance evaluation of prominent pri-

vate information retrieval protocols in terms of privacy. In this section, we present

some perspective for future work. First, we discuss the settings of this thesis i.e.,

our proposed adverse model (QuPiD attack) for privacy evaluation of PIR proto-

cols. Then we give some perspectives regarding the future work of the proposed

privacy evaluation model (QuPiD attack) and suggested modification (PEM) in

Private Information Retrieval (PIR) protocols.

5.2.1 Adverse Model

In order to test that how much privacy Private Information Retrieval (PIR) pro-

tocols can provide to the user, we proposed a Machine-Learning attack (QuPiD

attack) and consider a scenario. In this scenario the Web search engine is con-

sidered as adverse entity that is interested in finding the original queries of those

users who use Private Information Retrieval (PIR) protocols to ensure their pri-

vacy. We assume that the web search engine will launch the Machine-Learning

Attack (QuPiD Attack) based on the users’ history. For testing we used the session

window to capture the transactions of other group members. However, in a more

realistic scenario, it is very difficult to identify the transaction of the whole group

due to the bigger session window size. Therefore, capturing, and cleaning of the

session window with a group transaction is an open challenge in future research.

The similar case of a new user whose profile (history) is not yet available to the

search engine, presents another challenge for the future. Moreover, in future works,

we will investigate how web search engines maintain users’ profiles currently.
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5.2.2 QuPiD Attack

We have seen in this thesis that QuPiD attack used different machine learning al-

gorithms to build the classification model. Some of these algorithms such as IBK,

Bagging, and J48 showed promising results. Due to the feature vector used, the

performance of these algorithms has improved. In contrast to the existing attacks

(Peddinti and Saxena [14, 45, 48], Petit et al. [2, 46] and Gervais et al. [111]),

QuPiD attack used a query string and ”Topic Score” as the feature vector. Apart

from the selected five best classification algorithms, we also tested the performance

of the QuPiD attack with Recurrent Neural Network (RNN) using Long Short-

Term Memory (LSTM) which provide betters results with textual data. However,

we believe that the performance of such kind of attacks can be further improved

using other more sophisticated machine learning techniques such as Artificial Neu-

ral Network with fine-tuned parameters and functions, and techniques of Natural

Language Processing (NLP).

Another limitation of the privacy attacks is the lack of assessing semantic relation-

ship existing in the queries. The privacy attacks presented in the literature usually

rely on string matching techniques. However, the string matching techniques can-

not be used to compute semantic relatedness. For instance, queries like ”cricket”

and ”football” belong to the same topic, i.e., ”Sports”, however, string matching

cannot compute relatedness between them. The strength of the QuPiD attack is

the Topics Score feature vector, which provides a query score in ten major topics

including Sports, Society, Science, Recreation, Home, Health, Games, Computers,

Business, and Arts. Using the Topics Score, QuPiD attack can find semantic re-

latedness between the queries and user profile. Although since the users’ interests

cannot be restricted to ten topics, a better similarity algorithms might be useful.

Future work should focus on a better similarity calculation algorithm for the Topic

Score.

During the experimentation, we discovered an unexpected unsteady behavior of the

QuPiD attack that was captured in the recall rate of the attack. We referred to this

behavior as the ProQSim (Profile to Query Similarity) Effect. Upon investigation,
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it was found that this behavior of the QuPiD attack occurred due to the following

reasons.

1. Firstly, the lack of traces of the user’s interests in the incoming query in the

user profile.

2. Secondly, the presence of more than one almost similar user profile.

These reasons show that the user profile is not rich enough to cover all his/her

interests either due to the small period of data (i.e., 3 months) and/or the limited

categories in Topic Score feature vector. Therefore, a better similarity calculation

algorithm might be useful to avoid the ProQSim effect.

