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Abstract

In this dissertation, the nanofluid flow with the heat and mass transfer for

various models of fluids is analyzed. The flows are induced over stretching sheet

and two infinite plates. The important quantities such as magneto

hydrodynamics, viscous dissipation, Joule heating, chemical reaction, Brownian

motion and thermophoresis are incorporated for physical consideration. The

MHD Jeffrey nanofluid flow and heat transfer over a stretching sheet considering

the Joule heating and viscous dissipation is analyzed. The motion of a

non-Newtonian tangent hyperbolic nano fluid past a stretching sheet is also

investigated. Further, the effects of chemical reaction, viscous dissipation and

Joule heating are also contemplated for the problem. Magnetic field is

implemented in vertical direction under the assumption of low magnetic

Reynolds number. Moreover, an elaborated evaluation is presented for the

stratified MHD Jeffrey nanofluid flow towards a stretching surface in the

presence of gyrotactic micro-organisms. And finally the numerical solution of

rotating flow of a nanofluid over a stretching surface in the presence of magnetic

field. To model the system of partial differential equations, different emerging

laws of Physics are used. To convert the system of partial differential equations

into the ordinary differential equations, some suitable transformations named as

the similarity transformations are utilized. Further, utilizing the Keller box

method and shooting technique, the system of ordinary differential equations has

been solved with the help of the computational software MATLAB to compute

the numerical results. The numerical solution obtained for the velocity,

temperature, concentration and density of the motile micro-organisms profiles

has been presented through graphs for different choices of the physical

parameters. The numerical values of the skin friction, Nusselt, Sherwood and

local density number of the motile micro-organisms have also been presented and

analyzed through tables. A comparison with the previously available literature in

limiting cases is also performed to strengthen the reliability of the code. To

further strengthen the reliability of our MATLAB code, the results presented in

the previously published articles are reproduced successfully.
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Chapter 1

Introduction

1.1 Introduction

ThisaChapter incorporates some necessary review associated with the Newtonian

as well as non-Newtonian nanofluids over different sort of geometries. A brief

background and significance of boundary layer nanofluid flow for a Jeffrey fluid,

tangent hyperbolic fluid, rotating flow, magnetohydrodynamic flows, viscous

dissipation andaJoule heating effects, suction and injection effects, stretching

sheet and bioconvection for heat and mass transport is given. Moreover it

features a comprehensive literature review based on the problems taken into

account in succeeding chapters. The problem identification, research objectives,

scope, significance of research and the outline of all the chapters are also given

within this chapter.

1.2 Background

The developments in the field of nanofluids have potential importance due to its

excessive utilization in the real life and in modern heat and mass transport

processes including domestic refrigerators, machining, hybrid-powered engines,

microelectronics, grinding, heat exchangers, solar water heating, fuel cells,

nuclear reactors, chillers, improving efficiency of diesel generators and

pharmaceutical processes etc [1, 2]. Maxwell [3] added solid micrometer sized

particles to the base fluids to enhance the thermal conductivity but it caused the

1
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clogging, erosion in the pipes and rise in the pressure drop. The term nanofluids

was first coineds by Choi and EEastman [4–6]. These fluidss are engineereds by

dispersing nanoparticles in the traditional fluids to boosts the fluid’s thermal

conductivity. Nanoparticles have been formed from metals such as Cu,Ag, metal

nitrides such as SiN,AlN, oxide ceramics such as PbO,CuO, carbide ceramics

such as CaC2, TiC and allotropes of carbon such as graphite, diamond, fullerene

etc. To examine the heat transport enhancement by fine particles mounted in a

fluid, many mathematical models can be formed in the literature. One of these is

the Buongiorno model [7] that considers the fluids as well as the solid phase in

the heat transport method. It is a non-homogeneous nanofluids equilibrium

model which illustrates that the thermophoresis diffusion and Brownian

movement are responsible for the rise in thermal conductivity. Another widely

used model is the two-phase Tiwari and Das model [8] wherein the fluid phase as

well as solid particles have been in equilibrium state having the similar local

velocity. A number of issues arise while analyzing the heat transport

enhancement employing the nanofluids. Such complications include the

Brownian motion, gravity, layering at the boundary between solid and fluid,

clustering of the particles and friction between the solid and liquid particles.

Nanofluids are implemented to further improve the thermal conductivity of base

liquids like water, glycerin, ethylene glycol and oil etc. Many researchers have

investigated nanofluids for thermal conductivity enhancement [9–16].

Experimental study conductedsby Lomascolo et al.s[17] revealed that the thermal

conductivity also depends on the concentration, size, shape and material of the

nanoparticles.

The mathematical models for the motion of an incompressible Newtonian fluids

[18] are catching the interest of annumber of mathematicians over the time. The

Newtonian fluids can be studied using the Navier-Stokes equations. They behave

based on the law that shear stress isalinearly related to rate ofadeformation. The

viscosity of Newtonian fluids altered solely with temperature. The most familiar

applications of Newtonian fluids are related to thin motor oil, alcohol, gasoline
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and water etc. The last few decades, the non-Newtonians fluids have obtained an

appreciable importance because the Navier-Stokes equations do not describe all

the rheological properties of these fluids used in technology and industrial areas.

However, the constitutives equations of these fluids are very complicated as

compared with the Newtonian fluids. Accordingly, the non-Newtonian governing

equations are highly non-linears than the Navier-Stokes equations and a single

constitutive equation cannot describe all the properties of these kind of fluids.

The flow behavior of non-Newtonian fluids has captivated the engineers and

investigators in the past few decades in industrial sciences as well as engineering.

Different from Newtonian fluids, these rheological fluids have been

comprehensively utilized in many manufacturing and engineering processes.

These processes include biomechanics, polymer processes, food production and

enhanced oil recovery etc. Many constitutive equations are reported in literature

to predict the features of non-Newtonian fluids. The non-Newtonians fluids have

been divided into three categories. namely the differentials type, the rates type,

and the integrals type. The rate type of fluid models signifies the effect of

relaxation and retardation time.

Among the non-Newtonian fluid models, the tangent hyperbolic fluids model [19]

is capable of predicting the shear thinning (pseudo-plastic) phenomenon. It is a

type of fluids which determines the fluid resistance having dominant rate of shear

stress. These fluids include ketchup, paints, blood, nail polish and whipped

cream etc. A number of researchers have already reported valuable analysis of

the tangent hyperbolic fluid model keeping different flow phenomena. Abbas et

al. [20] highlighted the pressure driven flow of tangent hyperbolic fluid inside a

variable channel with flexible walls. Ibrahim [21] disclosed the magnetic effects

on the slip flow of convectively heated and concentrated tangent hyperbolic

nanoliquid over a stretchable surface. Kothandapani and Prakash [22] exposed

the combined impactsaof thermal radiation andaheat source on peristaltic

tangent hyperbolic fluid flow with the magnetic field. Shafiq et al. [23] exhibited

the bio-convective effects on hydro-magneto tangent hyperbolic nanomaterial
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flow with Newtonian heating. Mahanthesh et al. [24] illustrated the radiative

flow of convectively heated tangent hyperbolic material flow over a stretched

sheet with non-linear convection. Gaffar et al. [25] depicted the Biot number

effects on the heat transfer flow of tangent hyperbolic fluid through a sphere.

Kumar et al. [26] described the variable thermal conductivity effects on squeezed

tangent hyperbolic fluid flow induced by a sensor surface. Nagendramma et al.

[27] explored the stratification impacts on tangent hyperbolic nanomaterial flow

induced via stretchable cylinder. Nagaraja et al. [28] illustrated the impact of

suction/injection on magnetohydrodynamics flow of tangent hyperbolic fluid due

to porous plate. Zakir and Gul [29] investigated the thermal slip effect on

tangent hyperbolic fluid flow past a stretching surface.

Jeffrey fluids are amongst the rate type models. These fluids have acquired a

notable attention of researchers in the current era.“A Jeffrey fluid exhibits the

linearsviscoelastic feature and hasanumerous applications in polymerssector. The

Jeffreysmodel [30] is theamost simple and commonsamong the non-Newtonian

fluidsawhich has the timesderivative rather theaconvective derivative. The

Jeffrey fluid modelspossesses two timesrepresentations, specifically the relaxation

timesand the retardation time.aaThearetardation concept was

originallyaintroduced by Jeffrey to analyze the wave propagationsoccurrence in

the earth’ssmantle and eventually inathe description of theaJeffrey temperature

fluxsmodel. Relaxation timesdescribes the timesused by theafluid to restoresfrom

theadeformed position to theiraprimary stability state.” There are a number of

applications of Jeffrey fluid model for instance dilute polymer solution.

Andersson et al. [31] explored the MHD impact on the flow of power-law fluid

past a stretching surface with anconstant transverse magnetic field. Ahmad et al.

[32] executed the numerical evaluation of the mixed convective flow of a Jeffrey

fluid past an exponentially stretching sheet with magnetohydrodynamic impact.

Narayana et al. [33] analyzed the MHD flow of a Jeffrey fluid due to a stretching

surface by considering Dufour and Soret effects in the presence of heat source

and chemical reaction. Jena et al. [34] found the exact solution of flow through
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porous medium past a stretching sheet considering the chemical reaction and

heat generation/absorption effects by making use of the Jeffery fluid model.

The fluid flows over a stretching sheets is of crucial importance from both the

theoretical and the practical viewpoints because of its wide applications in the

plastic engineering and metallurgy. Stretching sheet flows are important in

various applications including paper production, aluminum bottle manufacturing

processes, drawing of copper wires, metallurgical processes, spinning of fibers,

production of rubber and plastic sheets, film coatings and crystal growing.

During the process of extrusion, the qualityy of the final products depends upon

the rates of stretching and the simultaneous heating or cooling during that

process. So, fluid flows and heat transfers over a stretching surface have a

practical significance in many industrial processes. Crane [35] examined the flow

due to stretching of a sheet. Sakiadis [36] introduced the concept of boundarys

layers flow overs a moving surface. Tsou et al. [37] conducted the analytical and

experimental study to explore the momentum and heat transfer aspects emerging

in the stretching surface model. Mass transfer on a moving continuous flat

surface via injection/suction on the wall was studied by Erickson et al.[38]. The

impacts of chemical reactions and thermal radiations on MHD mixed convections

heat and mass transfers in micropolars fluids was discussed by Srinivasacharya

and Upendar [39]. Bataller [40] carried out a study to discuss the impacts of a

thermal radiation, viscous dissipations and non-uniform heat sources on

viscoelastic fluids flows and heat transfers past a stretching surface. After that,

several authors broadened the notion of a stretching sheet for various fluid

models [41–44].

The analysis of MHD flows has been found in several metallurgical, engineering

and industrial fields. A magnetohydrodynamics has several significant

applications including the biomechanics, petroleum technologies, plasma studies,

flow of blood measurements, MHD generators and so forth. Sarpakaya [45] is the

pioneer who reported the electrically conducting flow of non-Newtonian fluids.
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Anderson and Wendt [46] presented the analytical solutions for

magnetohydrodynamics flow of a viscoelastic fluid model over a stretching sheet.

They discovered that the MHD rise the skin friction and reduces the boundary

layer thickness. Jue [47] investigated the ferrofluid flow by utilizing the semii

implicits finite elements method to reenact the magnetic gradients and thermals

buoyancy induceds cavity. Nanjundappa et al. [48] addressed the impact of the

magnetics fields dependent viscositys on the horizontal layers of ferrofluid. Time

dependent electrically conducting mixed convection flows over an exponentially

stretching sheets with heat absorption/generation was analyzed by Elbashbeshy

et al. [49]. Impact of mass transfers on electrically conducting flow of Cassons

fluids with suction, thermophoresis, thermal conductivity and variable viscosity is

addressed by Animasaun [50]. Turkyilmazoglus [51] inspected the heat transfer of

nanofluid flow caused due to a rotating ddisk. He used a Chebyshev spectral

collocation method to produce the numericals solutions of the nonlinears

equations. Bahiraei et al. [52] inspected the sMn − Zn ferrite-water ferrofluids

throughh an annuluss affected by the non-uniform magnetics field. The influence

of electrically conducting convective heat transfer flow of nanofluid inside an

enclosures is examined by Sheikholeslami et al. [53]. Nanofluid flow and heat

transfer subject to the effect of the magnetic field can also be found in [54–57].

Bioconvection has been explored due to a number of extensive uses in the

microbial fuel cell, modeling oil, gas-bearing sedimentary basin, microbial

upgraded petroleum recovery biological systems, bioconvection nanotechnological

devices and biotechnology [58–60]. Bioconvection takes place whenever

microorganisms that are more denser as compared with water and run upward

during the flow. As a result of this upward swimming the micro-organisms are

inclined to accumulate in the upper part of the fluid layer, hence leading to a

higher density stratification that usually gets unstable. The swimming of such

self-propelled motile micro-organisms leads to a high density that initiates

bioconvection. Khan and Makinde [61] examined a magneto-hydrodynamics

nanofluid that contains gyrotactic micro-organisms induced by a stretching
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surface. It is noted that both the stretching parameter and bioconvection Lewis

number lessen the concentration of motile micro-organisms. Makinde et al. [62]

analyzed bioconvection in magneto-hydrodynamics nanofluid flow towards an

upper sheet of a paraboloid of revolution by considering chemical reaction and

non-linear thermal emission. It was noticed that the local heat transport rate

moves up for the decreasing values of temperature and larger values of Prandtl

number. Xun et al. [63] evaluated the influence of thermal conductivity as well

as temperature dependent viscosity on the bio-convection flow in a rotating

system and found that a rise in the thermal conductivity and viscosity lessens

the mass, heat transfer and the motile microorganisms flux on the surface.

Mosayebidorcheh et al. [64] inspected the effect of nano-bioconvection flow

carrying the nanoparticles as well as gyrotactic micro-organisms in a horizontal

channel employing modified least square technique and established that the

thermophoresis number has an extremely small influence on the distribution of

temperature profile while it has a strong impact on concentraion and motile

micro-organism.

Heat “produced due to the dissipation process, is considered an important factor

in designing numerous devices. The ability of the velocity to do work against the

viscous forces is termed as viscous dissipation whereas the Joule heating is a

phenomenon in which heat is generated because of the passage of electric current

through a conductor. Viscous dissipation has a pivotal role in connection with

various devices which operate at high deceleration or which are subjected to

larger rotating speed. It is also crucial in the processes where the gravitational

field is strong enough at a large scale, in nuclear engineering related to the

cooling of reactors and in the geological processes.” Ohomic heating (Joule

heating) has gained a deserving attention due to its large range of usage in

technological and industrial processes such as electronic cigarette, food

processing, electric fuses, electric stoves, electric heaters, thermistor,

incandescent light bulb and many others. Ibrahim and Suneetha [65] illustrated

the Joule and viscous dissipation effects on a chemically reactive convection flow
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of MHD fluid saturated in Darcian medium with Soret and heat source. Shah et

al. [66] studied the numerical solution for MHD heat transfer in a UCM fluid

flow over a stretching sheet along with thermal radiation and Joule heating.

Gopal et al. [67] demonstrated the dissipation effects in Casson fluid flow

induced by a chemically reacting stretching surface. Jing et al. [68] evaluated the

effects of viscous dissipation and Joule heating on pressure-driven microchannel

flow considering surface charge slip. Ferdows et. al. [69] discussed the influence

of viscous dissipations and Hall current on the boundary layers flow over a

stretchings surface. Goud and Shekar [70] found the numerical solutions of

viscous dissipation effects on magnetohydrodynamic flow over a parabolic

vertically inclined plate considering mass diffusion using the finite element

technique. Thumma and Misra [71] examined the effects of multi slip boundary

conditions on MHD Jeffery nanofluid with dissipation effects. Kumar et al [72]

exposed the dissipation analysis of reacting ferro-nanomaterial considering the

radiation energy.

Rotating flow and heat transfer problems obtain importance in a vast range of

geophysical as well as engineering applications. The rotating flow has more

extensive utilization [73] in chemical reactors, rotating machinery, MHD pumps,

petroleum refineries, biochemical problem, lubrication and refrigeration system

etc. Wang [74] analyzed a rotating flow over a stretching sheet. Nazar et al. [75]

studied time dependent rotating flow past a stretching sheet. Rosali et al. [76]

interrogated the boundary layer rotating flow due to a shrinking surface by

considering suction effect. Sulochana et al. [77] considered the thermal radiation,

viscous dissipation and chemical reaction effects on flow past a rotating surface.

Seth et al. [78] investigated the boundary layer flow of rotating nanofluid with

entropy generation due to a stretching plate. Gireesha et al. [79] studied the

effect of nonlinear thermal radiation on unsteady rotating fluid flow of nanotubes

using the shooting method technique.

Stratification occurs as a result of differences in temperature, concentration
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variations or even the existence of different fluids owning distinct densities. This

sort of phenomenon has gained crucial importance as a result of its incorporation

in the flows occuring in the rivers, lakes and seas, and water reservoirs etc.

Additionally, the effects of solute and thermal stratifications are extremely

significant for solar power for the reason that the better stratification refers to

better energy productivity. Bearon and Grunbaum [80] illustrated the effect of

bioconvection in a stratified environment. They concluded that as a result of a

reduction in the gyrotactic parameter, the velocity profile as well as the cell

concentration turned up. Kameswaran et al. [81] examined the convective heat

transfer in a thermally stratified nanofluid flow over a vertical wavy surface with

the main finding that the thermal stratification parameter rises the thermal

boundary layer thickness. Madhu and Reddy [82] illustrated the impact of

thermal stratification on the magnetohydrodynamics heat transfer flow past an

exponentially stretching surface with the conclusion that the temperature

gradient is enhanced substantially with a boost in stratification. The references

[83–86] incorporate some latest efforts relevant to the variable thermal

conductivity.

1.3 Problem Identification

The advancements in the field of nanofluids have potential significance because

of its excessive usage in the real life and in the modern heat and mass transport

processes. The traditional heat transport fluids cannot meet the rising challenges

of contemporary world because of their low thermal conductivity. To overcome

these challenges, nanoparticles have been considered for suspension inside the

heat transport fluids to boost the heat transport phenomenon tremendously. On

the basis of the above-mentioned issues, this analysis has beenscarried out to

explore the impacts of various physical parameters on different MHD nanofluids

flowing oversa stretchingssurface. The tangent hyperbolic, Jeffrey and viscous

fluids have specially been considered for the present investigation. This study

explores how can the presencesof nanoparticles affect the velocity, temperature

andaconcentration fields and how can the skin friction, Sherwood number, motile
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density rate and Nusselt number be influenced because of the presence of

parameters some significant like the magnetic parameter, Deborah number, ratio

of relaxationsto retardation times, Prandtl number, Brownian motionsparameter,

thermophoresisaparameter and Eckert number.

1.4 Research Objectives

The entire goal of this researchsis to investigate the characteristics of nanofluid

flow, particularly the heat andamass transport for a boundary layersflow past a

stretching surface. The major objectives are the following:

• To derive mathematical models with different flow geometries for nanofluids

by considering the impact of MHD.

• To apply the methods of finite-difference and Shooting for the numerical

solution of the governing mathematical models.

• To develop algorithms of the above mentioned numerical techniques for the

solution of the proposed mathematical models .

• To analyzeathe numerical outcomes of the velocity, temperature,

concentrationsand motile densitysprofiles.

• To work out the dynamics of some important physical quantities like the

drag coefficient, heat transfersrate, mass transfer ratesand density number

for different physical scenarios.

1.5 Scope of Research

This dissertation is restricted to the steady 2D MHD incompressible flows of the

tangent hyperbolic, Newtonian viscous and Jeffrey nanofluids past a stretching

sheet. In this analysis, Tiwari and Das and Buongiorno models of nanofluid have

been utilized. These fluids (Nanofluids) substantially improve the heat andamass

transfer rates in many different areas like nuclear reactors, automobiles, micro heat

exchangers, electronics, cryopreservation, air-conditioning and nano-drug delivery.
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1.6 Significance of Research

The significances of the research work are following:

• The outcomes of the study shall boost the knowledge on the nanofluids flows

phenomenon.

• The knowledge gained will provide a better insight on the rheological

behavior of viscous fluid, tangent hyperbolic fluid and Jeffrey fluid.

• To provide foresight of theaphysical behavior of nanoparticles on the

fluidsflow, heat and mass transport.

• The research will offer as a good tool for heat transfer and mass transfer

rates prediction.

• This study provides numerical solutions of complex mathematical models.

• The research can be extended to other generalized cases.

1.7 Thesis Outline

Within this dissertation, we utilize a couple of well-known models specifically the

Tiwari and Das model and the Buongiorno’s model to investigate a number of

interesting boundary layer flow problems that involved nanofluids. Salient

features influencing this kind of flows have also been taken into account. Such

features include the magnetic field,aviscous dissipation, Joule heating, chemical

reaction, suction, injection, Brownian motionsand thermophoresis diffusion. The

transformed differential system is handled numerically through the well-known

Keller box method or the shooting technique. The present dissertation comprises

of seven chapters that are briefly described as:

Chapter 2 incorporates a comprehensive back-ground of the boundary layer

flow due to moving surface. Moreover, the basic fundamental laws governing the

flow are discussed in this Chapter. Tensor analysis is performed for the viscous
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fluid, Jeffrey fluid and tangent hyperbolic fluid. A brief discussion on the

numerical techniques employed in this dissertation is also made part of this

chapter.

Chapter 3 analyzes the “impact of silver, titanium oxide and alumina

nanoparticles on the time independent 2D magnetohydrodynamic boundary layer

heat transfer flow of Jeffrey fluid past a stretching surface with Joule heating and

viscous dissipation.” Numerical study is made by Keller boxsmethod.” The most

important findings of this chapter are published in “AIP Advances 8, 065316

(2018), DOI: 10.1063/1.5031447”.

Chapter 4 is devoted to “the numerical analysis of tangent hyperbolic nanofluid

with chemical reaction, viscous dissipation and Joule heating effects. Nanofluid

is comprised of thermophoresis and Brownian motion effects. The system of

nonlinear equations are numerically investigated by Keller box technique.

Contents of this chapter are published in” “AIP Advances 9, 025007 (2019),

DOI: 10.1063/1.5054798”.

In Chapter 5, we analyze the“stratified MHD Jeffrey nanofluid flow towards a

stretching surface in the presence of gyrotactic micro-organisms. The impacts of

a variety of parameters on the fluid motion, heat, mass, density of the motile

micro-organisms, local skin friction, local Nusselt number, local Sherwood

number and local density number of the motile micro-organisms are examined.“

This article is submitted for publication in journal.

In Chapter 6, we investigate the flow of a nanofluid withawater as the

basesfluid and Cu and Ag as the nanoparticles between two rotating plates.

Centripetal and Coriolis forces effects on the rotation of the fluid are also

considered. Numerical solutions of the systems of nonlinear ODEs is obtained

through the shooting method. The work presented in this study is published in “

Journal of Nanofluids, Volume 8, Number 2, pages 359-370 (2019),

DOI: 10.1166/jon.2019.1578”.

Chapter 7 summarizes the conclusions drawn from different scenarios presented

in chapters 3-6.



Chapter 2

Fundamental Laws and Solution

Methodology

2.1 Introduction

A brief review of certain studies relevant to boundary layer flow, basic governing

laws ofalinear momentum, concentation, energy and gyrotatic microoganism has

been presented in the present chapter. Mathematical modeling for Jeffrey fluid,

tangent hyperbolic fluid and viscous fluid are covered for a better comprehension of

forthcoming chapters. The solution methodologies such as Keller boxsmethod, an

implicitsfinite difference technique and the shooting method are briefly described

in the present chapter.

2.2 Types of Fluid Flow [87, 88]

This section incorporates the various types of fluid flow based on the variation of

flow parameters.

13
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2.2.1 Steady and Unsteady Flows

“Steady flow is defined as that type of flow in which the fluid characteristics like

velocity, pressure, density etc., at a specific point do not change with time. Let Υ

be any fluid property, then the following holds for the steady flow

∂Υ

∂t
= 0,

where Υ is any fluid property. Unsteady flow is that type of flow, in which the

velocity, pressure or density at a point changes with respect to time. Thus,

mathematically, for unsteady flow

∂Υ

∂t
6= 0.

2.2.2 Uniform and Non-uniform Flows

Uniform flow is defined as that type of flow in which the velocity at any given time

does not changes with respect to space. Mathematically, for uniform flow

(∂V

∂s

)
t=constant

= 0,

where ∂V =Change of velocity and ∂s = Length of flow in the direction S. Non-

uniform flow is that type of flow in which the velocity at any given time changes

with respect to space. Thus, mathematically, for non-uniform flow

(∂V

∂s

)
t=constant

6= 0.

2.2.3 Laminar and Turbulent Flows

Laminar flow is defined as that type of flow in which the fluid particles move along

well-defined paths or stream line and all the stream-lines are straight and parallel.

Thus the particles move in laminas or layers gliding smoothly over the adjacent
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layer. This type of flow is also called stream-line flow or viscous flow. Turbulent

flow is that type of flow in which the fluid particles move in a zig-zag way. Due to

the movement of fluid particles in a zig-zag way, the eddies formation takes place

which are responsible for high energy loss.

2.2.4 One Two and Three Dimensional Flow

One-dimensional flow is that type of flow in which the flow parameter such as

velocity is a function of time and one space co-ordinate only. The average flow in

a duct can be considered as one-dimensional. Two-dimensional flow is that type

of flow in which the velocity is a function of time and two rectangular space co-

ordinates. The flow between two parallel plates is an example. Three-dimensional

flow is that type of flow in which the velocity is a function of time and three

mutually perpendicular directions. When there is no obstruction or channelling,

fluid flow can be thought of as three-dimensional flow.

2.2.5 Compressible and Incompressible Flows

Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in orther words the density (ρ) is not constant for the fluid.

Thus, mathematically, for compressible flow ρ 6= Constant. Incompressible flow

is that type of flow in which the density is constant for the fluid flow. Liquids

are generally incompressible while gases are compressible. Mathematically, for

incompressible flow ρ = Constant.

2.2.6 Rotational and Irrotational Flows

Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis. And if the fluid particles while

flowing along stream-lines, do not rotate about their own axis then that type of

flow is called irrotational flow”.
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Fig. 2.1: The blowup of the boundary layer shows the flow’svvelocity profile
above theeseparation point.

2.3 Boundary Layer Theory [89]

“In 1904 a little known physicist revolutionized fluid dynamics with his notion

that the effects of friction are experienced only very near an object moving

through a fluid. The overall perspective set forth by Prandtl in his 1905 paper

was simple and straightforward. In brief, an aerodynamic flow over a body can

be divided into two regions, a thin boundary layer near the surface, where

friction is dominant, and an inviscid flow external to the boundary layer, where

friction is negligible. The outer inviscid flow strongly affects the boundary-layer

properties; indeed, the outer flow creates the boundary conditions at the outer

edge of the boundary layer and dictates the velocity profile within the layer. On

the other hand, the boundary layer is so thin that it has virtually no effect on

the outer inviscid flow. The exception to the no-effect rule is if the flow

separates; then the outer inviscid flow is greatly modified by the presence of the

separation region. Prandtl was referring to the type of flow in which, as sketched

in Fig. 2.1, the boundary layer separates from the surface and trails downstream.

With the advent of Prandtl’s boundary layer concept, it became possible to
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quantitatively calculate the aerodynamic drag. Prandtl showed that for the

boundary layer, the Navier–Stokes equations can be reduced to a simpler form,

applicable only to the boundary layer. The results called the boundary-layer

equations are similar to Navier–Stokes in that each system consists of coupled,

nonlinear partial differential equations. The major mathematical breakthrough,

however, is that the boundary layer equations exhibit a completely different

mathematical behavior than the Navier–Stokes equations.

The Navier–Stokes equations have what mathematicians call elliptic behavior.

That is to say, the complete flow field must be solved simultaneously, in accord

with specific boundary conditions defined along the entire boundary of the flow.

In contrast, the boundary-layer equations have parabolic behavior, which affords

tremendous analytical and computational simplification. They can be solved

step-by-step by marching downstream from where the flow encounters a body,

subject to specified inflow conditions at the encounter and specified boundary

conditions at the outer edge of the boundary layer. The systematic calculation

yields the flow variables in the boundary layer, including the velocity gradient at

the wall surface. The shear stress at the wall, hence the skin-friction drag on the

surface, is obtained directly from those velocity gradients”.

2.4 Significant Dimensionless Numbers [90–92]

“Dimensionless numbers have high importance in the field of fluid mechanics as

they determine behavior of fluid flow in many aspects. These dimensionless

forms provides help in computational work in mathematical model by scaling.

Dimensionless numbers have extensive use in various practical fields like

economics, physics, mathematics, engineering especially in mechanical and

chemical engineering. Different dimensionless numbers used for heat transfer and

mass transfer. This description of dimensionless numbers in fluid mechanics can

help with understanding of all areas of the fluid dynamics including compressible
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flow, viscous flow, turbulence, aerodynamics and thermodynamics. Some of the

important dimensionless numbers that appear in our thesis are mentioned below:

2.4.1 Reynolds Number

The Reynolds number Re describes the ratio of inertial force to viscous force within

the fluid stream. Mathematically, we write

Re =
U0L

ν
, (2.1)

where U0 is the characteristic velocity, L is the reference length and ν is the

kinematic viscosity. When the ratio exceeds a certain value, which is different for

different geometries, the fluid no longer moves in discrete streamlines. At values of

the Reynolds number higher than laminar flow there is a region of mixed boundary

layer flow, and then full turbulence.

2.4.2 Prandtl Number

The Prandtl number is a non-dimensional number, its named was given after its

innovator, a German architect Ludwig Prandtl. It is defined as

Pr =
ν

α
, (2.2)

where α denotes the thermal diffusivity and ν is the kinematic viscosity of the

fluid. We sometimes call the kinematic viscosity term, the molecular diffusivity

of momentum, because it is a measure of the rate of momentum transfer between

the molecules in the fluid. It is apparent then that the Prandtl number, the ratio

of fluid properties, controls the relationship between velocity and temperature

distribution. It describes the effects thermo-physical characteristics of fluid on heat

transference. It appears in the non-dimensional form of the governing equation of

heat transfer.
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2.4.3 Lewis Number

The Lewis number is named for Warren Lewis, who introduced the idea of such a

number in 1939. It is the relation of the Prandtl and the Schmidt numbers. The

Lewis number is important in situations where heat transfer and mass transfer

occur simultaneously. It can be expressed as follows

Le =
α

D
, (2.3)

where α and D are the thermal and mass diffusivity, respectively.

2.4.4 Eckert Number

The Eckert number is a non-dimensional number, named after Ernst Eckert. This

number is proportional to the ratio of the temperature rise of a fluid in an adiabatic

compression to the temperature difference between the wall and the fluid at the

edge of the boundary layer. It is described mathematically as

Ec =
U2

0

cp∆T
, (2.4)

where U0 is the reference velocity, cp represents the specific heat capacity and ∆T

shows the difference between wall and fluid ambient temperature.

2.4.5 Skin Friction Coefficient

To study the fluid dynamics, it is suitable to deal with non-dimensional form of

governing equations with reduced number of variable and incorporating

dimensionless parameters by using some transformation. Skin friction coefficient

expresses the dimensionless shear stress at the wall and can be defined as

Cf =
2τw1

ρu2
w1

, (2.5)
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where ρ the density, uw the free stream velocity and τw represents shear stress at

the wall and is given by

τw = µ
∂u

∂y

∣∣∣∣
y=0

. (2.6)

2.4.6 Nusselt Number

The Nusselt number is the key to finding the heat transfer coefficient, which is

usually the unknown variable in most heat transfer problems. It is the ratio

convective to conductive heat transfer across (normal) to the surface. It is defined

as

Nu =
qwx

k∆T
, (2.7)

Where x is the distance of flow from the surface edge, T is the temperature

difference between the wall and fluid ambient, qw is the heat transfer rate at the

surface and is given by

qw = −k∂T
∂y

∣∣∣∣
y=0

. (2.8)

The Nusselt number was originally expressed by Baptiste Biot, the first person

to express the laws of convection in a mathematical form. The relationship was

proposed as the Nusselt number in 1933, to commemorate Wilhelm Nusselt, the

German engineer who later derived the number in 1905.

2.4.7 Sherwood Number

The Sherwood number is similar to the Nusselt number for heat transfer, but is

used to describe mass transfer. It signifies the ratio of rate of mass transfer to the

rate of mass diffusivity. Mathematically it can be represented as

Sh =
HL

D
, (2.9)

Here L represents characteristic length, D is mass diffusivity and H signifies mass

transfer coefficient”.
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2.4.8 Weissenberg Number [93]

“The Weissenberg number is a dimensionless number used in the study of

viscoelastic flows. It is named after Karl Weissenberg. The dimensionless

number compares the elastic forces to the viscous forces. It can be variously

defined, but it is usually given by the relation of stress relaxation time of the

fluid and a specific process time. For instance, in simple steady shear, the

Weissenberg number, often abbreviated as We, is defined as the shear rate γ̇

times the relaxation time λ.

We = γ̇λ (2.10)

The Weissenberg number indicates the degree of anisotropy or orientation

generated by the deformation, and is appropriate to describe flows with a

constant stretch history, such as simple shear.

2.4.9 Deborah Number

Formally, the Deborah number is defined as the ratio of the relaxation time

characterizing the time it takes for a material to adjust to applied stresses or

deformations, and the characteristic time scale of an experiment (or a computer

simulation) probing the response of the material

β =
time of relaxation

time of observation
(2.11)

At lower Deborah numbers, the material behaves in a more fluidlike manner, with

an associated Newtonian viscous flow. At higher Deborah numbers, the material

behavior enters the non-Newtonian regime, increasingly dominated by elasticity

and demonstrating solid like behavior”.

2.5 Heat Transfer [94]

“Heat transfer is the science that seeks to predict the energy transfer that may

take place between material bodies as a result of a temperature difference.

Thermodynamics teaches that this energy transfer is defined as heat. The
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science of heat transfer seeks not merely to explain how heat energy may be

transferred, but also to predict the rate at which the exchange will take place

under certain specified conditions. The fact that a heat-transfer rate is the

desired objective of an analysis points out the difference between heat transfer

and thermodynamics. Heat transfer supplements the first and second principles

of thermodynamics by providing additional experimental rules that may be used

to establish energy-transfer rates. There are three modes of heat transfer:

conduction, convection and radiation.

2.5.1 Convection

It is well known that a hot plate of metal will cool faster when placed in front of a

fan than when exposed to still air. We say that the heat is convected away, and we

call the process convection heat transfer. Convection heat depends on viscosity,

thermal conductivity, specific heat and density of the fluid. The application of heat

transfer has become more intense in modern technology in areas such as energy

production, heat exchangers.

2.5.2 Conduction

When a temperature gradient exists in a body, experience has shown that there

is an energy transfer from the high-temperature region to the low-temperature

region. We say that the energy is transferred by conduction and that the heat-

transfer rate per unit area is proportional to the normal temperature gradient.

Such types of heat transfer occurs in the solid.

2.5.3 Radiation

In contrast to the mechanisms of conduction and convection, where energy

transfer through a material medium is involved, heat may also be transferred

through regions where a perfect vacuum exists. The mechanism in this case is
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electromagnetic radiation. An example of radiation would be atmosphere, the

atmosphere is heated by the radiation of the sun”.

2.6 Mass Transfer [94]

“When a mixture of gases or liquids is contained such that there exists a

concentration gradient of one or more of the constituents across the system,

there will be a mass transfer on a microscopic level as the result of diffusion from

regions of high concentration to regions of low concentration. One must

remember that the general subject of mass transfer encompasses both mass

diffusion on a molecular scale and the bulk mass transport that may result from

a convection process. There is a mass transfer associated with convection in that

mass is transported from one place to another in the flow system. This type of

mass transfer occurs on a macroscopic level and is usually treated in the subject

of fluid mechanics. In many technical applications, heat transfer processes occur

simultaneously with mass transfer processes. Mass transfer occurs in many

processes, such as absorption, evaporation, drying, precipitation, membrane

filtration, and distillation”.

2.7 Classification of Fluids [95]

2.7.1 Ideal Fluid

“A fluid can be defined as a material that deforms continually under the application

of an external force. In other words, a fluid can flow and has no rigid three-

dimensional structure. An ideal fluid may be defined as one in which there is no

friction. Thus the forces acting on any internal section of the fluid are purely

pressure forces, even during motion. Ideal fluid do not actually exist in nature,

but sometimes used for fluid flow problems. All the fluids in actual practice are

real fluids.
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2.7.2 Real Fluid

The fluid containing some viscosity effect is said to be a real or viscous fluid. In

a real fluid, shearing (tangential) and extensional forces always come into play

whenever motion takes place, thus given rise to fluid friction, because these forces

oppose the movement of one particle relative to another. These friction forces are

due to a property of the fluid called viscosity. The friction forces in fluid flow

result from the cohesion and momentum interchange between the molecules in the

fluid.

2.7.3 Newtonian Fluid

An important parameter that characterize the behaviour of fluids is viscosity

because it relates the local stresses in a moving fluid to the rate of deformation

of the fluid element. When a fluid is sheared, it begins to move at a rate of

deformation inversely proportional to viscosity. A fluid for which the constant of

proportionality (i.e., the viscosity) does not change with rate of deformation is

said to be a Newtonian fluid and can be represented by a straight line in Fig. 2.2.

Fig. 2.2: Rheological behaviour of materials.
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The slope of this line is determined by the viscosity. The ideal fluid, with no

viscosity, is represented by the horizontal axis, while the true elastic solid is

represented by the vertical axis. A plastic body which sustains a certain amount

of stress before suffering a plastic flow can be shown by a straight line

intersecting the vertical axis at the yield stress.

2.7.4 Non-Newtonian Fluid

There is a certain class of fluids, called non-Newtonian fluids, in which the

viscosity varies with the shear rate. A particular feature of many non-Newtonian

fluids is the retention of a fading memory of their flow history which is termed

elasticity. Typical representatives of non-Newtonian fluids are liquids which are

formed either partly or wholly of macromolecules (polymers), or two phase

materials, like, for example, high concentration suspensions of solid particles in a

liquid carrier solution.

There are various types of non-Newtonian fluids. Pseudoplastic fluids are those

fluids for which viscosity decreases with increasing shear rate and hence are often

referred to as shear-thinning fluids. These fluids are found in many real fluids,

such as polymer melts and solutions or glass melt. When the viscosity increases

with shear rate the fluids are referred to as dilatant or shear-thickening fluids.

These fluids are less common than with pseudoplastic fluids. Dilatant fluids have

been found to closely approximate the behaviour of some real fluids, such as

starch in water and an appropriate mixture of sand and water. Some fluids do

not flow unless the stress applied exceeds a certain value referred to as the yield

stress. These fluids are termed fluids with yield stress or viscoplastic fluids. The

variation of the shear stress with shear rate for pseudoplastic and dilatant fluids

with and without yield stress is shown in Fig. 2.3.

Viscoelastic fluids are those fluids that possess the added feature of elasticity

apart from viscosity. These fluids have a certain amount of energy stored inside
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Fig. 2.3: Rheological behaviour of non-Newtonian fluids.

them as strain energy thereby showing a partial elastic recovery upon the

removal of a deforming stress. In the case of thixotropic fluids, the shear stress

decreases with time at a constant shear rate. An example of a thixotropic

material is non-drip paint, which becomes thin after being stirred for a time, but

does not run on the wall when it is brushed on. By contrast, when the shear

stress increases with time at a constant shear rate the fluids are referred to as

rheopectic fluids. Some clay suspensions exhibit rheopectic behaviour.

Viscoelastic fluids have some additional features. When a viscoelastic fluid is

suddenly strained and then the strain is maintained constant afterward, the

corresponding stresses induced in the fluid decrease with time. This phenomenon

is called stress relaxation. If the fluid is suddenly stressed and then the stress is

maintained constant afterward, the fluid continues to deform, and the

phenomenon is called creep. If the fluid is subjected to a cycling loading, the

stressstrain relationship in the loading process is usually somewhat different from

that in the unloading process,and the phenomenon is called hysteresis ”.
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2.8 Nanofluids [96]

“ Nanofluids are colloidal suspensions of nanosized solid particles in a liquid.

Recently conducted experiments have indicated that nanofluids tend to have

substantially higher thermal conductivity than the base fluids. Among the many

advantages of nanofluids over conventional solid–liquid suspensions, the following

are worth mentioning: higher specific surface area, higher stability of the

colloidal suspension, lower pumping power required to achieve the equivalent

heat transfer, reduced particle clogging compared to conventional colloids, and

higher level of control of the thermodynamics and transport properties by

varying the particle material, concentration, size, and shape. The nanoparticles

used in nanofluids are typically made of metals, oxides, carbides, or carbon

nanotubes. In analysis such as computational fluid dynamics, nanofluids can be

assumed to be single phase fluids.

There is a large number of engineering applications that can benefit from a

better understanding of the thermal conductivity enhancement of nanofluids.

One example is ionic liquids, which are salts that are liquid at room temperature.

However, ionic liquids do not have a very high thermal conductivity compared to

(say) water, and if this could be improved by the addition of nanoparticles, the

liquid would be better suited for heat transfer applications such as in absorption

refrigeration or cooling circuits. Liquid cooling with high thermal conductivity

fluids would also address many other heat dissipation problems. For instance,

microelectro-mechanical systems generate large quantities of heat during

operation and require high-performance coolants to mitigate the large heat flux.

Such a system requires precise temperature control, and a higher conductive fluid

would allow for more efficient heat transfer control. There are also many

everyday applications in which nanofluids could be suitable for, such as in the

automotive industry. The high thermal conductivity enhancement observed in

ethylene glycol based nanofluids suggests that this common antifreeze could have

better performance simply with a nanoparticle suspension”.
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2.9 Brownian Motion

“Nanoparticles move through the molecules of the base fluid and sometimes

collide with each other by means of Brownian motion. Particularly, when two

particles collide, the solid–solid heat transfer mode could increase the overall

thermal conductivity of the nanofluid. The effect of Brownian motion is a

diffusive process. As we note, the higher the temperature, the higher the

diffusivity, and thus the higher the thermal conductivity.

2.10 Thermophoresis

Particle thermophoresis is a nonequilibrium cross-flow effect between mass and

heat transport, quite similar to thermal diffusion (the Soret effect) in simple fluid

mixtures. When a colloidal suspension is placed in a temperature gradient, the

dispersed particles display, on top of Brownian motion, a steady drift velocity,

where the thermophoretic mobility is usually dubbed the thermal diffusion

coefficient. Then, depending on the sign, the particles focus either at the cold or

the hot side, leading to the steady-state concentration gradient given, for low

particle concentration ”.

2.11 Viscous Dissipation [97]

“Viscous dissipation effects are typically only significant for high viscous flows or

in presence of high gradient in velocity distribution. In macroscale, such high

gradients occur in high velocity flows. In microscale devices, however, because

of small dimensions, such high gradients may occur even for low velocity flows.

So, for microchannels the viscous dissipation should be taken into consideration.

Viscous dissipation features as a source term in the fluid flow due to the conversion

of the kinetic motion of the fluid to the thermal energy and causes variation in

temperature distribution”.
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2.12 Joule Heating1[98]

“Joule heating is named for James Prescott Joule, the first to articulate what is

now Joule’s law. Joule heating (also referred to as resistive or ohmic heating)

describes the process where the energy of an electric current is converted into

heat as it flows through a resistance. In particular, when the electric current

flows through a solid or liquid with finite conductivity, electric energy is converted

to heat through resistive losses in the material. The heat is generated on the

microscale when the conduction electrons transfer energy to the conductor’s atoms

by way of collisions”.

2.13 Magnetohydrodynamics [99, 100]

MHD is a branch of mechanics that is associated with the mutual interaction of

fluid flow and magnetic field such as salt water, plasmas and electrolytes.

Additionally, whenever the magnetic field exists, the following four additional

laws are taken into account

1∇.B = 0 (Gauss’s Lawsfor magnetic field), (2.12)

1∇.E =
ρe
ε0

(Gauss’s Law), (2.13)

1∇×B = µ0j + µ0ε0
∂E

∂t
(Ampere’s Law), (2.14)

1∇× E = −∂B

∂t
(Faraday’ssLaw), (2.15)

in which

jj = σ(E + V ×B). (2.16)

In the above description, j is the current density, µ0 is the magneticspermeability,

E is the electric field, ρe is is the charge density, B is the electric field, ε0 is the

permittivity of free space and σ is the fluidselectrical conductivity. In equation of
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motion, electromagneticsforce F is expressed as

1F = j ×B = σ(E×B)×B. (2.17)

2.14 Basic Laws

2.14.1 Conservation1of Mass [101]

The mathematical equation thatsresults from employing the law of conservation

of mass to a flow is named as the continuity equation and mathematically written

as
∂ρ

∂t
+∇ · (ρV) = 0.1 (2.18)

A fluid flow in which ρsremains constant is referred to as an incompressible flow

i.e.

∇ ·V = 0. (2.19)

In the Cartesianscoordinates Eq. (2.19) can be writtensas

∂u

∂x1

+
∂v

∂y1

= 0. (2.20)

2.14.2 Momentum Equation

Thecconservation of linear momentum statestthat the total linear momentum of a

system stays constant. Mathematically

1ρ
DV

Dt
= ∇ · τij + ρB. (2.21)

The stressttensor τij is given as

τij = −pI + S. (2.22)
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So, Eq. (2.21) can be written in the form

ρ
DV

Dt
= ∇ · (−pI + S) + ρB, (2.23)

where,1V = [u(t, x, y, z), v(t, x, y, z), w(t, x, y, z)]1is the velocity field, p the

pressure, B the body force and S the extra stress tensor.

τij =


τxx1 τxy1 τxz1

τyx1 τyy1 τyz1

τzx1 τzy1 τzz1

 (2.24)

where i, j = x, y, z, τxy,τxz,τyx,τyz,τzx,τzy are shear stresses and τxx,τyy,τzz are

normal stresses. A general version of Eq. (2.23) in the scalarsform is

1ρ

(
∂u

∂t
+ 1u

∂u

∂x
+ 1v

∂u

∂y
+ 1w

∂u

∂z

)
=
∂(τxx)

∂x1

+
∂(τxy)

∂y1

+
∂(τxz)

∂z1

+ ρBx, 1

1ρ

(
∂v

∂t
+ 1u

∂v

∂x
+ 1v

∂v

∂y
+ 1w

∂v

∂z

)
=
∂(τyx)

∂x1

+
∂(τyy)

∂y1

+
∂(τyz)

∂z1

+ ρBy, 1

1ρ

(
∂w

∂t
+ 1u

∂w

∂x
+ 1v

∂w

∂y
+ 1w

∂w

∂z

)
=
∂(τzx)

∂x1

+
∂(τzy)

∂y1

+
∂(τzz)

∂z1

+ ρBz.


(2.25)

In the two dimensional case, the above equations can be expressed as

1ρ

(
∂u

∂t
+ 1u

∂u

∂x
+ 1v

∂u

∂y

)
=
∂(τxx)

∂x1

+
∂(τxy)

∂y1

+ ρBx, 1

1ρ

(
∂v

∂t
+ 1u

∂v

∂x
+ 1v

∂v

∂y

)
=
∂(τyx)

∂x
+
∂(τyy)

∂y
+ ρBy.