5.2.3 Need for a Recent Benchmark Dataset

For the performance evaluation of the PIR protocols in the presence of QuPiD

attack, we used the AOL dataset that was released in 2006. Nevertheless, since

from the birth, Web is changing rapidly with the emergence of new technologies

(e.g., jQuery, Underscore, CSS3, etc.), new services (e.g., social networks, etc.),

and Smartphone. These evaluations in technology have greatly influenced the

users’ online behavior. In 2006, Google processed less 350 Billion queries while in

2012 they processed about 1.2 Trillion queries. Therefore, it is certain that the

AOL dataset does not reflect the accurate picture of today’s web search engine

log. Moreover, the AOL dataset only contains 3 months of user queries, which

cannot encompass the major portion of users’ interests. Similarly, most of the

users in the dataset issued very few queries in the entire period. This behavior

is not very common for current online users. Apart from these major deficiencies

in the dataset, we are forced to use this dataset for experimentation due to lack

of available data. Other evaluation mechanisms and attacks in the literature also

used the same dataset such as Peddinti and Saxena [14, 45, 48], Petit et al. [2, 46],

and Gervais et al. [111]. It is quite a mystery that how web search engines are

currently maintained users’ profiles as they do not publish them.
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5.2.4 PEM: Suggested Modification in Private Informa-

tion Retrieval Protocols

In this thesis, we established that the ability of QuPiD attack in PIR protocols can

be effectively minimized using Privacy Exposure Measure (PEM). The user can

set his or her maximum privacy exposure while querying the web search using the

PIR protocol. The advantage of our approach is that the user can avoid QuPiD

attack by restricting the queries with higher profile exposure. PEM measures the

similarity between the user profile and the new query. If the similarity between the

user profile and the query is above the threshold, the user is asked to reconsider

or modify the query. As the query modification step remains outside the scope

of this thesis. Therefore, future work should focus on the auto-suggested related

but least similar queries mechanisms. These auto query suggestion mechanisms

should also consider the user’s profile and maximum privacy threshold value while

suggesting the queries.

Similarly, future work could also be focused on assisting the user in setting an

optimal maximum privacy threshold (mpeT ) value. As maximum privacy thresh-

old (mpeT ) value is helpful in order to restrict the exposure however selection of

threshold value according to the need of the user is a challenging task. More-

over, interest based threshold value of each category can also be helpful for better

privacy.

Furthermore, in this thesis, we established that the PEM can effectively improve

the users’ privacy while they use web search engines. However, PEM uses Topics

Score feature vector for both user’s profile and user query. As mentioned earlier

that Topics Score feature vector provides score in ten major topics against any

query string. Although, Topic Score feature vector is far better as compere to the

previous profiling technique i.e. text. This is one of the limitation of the feature

vector (and of PEM as well) as users’ interests cannot be restricted to ten topics.

In future, better user profiling techniques based on ontology might be useful.
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Appendix B

Complementary Experiments on

QuPiD Attack

In this appendix, we present further experiments we performed with QuPiD attack.

These experiments are performed to evaluate the effectiveness of QuPiD Attack

with different classification algorithms under variable user profile size. The se-

lection of algorithms is made from different families of classification algorithms

(such as Tree-based, Rule-based, Ensemble Learning, Lazy-Learner etc). We first

present the experimentation setup in detail with description of all selected algo-

rithms. The performance of QuPiD attack under variable user profile size and

different algorithms is evaluated in terms of precision, recall, f-measure, and true

positive rate and discussed in last section of this appendix.

B.1 Experimentation Preliminaries

For experimentation we used AOL-100 data set which is composed of 100 randomly

selected active users from the released AOL dataset. The user selection criteria

and dataset description is available in section 3.4.4. The dataset is composed of

13 attributes: user ID, query, date and time of the query along with ten acquired

attributes that are used to classify the user query into 10 major topics. The

142



Appendix 143

Table B.1: AOL-100 Dataset Properties.

Total queries 36,389,567
Total users 657,426
Unique queries 10,154,742
Attributes 5 (AnonID, Query, Query Time, Item Rank, Click URL)
Time duration 01 March, 2006 - 31 May, 2006

10 major topics are Health, Recreations, Arts, Home, Business, Society, Games,

Sciences, Computers, and Science.