 (2.26)

2.14.3 Energy Conservation

The heat transfer equation for incompressible flows has the form

ρcp

(
∂T

∂t
+ (V.∇)T

)
= τij.L + k∇2T + ρrh, (2.27)

in which T denotes the temperature, τij.L represents the viscous dissipation, k

the thermalsconductivity and rh the radiativesheating. In the casesof absence of



“Fundamental Laws and Solution Methodology” 32

radiative heating, i.e. when rh = 0, the resulting equation is

ρcp

(
∂T

∂t
+ (V.∇)T

)
= τij.L + k∇2T. (2.28)

2.14.4 Conservation Law of Concentration

It statessthat the total species concentration of the system under consideration is

always constant. The mass flux based on the thermophoretic diffusion as well as

the Brownian motion is provided by

j = jT + jB = −ρDB∇C − ρDT
∇T
T∞

. (2.29)

The equation for mass transfer in the absence of chemical reaction is generally

presented as below
dC

dt
= −1

ρ
∇.j. (2.30)

Therefore equation of mass transport turns into

∂C

∂t
+ 1V.∇C = ∇.

(
DB1∇C + 1DT 1

∇T
T∞1

)
. (2.31)

2.14.5 Microorganism Transport Equation

There exist three major mechanisms of microorganism transfer that is macroscopic

convection, random motion of micro-organisms and self propelled swimming. The

flux j1 of microorganisms is defined as

j1 = nV + nWcp̂−Dm∇n, (2.32)

where nV is the flux due to advection, Wcp̂ is the average relative swimming

velocity and Dm is the diffusivitysof microorganisms. The governing

microorganism equation is expressed as follows

∂n

∂t
= −∇.j1, (2.33)
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in which j1 is the flux of microoganisms.

2.15 Mathematical Description of some Fluid

Models [101, 102]

2.15.1 Viscous Fluid

Those fluid models which offer flow resistance are named as viscous fluid models.

Viscous fluid can be described by two characteristics: (1) shearing stresses occur

if the fluid particles are deformed, (2) whenever a viscous fluid flows alongside the

surface it will stick to the surface, i.e., the fluid layer in close contact with the

surface does not have any velocity relative to it. For viscous fluids, the rate of

deformation as well as the shearsstress are directlyyproportional to each other. In

the case of viscous fluids, extra stress tensor is expressed by

S = µA1, (2.34)

where mathematical expression for A1 is A1 = ∇V + (∇V)t.

2.15.2 Jeffrey Fluid [103]

A rate typesfluid model which depicts the characteristics of both the relaxation as

well as retardation times is called the Jeffreysfluid. The Jeffrey model is known as

a generalisation of the commonly used Newtonian fluid model owing to the fact

that its stress tensor can be simplified as a special case to that of the Newtonian

model. The equation that manifests the rheological characteristics of Jeffrey fluid

model is represented by

S =
µ

1 + λ1

(
A1 + λ2

dA1

dt

)
, (2.35)
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where mathematical expression for A1 is A1 = ∇V + (∇V)t. Eq. (2.35) in the

component form is generally expressed as

Sxx =
µ

1 + λ1

[
2
∂u

∂x
+ 2λ2

(
u
∂

∂x1

+ 1v
∂

∂y1

+ 1w
∂

∂z1

)
1

∂u

∂x

]
, (2.36)

Syy =
µ

1 + λ1

[
2
∂v

∂y
+ 2λ2

(
u
∂

∂x1

+ 1v
∂

∂y1

+ 1w
∂

∂z1

)
1

∂v

∂y

]
, (2.37)

Szz =
µ

1 + λ1

[
2
∂w

∂z
+ 2λ2

(
u
∂

∂x1

+ 1v
∂

∂y1

+ 1w
∂

∂z1

)
1

∂w

∂z

]
, (2.38)

Sxy = Syx =
µ

1 + λ1

[
(
∂u

∂y
+
∂v

∂x
) + λ2

(
u
∂

∂x
+ 1v

∂

∂y
+ 1w

∂

∂z

)
(
∂u

∂y
+
∂v

∂x
)

]
,

(2.39)

Syz = Szy =
µ

1 + λ1

[
(
∂v

∂z
+
∂w

∂y
) + λ2

(
u
∂

∂x
+ 1v

∂

∂y
+ 1w

∂

∂z

)
(
∂v

∂z
+
∂w

∂y
)

]
,

(2.40)

Sxz = Szx =
µ

1 + λ1

[
(
∂u

∂z
+
∂w

∂x
) + λ2

(
u
∂

∂x
+ 1v

∂

∂y
+ 1w

∂

∂z

)
(
∂u

∂z
+
∂w

∂x
)

]
.

(2.41)

2.15.3 Tangent Hyperbolic Fluid [104]

The extra stress tensor S for the tangent hyperbolic fluid can be presented as

S = µ∞ ¯̇γ +
(
µ0 + µ∞

)
¯̇γ tanh(Γ¯̇γ)n, (2.42)

in which µ∞, µ0, n and Γ represent the infinite shearsrate viscosity, the zero

shearsrate viscosity, the power-law index, the timesdependent material constant

respectively and also ¯̇γ is described as

¯̇γ =

(
1

2

1∑
i

1∑
j

¯̇γij1 ¯̇γji1

) 1
2

=

(
1

2
Π

) 1
2
1

, (2.43)

in which Π = 1
2
tr
(
∇V + (∇V)t

)2
. In case of µ∞ = 0 and Γ¯̇γ < 1, it is allowed to

write Eq. (2.42) as follows

S = µ0
¯̇γ (Γ¯̇γ)n = µ0

¯̇γ
(
(1 + 1Γ¯̇γ − 1)n1

)
= µ0

¯̇γ
(
1 + 1n(Γ¯̇γ − 1)

)
. (2.44)
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2.16 Solution Methodologies

In this section, an introductory material on the numerical techniques opted for the

present work has been included.

2.16.1 Keller Box Method [105–107]

“The finite-difference method of solving two-point boundary value problems

converts the set of differential equations into a finite set of algebraic or

transcendental equations. The solution of the set of algebraic or transcendental

equations yields approximations to the solution of the original differential

equations at discrete points. If the original ordinary differential equations are

linear, the finite difference equations will be linear algebraic equations. If the

ordinary differential equations are nonlinear, the resulting finite difference

equations will be nonlinear algebraic or transcendental equations. There are two

ways to linearize the problem. One is by linearizing the differential equations

before they are written in finite-difference form by methods such as quasi

linearization. Another is first to write the differential equation in finite difference

form and then to linearize the resulting nonlinear algebraic or transcendental

equations. Finite-difference methods have been proved to be a very useful

technique for solving numerically sensitive two-point boundary value problems.

This is due to the fact that the finite difference equations incorporate both

specified initial and terminal conditions in the final set of equations, and thus the

resulting solutions of these equations are constrained to satisfy these boundary

conditions. Another difference is that the solution is produced simultaneously at

all points, whereas in a shooting method the solutions at different points are

generated in sequence. The linearized algebraic equations exhibit banded matrix

structure. The factorization scheme developed by Keller, as outlined in this

chapter, is the most efficient way to solve such equations. Its value extends far

beyond the solution of boundary value problems of ordinary differential

equations. Keller box technique is an extremely efficient, numerical implicit finite
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difference procedure. Its stability is reported in the literature as its main

feature”. The numerical codes are developed using MATLAB software. The

algorithmic form of the Keller box method has been explained through a flow

chart in Fig. 2.4: Its complete procedure has been explained with the help of

start

convert higher order

 to first order ODES

Domain discretization

Linearization  by means of 

 Newton's scheme

Formation of Block tri-diagonal i.e.

              Aδ=R

Solution of Aδ=R by 

Block LU factorization

Updation of solution

Stopping

criteria
No

Finish

Yes

Fig. 2.4: Flow diagram of the presentstechnique.

following example.

Example Consider the set of following equations

1f ′′′1(η) + 3f(η)f ′′1(η)− 2
(
f ′1(η)

)2

+ g = 0,

1g′′(η) + 3f(η)g′(η) = 0.

 (2.45)
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with the boundary conditions:

1f(0) = 0, 1f ′1(0) = 0, 1g(0) = 1 1at 1η = 0,

1f ′(η) −→ 0, g(η) −→ 0 1as η −→∞.

 (2.46)

We now replace the system of Eqs. (2.45) and (2.46) by a system of first-order

equations, namely

f ′ = p1, , p
′
1 = p2, g

′ = p3,

p′2 + 3fp2 − 2p2
1 + g = 0,

p′3 + 3fp3 = 0.

 (2.47)

The end point conditions are

f(0) = 0, p1(0) = 0, g(0) = 1 1at η = 0,

p1(η) −→ 0, g(η) −→ 0 as η −→∞.

 (2.48)

Next, the derivatives have been approximated by using the central differencesat

midpoint and the domain has been discretized by using the following nodes:

η0 = 0, ηj = ηj−1+hj , ηJ = η∞ where 1j = 1, 2, 3..., J 1 and hj is the mesh-size

which can be taken uniform. Typical gridsstructure for differencesapproximations

is shown in the Fig. 2.5. The system of Eqs. (2.47) then becomes

η
0
=0 η

J
=η

max
η
j-1

η
j

η
j-1/2

j-1 j
h
j

Fig. 2.5: Grid structure for difference approximations.
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1

fj − .fj−1

hj1
− (p1)j + .(p1)j−1

21

= 0,

1

(p1)j − .(p1)j−1

hj1
− (p2)j + .(p2)j−1

21

= 0,

1

gj − .gj−1

hj1
− (p3)j + .(p3)j−1

21

= 0,(
(p2)j − (p2)j−1

h1j

)
+ 3

(
fj + fj−1

12

)(
(p2)j + (p2)j−1

12

)
− 2

(
(p1)j + (p1)j−1

12

)2

+

(
gj + gj−1

12

)
= 0,(

(p3)j − (p3)j−1

h1j

)
+ 3

(
fj + fj−1

12

)(
(p3)j + (p3)j−1

12

)
= 0.



(2.49)

The system of Eqs. (2.49) is nonlinear algebraic equations and thus need to be

linearized prior to the factorization scheme can be used. The system of nonlinear

Eqs. (2.49) is linearized by considering the following Newton iterates

1fn+11
j = fn1

j + .δfnj , 11(p1)n+1
j = (p1)nj + δ(p1)nj ,

(p2)n+1
j = (p2)nj + δ(p2)nj , 111(p3)n+1

j = (p3)nj + δ(p3)nj ,

gn+1
j = gnj + δgnj ,

 (2.50)

for all dependentsvariables. By utilizing the above expressions into the system of

Eqs. (2.49) and then neglecting the quadratic as well as the higher-order terms in

δfnj ,(δp1)nj ,(δp2)nj ,(δp3)nj and δgnj , the subsequent linearized system is achieved

δfj − δfj−1 −
hj
2

(
(δp1)j + (δp1)j−1

)
= (r1)j, (2.51)

(δp1)j − (δp1)j−1 −
hj
2

(
(δp2)j + (δp2)j−1

)
= (r2)j, (2.52)

δgj − δgj−1 −
hj
2

(
(δp3)j + (δp3)j−1

)
= (r3)j, (2.53)

(ξ1)j(δp2)j + (ξ2)j(δp2)j−1 + (ξ3)jδgj + (ξ4)jδgj−1 + (ξ5)j(δp1)j

+ (ξ6)j(δp1)j−1 + (ξ7)jδfj + (ξ8)jfj−1 = (r5)j, (2.54)

(γ1)j(δp3)j + (γ2)j(δp3)j−1 + (γ3)jδfj + (γ4)jδfj−1 + (γ5)jδgj

+ (ξ6)jgj−1 + (γ7)jδ(δp1)j + (γ8)j(δp1)j−1 = (r6)j, (2.55)
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subject to the boundarysconditions

δf0 = 0, (δp1)0 = 0, (δp1)J = 0, δg0 = 0, δgJ = 0, (2.56)

in which

(ξ1)j = 1 +
3

4
hj(fj + 1fj−1), (ξ2)j = (ξ1)j − 2,

(ξ3)j =
1

2
hj, (ξ4)j = (ξ3)j,

(ξ5)j = −2hj

(
(δp1)j + (δp1)j−1

)
21

= (ξ6)j,

(ξ7)j =
3

2
hj

(
(δp2)j + (δp2)j−1

)
21

= (ξ8)j,


(2.57)

(γ1)j1 = 1 +
3

4
hj(fj + 1fj−1), 11(γ2)j = (γ11)j − 2,

(γ31)j =
3

2
hj

(
(δp3)j + (δp3)j−1

)
2

= (γ41)j,

(γ51)j = 0 = (γ6)j1, (γ7)j = 0 = (γ81)j,


(2.58)

(r1)j = (fj − fj−1) + hj

(
(δp1)j + (δp1)j−1

)
21

,

(r2)j = ((δp1)j − (δp1)j−1) + hj

(
(δp2)j + (δp2)j−1

)
12

,

(r3)j = (gj − gj−1) + hj

(
(δp3)j + (δp3)j−1

)
12

,

(r4)j =
(
(δp2)j − (δp2)j−1

)
− hj

(
gj + gj−1

)
12

− 3hj

(
fj + fj−1

)
2

(
(δp2)j + (δp2)j−1

)
12

+ 2hj

(
(δp1)j + (δp1)j−1

)2

41

,

(r5)j =
(
(δp3)j − (δp3)j−1

)
− 3hj

(
fj + fj−1

)
21

(
(δp3)j + (δp2)j−1

)
21

.



(2.59)

We have a block-tridiagonal structure after linearization that can be represented
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in the block matrix form as

Aδ = R, (2.60)

in which 

[A11] [C11]

[B21] [A21] [C21]

. . .

. . .

. . .

[BJ−11] [AJ−11] [CJ−11]

[BJ1] [AJ1]





[δ1]

[δ2]
...
...
...

[δJ−11]

[δJ1]


=



[R1]

[R2]
...
...
...

[RJ−1]

[RJ1]


.

The entries of the matricesaare

[
A11

]
=



0 0 1 0 0

−0.5h1 0 0 −0.5h1 0

0 −0.5h1 0 0 −0.5h1

(ξ2)1 0 (ξ3)1 (ξ1)1 0

0 (γ2)1 (γ3)1 0 (γ1)1


,

[
Aj1

]
=



−0.5hj1 0 1 0 01

−11 0 0 −0.5hj 01

01 −1 0 0 −0.5hj1

(ξ61)j (ξ8)j (ξ3)j (ξ1)j 01

(γ81)j (γ6)j (γ3)j 0 (γ1)j1


, 12 < j < J1

[
Bj1

]
=



0 10 −1 0 0

0 10 0 −0.5hj 0

0 10 0 0 −0.5hj

0 10 (ξ4)j (ξ2)j 0

0 10 (γ4)j 0 (γ2)j


, 2 < j < J1
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[
Cj

]
=



−0.5hj 0 0 0 0

1 0 0 0 0

0 1 0 0 0

(ξ5)j (ξ7)j 0 0 0

(γ7)j (γ5)j 0 0 0


, 11 < j < J − 11

[
δ1

]
=



(δp2)0

(δp3)0

δf0

(δp2)11

(δp3)11


,

[
δj

]
=



(δp1)j−1

δgj−1

δfj−1

(δp2)j1

(δp3)j1


, 2 < j < J

[
rj1

]
=



(r11)j− 1
2
1

(r21)j− 1
2
1

(r31)j− 1
2
1

(r41)j− 1
2
1

(r51)j− 1
2
1


, 2 < j < J.

Now we factorize A as

A = LU, (2.61)

where

L =



[a11]

[B21] [a21]

. . .

. . . [aJ−1]

[BJ1] [aJ1]


, U =



[I] [κ11]

[I] [κ21]

. . .
. . .

[I] [κJ−11]

[I]


,

In which[ai] and [κi] are 5 × 5 matrices and [I] is an identitysmatrix of order 5 whose

elements are calculated by the subsequent equations:

[a11] = [A11], [A1][κ1] = [C1],

[aj1] = [Aj ]− [Bj1][κj−1], 1j = 2, 3, ..., J1

[aj1][κj ] = [Cj1]. j = 2, 3, ..., J

 (2.62)
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From Eqs. (2.60) and (2.61) we have

[L][U ][δ] = [R]. (2.63)

Equation (2.63) turns into

[L][W ] = [R]. (2.64)

By defining

[U ][δ] = [W ], (2.65)

in which

[
1W
]

=



[W11]

[W21]

[W31]

[W41]

[W51]


,

and [Wj1] are columnsmatrices of order 5 × 1. The elements [1W ] can be solved from

Eq. (2.65):

[a11][W11] = [R11],

[aj ][Wj1] = [rj1]− [Bj1][Wj−11], j = 2, 3, ..., J.

 (2.66)

After that, the elements δ is determined by the subsequent relations

[δJ1] = [WJ1],

[δj1] = [Wj1]− [κj1][δj+11], j = 2, 3, ..., J.

 (2.67)

These computations are continued till some convergence criterion is fulfilled.

2.16.2 Shooting Method [108]

“ In a shooting method, the missing (unspecified) initial condition at the initial point of

the interval is assumed, and the differential equation is then integrated numerically as an

initial value problem to the terminal point. The accuracy of the assumed missing initial

condition is then checked by comparing the calculated value of the dependent variable

at the terminal point with its given value there. If a difference exists, another value of

the missing initial condition must be assumed and the process is repeated. This process
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is continued until the agreement between the calculated and the given condition at the

terminal point is within the specified degree of accuracy. Newton’s method is used for

the purpose of the updation of the initial guess. In this method, the differential equation

is kept in its nonlinear form and the missing slope is found systematically by Newton’s

method. This method provides quadratic convergence of the iteration and is far better

than the usual cut-and-try methods. Due to the sensitivity of the initial guesses in the

Newton’s method, some time this method diverges due to the singular Jacobian matrix.

There is no general hard and fast rule for the successful choice of initial guesses”. The

whole computation procedure is implemented using MATLAB software. “To understand

the functioning of the shooting technique, choose the following 2nd order non-linear BVP

y′′(x) = f(x, y, y′(x)) (2.68)

subject to the boundary conditions

y(0) = 0, y(L) = A. (2.69)

Setting y = y1 and y′ = y2, Eq. (2.68) subject to boundary conditions (2.68) is presented

as the following first-order system

y′1 = y2, y′2 = f(x, y1, y2),

y1(0) = 0, y1(L) = A.

 (2.70)

Denote the missing initial condition y2(0) by s, to have

y′1 = y2, y′2 = f(x, y1, y2),

y1(0) = 0, y2(0) = s.

 (2.71)

Now the problem is to find s such that the solution of the IVP (2.71) satisfies the

boundary condition y(L) = A. In other words, if the solutions of the initial value

problem (2.71) are denoted by y1(x, s) and y2(x, s), one should search for that value of

s which is an approximate root of the equation

y1(L, s)−A = φ(s) = 0. (2.72)
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For Newton’s method, the iteration formula for s is given by

sn+1 = sn −
φ(sn)
dφ(sn)
ds

(2.73)

or

sn+1 = sn −
y1(L, sn)−A

dy1(L,sn)
ds

. (2.74)

To find the derivative of y1 with respect of s, differentiate the IVP (2.71) with respect

to s. For simplification, use the following notations

dy1

ds
= y3,

dy2

ds
= y4. (2.75)

This process results in the following IVP

y′3 = y4, y
′
4 =

∂f

∂y1
y3 +

∂f

∂y2
y4,

with y3(0) = 0, y4(0) = 1.

 (2.76)

Now, solving the IVP (2.76), the value of y3 at L can be computed. This value is actually

the derivative of y1 with respect of s computed at L. Setting the value of y3(L, s) in Eq.

(2.74), the modified value of s can be achieved. This new value of s is used to solve the

IVP (2.71) and the process is repeated until the value of s is within a described degree

of accuracy”.



Chapter 3

Numerical Simulation of“MHD

Jeffrey Nanofluid Flow and Heat

Transfer over a Stretching Sheet”

3.1 Introduction

The purpose of thisachapter is to numerically examine the impact of silver, titanium

oxide and alumina nanoparticles on the steady 2D magnetohydrodynamic “boundary

layer flow and heat transfer of Jeffrey fluid over a stretching sheet with Joule heating

and viscous dissipation. The governing non-linear partial differential equations (PDEs)

are reduced to the non-linear ordinary differential equations (ODEs) by using some

appropriate dimensionless variables and then solved numerically by using”the

Keller-box technique. The impacts of nanoparticlesvolume fraction, magnetic

parameter, Deborah number, “Prandtl number and Eckert number on the velocity and

temperature profiles,” local Nusseltsnumber and skinsfriction are investigated through

graphs and tables. Thearesults indicate that the silver-ethylene glycol nanofluid has

comparatively less velocity, skin friction and local Nusselt number than those of the

base fluid. However the temperature is enhanced due to the inclusion of the

45
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nanoparticles. Furthermore, it is concluded that both the skinsfriction and the

Nusseltsnumber are increased by increasing the Deborah number whereas these are

decreased by increasing the magnetic parameter.

3.2 Mathematical Formulation

Wet investigate thetsteady, two-dimensional, laminars and electrically conducting flows

of an incompressibles Jeffery nanofluid fluid due to a stretching sheetscoinciding with the

planes y = 0. The fluid is magnetohydrodynamic in the presences of time independent

magnetic fields B0 applied in the y−direction, restricted in y > 0 (see Fig. 3.1). In

this case, x−axis is considered parallel to the stretching surface. The flow is produced

because of the linear stretch of the surface away from the leading edge with the velocity

Uw = ax, a > 0. The plates is taken into account to own a temperatures Tw in the

quadratics forms at the surface y = 0 i.e. Tw = A
(
x
L

)2
+T∞. The induced magnetic field

is neglectedd as we consider the small magnetic Reynolds number. The subjected model

thermal boundary layer

momentum boundary layer

B
0

T
w

 U
w

=ax
x, u

y, v

stretching sheet

O

u → 0    T → T
∞ 

Jeffrey nanofluid
(microscopic veiw)

Fig. 3.1: !Geometry of the 1problem.

is governed by the following boundary layer equations[109] of continuity, momentumm

and energy.
∂u1

∂x1
+
∂v1

∂y1
= 0, (3.1)
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u
∂u

∂x
+ v

∂u

∂y
=

νnf
(1 + λ1)


λ2

(
u
∂3u

∂x∂2y
− ∂u1

∂x

∂2u1

∂y2

+
∂u1

∂y

∂2u

∂x∂y
+ v

∂3u

∂y3

)
+
∂2u

∂y2

− σnf
ρnf

B2
0u, (3.2)

u1
∂T1

∂x
+ v

∂T1

∂y
=

µnf
(ρcp)nf (1 + λ1)

(
λ2

(
u
∂u1

∂y

∂2u

∂x∂y
+ v

∂u1

∂y

∂2u

∂y2

)
+
(∂u
∂y

)2
)

+
knf

(ρcp)nf

∂2T1

∂y2
+

σnf
(ρcp)nf

B2
0u

2. (3.3)

The boundary conditions are

u1 = uw1, v1 = 10, T = Tw1 at y = 0,

u1 −→ 0,
∂u

∂y
1 −→ 0, T −→ T∞1 as y −→ 1∞,

 (3.4)

where νnf =
µnf

ρnf
is the kinematic viscosity and u1 and v1 are the x and y components

of velocity. The ratiosof the relaxations to the retardationstime and the

retardationstime are represented by λ1 and λ2 respectively and T 1is the nanofluid

temperature. “Thermophysical properties of the base fluid and different nanoparticles

are shown in Table” 3.1.

Nanofluid effective density [8] is given by

ρnf1 = (1− φ)ρf1 + φρs1. (3.5)

The effective heat capacity (ρcp1)nf1 and the effectives dynamic viscosity µnf1 of the

nanofluid [110] are given as

(ρcp1)nf1 = (1− φ)(ρcp1)f + φ(ρcp1)s1, µnf1 =
µf1

(1− φ)2.51
. (3.6)

We consider the MaxwellsGarnett model [111] for the effectivesthermal conductivity knf

of the nanofluids
knf1
kf1

=
(ks1 + 2kf1)− 2φ(kf1 − ks1)
(ks1 + 2kf1) + (kf1 − ks1)

. (3.7)

Moreover, the electrical conductivity σnf of nanofluids [112] is as follows

σnf1
σf1

= 1 +
3(σs1 − σf1)φ

(σs1 + 2σf1)− (σs1 − σf1)φ
. (3.8)
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Table 3.1: Thermophysicals properties of the bases fluid and
differents nanoparticles[113].

Physical Base fluid Nanoparticles
properties C2H6O2 Ag Al2O3 TiO2

ρ (kg/m3) 1115 10500 3970 4250
k (W/mK1) 0.259 429 40 8.953
cp (J/kgK1) 23861 2351 7651 686.2
σf (S/m1) 1.071×10−8 62.1×106 35×106 2.6× 106

Introduce the following similarity transformation for conversion of Eqs. (3.1)−(3.3) into

the ordinary differential equations,

η =

√
a

ν
y, ψ = −

√
aνxf(η), θ =

T 1− T∞1

Tw1 − T∞1

, (3.9)

wheres f 1 is the dimensionless streams function, θ1is the dimensionless temperature, η is

the similaritysvariable and ψ is the streamsfunction satisfying 1u = ∂ψ
∂y 1 and 1v = −∂ψ

∂x 1.

Thus, we have!

1u = axf ′(η), 1v = −
√
aν1f(η). (3.10)

Invokings Eqs. (3.9) and (3.10), Eq. (3.1) is automaticallyy satisfied1 and Eqs. (3.2)

and (3.3) are reduced1 to

f 1
′′′ − A2

A1
(11 + λ1)

[
(f ′)12 − ff ′′

]
+ β

[
(f ′′)12 − ff iv

]
− (11 + λ1)

A3

A1
Mf ′ = 10, (3.11)

θ1′′ +
A4

A5
Pr
(
f 1θ1′ − 2θf ′

)
+
A11

A51
PrEc

(
(f ′′)2 + λ2f

′′(f ′f ′′ − ff ′′′))
+
A3

A5
EcPrM(f ′)2 = 0, (3.12)

having the subsequent dimensionless end-point conditions:

1f 1(0) = 0, f 1
′(0) = 1, θ1(0) = 1 1at η1 = 0,

1f 1
′ −→ 0, 1f 1

′′ −→ 0, θ −→ 10 as η −→∞.

 (3.13)
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Parameters involved in the non-dimensional equations are given by

β = aλ2 (Deborah number), M =
σfB

2
0

aρf
(magnetic parameter), (3.14)

Pr =
µf (cp)f
kf

(Prandtl number), Ec =
a2l2

A(cp)f
(Eckert number), (3.15)

A11 =
1

(1− φ1)2.5
, A12 =

[
(1− φ1) + φ

ρs
ρf

]
, (3.16)

A3 = 1 +
3( ρsρf − 1)φ

( ρsρf + 2)− ( ρsρf − 1)φ
, A14 =

[
(1− φ1) + φ1

(ρcp)s
(ρcp)f

]
, (3.17)

A15 =
(ks + 2kf )− 2φ(kf1 − ks1)

(ks + 2kf ) + (kf − ks)
, (thermal conductivities ratio). (3.18)

The important physical parameters, skin-frictionscoefficient Cf and local Nusseltsnumber

Nux, are specified as

Cf1 =
2τw1

ρfu2
w1

, Nux1 =
xqw1

kf (Tw1 − T∞1)
, (3.19)

where τw = µnf (∂u∂y ) is the wall shear−stress and qw = −knf (∂T∂y ) is the heats flux at

wall. Using the similarity transformation presented above, Eq. (3.19) can be reduced

as:

CfRe
1/2
x = (1− φ)−2.5f ′′(0), Re−1/2

x Nux = −
knf
kf

θ′(0), (3.20)

where the local Reynolds number is given by Rex = Ux
ν .

3.3 Solution1 Methodology1

The resulting system of nonlinear ODEs (3.11) - (3.12) subject to the end-point

conditions (3.13) has been attempted numerically through the Keller-boxs method

[114, 115] for different values of the governing parameters. The subsequent steps are

involved to obtain the numericals solution:

1. Transformation of the coupled non-linear momentum as well as heat equations in

the form of a systems of first order differentials equations.
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2. Utilization of the central difference approximations for getting the difference

equations.

3. Linearization of the nonlinears system by the Newton’s method.

4. Iterative solutions of the linears systems by the blocks tri-diagonal elimination

scheme.

Fig. 3.2: Typical grid structure for difference approximations.

Typical grid structure for difference approximations[105] is shown in the Fig. 3.2. The

domain has been discretized by using the following nodes:

1η0 = 0, 1ηj = ηj−1 + hj , 1j = 1, 2, 3..., J, 1ηJ = η∞1 where, hj1 is the step-size.

We bring in the dependent variables ũ, ṽ, w̃ and t̃ such that

df

dη
= ũ,

dũ

dη
= ṽ,

dṽ

dη
= w̃,

dθ

dη
= t̃. (3.21)

So Eqs. (3.11) and (3.12) can be presented as

− βf dw̃
dη

+ 1w̃ − A2

A1
(1 + λ1)

[
ũ2 − fṽ

]
+ βṽ2 − A3

A1
(1 + λ1)Mũ = 0 (3.22)

dt̃

dη
+
A4

A5
Pr(f t̃− 2ũθ) +

A1

A5
PrEc

(
(ṽ)2 + λ2ṽ

(
ũṽ − fw̃

))
+
A3

A5
MPrEc ũ2 = 0. (3.23)

The transformed boundarys conditions for the problems are
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f 1(0) = 0, ũ(0) = 1, θ1(0) = 1,

ũ→ 10, ṽ → 10, θ → 10 as η →∞.

 (3.24)

Eqs. (3.21) - (3.23) have been approximated by using the central differences at midpoint

ηj−1/21, as follows

fj1 − fj−11

hj
= ũj− 1

2
,
ũj1 − ũj−11

hj1
= ṽj− 1

2
, (3.25)

ṽj1 − ṽj−11

hj
= w̃j− 1

2
,
θj1 − θj−11

hj
= t̃j− 1

2
, (3.26)

w̃j− 1
2
− A2

A1
(1 + λ11)

[(
ũj− 1

2

)2
−
(
fj− 1

2

)(
ṽj− 1

2

)]
+

β

[(
ṽj− 1

2

)2
−
(
fj− 1

2

)( w̃j − w̃j−1

hj

)]
− A3

A1
M(1 + λ1)

(
ũj− 1

2

)
= 0 (3.27)

1
t̃j − t̃j−1

hj
+
A4

A5
Pr
(
fj− 1

2

)(
t̃j− 1

2

)
− 2

A4

A5
Pr
(
ũj− 1

2

)(
θj− 1

2

)
+
A11

A51
PrEc(

(ṽj− 1
2
)2 + λ2ṽj− 1

2

(
ũj− 1

2
ṽj− 1

2
− fj− 1

2
w̃j− 1

2

))
+
A31

A51
MPrEc

(
ũj− 1

2

)2
= 0 (3.28)

in which ũj− 1
2

=
ũj1+ũj−11

2 etc. To linearizes the systems of nonlinear Eqs. (3.25) - (3.28)

by Newton’s method, the following substitution has been introduced:

fn+1
j = fnj + δfnj , ũn+1

j = ũnj + δũnj , ṽn+1
j = ṽnj + δṽnj ,

w̃n+1
j = w̃nj + δw̃nj , t̃n+1

j = t̃nj + δt̃nj , θn+1
j = θnj + δθnj .

 (3.29)

Putting these expressions in Eqs. (3.25) - (3.28) and dropping the higher-order terms

in δ, the following system is obtained:

1δfj1 − δfj−11 −
hj1
2

(δũj1 + δũj−11) = (r1)j1, (3.30)

1δũj1 − δũj−11 −
hj
2

(δṽ1j + δṽ1j−1) = (r2)j , (3.31)

1δṽj1 − δṽj−11 −
hj
2

(δw̃j1 + δw̃j−11) = (r3)j1, (3.32)

1δθj1 − δθj−11 −
hj
2

(δt̃j1 + δt̃j−11) = (r4)j1, (3.33)

(ξ1)jδw̃j + (ξ2)jδw̃j−1 + (ξ3)jδfj + (ξ4)jδfj−1 + (ξ5)jδṽj

+ (ξ6)jδṽj−1 + (ξ7)jδũj + (ξ8)jδũj−1 = (r5)j , (3.34)

(γ1)jδt̃j + (γ2)jδt̃j−1 + (γ3)jδfj + (γ4)jδfj−1 + (γ5)jδũj + (ξ6)jδũj−1

+ (γ7)jδθj + (γ8)jδθj−1 + (γ9)jδṽj + (γ10)jδṽj−1 = (r6)j , (3.35)



“Numerical Simulation of MHD Jeffrey Nanofluid Flow and Heat Transfer” 52

where

(ξ1)j = −β
2

(fj + fj−1) +
hj
2
, (ξ2)j =

β

2
(fj + fj−1) +

hj
2
,

(ξ3)j = −β
2

(w̃j + w̃j−1) +
A2

A1

hj
4

(1 + λ1)(ṽj + ṽj−1) = (ξ4)j ,

(ξ5)j =
A2

A1

hj(1 + λ1)(fj + fj−1)

4
+
βhj(ṽj + ṽj−1)

2
= (ξ6)j ,

(ξ7)j = −A2

A1

hj(1 + λ1)(ũj + ũj−1)

2
− A3

A1

Mhj(1 + λ1)

2
= (ξ8)j ,

(r5)j = w̃j− 1
2

(
β(fj + fj−1)− hj

)
− A2

A1
hj(1 + λ1)fj− 1

2
ṽj− 1

2

− βhj ṽ2
j− 1

2

+
A2

A1
hj(1 + λ1)ũ2

j− 1
2

+
A3

A1
Mhj(1 + λ1)ũj− 1

2
,



(3.36)

(γ1)j = 1 +
A4

A5

Prhj(fj + fj−1)

4
, (γ2)j = (γ1)j − 2,

(γ3)j =
A4

A5

Prhj(t̃j + t̃j−1)

4
= (γ4)j ,

(γ5)j = −A4

A5

Prhj(θj + θj−1)

2
+
A3

A5

MPrEchj(ũj + ũj−1)

2
= (γ6)j ,

(γ7)j = −A4

A5

Prhj(ũj + ũj−1)

2
= (γ8)j ,

(γ9)j =
A1

A5

PrEchj(ṽj + ṽj−1)

2
= (γ10)j ,

(r6)j = −A4

A5
Prhjfj− 1

2
t̃j− 1

2
+ (t̃j−1 − t̃j)

− A1

A5
PrEchj ṽ

2
j− 1

2

− A3

A5
MPrEchj ũ

2
j− 1

2

.



(3.37)

After linearization we have the following block tridiagonal system

Aδ = R, (3.38)

or 

[A11] [C11]

[B21] [A21] [C21]

. . .

. . .

. . .

[BJ−11] [AJ−11] [CJ−11]

[BJ1] [AJ1]





[δ1]

[δ2]
...
...
...

[δJ−11]

[δJ1]


=



[R1]

[R2]
...
...
...

[RJ−11]

[RJ1]


.
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where the elements defined in Eq. (3.38) are

[
A11

]
=



0 0 0 1 0 0

−0.5h1 0 0 0 0 0

−1 −0.5h1 0 0 −0.5h1 0

0 0 −0.5h1 0 0 −0.5h1

(ξ6)1 (ξ2)1 0 (ξ3)1 (ξ1)1 0

(γ10)1 0 (γ2)1 (γ3)1 0 (γ1)1


,

[
Aj

]
=



−0.5hj 0 0 1 0 0

−1 −0.5hj 0 0 0 0

0 −1 0 0 −0.5hj 0

0 0 −1 0 0 −0.5hj

(ξ8)j (ξ6)j 0 (ξ3)j (ξ1)j 0

(γ6)j (γ10)j (γ8)j (γ3)j 0 (γ1)j


, 2 ≤ j ≤ J

[
Bj

]
=



0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 −0.5hj 0

0 0 0 0 0 −0.5hj

0 0 0 (ξ4)j (ξ2)j 0

0 0 0 (γ4)j 0 (γ2)j


, 2 ≤ j ≤ J

[
Cj

]
=



−0.5hj 0 0 0 0 0

1 −0.5hj 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 0

(ξ7)j (ξ5)j 0 0 0 0

(γ5)j (γ9)j (γ7)j 0 0 0


, 1 ≤ j ≤ J − 1.

Now we factorize A as

A = LU, (3.39)
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where

L =



[α11]

[B21] [α21]

. . .

. . . [αJ−1]

[BJ1] [αJ1]


, U =



[I] [Γ11]

[I] [Γ21]

. . .
. . .

[I] [ΓJ−11]

[I]


,

where [I] is the identity matrix of order 6, [αi], [Bi] and [Γi] are 6 × 6 matrices.

Eq. (3.38) is solved by the LU factorization for the solution of δ. Since the physical

domain of the problem is unbounded, we use far field boundary at ηmax = 14 due to

the observation that the variations in the solution after η = 14 are ignorable. For

mathematical calculations, a grid size of ηj = 0.01 is appear to be adequate, and the

solutions are attained having an error tolerance of 10−5. In order to validate the

accuracy of the numerical procedure, we have assimilated our outcomes with the ones

reported by Ishak et al. [116] and Pal et al. [117] for θ′(0) in the case of

β = φ = Ec = M = 0 and found an outstanding agreement as revealed in Table 3.2. In

the absences of the nanoparticle volumes fraction i.e., φ = 0, the problem reduces to

that of Ahmad et al. [118].
Table 3.2: Comparison of −f ′′(0) with

various values of M .

Pr Ishak et al. [116] Pal et al. [117] Present study

1.0 1.3333 1.333333 1.337050
3.0 2.5097 2.509715 2.500405
10 4.7969 4.796871 4.798532

3.4 Results and Discussions

The MHD flow of Jeffrey nanofluid over a stretching surface is investigated numerically

by using the Keller box technique. Silver (Ag.), aluminam (Al12O13) and titanium oxide

(TiO12) nanoparticles are suspended in ethylene glycol. The values of the local drag

coefficient as well as the local heat transfer rate for various values of φ, β, M , Pr and

Ec are displayed in Table 3.3. The flow and heat profiles are examined with the presence

and absence of the magnetic field. From Table 3.3, it is noted that an increment in φ

and M tends to decrease the skin friction at surface whereas it increases for the raising
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values of β. An increment in the nanoparticle volume fraction φ, Deborah number β and

Prandtl number Pr tends to enhance the Nusselt number whereas the same decreases

for the raising values of M , and Ec.

Table 3.3: Numericals values of CfRe
1/2
x and NuxRe

−1/2
x for

various values of parameters.

φ β M Pr Ec CfRe
1/2
x NuxRe

−1/2
x

0.0 0.5 0.5 10 0.3 -1.000029 4.010241
0.05 -1.063858 4.155549
0.1 -1.101554 4.293515
0.05 0.0 0.2 10 0.3 -0.923876 5.303468

0.5 -0.791391 6.241483
1 -0.685693 6.937440

0.05 0.2 0.0 10 0.3 -0.829830 6.512465
0.5 -0.979298 3.954082
1 -1.119629 1.456768

0.05 0.5 0.5 7 0.3 -0.875963 4.081095
9 -0.875963 4.488608
11 -0.875963 4.830241

0.05 2 0.5 10 0.5 -0.619606 3.619765
1 -0.619606 -2.898086
1.5 -0.619606 -9.415937

Figs 3.3-3.20 are drawn to observe the variations in the fluid flows and heat transfers

behavior for various valuess of φ, β, M , Pr and Ec. Fig. 3.3 displays the impact of

various nanoparticles i.e. Ag, Al2O3 and TiO2 on the velocity profile with C2H6O2 as

the base liquid. It is noted that the velocity field for Al2O3-ethylene glycol Jeffrey

nanofluid is higherrcompared with Ag-ethylene glycol and TiO2-ethylene glycol Jeffrey

nanofluids. The results indicate that the thermals conductivity and viscosityy of the

Al2O3 nanofluid is greater as compared to the Ag-ethylene glycol and TiO2-ethylene

glycol nanofluids. Fig. 3.4 portrays the behaviour of the temperature field for Ag,

Al2O3 and TiO2 suspended in the ethylene glycol. It is observed that Ag-ethylene

glycol Jeffrey nanofluid has a higher temperature profile when compared with

Al2O3-ethylene glycol and TiO2 –ethylene glycol based Jeffreys nanofluids.

It is seen from Fig. 3.5 that an increment in φ decreases the velocity field. Actually,

due to addition of solid particles in the base liquid, the density of the whole mixture

increases substantially. Hence, the velocity of the nanofluid gets slower compared to
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that of the base liquid. Fig. 3.6 illustrates the impact of φ on the thermal profile. An

increment in φ produces an augmentation in the thermal profile and so the thickness of

thermal boundary layer. Physically, enhancing φ causes a rise in the conduction of

heat inside the mixture, which then increases the thickness of boundary layer and an

augmentation in the thermal profile.

Fig. 3.7 illustrates the influence of the β on the flow profile. It might be seen that a

boost in β enhances the flow velocity and so the thickness of boundary layer. As β

depends upon the stretching rate a, so an increment in β triggers an increment in the

fluid movement near the boundary adjacent to the sheet. As a result, it enhances the

velocity as well as thickness of the boundary layer. The impact of M can also bee

observed from this figure and it is concluded that a rise in M reduces the thickness of

boundary layer and the velocity profile. The reason behind is that the magnetic field

produces the electromagnetic force that gives opposition to the motion of fluid and

hence reduces the fluid velocity. Fig. 3.8 reveals the effect of β on the thermal field

θ(η). It is evident that a diminishing behavior in the thermal profile appears for the

escalating values of β. A rise in the temperature is revealed in Fig. 3.8 due to the

resistance offered to the flow and retardation of the fluid flow.

In Fig. 3.9, the velocity field is plotted for differentt valuess of the Deborah number β.

It is clear that there is a growth in the velocityy profile with an increment in β, because

the Deborah numbers β is directly related too the stretching rate a of sheet. An

augmentation in β leads to accelerate the nanofluid motion in the momentum

boundary layer. Additionally, an increment in the nanofluid motion leads to rise in the

boundary layer thickness and the nanofluid velocity. Fig. 3.10 shows the impact of Pr

on the temperature fields for β=0 (viscous nanofluid) and β=1 (Jeffrey nanofluid). An

increment in Pr quickly decreases θ as well as the thickness of boundary layer. The

viscosity of the mixture increases due to the Prandtll number which results in lessening

the temperature profile. It can also be observed thatt the introduction of β reduces the

surface temperature of the sheet.

In Fig. 3.11, the impact of Ec on the thermal profile is exhibited for both the viscous

nanofluid and the Jeffrey nanofluid. It might be viewed from Fig. 3.11 that an
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increment in Ec has boosted the thermal profile θ because the heat is accumulated in

the nanofluid caused by the frictional heating. It is identified that near the surface, the

thermal profile overshoots for the larger values of Ec. The behavior of −θ′(0) against

Ec for various values of β is plotted in Fig. 3.12. It is noted that an increment in β

boost −θ′(0) and the heat transfer rate is found to be low for the larger values of Ec.

Fig. 3.13 reflects that −θ′(0) increases as β increases which as a result increases the

heat transfer in the boundarys layer. It iss noticed that the heat transfer rate is reduced

when the magneticcparameter M is raised. The drag coefficient f ′′(0) on the surface

versus Deborah number β for distinct values of M is plotted in Fig. 3.14. It is found

that for increasing values of β, the drag coefficient is increased. Fig. 3.14 reveals that

the enhancing values of M decrease the drag coefficient.

It can be observed from Fig. 3.15 that −θ′(0) is a steadily increasing function of φ. On

the other hand, Figs. 3.16 and 3.17-3.18 show that −θ′(0) is declined for the increasing

values of φ. It is determined from the Figs. 3.15-3.18 that −θ′(0) is decreased for the

rising values of M and Ec whereas it is increased for the increasing values of β and Pr.

Physically, for a higher Prandtl number Pr, the nanofluid thermal conductivity is

lowered down, due to which their heat conduction potential diminishes. Thus the

thickness of thermal boundary layer gets decreased. As a result, the heat transport

rate is improved at the wall. The raising magnetic parameter also raises the thickness

of boundary layer and consequently the heat transport rate diminishes due to an

improvement in the magnetic parameter.

The drag coefficient f ′′(0) on the surface versus the nanoparticle volume fraction φ for

a variety of values of the magnetic parameters is plotted in Fig. 3.19. In this case, we

found that the skin friction coefficient is decreased whenever we enhance the values of

φ. Fig. 3.19 reveals that the increasing values of the magnetics parameters M decrease

the drag coefficient. The behavior of the the drag coefficient f ′′(0) against the

nanoparticle volume fraction φ for various valuess of β is plotted in Fig. 3.20. It is

found that the drag coefficient is decreased when ever we boost the values of φ. Fig.

3.20 reveals the influence of β on the drag coefficient. It is evident that a rise in β

enhances the skin frictions coefficient. The magnitude of the drag coefficient is

decreased by enlarging the nanoparticle volume fraction φ.
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3.5 Concluding Remarks:

This article presents the magnetohydrodynamics boundary layer flow and heat transfers

of the Jeffrey nanofluid over a stretching sheet in the presence of viscous dissipation and

Joule heating. The main outcomes of this work are summarized as follows:

• The velocity of the silver-ethylene glycol Jeffrey nanofluid is lower than that of

the base fluid while there is an opposite finding regarding the temperature.

• Increasing the Deborah number leads to increase the velocity profile while the

magnetic parameter makes it to decrease.

• The thermal field is a growing function of the nanoparticle volume fraction φ,

magnetic parameter M , Deborah number β, Prandtl number Pr and Eckert

number Ec.

• The silver-ethylene glycol Jeffrey nanofluid gives less resistance to the fluid flow

as compared with the base fluid. So silver-ethylene glycol Jeffrey nanofluid has

small skin friction coefficient as compared with the base fluid but the same fluid
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has higher Nusselt number against the solid volume fraction as compared with the

base fluid.

• The drag increases with an enhancement in β but decreases by increasing the solid

volume fractions φ and the magnetic number M .

• The Nusselt number increases with an increment in the Deborah number β and

Prandtl number Pr but decreases by increasing the Eckert number Ec, the

magnetic parameters M and the solid volume fraction φ.

• The thermal profile of Ag-ethylene glycol Jeffrey nanofluid is higher than those of

Al2O3 − C2H6O2 and TiO2 − C2H6O2 nanofluids.

• The silver-ethylene glycol Jeffrey nanofluid has lesser velocity than the Al2O3 −

C2H6O2 and TiO2 − C2H6O2 nanofluids.



Chapter 4

MHD Tangent Hyperbolic

Nanofluid with “Chemical

Reaction, Viscous Dissipation and

Joule Heating Effects”

4.1 Introduction

In this chapter, the motion of a non-Newtonian tangent hyperbolic nanofluid due to a

stretching sheet is analyzed. Nanofluid is comprised of thermophoresis“and Brownian

motion effects. Magnetic field is implemented in vertical direction under the assumption

of low magnetic Reynolds number. The phenomenon” of heat transfer has been examined

subject to the viscous dissipation and Joule heating whereas the mass transfer has been

analyzed under the effect of chemical reaction. The PDEs“governing the flow, heat and

mass transport are re-framed in the form ODEs by means of the similarity solutions. A

numerical procedure known as the Keller-box method has been implemented to obtain

the solutions for the accomplished ODEs. The effects of the variations of different

involved parameters on fluid temperature, velocity and concentration distributions are

disclosed through graphs and analyzed in detail. The features of skin friction, heat and

mass transfer” coefficient are tabulated and graphed in order to perceive the flow, heat

64
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and mass transport phenomena. It is noticed that an increment in the Weissenberg

number leads to a reduction in the velocity profile.