These 100 selected users are further divided into 5 groups (20 users in each group)

based on the size of the user’s profile in order to evaluate the performance of the

selected algorithms with different profile size. The summary of the selected users’

dataset is given in the Table B.1.

B.2 Machine Learning Algorithms Employed

The machine learning algorithms are a very integral part of the proposed model

as they are used for the building of the classification model. In previous studies,

Peddinti et al. [14, 45] and Petit et al. [2] used Random forest, AD Tree, Zero

R, Regression, and SVM algorithms for the classification of the data queries. In

both studies the classification model was bi-class, i.e., the query is machine or

user-generated. Moreover, the model was built based on two attributes like query

and assigned label. In our work, however, the classification model is multiclass

i.e., in the testing data the model will decide which query belongs to which user

and model is based on twelve attributes. Initially we select 10 off-the-shelf (de-

fault setting) classification algorithms form different families such as J48 [123] and

Logistic Model Tree (LMT) [124] from the tree-based family, Decision Table [125],

JRip [126] and OneR [127] from Rule-based family, IBK [128] and KStar [129] from

Lazy-Learner family, Bagging [130] and XGBoost [134] from Meta-heuristic (En-

semble Learning) family and Näıve Bayes [132] from Bayes family. Rep Tree [133]

and Regression are used as base classifiers for Begging algorithm. However due to

poor performance many algorithms, we select the top five algorithms i.e. Näıve



Appendix 144

Bayes, IBk, Bagging, XGBoost, and J48. In addition to Bagging, XGBoost is used

from the ensemble learning algorithm category. XGBoost is machine learning algo-

rithm that uses gradient boosting technique in order to improve the performance

of weak decision tree based prediction models [134]. The performance comparison

of all 10 selected algorithms is available in in this section. Parameters of all se-

lected machine learning algorithms are shown in Table B.2. A brief introduction

of each classifier is provided below:

• J.48: J.48 is tree-based classifier which is based on the C4.5 algorithm [123].

It’s a statistical classifier which creates a decision tree-based on information

entropy. It is considered as the most prominent and most widely used algo-

rithm for machine learning activities.

• Logistic Model Tree (LMT): Logistic Model Tree is a supervised learn-

ing classification algorithm that combines decision tree and logistic regression

[153]. This algorithm use standard decision tree structure build by C4.5 algo-

rithm with logistic regression functions at the nodes. The tree is then prune

with well-known CART (Classification and Regression for Trees) algorithm

[124].

• Decision Table: In Decision Table the decision information is expressed in

the form of Decision Tree [154]. The decision tree is created based on the

events recorded in the past (training data) using if-then-else strategy.

• JRip: JRip is a rule based supervised learning algorithm use to create fast

and accurate classification model [126]. JRip is the enhanced and more

efficient version of IREP (Incremental Reduced Error Pruning) classification

algorithm.

• One R: One Rule (One R) is a rule-based algorithm which creates one rule

for each predictor. After the generation of all the rules, the rule with the

smallest total errors is then nominated as ”one rule” [127].

• IBK: This algorithm belongs to the distance-based group of the classifiers.

It uses k-nearest neighbor classifier to find the distance between two vectors
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[128]. In this research, the algorithm used to a searching nearest neighbor is

”Linear-NN-Search” which works on ”Euclidean Distance”. The rest of the

parameters remain default.

• KStar: KStar [129] is an instance-based supervised learning algorithm that

belongs to the Lazy-Learner family. Instance-based learners classify an in-

stance by comparing it to a database of pre-classified examples. KStar used

entropy-based distance function for classification.

• Bagging: Bootstrap Aggregation (Bagging) is meta-heuristic algorithms

that use different machine learning algorithms to achieve better prediction

[130]. It divides the training data into small datasets and creates classifiers

for each dataset based on selected classifier. The results of all small datasets

are then combined using average or majority voting or other methods. For

this research, REPTree algorithm is used as base learner.