4.2 Mathematical Formulation

A time independent, laminar, two dimensional and magnetohydrodynamics transport of

a constant density tangent hyperbolic fluid past a continuous surface, in the region y > 0

has been explored. The flow is conducted as a result of the linear stretching at y = 0. A

uniform magnetic field of intensity B0 is employed perpendicular to the sheet, so that the

magnetic Reynolds number is chosen smaller. Consequently the“induced magnetic field

is neglected for small magnetic Reynolds number.”The important features of such type

of a flow are displayed in Fig. 4.1. Under these specific aspects and the nanofluid model

O
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x
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x-axis

Momentum boundary layer

Thermal boundary layer
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u

BU
w
=ax,    T

w 
, C

w
    

Microscopic view of Nanoparticles

Stretching Surface

Concentration boundary layer

     u→0,  T→T
∞ 

, C→C
∞

Fig. 4.1: Geometry of the problem.

of Buongiorno, boundary layer equations of momentum, temperature and concentration

are provided below [119, 120]:

u1
∂u

∂x
+ v1

∂u

∂y
= 1ν !(1− n)

∂2u

∂y21
+
√

211Γvn
∂u

∂x

∂21u

∂y21
−
σf
ρ
B2

01u, (4.1)
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u1
∂T

∂x
+ v1

∂T

∂y
= 1α1

∂2T

∂y21
+ τ

(
DB1

(∂C
∂y

)(∂T
∂y

)
+
DT 1

T∞1

(∂T
∂y

)21
)

+
σfB

2
0u

2

ρcp

+
ν

cp1

[
(1− n) +

nΓ√
2

∂u

∂y

](∂u
∂y

)2
, (4.2)

u1
∂C

∂x
+ v1

∂C

∂y
= !DB

∂2C

∂y21
+
DT 1

T∞1

(∂2T

∂y2

)
− k11 (C − C∞1). (4.3)

The end-point conditions are considered to be

1u = uw1(x) = ax, 1v = 0, 1T = Tw, 1C = Cw1, at 1y = 0,

1u −→ 0, 1T −→ T∞, 1C −→ C∞, as 1y −→ 1∞.

 (4.4)

Eqs. (4.1)-(4.4) are turned into the dimensionless form by introducing the subsequent

appropriate dimensionless variables [121]

1η =

√
a

ν
y, 1ψ = −

√
aνxf(η), 1θ =

T − .T∞
Tw − 1.T∞

, 1φ =
C − .C∞
Cw − .C∞

, (4.5)

in which ψ is the stream function expressed as 1u = ∂ψ
∂y and 1v = −∂ψ

∂x . As a result, we

get the same expressions of u and v as in Eq.(3.10). The equations of motion, energy

and concentration in the non-dimensional form after making use of Eqs. (3.10) and

(4.5) turn into

((1− n) + nWef ′′)f ′′′1 − (f ′)21 + ff ′′ −M21f ′1 = 0, (4.6)

θ′′ + Pr.
(
.fθ′! +Nbθ′1φ′1

)
+Nt(θ′)21 + (1− n)PrEc(f ′′)2 +

1

2
nPrEcWe(f ′′)3

+ PrEcM(f ′)21 = 0, (4.7)

φ′′ + PrLefφ′1 +
Nt

Nb
.θ′′1 − Le.γ.φ = 0, (4.8)

with the following dimensionless end-point conditions:

1f(0) = 0, 1f ′(0) = 1, 1θ(0) = 1, 1φ(0) = 1, at 1η = 0,

1f ′(η)1 −→ 0, 1θ(η) −→ 0, 1φ(η) −→ 0, 1as 1η −→∞.

 (4.9)
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The non-dimensional parameters utilized in Eqs. (4.6)-(4.8) are described as

We = Γx

√
2a3

ν
(Weissenberg number),

M =
σfB

2
0

aρ
(Magnetic parameter),

P r =
1.ν

.α
1(Prandtll number),

Le =
ν1
DB

1(Lewiss number),

Nt =
(ρc)p1DB1(Tw − .T∞)

T∞1ν(ρc)f1
1(Thermophoresiss parameter),

Nb =
(ρc)p1DB1(φw − .φ∞)

ν(ρc)f1
1(Browniann motionn parameter),

Ec =
U2
m

cp.(.Tw − 1T∞)
(Eckert number),

γ =
k1

a
, (Chemical reaction parameter).



(4.10)

The important physical parameters, skin-friction coefficient 1Cf , local Nusselt number

1Nux and local Sherwood Shx number are described as

1Cf =
2τw1

ρ.u21
w

, 1Nux =
xqw1

k(.Tw − 1T∞)
, 1Shx =

xqm1

DB(.φw − 1φ∞)
, (4.11)

where τw = µ(1− n)(∂u∂y )y=y0 + nΓ√
2
(∂u∂y )2

y=y0 is the wall shear-stress, qw = −k(∂T∂y )y=y0 is

the heat flux and qm = −DB(∂φ∂y )y=y0 is the mass flux at wall. Employing the similarity

transform introduced above, (4.11) can further be described as:

1
1

2
CfRe

1/21. = (1.− .n)f ′′(0) +
1

2
nWe

(
f ′′(0)

)2
,

1NuxRe
−1/2
x = −θ′(0), ShxRe

−1/2
x = −φ′(0),

 (4.12)

in which Rex = xUw
ν refers to the local Reynolds number.

4.3 Numerical Procedure

The above non-linear coupled ordinary differential Eqs. (4.6)-(4.8) alongside the

end-point conditions (4.9) have been attempted numerically through the implicit finite

difference technique (Keller-box scheme) [122, 123] for various values of the concerned

parameters. This technique is found to be the very adaptable of the typical techniques

and in spite of latest advancements in various numerical techniques, it is still a highly
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effective and extremely accurate strategy for parabolic type of boundary layer

problems. Additionally, it is flexible to solve problems of any order as well as

unconditionally stable [114, 124].

By introducing the following new variables p1, p2, p3 and p4,

f ′(η) = p1, p′1(η) = p2, θ′(η) = p3, φ′(η) = p4, (4.13)

Eqs. (4.6)-(4.8) can be expressed as:

((1− n) + nWep2)p′2 − (p1)2 + fp2 −M2p1 = 0, (4.14)

p′3 + Pr
(
fp3 +Nbp3p4

)
+Nt(p3)2 + PrEc(p2)2 +

1

2
nPrEcWe(p2)3

+ PrEcM(p1)2 = 0, (4.15)

p′4 + PrLefp4 +
Nt

Nb
p′3 − Leγφ = 0. (4.16)

The transformed end point conditions are:

1f(0) = 0, p1(0)1 = 11, θ(0)1 = 11, φ(0)1 = 11, 1at 1η = 0,

1p1(η) −→ 0, θ(η)1 −→ 10, φ(η)1 −→ 10, as η1 −→ 1∞.

 (4.17)

The net points have been set as

ηj = ηj−1 + hj , η0 = 0, ηJ = η∞, where 1j = 1, 2, 3..., J1 and 1hj1 is the uniform

mesh-size. Eqs. (4.13)-(4.16) are approximated through the utilization of the central

difference at midpoint ηj−1/2, depicted below

1
fj − .fj−1

hj1
= (p1)j− 1

2
, (4.18)

1
(p1)j − .(p1)j−1

hj1
= (p2)j− 1

2
, (4.19)

1
θj − .θj−1

hj1
= (p3)j− 1

2
, (4.20)

1
φj − .φj−1

hj1
= (p4)j− 1

2
, (4.21)

1

[
(1− n) + nWe (p2)j− 1

2

]((p2)j − (p2)j−1

h1j

)
−
(
(p1)j− 1

2

)21
1 +
(
fj− 1

2

)(
(p2)j− 1

2

)
−M21

(
(p1)j− 1

2

)
= 0, (4.22)
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(
(p3)j − .(p3)j−1

hj1

)
+ Pr

[(
fj− 1

2

)(
(p3)j− 1

2

)
+Nb

(
(p3)j− 1

2

)(
(p4)j− 1

2

)]
+Nt

(
(p3)j− 1

2

)21
+ PrEc

(
(p2)j− 1

2

)21
+

1

2
nPrEcWe

(
(p2)j− 1

2

)3
+ PrEcM

(
(p1)j− 1

2

)2
1 = 0, (4.23)

(
(p4)j − .(p4)j−1

hj1

)
+ PrLe

(
fj− 1

2

)(
(p4)j− 1

2

)
+
Nt

Nb

(
(p3)j − (p3)j−1

hj1

)
− Leγ

(
(p4)j− 1

2

)
= 0, (4.24)

in which fj− 1
2

=
fj1+fj−11

2 etc. In order to, linearized the above non-linear system of

Eqs. (4.18)-(4.24) by Newton’s technique, the subsequent substitution have been

inserted.

1fn+11
j = fn1

j + .δfnj , (p1)n+1
j = (p1)nj + δ(p1)nj , (p2)n+1

j = (p2)nj + δ(p2)nj ,

1(p3)n+1
j = (p3)nj + δ(p3)nj , (p4)n+1

j = (p4)nj + δ(p4)nj , θ
n+1
j = θnj + δθnj ,

1φn+1
j = φnj + δφnj .

 (4.25)

Putting these expressions in Eqs. (4.18)-(4.24) and getting rid of the higher-order

terms in δ, the following system is obtained:

1(δfj1 − δfj−11)−
hj1
2

(
δ(p1)j1 + δ(p1)j−11

)
= (r1)j1, (4.26)(

δ(p1)j1 − δ(p1)j−11

)
− hj

2

(
δ(p1)j1 + δ(p1)j−11

)
= (r2)j , (4.27)(

δθj1 − δθj−11

)
− hj

2

(
δ(p3)j1 + δ(p3)j−11

)
= (r2)j , (4.28)(

δφj1 − δφj−11

)
− hj

2

(
δ(p4)j1 + δ(p4)j−11

)
= (r4)j , (4.29)

(ξ1)jδfj + (ξ2)jδfj−1 + (ξ3)jδ(p1)j + (ξ4)jδ(p1)j−1 + (ξ5)jδ(p2)j

+ (ξ6)jδ(p2)j−1 = (r5)j , (4.30)

(β1)jδ(p3)j + (β2)jδ(p3)j−1 + (β3)jδfj + (β4)jδfj−1 + (β5)jδ(p4)j + (β6)jδ(p4)j−1

+ (β7)jδ(p1)j + (β8)jδ(p1)j−1 + (β9)jδ(p2)j + (β10)jδ(p2)j−1 = (r6)j , (4.31)

(γ1)jδ(p4)j + (γ2)jδ(p4)j−1 + (γ3)jδfj + (γ4)jδfj−1 + (γ5)jδ(p3)j + (γ6)jδ(p3)j−1

= (r7)j , (4.32)
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where

(ξ1)j =
hj
4

(
(p2)j + (p2)j−1

)
= (ξ2)j ,

(ξ3)j = −hj
2
M2 − hj

2

(
(p1)j + (p1)j−1

)
= (ξ4)j ,

(ξ5)j =

(
1− n+

hj
4

+ (fj + fj−1) + nWe(p2)j

)
,

(ξ6)j =

(
− 1 + n+

hj
4

+ (fj + fj−1)− nWe(p2)j−1

)
,

(r5)j =
1

2
hjM

2(p1)j− 1
2

+ (p1)2
j− 1

2

− fj− 1
2
(p2)j− 1

2
+
n

2
We
(

(p2)2
j−1 + (p2)2

j

)
,



(4.33)

(β1)j = 1 +
hjNbPr

4
((p4)j + (p4)j−1) +

hjPr

4
(fj + fj−1)

+
hjNtPr

2
((p3)j + (p3)j−1), (β2)j = (β1)j − 2,

(β3)j =
hjPr

4
((p3)j + (p3)j−1) = (β4)j ,

(β5)j =
hjNbPr

4
((p3)j + (p3)j−1) = (β6)j ,

(β7)j =
hjPrM

2Ec

2
((p1)j + (p1)j−1) = (β8)j ,

(β9)j =
hjPrEc

2
((p2)j + (p2)j−1) = (β10)j ,

(r6)j = ((p3)j−1 − (p3)j)− hjNbPr(p3)j− 1
2
(p4)j− 1

2

− hjPr(p3)j− 1
2
fj− 1

2
− hjNtPr

4
(p3)2

j− 1
2

− hjM
2PrEc

4
(p1)2

j− 1
2

− hjPrEc

4
(p2)2

j− 1
2

,



(4.34)

(γ1)j = 1− hjγLe

2
((p4)j + (p4)j−1) +

hjLePr

4
(fj + fj−1),

(γ2)j = −1− hjγLe

2
((p4)j + (p4)j−1) +

hjLePr

4
(fj + fj−1),

(γ3)j =
hjLePr

4
((p4)j + (p4)j−1) = (γ4)j ,

(γ5)j =
Nt

Nb
= −(γ6)j ,

(r7)j = ((p4)j−1 − (p4)j)− hjLePr(p4)j− 1
2
fj− 1

2
+
Nt

Nb
((p3)j−1 − (p3)j)

+ hjγLe((p3)j + (p3)j−1)2.



(4.35)

After the linearization procedure we get the subsequent block-tridiagonal structure
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[A1] [B1]

[C2] [A2] [B2]

. . .

. . .

. . .

[CJ−1] [.AJ−1.] [.BJ−1.]

[.CJ .] [.AJ .]


=



[1δ1]

[1δ2]
...
...
...

[1δJ−1]

[1δJ ]





[g1]

[g2]
...
...
...

[gJ−1]

[gJ ]


or

[A][δ] = [g]. (4.36)

where the elements defined in Eq. (4.36) are

[
A11

]
=



0 0 0 1 0 0 0

−0.5h1 0 0 0 −0.5h1 0 0

0 −0.5h1 0 0 0 −0.5h1 0

0 0 −0.5h1 0 0 0 −0.5h1

(ξ6)1 0 0 (ξ1)1 (ξ5)1 0 0

(β10)1 (β2)1 (β6)1 (β3)1 (β9)1 (β1)1 (β5)1

0 (γ6)1 (γ2)1 (γ3)1 0 (γ5)1 (γ1)1


,

[
Aj

]
=



−0.5hj 0 0 1 0 0 0

−1 0 0 0 −0.5hj 0 0

0 −1 0 0 0 −0.5hj 0

0 0 −1 0 0 0 −0.5hj

(ξ4)j 0 0 (ξ1)j (ξ5)j 0 0

(β8)j 0 0 (β3)j (β9)j (β1)j (β5)j

0 0 0 (γ3)j 0 (γ5)j (γ1)j


, 2 ≤ j ≤ J
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[
Bj

]
=



0 0 0 −1 0 0 0

0 0 0 0 −0.5hj 0 0

0 0 0 0 0 −0.5hj 0

0 0 0 0 0 0 −0.5hj

0 0 0 (ξ2)j (ξ6)j 0 0

0 0 0 (β4)j (β10)j (β2)j (β6)j

0 0 0 (γ4)j 0 (γ6)j (γ2)j


, 2 ≤ j ≤ J

[
Cj

]
=



−0.5hj 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

(ξ3)j 0 0 0 0 0 0

(β7)j 0 0 0 0 0 0

0 0 0 0 0 0 0


, 1 ≤ j ≤ J − 1.

In order to solve Eq. (4.36), we assume A as a non-singular matrix that can be

factorized as

.A1 = .LU, (4.37)

in which

L =



[.α1]

[.β2] [.α2]

. . .

. . . [.αJ−1]

[βJ ] [αJ ]


,
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U =



[I] [ξ1]

[I] [ξ2]

. . .
. . .

[I] [ξJ−1]

[I]


.

where, [I] is an identity matrix of order 7, and [αi] and [ξi] are 7 × 7 matrices. This

block tridiagonal matrix presented in Eq. (4.36) is solved by LU factorization for the

solution δ. In numerical computation, the appropriate step size hj as well as boundary

layer thickness η∞ must be provided. For numerical calculations, we consider the step

size hj = 0.001 and we operate the simulation until ηmax = 12. The results are

achieved with an error tolerance of 10−5. To be able to validate the correctness of the

numerical method, a comparison of the found outcomes of −f ′′(0) with the ones

reported by Ibrahim [125] and Ali et al. [126] for We = n = 0 has been presented in

Table 4.1.

Table 4.1: Comparison of −f ′′(0) with various values of M .

M Ibrahim[125] Ali et al. [126] Present study

0.0 1.0000 1.00000 1.000000
1 1.4142 1.41421 1.414211
5 2.4495 2.44948 2.449501

4.4 Results and Discussions

In this section, the significant aspects of flow, energy and mass transport phenomena

for various emerging parameters have been demonstrated graphically and tabulated

numerically. The impact of M on the velocity profile is highlighted in Fig. 4.2. As

expected, due to an augmentation in M , the thickness of momentum boundary layer as

well as the velocity profile decrease. In fact, it happens because of a high intensity of

external electric field which generates a wall-parallel resistive force, called the Lorentz
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force. Fig. 4.3 illustrates the velocity distribution for wide range of values of the power

law index n. It is observed that an increment in n causes a reduction in the velocity

profile. In fact, amplitude of the shear thinning phenomenon is decreased by the

increasing power law index, which consequently results in a decay in the fluid velocity.

The dynamics of the horizontal velocity due to the Weissenberg number We is

exhibited in Fig. 4.4. It can be observed that the velocity field is reduced by enhancing

the Weissenberg number We. Physically, the dominant values of We cause an

enhancement in the relaxation time which resists the fluid motion due to weak cohesive

forces between the fluid particles. The thickness of boundary layer corresponding to

the velocity field exhibits a reducing trend with an intensity in Weissenberg number

We. Fig. 4.5 captures the influence of the magnetic parameter M on the temperature

field. It is noted that with an increment in M , the fluid temperature is increased

throughout the boundary layer regime. Further boundary layer thickness is also

increases. As the magnetic parameter M strengthens the Lorentz force which enhances

the frictional effects, more heat is generated.

The effects of Pr on the temperature field are displayed in Fig. 4.6. “It is evident that

an increment in Pr leads to a reduction in the temperature field as well as in the

thickness of thermal boundary layer. As the Prandtl number Pr dilates, the thermal

diffusivity suffers a decay which causes a low heat transfer rate from plate to the fluid

and therefore the fluid temperature is reduced. The temperature distribution is

graphed against the Eckert number Ec” in Fig. 4.7. This figure indicates an increasing

trend in the temperature field for the dominatingsvalues of Ec. “Due to the dominant

Eckert number Ec, more heat generation in the fluid occurs because of the strong

frictional force between the fluid particles, resulting in the temperature augmentation.

Variation in the thermal field corresponding to the thermophoresis parameter Nt, is

presented in Fig. 4.8.” The temperature profile is observed to increase with growing

thermophoresis parameter Nt. The “associated boundary layer thickness is also

increased. In fact, a rise in the thermophoresis force between fluid particles provides

more heat transfer to the working fluid. Hence the temperature distribution is

enhanced. Fig. 4.9 displays the impact of the Brownian motion parameter Nb on the

temperature field. It is depicted that a higher Nb strengthens the fluid temperature

due to more collisions between the fluid particles. Fig. 4.10 discloses the effects of Nb
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on the concentration distribution. It is noticed that the fluid concentration is declined

by the dominating Nb. In fact, alarger values of Nb cause a boost in the collision

between the fluid particles due to which less mass is transferred and consequently a

decline in the concentration field is observed.

Fig. 4.11 describes the impact of Nt on the concentration distribution. It is depicted

that the concentration distribution and the corresponding thickness of the solutal

bounday layer show an increasing behavior for the growing Nt. Physically, alarger

values of the thermophoresis parameter Nt correspond to more thermophoresis force

which leads to strengthen the diffusive effects. Fig. 4.12 highlights how the Lewis

number Le affects the concentration distribution. As expected, the concentration field

faces a decay due to the dominating values of Le. Physically, ahigher values of Lewis

number Le reduces the mass transfer rate due to a decrement in the mass diffusivity

due to which, a abatement in φ is noticed. Further, for lower Lewis number Le,

dominant thickness of solutal boundary layer is observed.” Fig. 4.13 is plotted for the

concentration profile against destructive chemical reaction parameter (γ > 0).

Generally, it is noticed that the concentration distribution is a reducing function of

γ > 0. In fact, the heat generation is enhanced for the increasing positive values of γ

resulting in a down-fall in the concentration profile. Fig. 4.14 is portrayed to reveal

the impact of constructive chemical reaction (γ < 0) on φ. It is revealed from Fig. 4.14

that the intensity of the concentration distribution and the associated thickness of the

solutal boundary layer boost up for the chemical reaction parameter γ < 0.

Fig. 4.15 is plotted to highlight the effects of Weissenberg number We and the

magnetic parameter M on skin friction coefficient. It shows a decaying trend for We

and M . The variation in the skin friction coefficient corresponing to the power law

index n and the magnetic parameter M is discussed in Fig. 4.16. The skin friction

coefficient shows an increasing behavior for n, while it shows a decaying trend for M .

Fig. 4.17 depicts the result of the local Nusselt number for various values of Nb and

Pr. It is noted that the Nusselt number is decreased with an increment in Brownian

motion parameter Nb while the Prandtl number Pr has an opposite effect on it. The

effects of Nt and Pr on the Nusselt number are illustrated in Fig. 4.18. It is revealed

that the Nusselt number is reduced with an enhancement in Nt although Pr offers an
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opposite impact on it. Fig. 4.19 is plotted to predict the behavior of Le and Nt on

Sherwood number. It is viewed that the parameters Le and Nt significantly enhance

the Sherwood number. Fig. 4.20 illustrates the impact of Le and Nb on the Sherwood

number. It is identified that the parameters Le and Nb considerably boost the

Sherwood number. Moreover, Table 4.2 exhibits the dynamics of the skin friction

coefficient, the Nusselt number and the Sherwood number under the influence of

various emerging physical parameters. The tabular numerical values reflect the same

trend as observed already in the discussed graphical results.
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Fig. 4.13: Concentration plot
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Fig. 4.18: Influence of Nt and Pr
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Table 4.2: Values of CfRe
1/2
x , Nu

−1/2
x and Sh

−1/2
x for various sorts of

parameters in flow.

M Nt Nb We n Pr Ec Le γ CfRe
1/2
x Nu

−1/2
x Sh

−1/2
x

0.5 0.1 0.1 0.3 0.2 10 1 1 1 -0.97968 0.73829 1.56511
1 -1.21401 0.45359 1.67699
1.5 -1.48865 0.04808 1.87323

0.2 -0.97968 0.50639 1.69953
0.3 -0.97968 0.33289 2.12136
0.4 -0.97968 0.20446 2.70793

0.1 -0.97968 0.73829 1.56511
0.2 -0.97968 0.34822 1.91879
0.3 -0.97968 0.11105 2.00051

0.1 -0.99030 0.74279 1.56490
0.2 -0.97968 0.73829 1.56511
0.3 -0.96821 0.73357 1.56541

0.1 -1.05325 0.77348 1.57020
0.2 -0.97968 0.73829 1.56511
0.3 -0.89278 0.69177 1.56133

1 -0.97968 0.43430 0.16987
5 -0.97968 0.83718 0.66990
10 -0.97968 0.73829 1.56511

0.2 -0.97968 0.37901 1.89984
0.4 -0.97968 -0.35680 2.62318
0.6 -0.97968 -1.11098 3.42282

0.5 -0.97968 0.73829 1.56511
1 -0.97968 0.57721 3.41850
1.5 -0.97968 0.51119 5.84310

0.5 -0.97968 0.75298 1.42393
1 -0.97968 0.73829 1.56511
1.5 -0.97968 0.72444 1.72399

4.5 Concluding Remarks

A study of the simultaneous impacts of the magneticsfield and non-Newtonian

rheology on nanofluid flow along a stretching surface in theapresence of Joule heating,

viscoussdissipation and chemicalsreaction is conducted. The Keller-box iterative

scheme is utilized for the numericalssolutions of the transformed non-linear

dimensionless governing differential equations illustrating the flow regime. The

innovative results forathe involved key parameterssare exhibitedathrough graphs. The

core findings are listed below:

• The velocitysfield is reduced for the escalating values of theamagnetic parameter.
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• Weissenberg number reduces the velocity distribution.

• Brownian motion parametersas well as theathermophoresis parameter cause a rise

in the temperature profile.

• The concentration is decreasing function of Brownian motion parameterswhile it

behaves the other way round for the thermophresis parameter.

• The temperature profilesis enhanced with an increment in the magnetic parameter

as well as the Eckert number.

• The concentrationsdistrbution shows an opposite trend with chemical reaction

parameter for both destructivesreaction (γ > 0) and constructivesreaction (γ < 0)

case.



Chapter 5

Stratified MHD Jeffrey Nanofluid

Flowawith Gyrotactic

Microorganisms past a Stretching

Surface

5.1 Introduction

In this chapter, an elaborated evaluation has been presented for the stratified MHD

Jeffrey nanofluid flow towards a stretching surface in thespresence of

gyrotacticsmicro-organisms. The governing nonlinear system ofsPDEs, administering

the flow, are turned to a group of the nonlinear”ODEs via using an appropriate

similarity transformation and later solved”numerically by implementing the Keller-box

approach. The impacts of a range of “parameters on the fluid motion, heat, mass,

density of the motile micro-organisms, local skin friction, local Nusselt number, local

Sherwood number and local density number of the motile micro-organisms“are

examined with the aid of graphs as well as tables. The results suggest that the motile

micro-organisms density is a decreasing function of theebioconvection Lewis number,

bioconvection Pecket number and microorganisms concentration difference. The

82
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Sherwoodsnumber and density rate of motile micro-organisms areahigher in the case of

magnetic parameter andsLewis number.IIt is identified that temperature, density of

nanoparticles and motile micro-organisms density stratification parameters lead to

decrease the temperature, density of nanoparticles and motile micro-organisms density

profiles.

5.2 Mathematical Formulations

A steady, two-dimensionalsand laminar flow of an incompressible Jeffery nanofluid fluid

due to a stretching surface coinciding with the plane y = 0 has been investigated.

Furthermore, magnetohydrodynamics as well as nanoparticlesseffects are considered

along with the gyrotactic microorganisms. The thermophoresis and Brownian motion

impacts have also been taken into consideration. The uniformsmagnetic field B0 is

employed parallel to y-direction and fluid is confined in region y > 0 (see Fig. 5.1).

Here, x-axis has been taken along the stretchingssheet and the flow is assumed to be

produced by stretching the sheet with linear velocity Uw = ax away from the leading

edge such that a is a positive constant. The temperature, concentration and motile

micro-organisms transfer rate have been analyzed under the stratification effects. The

induced magnetic field is neglected, because it is quite small in comparison to the

magnetic Reynolds number. By the use of boundary layersapproximation, the

O

nanoparticles

microorganisms
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Fig. 5.1: Physical model of the flow.
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momentum, energy, concentrationsand microorganisms[127] equations are:

(
u
∂u1

∂x
+ v

∂u1

∂y

)
=

ν

(1 + λ1)

∂2u1

∂y2
+ λ2

u
∂3u1

∂x∂2y
− ∂u1

∂x

∂2u1

∂y2

+
∂u

∂y

∂2u

∂x∂y
+ v

∂3u

∂y3


− σf

ρf1
B2

0u

+
g

ρf

[
(1− C∞)ρfβ

∗(T − T∞)− (ρp − ρf )(C − C∞)− (N −N∞)γ∗(ρm − ρf )
]
, (5.1)

u
∂T1

∂x1

+ v
∂T1

∂y1
= α

∂2T

∂y2
+ τ

(
DB1

(∂C1

∂y1

)(∂T1

∂y.

)
+
DT

T∞

(∂T
∂y

)2
)

+
σf

(ρcp)f
B2

0u
2

+
µ

(ρcp)f (1 + λ1)

(
λ2

(
u
∂u1

∂y

∂2u

∂x∂y
+ v

∂u1

∂y

∂2u

∂y2

)
+
(∂u
∂y

)2
)
, (5.2)

u
∂C1

∂x1

+ v
∂C1

∂y1
= DB

∂2C1

∂y2
1

+
DT

T∞

(∂2T1

∂y2
1

)
, (5.3)

u
∂N1

∂x1

+ v
∂N1

∂y1
+

bWc(
Cw − C01

) ∂
∂y

(N
∂C1

∂y1
) = Dm

∂2N1

∂y2
1

. (5.4)

The set of associated boundary conditions has been taken as:

u = uw(x) = ax, .v = 0, T = Tw! = T◦! +A1x,

C = C!w = C◦! + E1x, N = Nw! = N◦! +H1x at 1y = 0,

u1 −→ 0, T 1 −→ T∞1 = T◦1 +A2x,

C −→ C∞ = C◦ + E2x, N −→ N∞ = N◦ +H2x as11y −→∞,


(5.5)

where A1, A2, E1, E2, H1 and H2 are the dimensional constants. The following similarity

transformation[127] has been adopted to convert of Eqs.(5.1)−(5.4) to the ordinary

differential equations.

η =
(a
ν

)0.5
y, ψ = −

(
aν
)0.5

xf(η), θ =
T − T∞
Tw − T0

,

φ =
C1 − C∞1

Cw1 − C01
, 1χ =

N −N∞
Nw −N0

,

 (5.6)

where !η, !f , !θ, φ, χ and ψ are similarity variable, dimensionless stream function,

dimensionless temperature, dimensionless concentration of nanoparticles, dimensionless

concentration of microorganisms and stream function obeying u = ∂ψ
∂y and v = −∂ψ

∂x .

As a result, we get the same expressions of u and v as in Eq.(3.10). Now, through the

use of transformations from Eqs. (3.10) and (5.6), we obtain the subsequent set of
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non-linear ODEs:

f ′′′1 − !(1 + λ1)
[
(f ′1)2 − ff ′′1

]
+ !β

[
(f ′′1)2 − ff iv

]
− !(1 + λ1)Mf ′1

+Gr
[
θ −Nrφ−Rbχ

]
= 0, (5.7)

θ′′1 − Prf ′1θ − PrStf ′1 + Prfθ′ + PrNbφ′θ′ + PrNt(θ′)2 + EcPrM(f ′)2

+ PrEc
(

(f ′′)2 + λ2f
′′(f ′f ′′ − ff ′′′)) = 0, (5.8)

φ′′ − PrLef ′φ− PrLeScf ′ + PrLefφ′ +
Nt

Nb
θ′′ = 0, (5.9)

χ′′ − Lbf ′χ− LbSmf ′ + Lbfχ′ − Pe
(
χ′φ′ + φ′′(σ + χ)

)
= 0. (5.10)

The set of boundarysconditions turns into the following form:

f(0) = 0, 1f ′(0) = 1, 1θ(0) = 1− St, 1φ(0) = 1− Sc, χ(0) = 1− Sm 1at η = 0,

f ′(η) −→ 0, f ′′(η) −→ 0, θ(η) −→ 0, 1φ(η) −→ 0, 1χ(η) −→ 01as1η −→∞.

 (5.11)

Dimensionless parameters appearing in Eqs. (5.7)-(5.10) have been illustrated below:

Pe =
bWc

Dm
(bioconvection Peclet number) ,M =

σfB
2
0

aρ
(magnetic parameter),

Ec =
c2x2

cp(Tw − To)
( Eckert number), Lb =

ν1

Db1
(bioconvection Lewis number),

Nt =
(ρc)pDT 1 (Tw1 − To1)

T∞1ν (ρc)f
(!thermophoresis parameter),

Nb =
(ρc)pDB1 (Cw − Co1)

ν (ρc)f !
(!Brownian motion parameter) ,

Sm =
H2

H1
(motile density stratification parameter), β = aλ2 (Deborah number),

St =
A2

A1
(thermal stratification parameter), Le =

α

DB
( Lewis number),

Sc =
E2

E1
( mass stratification parameter), P r =

ν

α
(Prandtl number),

σ =
N∞

Nw −N0
(microorganisms concentration difference parameter),

Gr =
β∗γ∗(1− C∞)(Tw − To)

aUo
( mixed convection parameter),

Nr =
(ρp − ρf )(Cw − Co)
β∗ρf (Tw − To)

( buoyancy ratio parameter),

Rb =
γ∗(Nw −No)(ρm − ρf )

β∗ρf (1− C∞)(Tw − To)
(bioconvection Rayeigh number) .


(5.12)

The valuable physicalsquantities in this research are the local shear stress

coefficientsCf , Nusselt number Nux, Sherwoodsnumber Shx and density number
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Nnx that are specified by:

Cf =
2τw
ρfU2

w

, Nux =
xqw

k(Tw − T0)
, Shx =

xqm
DB(Cw − C0)

, Nnx =
xqn

Dm(Nw −N0)
, (5.13)

where

τw1 =
∣∣∣µ∂u
∂y

∣∣∣
y=01

, qw1 =
∣∣∣− k∂T

∂y

∣∣∣
y=01

, qm =
∣∣∣−DB1

∂C

∂y

∣∣∣
y=01

, qn1 =
∣∣∣−Dm1

∂N

∂y

∣∣∣
y=01

.

(5.14)

Using the similarity transformation presented above, (5.13) can be described as:

1

2
CfRe

0.5
x = f ′′(0), NuxRe

−0.5
x = −θ′(0),

ShxRe
−0.5
x = −φ′(0), NnxRe

−0.5
x = −χ′(0),

 (5.15)

in which the local Reynolds number is written as Rex = xUw
ν .

5.3 Numerical Solution by KellersBox Method

To obtain the numerical solution of the nonlinear ODEs (5.7) - (5.10) alongside the

end point conditions (5.12), the Keller-box method [114, 115] have been employed for

differentsvalues of the concerned parameters. The following steps are the main

components of this numerical scheme:

1. To convertsthe momentum, energy, concentration and microorganisms equations

to the first order set of differential equations.

2. To achieve the difference equations with the help of the central finite differences.

3. To linearize the non-linear difference equations by using the Newton’ssmethod.

4. To implement the block tri-diagonalselimination scheme to get the solution of the

linear system iteratively.

The new variables ŭ1, ŭ2, ŭ3, t̆, c̆ and ğ have been introduced to get a system of first

order ODEs such that

df

dη
= ŭ1,

dŭ1

dη
= ŭ2,

dŭ2

dη
= ŭ3,

dθ

dη
= t̆,

dφ

dη
= c̆,

dχ

dη
= ğ. (5.16)

The resulting system of first order ODEs is then written as:
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− βf dŭ3

dη
+ ŭ3 − (1 + λ2)

[
ŭ2

1 − fŭ2

]
+ βŭ2

2 − (1 + λ2)Mŭ1

+Gr
[
θ −Nrφ−Rbχ

]
= 0, (5.17)

dt̆1

dη
− PrStŭ1 − Prŭ1θ + Prf t̆+ PrNt(t̆)2 + PrNbc̆t̆+MPrEc ŭ2

1

+ PrEc
(

(ŭ2)2 + λ2ŭ2

(
ŭ1ŭ2 − fŭ3

))
= 0, (5.18)

dc̆

dη
− PrLeŭ1φ− PrLeScŭ1 + PrLefc̆+

Nt

Nb

dt̆

dη
= 0, (5.19)

dğ

dη
− Lbŭ1χ− LbSmŭ1 + Lbfğ − Pe

(
gc̆+ (σ + χ)

dc̆

dη

)
= 0. (5.20)

The evolved boundary conditions for this study are:

1f(0) = 0, 1ŭ1(0) = 1, 1θ(0) = 1− St, φ(0) = 1− Sc, χ(0) = 1− Sm,

1ŭ1 → 0, 1ŭ2 → 0, 1θ → 0, 1φ→ 0, 1χ→ 0 as η →∞.

 (5.21)

The domain is discretized with the help of the subsequent nodes: 1η01 = 0, ηj1 =

ηj−11 + hj1, 1j = 0, 1, 2, 3..., J, 1ηJ1 = η∞1 where, hj1 is the step size. The central

difference approximations as pointed out in (2), are as follows:

fj1 − fj−11

hj1
= (ŭ1)j− 1

2
, (5.22)

(ŭ1)j1 − (ŭ1)j−11

2
= (ŭ2)j− 1

2
, (5.23)

(ŭ2)j1 − (ŭ2)j−11

2
= (ŭ3)j− 1

2
, (5.24)

θj − θj−1

hj
= (t̆)j− 1

2
, (5.25)

φj − φj−1

hj
= (c̆)j− 1

2
, (5.26)

χj − χj−1

hj
= (ğ)j− 1

2
, (5.27)

β

[(
(ŭ2)j− 1

2

)2
−
(
fj− 1

2

)((ŭ3)j1 − (ŭ3)j−11

hj1

)]
− (1 + λ2)[(

(ŭ1)j− 1
2

)2
−
(
fj− 1

2

)(
(ŭ2)j− 1

2

)]
+
(

(ŭ3)j− 1
2

)
−M(1 + λ2)

(
(ŭ1)j− 1

2

)
+Gr

[
(θj− 1

2
)−Nr(φj− 1

2
)−Rb(χj− 1

2
)
]

= 0,


(5.28)

( t̆− t̆j−11

hj1

)
− Pr

(
(ŭ1)j− 1

2

)(
θj− 1

2

)
− PrSt

(
(ŭ1)j− 1

2

)
+ Pr

(
fj− 1

2

)(
(t̆)j− 1

2

)
+ PrNb

(
(c̆)j− 1

2

)(
(t̆)j− 1

2

)
+ PrNt

(
(t̆)j− 1

2

)2
+MPrEc

(
(ŭ1)j− 1

2

)2

+ PrEc
(

(ŭ2)2
j− 1

2

+ λ2(ŭ2)j− 1
2

(
(ŭ1)j− 1

2
(ŭ2)j− 1

2
− fj− 1

2
(ŭ3)j− 1

2

))
= 0,


(5.29)
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( c̆− c̆j−11

hj1

)
− PrLe

(
(ŭ1)j− 1

2

)(
φj− 1

2

)
− PrLeSc

(
(ŭ1)j− 1

2

)
+ PrLe

(
fj− 1

2

)(
(c̆)j− 1

2

)
+
Nt

Nb

( tj − tj−1

hj

)
= 0,

 (5.30)

( ğ − ğj−11

hj1

)
− Lb

(
(ŭ1)j− 1

2

)(
(χ̆)j− 1

2

)
− LbSm

(
(ŭ1)j− 1

2

)
+

Lb
(
fj− 1

2

)(
(ğ)j− 1

2

)
− Pe

(
(ğ)j− 1

2

)(
(c̆)j− 1

2

)
− Pe

(
σ + fj− 1

2

)( c̆− c̆j−11

hj1

)
= 0.


(5.31)

in which fj− 1
2

=
fj1+fj−11

2 etc. To linearize the systemsof nonlinear Eqs. (5.22)-(5.31)

by Newton’s method, the following substitutions have been introduced:

1(ŭ11)
n+11
j = (ŭ1)nj + δ(ŭ1)nj , (ŭ2)n+1

j = (ŭ2)nj + δ(ŭ2)nj , 1t
n+1
j = tnj + δtnj ,

1fn+1
j1 = fn1

j + δfn1
j , θn+1

j = θnj + δθnj , φ
n+1
j = φnj + δφnj , χ

n+1
j = χnj + δχnj ,

cn+1
j = cnj + δcnj , g

n+1
j = gnj + δgnj , (ŭ3)n+1

j = (ŭ3)nj + δ(ŭ3)nj .

 (5.32)

Putting these expressions in Eqs. (5.22)-(5.31) and dropping the higher-order terms in

δ, the following system is obtained:

1(δfj1 − δfj−11)−
hj1
2

(
δ(ŭ1)j1 + δ(ŭ1)j−11

)
= (r1)j1, (5.33)(

δ(ŭ1)j1 − δ(ŭ1)j−11

)
− hj

2

(
δ(ŭ2)j1 + δ(ŭ2)j−11

)
= (r2)j , (5.34)(

δ(ŭ2)j1 − δ(ŭ2)j−11

)
− hj

2

(
δ(ŭ3)j1 + δ(ŭ3)j−11

)
= (r3)j , (5.35)(

δθj1 − δθj−11

)
− hj

2

(
δt̆j1 + δt̆j−11

)
= (r4)j , (5.36)(

δφj1 − δφj−11

)
− hj

2

(
δc̆j1 + δc̆j−11

)
= (r5)j , (5.37)(

δχj1 − δχj−11

)
− hj

2

(
δğj1 + δğj−11

)
= (r6)j , (5.38)

(ξ1)jδ(ŭ3)j + (ξ2)jδ(ŭ3)j−1 + (ξ3)jδfj + (ξ4)jδfj−1 + (ξ5)jδ(ŭ2)j

+ (ξ6)jδ(ŭ2)j−1 + (ξ7)jδ(ŭ1)j + (ξ8)jδ(ŭ1)j−1 + (ξ9)jδθj + (ξ10)jδθj−1

+ (ξ11)jδφj + (ξ12)jδφj−1 + (ξ13)jδχj + (ξ14)jδχj−1 = (r7)j , (5.39)

(β1)jδt̆j + (β2)jδt̆j−1 + (β3)jδc̆j + (β4)jδc̆j−1 + (β5)jδfj + (β6)jδfj−1

+ (β7)jδθj + (β8)jδθj−1 + (β9)jδ(ŭ1)j + (β10)jδ(ŭ1)j−1 + (β11)jδ(ŭ2)j

+ (β12)jδ(ŭ2)j−1 = (r8)j , (5.40)
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(α1)jδc̆j + (α2)jδc̆j−1 + (α3)jδfj + (α4)jδfj−1 + (α5)jδ(ŭ1)j + (α6)jδ(ŭ1)j−1

+ (α7)jδφj + (α8)jδφj−1 + (α9)jδtj + (α10)jδtj−1 = (r9)j , (5.41)

(γ1)jδc̆j + (γ2)jδc̆j−1 + (γ3)jδχj + (γ4)jδχj−1 + (γ5)jδfj + (γ6)jδfj−1

+ (γ7)jδğj + (γ8)jδğj−1 = (r10)j , (5.42)

where

(ξ1)j =
hj
2
− β

2
(fj + fj−1), (ξ2)j =

hj
2

+
β

2
(fj + fj−1),

(ξ3)j =
hj(1 + λ1)

4

(
(ŭ2)j + (ŭ2)j−1

)
− β

2

(
(ŭ3)j − (ŭ3)j−1

)
= (ξ4)j ,

(ξ5)j =
hj(1 + λ1)

4
(fj + fj−1) +

hjβ

2

(
(ŭ2)j + (ŭ2)j−1

)
= (ξ6)j ,

(ξ7)j =
−1

2
hjM(1 + λ1)− hj(1 + λ1)

2

(
(ŭ1)j + (ŭ1)j−1

)
= (ξ8)j ,

(ξ9)j =
hj
2
Gr = (ξ10)j , (ξ11)j = −hj

2
GrNr = (ξ12)j ,

(ξ13)j = −hj
2
GrRb = (ξ14)j , (r7)j =

hj
2
M(1 + λ1)(ŭ1)j− 1

2
+
hj
4

(1 + λ1)

(ŭ1)2
j− 1

2

− hj
4

(1 + λ1)fj− 1
2
(ŭ2)j− 1

2
− 1

4
hj(ŭ2)2

j− 1
2

− 1

2
(ŭ3)j− 1

2
+

1

2
βfj− 1

2

((ŭ3)j − (ŭ3)j−1)−Grhjθj− 1
2

+GrNrhjφj− 1
2

+GrRbhjχj− 1
2
,



(5.43)

(β1)j = 1 +
hjNbPr

4

(
c̆+ c̆j−1

)
+
hjPr

4
(fj + fj−1) +

hjNtPr

2

(
t̆+ t̆j−1

)
,

(β2)j = (β1)j − 2, (β3)j =
hjNbPr

4

(
t̆+ t̆j−1

)
= (β4)j ,

(β5)j =
hjPr

4

(
t̆j + t̆j−1

)
= (β6)j , (β7)j = −Prhj

(
(ŭ2)j + (ŭ2)j−1

)
2

= (β8)j ,

(β9)j =
hjMPrEc

2

(
(ŭ1)j + (ŭ1)j−1

)
− Prhj

2
(θj + θj−1) = (β10)j ,

(r8)j =
(
t̆j−1 − t̆j

)
− hjNbPr(c̆)j− 1

2
(t̆)j− 1

2
− hjPr(t̆)j− 1

2
fj− 1

2

− hjNtPr(t̆)
2
j− 1

2

− hjMPrEc(ŭ1)2
j− 1

2

− hjPrEc(ŭ2)2
j− 1

2

− 2hjPr(ŭ1)j− 1
2
θj− 1

2
,



(5.44)

(α1)j = 1 +
hjSc

4
(fj + fj−1), (α2)j = (α1)j − 2,

(α3)j =
hjSc

4

(
c̆+ c̆j−1

)
= (α4)j , (α5)j =

hjSc

2
(φj + φj−1) = −(γ6)j ,

(α7)j = −hjSc
2

(
(ŭ1)j + (ŭ1)j−1

)
= (α8)j ,

(α9)j = −Sr = −(α10)j ,

(r9)j =
(
c̆j−1 − c̆j

)
+ Sr

(
t̆j−1 − t̆j

)
− hjSc

4
c̆j− 1

2
fj− 1

2
+
hjSc

2
(ŭ1)j− 1

2
φj− 1

2
,


(5.45)
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(γ1)j = −peσ − pe

2
(χj + χj−1)− hjpe

4

(
ğj + ğj−1

)
,

(γ2)j = peσ − pe

2
(χj + χj−1)− hjpe

4

(
ğj + ğj−1

)
,

(γ3)j =
pe

2

(
c̆j + c̆j−1

)
= (γ4)j ,

(γ5)j =
hjLb

4

(
ğj + ğj−1

)
= (γ6)j ,

(γ7)j = 1− hjpe

4

(
c̆j + c̆j−1

)
+
hjpe

4
(fj + χj−1), (γ8)j = (γ7)j − 2,

(r10)j =
(
ğj−1 − ğj

)
+ peσ

(
c̆j − c̆j−1

)
+ pe

(
c̆j − c̆j−1)χj− 1

2

+ hjpec̆j− 1
2
ğj− 1

2
− hjLbğj− 1

2
fj− 1

2
.



(5.46)

After linearization, the following block tridiagonal system is obtained

Aδ = K, (5.47)

where

A =



[A1] [B1]

[C2] [A2] [B2]

. . .

. . .

. . .

[CJ−1] [.AJ−1.] [.BJ−1.]

[.CJ .] [.AJ .]


, δ =



[1δ1]

[1δ2]
...
...
...

[1δJ−1]

[1δJ ]


and K =



[K1]

[K2]
...
...
...

[KJ−1]

[KJ ]


.