• XGBoost: XGBoost stands for extreme gradient boost is an ensemble ma-

chine learning algorithm, used to deal with classification and regression prob-

lems. XGBoost is evolved from decision trees algorithm that uses gradient

boosting techniques to minimize the error in sequential prediction tree [134].

Extreme Gradient Boost is the evolved version of Gradient boosting tech-

nique that offer parallel processing, tree-pruning, and missing values han-

dling techniques.

• Bayes Net: This algorithm belongs to the probabilistic class of the classi-

fiers which predicts the chance of occurring an event-based analysis of past

events [134]. The popular applications of this classifiers are medical diagnos-

tics, spam identification and text classification [135]. In this research, the

most generic version is used with default parameters.

Where Batch Size shows the number of instances to process in case of batch

prediction. Kernel Estimator is a weighting function used in non-parametric

technique. KNN value shows the number of neighbors to used for calculation. NN

Search Algorithm is the Algorithm used to find the nearest neighbor. Window
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Table B.2: Parameters of all Selected Classifiers used in Appendix B for
QuPiD Attack.

Algorithm Parameters

J48

Confidence Factor = 0.25
Seed =1
No of Folds = 3
Batch size = 100
Pruning = False

LMT

Batch Size = 100
Fast Regression = True
Minimum No of Instances = 15
Weight Trim Beta = 0.0

Decision Table
Batch Size =100
Cross Validation = 1
Attribute Selection = Best First

J Rip

Batch Size 100
Pruning Folds = 3
Min Instance weight= 2.0
Optimization = 2
Seed =1
Pruning = True

One R
Batch Size =100
Min Bucket Size = 6

IBk

Batch Size =100
KNN value =1
NN search algorithm = Linear NN Search (Euclidean Distance)
Window Size =0

K Star
Batch Size =100
Global Blend = 20
Missing Mode = Ave Column Entropy

Bagging

Bag Size= 100
Batch Size =100
Iterations = 10
Classifier = REP Tree
Seed = 1
Num Folds = 3
Min Variance = 0.001
Max Depth = -1

XG Boost

Verbosity = 1
Iteration = 250
Learning Rate = 0.3
Seed = 1
Sub Sample = 0.5

Bayes Net

Batch size = 100
Debug = False
Estimator = Simple Estimator
Search Algorithm = Hill Climbing Algorithm



Appendix 147

Size is used to define maximum number of training instances maintained. Bag

Size is used to define the size of bag for training data. Iterations parameter

is used to specify the number of iterations to be performed by the algorithm.

Classifier parameter specifies the base Classifier used by in bagging classifier.

Seed parameter is used for randomize the data. Num folds specifies the amount

of data used for pruning. Max Depth shows the maximum tree depth (-1 shows

no restriction). Verbosity shows whether to print the early stopping information

or not. Learning Rate shows that how quickly the error is corrected from each

tree to the next. Sub Sample means that XGBoost (Extreme Gradient Boost)

would randomly sample half of the training data prior to growing trees to avoid

the problem of over-fitting. Confidence Factor is used for tree pruning. No of

folds specifies the amount of data used to reduced-error pruning. Type shows

the class of Artificial Neural Network used. Layer specifies the type of layer used.

Activation Function of a node defines the output of that node given an input

or set of inputs. Gate Activation Function defines the activation function to

use for the gates. No of Epochs is the number of complete passes through the

training dataset.

B.3 Results and Discussion

These experiments are performed to evaluate the effectiveness of QuPiD Attack

with different classification algorithms under variable user profile size. The selec-

tion of algorithms is made from different families classification algorithms. The

experiments are performed on 100 users dataset distributed in five groups in or-

der to observe the impact of the size of training on the accuracy of results. For

each UoI, we measured precision, recall, and true positive percentage of correctly

classified queries from an anonymized log.

Table B.3 shows the true positive percentage of the queries of UoI. According

to Table B.3, all algorithms correctly identified more than 89% queries of 2 users

except OneR. One R correctly identified 80% to 90% queries of 4 users. Overall
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Table B.3: Percentage of Users in a Group based on True Positive Values.