The entries of the matrices are

[
A11

]
=



0 0 0 0 0 1 0 0 0 0

−0.5h1 0 0 0 0 0 0 0 0 0

−1 −0.5h1 0 0 0 0 −0.5h1 0 0 0

0 0 −0.5h1 0 0 0 0 −0.5h1 0 0

0 0 0 −0.5h1 0 0 0 0 −0.5h1 0

0 0 0 0 −0.5h1 0 0 0 0 −0.5h1

(ξ6)1 (ξ2)1 0 0 0 (ξ3)1 (ξ1)1 0 0 0

(β12)1 0 (β2)1 (β4)1 0 (β5)1 0 (β1)1 (β3)1 0

0 0 (α10)1 (α2)1 0 (α3)1 0 (α9)1 (α1)1 0

0 0 0 (γ2)1 (γ8)1 (γ5)1 0 0 (γ1)1 (γ7)1



,
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[
Aj

]
=



−0.5hj 0 0 0 0 1 0 0 0 0

−1 −0.5hj 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 −0.5hj 0 0 0

0 0 −1 0 0 0 0 −0.5hj 0 0

0 0 0 −1 0 0 0 0 −0.5hj 0

0 0 0 0 −1 0 0 0 0 −0.5hj

(ξ8)j (ξ6)j 0 0 0 (ξ3)j (ξ1)j 0 0 0

(β10)j (β12)j (β8)j 0 0 (β5)j 0 (β1)j (β3)j 0

(α6)j 0 0 (α8)j 0 (α3)j 0 (α9)j (α1)j 0

0 0 0 0 (γ4)j (γ5)j 0 0 (γ1)j (γ7)j



, 2 ≤ j ≤ J

[
Bj

]
=



0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.5hj 0 0 0

0 0 0 0 0 0 0 −0.5hj 0 0

0 0 0 0 0 0 0 0 −0.5hj 0

0 0 0 0 0 0 0 0 0 −0.5hj

0 0 0 0 0 (ξ4)j (ξ2)j 0 0 0

0 0 0 0 0 (β6)j 0 (β2)j (β4)j 0

0 0 0 0 0 (α4)j 0 (α10)j (α2)j 0

0 0 0 0 0 (γ6)j 0 0 (γ2)j (γ8)j



, 2 ≤ j ≤ J

[
Cj

]
=



−0.5hj 0 0 0 0 0 0 0 0 0

1 −0.5hj 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

(ξ7)j (ξ5)j 0 0 0 0 0 0 0 0

(β9)j (β11)j (β7)j 0 0 0 0 0 0 0

(α5)j 0 0 (α7)j 0 0 0 0 0 0

0 0 0 0 0 (γ3)j 0 0 0 0



, 1 ≤ j ≤ J − 1.
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Now we factorize A as

A = LU, (5.48)

where

L =



[a1]

[b2] [a2]

. . .

. . . [1aJ−11]

[1bJ1] [1aJ1]


,

U =



[I] [c1]

[I] [c2]

. . .
. . .

[I] [1cJ−11]

[I]


.

Here [ai], [bi] and [ci] are 10 × 10 matrices and [I] is the unitsmatrix of order 10.

Eq. (5.47) provides the solution for δ by the LU factorization method. The grid of size

hj = 0.001 is employed to achieve the numerical solution using ηmax = 12 and an error

tolerance of 10−6 for all instances. To ascertain the accurateness of the adopted

numerical strategy, a highly convincing comparision of the present results with

thoseereported by Ishak et al. [116] and Pal and Mondal [117] for θ′(0) is conducted

and findings are quite similar to those presented in Table 3.2.

5.4 Results and Discussions

The evolved Eqs. (5.7)-(5.10) of momentum,senergy, concentration and motile

microorganisms density along with thesboundary condition (5.11) are solved
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numerically and the computational analysis is carried out for some appropriate choices

of the physical parameters. Figs 5.2-5.18 are illustrated to scrutinize the dynamics in

the velocity profile f ′(η), temperture θ(η), concentration of nanoparticles φ(η) and

motile micro-organisms density χ(η) of the nanofluid for various values of some

important physical parameters like Deborah number β, magnetic number M , Prandtl

number Pr, Eckert number Ec, thermophoresis Nt, Brownian motion Nb, Peclet

number Pe, bioconvection Lewis number Lb, thermal stratification St, motile density

stratification Sm, Lewis number Le, micro-organisms concentration difference σ and

concentration stratification Sc. In addition Figs. 5.19-5.24 are drawn to examine the

essential and relevant quantities of physical interest, specifically the local drag

coefficient, Nusselt number, Sherwood number and motile microorganisms density rate.

Fig. 5.2 demonstrates the impact of magnetic number M on the velocity distribution

profile f ′(η). It is found that the presence of M reduces the boundary-layer thickness

as well as the velocity profile. Physically, the magnetic fieldsgenerates the Lorentz

force that gives a resistance to the fluid flow and slows down the fluid velocity. The

impact of Deborah number β on velocity profile f ′(η) is presented in Fig. 5.3. It is

noticed that the velocity and the boundary layer thickness are enhanced with the

rising values of β. As β depends on the stretching rate a, an enhancement in β causes

a rise in the fluid movement in the boundary-layer close to the surface. Consequently,

it rises the velocity as well as thickness of the boundary layer. Fig. 5.4 reveals the

impact of values of the relaxation over retardation time λ1 on the velocity profile. The

velocity f ′(η) is observed to reduce for a rise in λ1. The velocity boundary layer

thickness is also boosts whenever λ1 enhances. It has been observed that boundary

layer(momentum) diminishes for greatersvalues of λ1. Because λ1 is inverselysrelated

to the time of retardation of the non-Newtonian fluid therefore by raising λ1 we have

decrease in time of retardation and subsequently the fluid flow decreases.

Fig. 5.5 demonstrates the influence of Pr on the thermal profile θ(η). As the Prandtl

number is enhanced, the temperature profilesreduces. It is simply because that for

larger values of Pr, the thermal diffusivity of the liquid is reduced. Consequently, the

temperature profile of the fluid is reduced. Fig. 5.6 demonstrates the impact of Ec on

the thermal profile θ. From Fig. 5.6, it is seen that an escalation in Ec boosts the
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temperature field θ just because heat is accumulated in the fluid caused by a frictional

heating. Further close to the surface, thermal profile overshoots with an increment in

Ec. From Fig. 5.7, it is obvious that temperature is dropped down for rising values of

β. In physical sense, β is directly related to the time of retardation, therefore the

retardation time is boosted whenever β is raised. This rise in retardation time

contributes to reduce the temperature as well as the thermal boundary layer thickness.

Through Fig. 5.8, it is noticed that for growing values of Nt, the temperature profile

shows an increasing trend. Physically, the thermophoretic parameter enhances the

density of the thermal boundary layer, as a consequence of which the temperature

profile is increased. Fig. 5.9 shows the impact of Nb on θ. The dimensionless

temperature is increased with the escalating values of the Brownian motion parameter

Nb. It is just because a rise in Nb strengthens the random movement of the particles

as a result of which an additional heat is generated. Consequently the temperature of

the fluid enhanced. Fig. 5.10 highlights the influence of the thermal stratification

parameter St on θ(η). In general, in case of St rises, the temperature difference

between heated sheet and ambient is reduced. Consequently, the fluid temperature is

experienced to decline.

Fig. 5.11 reveals the effect of Nb on the concentration profile φ(η). It is noticed that

an enhancement in the values of Nb reduces φ(η). Generally, an increment in the

Brownian motion parameter speeds up the collision among the fluid particles, resulting

in an additional heat. As a result, the concentration profile φ(η) is reduced. Figs. 5.12

suggests the influence of Nt on the mass fraction function φ(η). It can be observed

that an intensification in the thermophoresis parameter boosts up the concentration

profile. It manifests that biggersvalues of Nt will result in an enlargement of the

thermophoresis force within the boundary-layer region that accelerates the mass

fraction of the nanoparticles. Fig. 5.13 presents the concentration profile φ(η) for

various values of Le. The concentration profile is reduced for the escalating values of

the Lewis number Le. Because the ratio of thermal diffusivity over mass diffusivity is

defined as the Lewis number, therefore the larger values of Le lessen the mass fraction

function. Consequently, the concentration profile is reduced by enhancing the value of

Le. An influence of the solutal stratification parameter Sc on the mass fraction
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function φ(η) is reflected in Fig. 5.14. It can beeclearly viewed that the concentration

distribution φ(η) shows a diminishing behavior for an enhancement in the values of the

solutal stratification parameter Sc.

Fig. 5.15 is sketched to observe the behaviour of the gyro-tactic microorganism density

profile χ(η) for different choices of the values of the Peclet number Pe. Peclet number

is defined by advective over diffusive transport rate. It is noticed from the figure that a

rise in Peclet number Pe leads to a decrement in the motile microorganism density

profile, because a rise in Pe produces an advancement in the motion of the fluid

particles which induces a decline in the thickness of gyro-tactic micro-organism. Fig.

5.16 is sketched to highlight the effect of the bio-convection number Lb on the motile

density. It is analyzed that for bigger values of the bio-convection number, the

diffusivity of micro-organisms is reduced as a result of which the density of the

gyro-tactic micro-organisms is seen to deteriorate. Fig. 5.17 shows that the

concentration of microorganisms χ(η) suffers a decreasing trend for an increment in

the micro-organism concentration difference parameter σ. It can be depicted from Fig.

5.18 that an enhancement in Sm considerably lessens the concentration difference of

the micro-organisms between the sheet and far from the sheet and so a reduction in

the density profile is observed.

Fig . 5.19 presents the behaviour of the local skin friction coefficient f ′′(0) for various

values of Deborah number β and magnetic parameter M . It can be perceived from the

figure that for rising values of the Deborah number, the skin friction coefficient shows

an enhancement. Additionally, the skin friction coefficient reveals a decreasing

behavior for enhancing values of the magnetic parameter M . Fig. 5.20 exhibits the

heat transfer rate −θ′(0) affected by the Eckert number Ec for a variety of values of β.

It is noted that a rise in β boosts the heat transfer rate which is observed to be

reduced forslarger values of Ec. Fig. 5.21 shows the variations in the mass transfer

rate −φ′(0) versus the Brownian motion parameter Nb and the thermophoresis

parameter Nt. It has been concluded that −φ′(0) is increased with an augmentation in

Nb while it is decreased for bigger Nt. Fig. 5.22 describes that the mass transfer rate

−φ′(0) is enhanced with a rise in the Brownian motion parameter Nb and Lewis

number Le. The impact of the bioconvection Lewis number Lb on the local
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micro-organism transfer rate −χ′(0) for different values of Pe is presented in Fig. 5.23.

It can be noticed that −χ′(0) is enhanced with a boost of Lb. It is due to the reason

that the convection of the motile microorganism is amplified with a rise of the

bioconvection Lewis number Lb. The local micro-organism transfer rate −χ′(0) is

reduced for the rising values of the bioconvection Peclet number Pe. From Fig. 5.24, it

is found that the local micro-organism transfer rate −χ′(0) is reduced for the greater

micro-organisms concentration difference parameter σ, however the greater values of

Lb are observed to cause an increment in the −χ′(0).

Table 5.1 is furnished with the numerical values of Nusselt number, Sherwood number

and motile microorganisms density rate for various values of the relevant parameters.

From this table, it is noticed that a boost in the magnetic number M , Brownian

motion parameter Nb, thermophoresis parameter Nt, Eckert number Ec, relaxation to

the retardation time λ1 and Lewis number Le tends to reduce the Nusselt number at

surface, though it increases for the escalating values of the Deborah number β and

Prandtl number Pr. An intensification in the Brownian motion Nb, thermophoresis

Nt, Deborah number β and Prandtl number Pr leads to diminish the Sherwood

number while it is enhanced for the raising values of the magnetic number M , Lewis

number Le, relaxation to the retardation time λ1 and Eckert number Ec. Additionally,

a growth in the magnetic number M , Lewis number Le, Eckert number Ec, Peclet

number Pe, bioconvection Lewis number Lb, relaxation to the retardation times λ1

and micro-organisms concentration difference parameter σ is noticed to raise the

motile micro-organisms density rate, however it is reduced for the enhancing values of

the Brownian motion Nb, thermophoresis Nt, Deborah number β, relaxation to the

retardation time λ1 and Prandtl number Pr.
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Fig. 5.2: IInfluence of M on f ′(η).
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Fig. 5.3: IInfluence of β on f ′(η).
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Fig. 5.4: IInfluence of λ1 on f ′(η).
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Fig. 5.5: IInfluence of Pr on θ(η).
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Fig. 5.6: IInfluence of Ec on θ(η).
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Fig. 5.7: IInfluence of β on θ(η).
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Fig. 5.8: IInfluence of Nt on θ(η).
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Fig. 5.9: IInfluence of Nb on θ(η).
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Fig. 5.10: IInfluence of St on θ(η).
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Fig. 5.11: IInfluence of Nb on
φ(η).
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Fig. 5.12: IInfluence of Nt on
φ(η).
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Fig. 5.13: IInfluence of Le on
φ(η).
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Fig. 5.14: IInfluence of Sc on
φ(η).
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Fig. 5.15: IInfluence of Pe on
χ(η).
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Fig. 5.16: IInfluence of Lb on
χ(η).
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Fig. 5.17: IInfluence of σ on χ(η).
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Fig. 5.18: IInfluence of Sm on
χ(η).
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Fig. 5.20: IInfluence of Ec on
−θ′(0) for different values of β.
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Fig. 5.21: IInfluence of Nt on
−φ′(0) for different values of Nb.
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Fig. 5.22: IInfluence of Le on
−φ′(0) for different values of Nb.
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Fig. 5.23: Variation of −χ′(0)
against Lb for different values of
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Table 5.1: Variation of −θ′(0), −φ′(0) and −χ′(0) for different sorts of parameters in
flow.

M Le Nt Nb β Ec Pr Pe Lb σ λ1 −θ′(0) −φ′(0) −χ′(0)

0.5 1 0.1 0.1 0.5 0.5 10 1 1 1 2 1.48542 0.00685 0.46113
1 0.74877 0.59253 1.55852
1.5 0.05718 1.16240 2.64117

2 0.76777 1.34107 2.96743
4 0.64896 2.44760 5.07854
6 0.58940 3.22067 6.57480

0.1 0.89215 0.47672 1.34053
0.2 0.79296 0.15883 0.86705
0.3 0.72259 0.00386 0.72025

0.1 0.89215 0.47672 1.34053
0.2 0.79296 0.15883 0.86705
0.3 0.72259 0.00386 0.72025

0.1 0.29784 0.92415 2.17335
0.5 0.89215 0.47672 1.34053
1 1.32571 0.17185 0.77225

0.4 1.18143 0.20785 0.81387
0.5 0.60226 0.74615 1.86842
0.6 0.02007 1.28732 2.93496

1 0.49346 0.69420 1.66729
2 0.65966 0.57279 1.41428
3 0.77451 0.49256 1.22175

1 0.89215 0.47672 1.34053
2 0.89260 0.47648 2.23952
3 0.89269 0.47649 3.15047

0.5 0.89215 0.47672 1.15028
1 0.89215 0.47672 1.34053
1.5 0.89215 0.47672 1.50766

0.2 0.89194 0.47689 1.01249
0.4 0.89215 0.47672 1.17366
0.6 0.89215 0.47672 1.34053

1 1.47589 0.07142 0.57956
2 0.89215 0.47672 1.34053
3 0.34586 0.88690 2.10581

5.5 Concluding Remarks

The main outcomes in this research have been listed below:

• The concentration of the motilesmicro-organisms is a reducing function of the

bioconvection Pecletsnumber, bioconvection Lewis numbersand micro-organisms

concentrationsdifference.
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• An enhancement in the Deborahsnumber results in an augmentation in the velocity

ditribution though the magnetic parameter causes it to reduce.

• The velocity as well as the local nusselt number are diminishing functions of the

magnetic number M .

• The skin frictionscoefficient and the local Nusselt number are increased with a

boast in the Deborah number.

• Sherwood number is enhanced with a growth in thermophoresis parameter but

suffers a decrement due to the Brownian motion parameter.

• The motile densitys number of micro-organisms is enhanced with a rise in the

bioconvection Lewis number, however it is reduced by enhancing the Peclet

number.

• The local Nusselt number and the local density number are noticed to rise with

an escalation in the thermophoresis as well as the Brownian motion parameters.

• The thermal, mass and motile density stratification parameters decrease the

temperature, concentration of nanoparticles and motile density of the

micro-organisms profiles.



Chapter 6

MHD Rotating Flow of Nanofluid

past a Stretching Sheet

6.1 Introduction

In this chapter, the flow of a nanofluid with H2O as the base liquid and Cu and Ag as

the nanoparticles has been considered between two rotating plates. The upper plate

has been considered porous. In addition, the bottom surface is assumed to move with

variable speed to cause the forced convection. Centripetal and Coriolis forces effects on

the rotation of the fluid are also considered. The group of non-dimensional ordinary

differentials equations is obtained by applying some appropriate transformations on the

governing partial differential equations. Numerical solution of the set of nonlinear

ODEs is obtained through the shooting technique. It is theoretically observed that the

nanofluid has a higher heat transfer rate and less drag as compared with the base fluid.

Impact of rotation makes the drag rise and diminishes the Nusselt number independent

of the various essential parameters used. Streamlines have been displayed to show the

effect of injection/suction.
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6.2 Mathematical Formulation

We contemplate an incompressible magnetohydrodynamic rotating flow of H2O based

Cu and Ag nanofluids between two plates with angular velocity1Ω [0,Ω, 0]. The upper

plates is porouss whereas the lower surface is movingg with velocity Uw = asx (a > 0) and

stretching uniformly along the x1-axis with the rate a1. The time independent velocity

field of flow is given as V [1u, v, w1], where the velocity components 1u, v and 1w are the

functions of 1x, y1 and 1z, in the 1x, y and 1z directions respectively. A uniform magnetics

field of strength 1B0 is employed along the 1y-axis such that the induced magnetic field

is ignored under the very small magnetic. Reynolds number assumption. The schematic

diagram is presented in Fig. 6.1. In case of the rotating flow, the conservative continuity
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w U
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Fig. 6.1: Geometry of the problem.

and momentum equations are given as [128]

∇ ·V = 0, (6.1)

ρnf

(
dV

dt
+ 2Ω× V1 + 1Ω× (Ω× r)

)
1

=1 divT + J ×B. (6.2)

Direction of Coriolis force 2Ω × V is perpendicular to both Ω and V . Centripetal

force is given by Ω× (Ω× r), that is perpendicular to Ω and V although acts towards

the axis of rotation. Here, T and ρnf denote the stress tensor and nanofluid density

respectively. The governing PDEs in the component form are as follows.



“ Rotating Flow of Nanofluid” 105

1
∂u

∂x
+
∂v

∂y
= 0, 1 (6.3)

1ρnf

(
u
∂u

∂x
+ v

∂u

∂y
+ 2Ωw

)
= −∂p

∗1

∂x
+ µnf1

(
∂2u

∂x2
+
∂2u

∂y2

)
− σnfB2

0u, (6.4)

1ρnf

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∗1

∂y
+ µnf1

(
∂2v

∂x2
+
∂2v

∂y2

)
, (6.5)

1ρnf

(
u
∂w

∂x
+ v

∂w

∂y
− 2Ωu

)
= µnf1

(
∂2w

∂x2
+
∂2w

∂y2

)
− σnfB2

0w, (6.6)

where p∗ = p − Ω2x2

2 is the modified pressure, B0 the applied magnetic field and µnf

the nanofluid effective dynamic viscosity. Mathematical expression for the heat transfer

profile, may be expressed ass

u1
∂T

∂x
+ v1

∂T

∂y
= αnf

(
∂2T

∂x2
+
∂2T

∂y2

)
, (6.7)

where the effective thermal diffusivity αnf =
knf

(ρcp)nf
is the ratio of the effective thermal

conductivity knf to the effectives heats capacity (ρcp)nf of the nnanofluid. Nanofluid

effectives density [129] is given by

ρnf = (1− φ)ρf + φρs. (6.8)

The effective heat capacity (ρcp)nf and the effective dynamic viscosity µnf of the

nanofluid [130] are given as

(ρcp)nf = (1− φ)(ρcp)f + φ(ρcp)s, µnf =
µf

(1− φ)2.5
. (6.9)

We consider the Yu and Choi model[130] for the effective thermal conductivity knf of

the nanofluids.
knf1
kf1

=
(ks + 2kf1) + 2φ(ks1 − kf1)(1 + β)3

(ks1 + 2kf1)− 2φ(ks1 − kf1)(1 + β)3
, (6.10)

in which β is define as the ratio of the nano-layer thickness over the particle radius.

Moreover, the electrical conductivity σnf of nanofluids [131] is as follows.

σnf1
σf1

= 1 +
3(σs1 − σf1)φ

(σs1 + 2σf1)− (σs1 − σf1)φ
. (6.11)
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Thermophysical properties of base fluid and different nanoparticles are shown in

Table6.1. In case of uniform injection/suction, the velocity component v at the upper

surface is constant because of its porosity. the temperature gradient is produced across

the fluid such that the upper surface has less temperature T0 as compared with the

lower surface temperature Th, i.e. T0 < Th.

Table 6.1: Thermophysical attributes of water,
silver and copper nanoparticles[132].

Physicalsproperties Water1 Copper1 Silver1

ρ (kg/m3) 997 8933 10,5001

k (W/mK) 0.6131 401 429
cp (J/kgK) 4179 385 235
σ (Ωm)−1 0.05 5.96 ×107 6.30 ×107

The Boundary conditions at the lower and upper surfaces are as follows.

fu = Uw = ax, fv = 0, w = 0, 1T = Th at 1y = 0,

fu = 0, v = −V0, fw = 0, 2T = T0, at 2y = h,

 (6.12)

where V0 is the velocity at the upper wall such that V0 > 0 represents the uniform suction

and V0 < 0 the uniform injection. Consider the following similarity transformation and

eliminate the pressure gradient .

u1 = 1axf ′(η), v1 = 1− ahf(η), w1 = 1axg(η), 1

θ(η) =
T − T0

Th − T0
, η1 = 1

y

h
.1

 (6.13)

The resulting non-dimensional systemsof ODEs is given1by

f ′′′′ − δ1ε1(f ′f ′′ − ff ′′′)− 2λ2ε1g
′ −
(
σnf
σf

)
δ1δ3f

′′′ = 0, (6.14)

g′′ − δ1ε1(gf ′ − fg′) + 2δ2ε1f
′ −
(
σnf
σf

)
δ1δ3g = 0, (6.15)

θ′′ + Prε2
δ1

ε3
fθ′ = 0, (6.16)
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with the following dimensionless boundarys conditions:

ff(0)! = !0, ff ′(0)! = !1, gg(0)! = !0, θ(0)! = !1,

ff(1)! = !S, gg(1)! = !0, ff ′(1)! = !0, θ(1)! = !0.

 (6.17)

Here, prime represents the derivative w.r.t η. The parameters involved in the non-

dimensional equations are given[132] by

S =
V0

ah
(−3 ≤ S ≤ 5), δ1 =

ah2

νf
(0 ≤ δ1 ≤ 5), (6.18)

δ2 =
Ωh2

νf
(0 ≤ δ2 ≤ 5), δ3 =

σf
ρfa

B2
0(1− φ)2.5 (0 ≤ δ3 ≤ 5), (6.19)

Pr =
µf (cp)f
kf

(Pr = 6.2), ε1 =

[
(1− φ) + φ

ρs
ρf

]
(1− φ)2.5, (0 ≤ φ ≤ 0.2) (6.20)

ε2 =

[
(1− φ) + φ

(ρcp)s
(ρcp)f

]
, (6.21)

ε3 =
(ks + 2kf1) + 2φ(ks1 − kf1)(1 + β)3

(ks1 + 2kf1)− 2φ(ks1 − kf1)(1 + β)3
, (6.22)

ε4 =
σnf
σf

= 1 +
1113(σs − σf )φ111

(σs + 2σf )− (σs − σf )φ
, (6.23)

wherein the physical flow parameters are S (suction/injection parameter), δ1 (Reynolds

number), δ2 (rotation parameter), δ3 (magnetic parameter), Pr (Prandtl number), and

φ (concentration of nanoparticles).

The important physical parameters, the drag coefficient Cf anddthellocal heat transfer

rate Nux, are represented as

Cf =
2τw
ρnfU2

w

, 1Nux =
1xqw1

knf (Tw − T∞)
, (6.24)

where τw = µnf (∂u∂y ) is the wall shear-stress at y = 0 and qw = − knf (∂T∂y ) is the heat

flux at wall. Using the similarity transform presented above, Eq. (6.24) can be described

as:

CfRe
0.5
x =

(1− φ+ φ ρsρf )

(1− φ)2.5
f ′′(0),

Nux
Re0.5

x

= −θ′(0),

CfRe
0.5
x =

(1− φ+ φ ρsρf )

(1− φ)2.5
f ′′(1),

Nux
Re0.5

x

= −θ′(1),

 (6.25)

where Rex = Ux
νf

is the locals Reynolds number.
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6.3 Solution Methodology

The system of nonlinear ordinary differentials Eqs. (6.14) - (6.16) alongside the end point

conditions (6.17) has been attempted numerically through the shooting method[133] for

differents variety of values of the involved parameters. We have utilized the subsequent

nomenclature for transforming the BVP to the IVP containing eight first-order system

of ODEs.

y1 = 1f, y2 = 1f ′, y3 = 1f ′′, y41 = 1f ′′′, y51 = 1g,

y61 = 1g′, y71 = 1θ, y81 = 1θ′.

 (6.26)

The coupled nonlinear flow and energy equations are turned into the subsequent system

of eight first order ODEs together with the initial conditions.

y′11 = y21 1y1(0) = 0,

y′21 = y3 1y2(0) = 1,

y′3 = y41 1y3(0) = k,

y′4 = δ1ε1(y2y3 − y1y4) + 2λ2ε1y6 +
σnf
σf

δ1δ3y4 y4(0) = l,

y′5 = y6 y5(0) = 0,

y′6 = δ1ε1(y2y5 − y1y6)− 2λ2ε1y2 +
σnf
σf

δ1δ3y5 y6(0) = m,

y′7 = y8 y7(0) = 1,

y′8 = −Prε2
δ1

ε3
y1y8 y8(0) = n.



(6.27)

We employ the Runge-Kuttas method of orders four to solves the above IVP. To improve

the values of k, l,m and n, we applys the Newton’s methods till the following criterias

is met max{|y1(1)− S|, |y2(1)− 0|, |y5(1)− 0|, |y7(1)− 0|} < ε1, where εi > 0 is a small

positives reals number. All of the numericals results in this ppaper, are accomplished

with ε1 = 110−6. For code verification, the problem of non-stretching is taken into

account first. Table 6.2 illustrates a comparison between our outcomes as well as those

of Turkyilmazoglu[134] for varying values of Ω. An excellent agreements could be noticed.

The accuracy of the presents study can also be measured from comparison of the local

Nusselt number and the local skin-friction with those reported by Hussain et al. [135]
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provided in Table 6.3 for S=-1, 0, 1 and φ = 0.

Table 6.2: Variation of −g′(0) for different values of Ω at
Re = 1 in case of S1 = S2 = 0.

Ω Turkyilmazoglu[134] Present study

1 -1.0 2.00095215 2.01638636
2 -0.8 1.80258847 1.81545510
3 -0.3 1.30442355 1.31866340
4 0.0 1.00427756 1.02386401
5 0.50 0.50261351 0.53678812

Table 6.3: Values of skin frictions coefficients and Nusselt numbers for the
differents values of rising parameters at lower/upper surface.

S φ CfRe
1/2
x at η = 0 Re−1/2

x Nux at η = 0 CfRe
1/2
x at η = 1 Re−1/2

x Nux at η = 1
Present
study

Hussain
et al. [135]

Present
study

Hussain
et al. [135]

Present
study

Hussain
et al. [135]

Present
study

Hussain
et al. [135]

-1 0 -9.54155 -9.54155 0.39001 0.39001 8.85752 8.85752 4.82296 4.82296
0 0 -4.09595 -4.09595 1.33610 1.33610 1.95289 1.95289 0.80249 0.80249
1 0 2.23565 2.23565 2.19498 2.19498 -3.81099 -3.81099 0.05776 0.05776

6.4 Results and Discussion

The numerical estimations of the local Nusselts number and local skin-frictions for

assorted values of the injection/suction parameters S, nanoparticle volume fraction φ,

Reynolds number δ1, rotation parameter δ2 and magnetic parameter δ3 are presented

in Tables 6.4 − 6.7. From Table 6.4, it is noted that an increase of φ tends to decrease

the local skin friction at lower surface and the same trend is seen for the upper surface

in case of Table 6.5. Table 6.6 illustrates that an increment in the φ tends to enhance

the local Nusselts number for S = −1 and decrease the local Nusselt number for

S = 0, 1 at the lower surface, while an opposites trends is observed for the upper

surface in case of Table 6.7.

To examine the fluid flow and heat transport, outcomes are displayed in Figs. 6.2-6.16,

portraying the variations in f ′(η) , g(η) and θ(η) inside the confined domain. Figs.
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Table 6.4: Values of Cf for the different values of rising parameters at lower
surface.

CfRe
1/2
x at η = 0

δ2 = 0, δ3 = 0 δ2 = 1, δ3 = 0 δ2 = 0, δ3 = 1 δ2 = 1, δ3 = 1
S φ δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1

-1 0.0 -9.74691-9.49301-9.80870-9.56547-9.85538-9.71522-9.88613-9.75298
0.05-7.87632-7.61975-7.95513-7.71618-7.96546-7.80349-8.00860-7.85851
0.1 -6.98925-6.73133-7.07985-6.84544-7.06927-6.89690-7.12202-6.96579

0 0.0 -4.04945-4.09874-4.05975-4.10903-4.10880-4.21588-4.14009-4.24649
0.05-3.30091-3.34892-3.31357-3.36160-3.34915-3.44399-3.38022-3.47432
0.1 -2.94594-2.99335-2.96016-3.00758-2.98893-3.07795-3.02029-3.10854

1 0.0 2.10515 2.20944 2.13204 2.23160 2.08947 2.17612 2.13125 2.21246
0.05 1.73175 1.83608 1.76344 1.86104 1.71889 1.80828 1.76535 1.84748
0.1 1.55467 1.65895 1.58925 1.68538 1.54315 1.63378 1.59231 1.67442

Table 6.5: Values of Cf for the different values of rising parameters at upper
surface.

CfRe
1/2
x at η = 1

δ2 = 0, δ3 = 0 δ2 = 1, δ3 = 0 δ2 = 0, δ3 = 1 δ2 = 1, δ3 = 1
S φ δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1

-1 0.0 8.38930 8.81410 8.43421 8.86200 8.41680 8.86177 8.46777 8.91272
0.05 6.89818 7.33552 6.95431 7.39634 6.92010 7.37142 6.98370 7.43568
0.1 6.19185 6.63770 6.25550 6.70739 6.21113 6.66791 6.28318 6.74120

0 0.0 1.97478 1.95008 1.97424 1.94977 1.96053 1.92301 1.95983 1.92251
0.05 1.60150 1.57724 1.60090 1.57700 1.59000 1.55557 1.58922 1.55511
0.1 1.42449 1.40046 1.42388 1.40031 1.41430 1.38136 1.41348 1.38096

1 0.0 -3.88685-3.78563-3.92744-3.82318-3.94514-3.89753-3.99173-3.93904
0.05-3.13976-3.04126-3.18886-3.08580-3.18699-3.13105-3.24337-3.18040
0.1 -2.78575-2.68917-2.84023-2.73796-2.82774-2.76848-2.89033-2.82262

6.2-6.4 explain a comparison between the effects of copper and silver nanoparticles for

a variety of values of φ, on f ′(η), g(η) and θ(η). When the values of φ increase in Fig.

6.2, there is an extremely small variation in f ′(η), but it may be found within the inset

of this figure that copper nanoparticles have comparatively low effect on the velocity

profile when compared with the silver nanoparticles. Fig. 6.3 illustrates the variation

in the dimensionless velocity g(η) fornvarious values of φ. It is noticed that the

copper-water nanofluid has relatively low velocity distribution than silver-water

nanofluid. Effect of various values of φ on the thermal distribution is presented in Fig.

6.4. It can be observed that with a boost in the φ, the thermal profile rises. It can also

be detected that the copper nanoparticles have almost the same effect on the

temperature profile as that of the silver nanoparticles.
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Table 6.6: Values of Nux for the different values of rising parameters at lower
surface.

Re−1/2
x Nux at η = 0

δ2 = 0, δ3 = 0 δ2 = 1, δ3 = 0 δ2 = 0, δ3 = 1 δ2 = 1, δ3 = 1
S φ δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1

-1 0.0 0.679400.390370.678990.389660.678190.386850.677810.38622
0.050.767470.546080.766770.544390.766470.542420.765810.54096
0.1 0.827910.661600.827240.659800.827120.658410.826490.65685

0 0.0 1.161731.336081.161491.335581.160491.330921.160261.33046
0.051.117631.241411.117311.240741.116741.237771.116431.23715
0.1 1.087311.177691.087031.177131.086661.175041.086391.17452

1 0.0 1.628832.194771.628762.194631.627822.191301.627752.19116
0.051.467761.914821.467581.914381.466991.911961.466821.91156
0.1 1.351061.698601.350871.698121.350481.696331.350301.69589

Table 6.7: Values of Nux for the different values of rising parameters at upper
surface.

Re−1/2
x Nux at η = 1

δ2 = 0, δ3 = 0 δ2 = 1, δ3 = 0 δ2 = 0, δ3 = 1 δ2 = 1, δ3 = 1
S φ δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1 δ1 = 0.5 δ1 = 1

-1 0.0 2.430384.822192.430704.823802.431934.830482.836465.41024
0.051.955883.418091.956323.420721.956993.424872.209273.78109
0.1 1.667022.603221.667402.605491.667802.608031.833772.83182

0 0.0 0.898720.802170.898980.802840.899640.805600.880510.78792
0.050.925190.853430.925500.854150.925870.856000.911830.84300
0.1 0.943850.889700.944110.890290.944360.891650.933830.88185

1 0.0 0.265510.057690.265680.057800.265920.058100.198710.04228
0.050.384340.129910.384650.130200.384760.130550.312890.10419
0.1 0.494910.226000.495240.226400.495290.226790.426350.19279

Figs. 6.5-6.7 demonstrate the influence of S(injection/suction parameter) on the

velocities and temperature. Figs 6.5 and 6.6 reveal the velocity distribution. For

injection/suction case, the velocity profile f ′(η) and g(η) get bigger. Additionally, it

may be seen that a deviation in the velocities is more prominent at the mean place of

the channel as compared to the proximity of the top and bottom walls of the channel.

Additionally, the extreme value of the velocity moves a little towards the lower surface

for positive S although for negative S it moves towards the upper surface. For different

values of the injection/suction parameter S, Fig. 6.7 represents the temperature
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distribution profile. It could be figured out that escalating injection/suction parameter

S, resists the thermal distribution and so it provides a drop in the thermal field.

Fig. 6.8 shows two distinct behaviors of the velocity profile for the parameter δ1 and it

is observed that velocity profile swaps its behavior at the mean position from

increasingstoodecreasing for different values of δ1. This result is generally a

consequence of the stretching of the bottom wall. The velocity distribution g(η) in Fig.

6.9 demonstrates a uniform diminishing behavior for higher values of δ1. When the

lower plate is stationary, velocity shows symmetrical behavior at central position.

However the maximum value of velocity profile moves towards the lower plate, as the

value of δ1 increases. The temperature profile θ(η) shows a diminishing behavior with

an increase in the values of δ1 (see Fig. 6.10). In case of the lower plate at rest (i.e.

δ1 = 0), the temperature profile exhibits a linear lessening behavior. Whereas

nonlinear decreasing behavior is shown for the rest of the values of δ1.

For different values of δ2, Figs. 6.11-6.13 reflect the dynamics of the velocities f ′(η1),

g(η1) and temperature field θ(η1). In Fig. 6.11, it is determined that f ′(η) inside the

confined domain shows a duals natures behavior. It is detected that the flow profile

f ′(η) shows a reducing behavior inside the domain 0 ≤ η ≤ 0.5, although theses

outcomes are entirely different inside the region 0.5 ≤ η ≤ 1. At the upper half of the

channel more dominants variations for velocity field provided by the rotating parameter

δ2. In Fig. 6.12, it is noticed that no variation in vertical velocity component when

δ2 = 0, so the problem is reduced to the steady 2D flow in the absence of the rotation

parameter. Nevertheless, it is evident that an increase in the values of δ2 decreases the

velocity distribution g(η). Additionally, a disturbance in the velocity is greater at the

central position, as compared to that near the upper and the lower surfaces. Fig. 6.13

indicates that the temperature θ(η) increases slightly as the rotation parameter δ2

rises.

Figs. 6.14-6.16 are shown for f ′(η), g(η) and θ(η) for variety of values of the magnetic

parameter δ3. Fig. 6.14 exhibits dual nature behavior for f ′(η) inside the confined

domain. It can be seen that f ′(η) shows a reducing behavior for increasing values of

the magnetic parameter δ3 inside the domain 0 ≤ η < 0.4, whereas an opposite
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behavior can be seen in the domain 0.4 ≤ η ≤ 1. In Fig. 6.15, it is found that the

velocity field g(η) has the escalating behavior for the increasing values of δ3. Moreover

it can be noted that variation in the velocity is greater at the central position, as

compared to that near the upper and lower surfaces. Fig. 6.16 suggests a slight

growing tendency in the temperature profile θ(η) w.r.t the magnetic parameter δ3.

Streamlines variations are plotted in Figs. 6.17-6.19 for different values of

injection/suction parameter S. It is noticed from the Figs. 6.17-6.19 that the gaps

between stream lines decrease with rising the magnitude of S. Injection/Suction

parameter S thus significantly alters the fluid dynamics of the stretching sheet region.

The drag coefficient of the nanofluid is examined att the lowerr plate of the channell and

results are plottedd for various parameters for both copper and silver. In Fig. 6.20, for

the injection/suction parameter S and particles volumes fraction φ, the drag coefficient

is plotted. It is revealed that the drag coefficient absolute values increases as φ increase

for S=0,-1, but it decreases for S=1. Also copper nanoparticles are found to greater

drag coefficient when compared with the silver nanoparticles. Figs. 6.21-6.23 depict

the drag coefficient w.r.t. the nanoparticles volume fraction φ. The results indicate

that it increases with an increment in δ1 and δ2 however it diminishes with an

increment of the magnetic parameter δ3. Figs. 6.24-6.27 show the variation of the drag

coefficient caused by the forcedd convectionn at the lowerr wall and the rotation at the

upper wall. Largely, friction coefficient exhibits rise w.r.t φ regardless of the other

relevant parameters. It is found that drag coefficient at the upper wall decreases with

the increase of δ1 , δ2 and δ3.

Figs. 6.28-6.31 reflect the impact of various physicals parameters on the heat transfers

coefficient. In Fig. 9(a), it is observed that for S=0 and S=1, there is a decreasingg

behaviorr in the transfers of heat w.r.t φ. But the effect of S=-1 is opposite in nature

w.r.t φ. The effect of δ1, δ2 and δ3 along with φ on the Nusselt number is plotted in

Figs. 6.29-6.31. It is seen that there is a rise in Nux with the growth in the φ.

Moreover it is determined that the silver nanoparticles have high rate of heat flow as

compared with the copper nanoparticles. Figs. 6.32-6.35 exhibit the dynamics of Nux

at the top surface for various vales of the φ. Figs. 6.33-6.35 display the decrease in the

Nux with the increasee in volume fractionn of nanoparticles φ.
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Fig. 6.9: Impact of δ1 on g(η) for
copper-water nanofluid when δ2 =

0.2, δ3 = 0, φ = 0.2, S = 5.
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Fig. 6.10: Impact of δ1 on θ(η) for
copper-water nanofluid when δ2 =

0.2, δ3 = 0, φ = 0.2, S = 5.
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Fig. 6.11: Impact of δ2 on f ′(η)
for copper-water nanofluid when
δ1 = 0.2, δ3 = 0, φ = 0.2, S = −3.
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Fig. 6.12: Impact of δ2 on g(η) for
copper-water nanofluid when δ1 =

0.2, δ3 = 0, φ = 0.2, S = −3.
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Fig. 6.13: Impact of δ2 on θ(η) for
copper-water nanofluid when δ1 =

0.2, δ3 = 0, φ = 0.2, S = −3.
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Fig. 6.14: Impact of δ3 on f ′(η)
for copper-water nanofluid when
δ1 = 2, δ2 = 2, φ = 0.2, S = −1.
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Fig. 6.15: Impact of δ3 on g(η) for
copper-water nanofluid when δ1 =

2, δ2 = 2, φ = 0.2, S = −1.
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Fig. 6.16: Impact of δ3 on θ(η) for
copper-water nanofluid when δ1 =

2, δ2 = 2, φ = 0.2, S = −1.
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Fig. 6.21: Effects of φ and δ1 on
Cf at η = 0 when δ2 = δ3 =

1.5, S = 1.
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Fig. 6.22: Effects of φ and δ2 on
Cf at η = 0 when δ1 = 2, δ3 =

1.5, S = 1.
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Fig. 6.23: Effects of φ and δ2 on
Cf at η = 0 when δ1 = 2, δ1 =

1, S = 1.
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Fig. 6.25: Effects of φ and δ1 on
Cf at η = 1 when δ2 = δ3 =
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Fig. 6.26: Effects of φ and δ2 on
Cf at η = 1 when δ1 = 2, δ3 =

1.5, S = 1.
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Fig. 6.27: Effects of φ and δ2 on
Cf at η = 1 when δ1 = 2, δ1 =

1, S = 1.
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Nux at η = 0 when δ1 = δ2 = δ3 =

0.5.
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Fig. 6.29: Effects of φ and δ1 on
Nux at η = 0 when δ2 = δ3 =

2, S = −1.
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Fig. 6.30: Effects of φ and δ2 on
Nux at η = 0 when δ1 = δ3 =

2, S = −1.
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Fig. 6.31: Effects of φ and δ3 on
Nux at η = 0 when δ1 = δ2 =

2, S = −1.
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Fig. 6.32: Effects of φ and S on
Nux at η = 1 when δ1 = δ2 = δ3 =

0.5.
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Fig. 6.33: Effects of φ and δ1 on
Nux at η = 1 when δ2 = δ3 =

2, S = −1.
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Fig. 6.34: Effects of φ and δ2 on
Nux at η = 1 when δ1 = δ3 =

2, S = −1.
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Fig. 6.35: Effects of φ and δ3 on
Nux at η = 1 when δ1 = δ2 =

2, S = −1.

6.5 Conclusions

Rotating flows and heat transfers of ccopper-water and ssilver-water nanofluid flows over

a stretching sheets is examined using their thermophysical properties. With the help of

graphs, effects of copper and silver nanoparticles on the skins friction and the Nusselts

numbers are discussed. The main findings of this investigation are as follows:
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• The volumes fractions of nanoparticles increases thee velocities and temperture of the

nanofluids for both copper and silver nanoparticles.

• The flow field is strongly influenced by the injection/suction parameter. In most of the

cases, the position of the extreme value of the velocity is effected by these parameters.

• A rise in the magnetic and rotational parameter leads to an increase in the

temperatures and f ′ velocitys profiles.

• The skin friction coefficient is highers for the copper-waterr nanofluid. as compared

to the silver-water nanofluid. against the nanoparticles volume fraction at the lower

surface while opposites trend is observedd for the upper surface.

• The rate of heat transfers increases for the silver-water nanofluids as compared to that

for the copper-water nanofluids against the nanoparticles volume fraction at the lower

surface while opposites trends is observed forr the upper surface.

• The magnetic parameter decreases the skins friction coefficients whereas it increases

the Nusselts number.



Chapter 7

Conclusion

7.1 Conclusion

Within this dissertation, a study of the boundary layer flows for viscous, Jeffrey and

tangent hyperbolic fluids over various kinds of geometries is introduced. Scale analysis

is employed to obtain the mathematically modeledaequations centered on the lawsaof

conservations. By imparting appropriate similarity transformation, mathematically

modeled set of the boundary layersequations together withsthe boundary

conditionssare turned into a group of ordinary differentialsequations. Out of the four

problems discussed in thisathesis, three are solved by Keller-box method whereas the

fourth one by theashooting method. The effect of different physical parameters onsthe

relevant variable, is displayed in tabular as well as graphical form. The outcomes so

attained are comparedawith those of the already published articles for limiting cases.

In Chapter 3, the heat transfer flow ofaMHD Jeffrey nanofluid flow duesto a stretching

surface is studied under the effects of Joulesheating and viscoussdissipation. In

Chapter 4, MHD tangent hyperbolic nanofluid flow duesto a stretching sheet is

analyzed. In Chapter 5 stratified MHD Jeffrey nanofluid flowawith gyrotactic

microorganisms past a stretching surface is investigated. Chapter 6 focuses on the heat

transfersMHD flowsof a rotating nanofluid induced by a stretchingssheet. The

following significant outcomes are noticed out of this dissertation:

121
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• For the Jeffrey and tangent hyperbolic nanofluids, the velocity field is diminished

for the escalating values of the magnetic parameter while opposites behavior is

noted forr the Newtonian nanofluid.

• The velocity of the silver-ethylene glycol Jeffrey nanofluid is less than that of the

base fluid although there is an opposite finding regarding the temperature.

• An enhancement in the Deborah number causes an augmentation in the velocity

though the Weissenberg number and magnetic parameter cause it to reduce.

• The flowsfield is strongly influenced by the injection/suction parameter. In most

of the cases, the position of the extreme value of the velocity is effected by these

parameters.

• The temperature field is an increasing function of the concentration of

nanoparticles, Brownian motionsparameter, magnetic parameter, thermophoresis

parameter andaEckert number.

• The temperature profile of Ag − H2O Jeffrey nanofluid is higher than those of

Al2O3−C2H6O2 and TiO2−C2H6O2 nanofluids and a contrary behavior is noted

in the velocity profile.

• The concentration is decreasing function of Brownian motion parameter while it

behaves the other way round for the thermophresis parameter.

• The drag coefficient and theaheat transfer rate are increased with a boast in the

Deborah number however the drag coefficient diminishes by enhancing the solid

volume fraction as well as the magnetic parameter.

• The motile density numbersof micro-organisms is enhanced with a rise in the

bioconvection Lewis number, however it is reducedaby enhancing the Peclet

number.

• The thermal, mass and motile density stratification parameters decrease the

temperature, volume fraction of nanoparticles and motile density of the

micro-organisms profiles.

• The concentration distrbution shows an opposite trend with chemical reaction

parameter for both destructive reaction (γ > 0) and constructive reaction (γ < 0)

case.
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7.2 Future Recommendations

The research study performed in the present dissertation has covered some problems

related to the heatsand mass transport of steadyaflow for viscous, Jeffrey and tangent

hyperbolic fluids with nanoparticlesspast a stretching surface. However a number of

problems related to these scenarios are still open for additional inspection. Some of

these cases are listed below.

• This study can be extended to nanofluids for turbulent flow regimes.

• The impacts ofaJoule heating andaviscous dissipation with nanoparticles

involving the two rotating disks and over a wedge are remained lacking in the

literature. Therefore the problem discussed in third chapter could be extended

for the wedge as well as rotating disks with various other well-known effects like

non-linear thermal radiation, Hall and ion-slip.

• Chapter 6 could also be extended to non-Newtonian nanofluid models for instance

Carreau-Yasuda naofluid, Oldroyd-B nanofluid, second grade nanofluid etc.

• These models could be solved for the non-linear stretching sheets, shrinking sheets,

vertical sheets, stretching cylinders and exponential stretching sheets.
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