True Positive
Percentage Bands

Tree-Based Rule-Based Lazy Learner Ensemble Bayesian

J
4
8
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ip
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n

eR

IB
k

K
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in

g
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t

B
ay

es
N

et

100%-90% 2 2 2 2 0 2 2 2 2 2

90%-80% 2 2 2 2 4 2 0 2 2 2

80%-70% 4 2 4 2 0 4 4 4 4 4

70%-60% 4 8 4 2 6 4 6 4 4 2

60%-50% 14 2 4 6 0 24 16 18 18 14

50%-40% 26 28 24 4 10 18 22 20 20 20

Below 40% 48 56 60 82 80 46 50 50 50 56

IBK correctly identified more than 50% queries of 36 users followed by Bagging

and KStar with 30 and 28 users respectively.

As mentioned earlier, the experiments are performed on 100 users dataset dis-

tributed in five groups in order to observe the impact of the size of training on

the accuracy of results. Table B.4 shows the comparison of the performance of

all algorithms with a variation of the training dataset size. The performance of

each algorithm is measured in precision, recall and average f-measure. The results

shows that IBk and KStar associated more than 40% queries to the correct user

with the precision of above 60% in all cases. While Bagging, J48, Decision Table

(DT), and Bayes Net associate more than 25% queries to the correct user with the

precision of above 60% in all cases. From the perspective of the size of training

dataset, it is slightly difficult to draw a conclusion about its effect on accuracy due

to ProQSim Effect (section 3.6). Almost every algorithm shows irregular behavior

with a variation in the training dataset size. For the first three groups, the per-

formance of IBK, J48, KStar, and LMT (Logistic Model Tree) is observed more

accurate. However, unexpectedly, the rate of recall drops for the last two groups.

The results of precision and recall are plotted in Fig. B.1 and B.2 respectively.
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Table B.4: Group wise precision and recall with Different Algorithms.

Group Group 1 Group 2 Group 3 Group 4 Group 5

Tree-Based
J48

Precision 0.68 0.71 0.75 0.72 0.72
Recall 0.37 0.40 0.44 0.36 0.43

LMT
Precision 0.69 0.70 0.70 0.75 0.72
Recall 0.36 0.38 0.43 0.33 0.42

Rule-Based

Decision Table
Precision 0.86 0.89 0.90 0.79 0.79
Recall 0.33 0.32 0.41 0.34 0.41

JRip
Precision 0.85 0.80 0.85 0.77 0.78
Recall 0.25 0.23 0.32 0.23 0.34

OneR
Precision 0.46 0.39 0.48 0.46 0.51
Recall 0.21 0.17 0.27 0.25 0.35

Lazy Learner
IBK

Precision 0.74 0.78 0.83 0.78 0.77
Recall 0.42 0.44 0.48 0.38 0.45

KStar
Precision 0.75 0.78 0.77 0.76 0.72
Recall 0.36 0.40 0.44 0.35 0.72

Ensemble
Bagging

Precision 0.77 0.74 0.78 0.79 0.73
Recall 0.37 0.41 0.45 0.36 0.44

XGBoost
Precision 0.76 0.75 0.78 0.80 0.70
Recall 0.37 0.40 0.46 0.37 0.44

Bayesian Bayes Net
Precision 0.77 0.71 0.77 0.78 0.69
Recall 0.32 0.36 0.42 0.33 0.44

Figure B.1: Group wise precision with Selected Classification Algorithms.
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Figure B.2: Group wise recall with Selected Classification Algorithms.

Figure B.3: Average f-measure of all Selected Classification Algorithms.

Overall, IBK and Bagging associated 45.1% and 43% queries to the correct user

with above 70% precision. While J48, KStar, and LMT associated 42.2%, 41.7%

and 40.6% queries to the correct user with the precision of 70.9%, 73.5%, and

70.2%. The top three algorithms in terms of f-measure (trade-off between precision

and recall) are IBK, Bagging, and J48 with the score of 0.514, 0.487 and 0.477

respectively. The results of average f-measure are plotted in Fig. B.3.
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