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Abstract

In this thesis, the boundary layer flow of Newtonian and non-Newtonian fluid

models over unidirectional and bidirectional linearly stretching sheets are con-

sidered for the heat and mass transfer purpose. Upper convected Maxwell fluid

model is used as a non-Newtonian fluid model. Flow is triggered due to linearly

stretched sheet. For the enhancement of thermophysical properties of such fluids,

the concept of nanofluid is utilized. Magnetic field is applied across the fluid flow

which allows further manipulation of heat transfer and hydrodynamics character-

istics. When the strong magnetic field is applied athwart the fluid having the low

density, the conductivity of the fluid decreases because of the spiral movement of

electrons about the lines of the magnetic force and the Hall current and ion-slip

effects are produced. In addition, during the study of the nanofluids for the heat

transfer purpose, the effects of thermal radiation cannot be denied. Particularly

when there is a big temperature difference, we are encouraged to consider the

non-linear thermal radiation. Further, the effects of heat generation/absorption,

variable thermal conductivity, Joule heating, viscous dissipation and mixed con-

vection are also contemplated for different problems. Using the boundary layer

approximations, the physical flow model in the form of differential equations are

governed. The partial differential equations which are non-linear in nature are

reduced into a set of ordinary differential equations. Shooting technique with

fourth order of Runga-Kutta integration scheme is used to calculate the numerical

results of obtained differential equations. The quantities of physical significance

such as velocities, concentration, temperature, Nusselt number, Sherwood number

and skin-friction coefficients for various values of the emerging parameters, are

computed numerically and are analyzed in detail. For the validation of the results

obtained by the shooting method, a MATLAB built-in function bvp4c is also em-

ployed. Both the methods show an excellent agreement. To further strengthen the

reliability of our MATLAB code, the results presented in the already published

articles are reproduced successfully.
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Chapter 1

Introduction

1.1 Introduction

This chapter contains some basic information regarding non-Newtonian and New-

tonian fluids. A brief history and importance of the boundary layer flow of New-

tonian and non-Newtonian fluids, micropolar fluids, nanofluids, magnetohydro-

dynamics flows, Hall and ion slip effects, thermophoretic effects, porous media,

heat generation/absorption, linear and non-linear radiation for the mass and heat

transfer induced by a stretching surface is presented. The main shortcoming in

the literature, motivations and objectives of the thesis are also highlighted.

1.2 History

In resent few years, study of the non-Newtonian fluids is curiously expanded be-

cause of their extensive dimension, useful technological and industrial applications.

Shampoos, blood at low shear rate, soaps, apple sauce, mud, chyme, sugar solu-

tion, emulsion, etc are some real life examples of non-Newtonian fluids. In polymer,

chemical and biomedical industries, the importance of non-Newtonian fluids can-

not be denied. In almost all the industrial and biological fluids, the relationship

between the rate of deformation and the stress is not linear. The sole properties

1
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of all non-Newtonian fluids cannot be completely described by any concrete single

equation/relation. Due to this, researchers have suggested various mathematical

models of non-Newtonian fluids. Amongst these models, Maxwell fluids and vis-

coelastic fluids have ample range of industrial applications such as glass blowing,

extrusion of polymer sheets, manufacturing of plastic films, hot rolling, crystal

growing etc. The viscoelastic fluid models such as second order and/or Walter-B

fluid models are recommended for fluids having small level of elasticity [1]. These

fluid models violate some established rules of thermodynamics [2]. For highly vis-

coelastic polymers, second grade fluid models with high Deborah number do not

give the meaningful results [3, 4], which reduces their significance in the polymer

industry. Consequently, some more realistic fluid models, such as Oldroyd-B or

upper-convected Maxwell fluid models have been considered for the application

purpose [5]. Indeed these two models for viscoelastic fluid flow have been stud-

ied on stretching and non-stretching sheets. Ali and Ashrafi [6] have investigated

the upper convected Maxwell fluid with high Weissenberg number over a linearly

stretching sheet. Velocity and heat transfer analysis of the fluid flow is carried out

by using the shooting technique. Mushtaq et al. [7] analyzed the Sakiadis flow of

upper-convected Maxwell fluid through a stretching sheet using Cattaneo-Christov

model. Omowaye and Animasaum [8] studied the MHD UCM(upper convected

Maxwell) fluid over a melting surface subject to thermal stratification with vari-

able thermo-physical properties. They concluded that velocity profile is enhanced

for the higher values of Deborah number. Krupalakshmi et al. [9] found the nu-

merical solution of UCM fluid in the existence of dust particles over convectively

heated stretching sheet. They incorporated the magnetic field and discussed the

effects of viscous dissipation, non-linear thermal radiation, and heat source/sink.

Waini et al. [10] considered the inclined magnetic field through a continuously

stretched sheet for the study of heat and fluid flow of UCM fluid. They concluded

that the magnetic field’s strength is enhanced when the inclination of the aligned

magnetic field is high, and resultantly it increases the temperature and reduces

the velocity of the fluid. Magnetohydrodynamics 3-dimensional flow of UCM fluid
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over bidirectional sheet with non-Fourier heat flux model and heat generation/ab-

sorption effects was discussed by Saleem et al. [11]. Some recent articles regarding

the importance and significance of Maxwell fluid can be seen in literature [12–17].

The boundary layer flow over moving surfaces has a large number of applications

in engineering and industrial sectors. Sakiadis [18, 19] proposed the concept of

the boundary layer flow through a constantly stretching surface. Erickson [20]

extended his work by adding the case of mass transfer. Due to very wide range

of practical applications of stretching surface, many researchers have contributed

in this direction. Rizwan et al. [21] discussed the MHD slip flow with convective

boundary conditions over a stretching surface for carbon nanotubes. Ramesh [22]

studied the influence of the heat source on the stretching surface for the stagnation

point flow of Jeffery nanofluids. Gireesha et al. [23] analyzed the MHD Casson

fluid with chemical reaction effects for the flow, mass and heat transfer in a porous

medium.

The idea of nanofluid was first introduced by Choi [24] in 1995. The homogeneous

mixture of very small particles of size 10−9m and base fluid is called nanofluid.

Usually Al, Cu,Ag, T iO2, Al2O3 etc are used as nanoparticles with base fluids

like oil, ethylene glycol, water, etc. While using the nanofluids, the maximum

possible thermal properties are targeted to achieve with the least feasible con-

centration by systematic dispersion and substantial suspension of nanoparticles

in the base fluids [25, 26]. These fluids are fit for enhancing the thermophysical

properties, for example, thermal diffusivity, convective heat transfer coefficient,

viscosity, and thermal conductivity when compared with those of the base liq-

uids like ethylene, tri-ethylene glucose, water or other coolants, polymer solutions

and biofluids as expatiated by Choi [27] and Wong and Leon [28]. These fluids

possess the distinguished physical and chemical properties and can easily pass

through the microchannels and capillaries and don’t block the flow. Fuel cells,

hybrid-powered instruments, automotive, food handling industry and refrigera-

tion are few pertinent examples of nanofluids. Buongiorno [29] considered the

Brownian diffusion and thermophoresis slip mechanism for the relative velocity of

the base fluid and nanoparticles. He proposed a mathematical model involving
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thermophoresis and the Brownian motion effects to examine the thermal effects

of the host fluid. Later on, another model based on the solid volume fraction of

nanoparticles was introduced by Tiwari and Das [30] for the heat transfer enhance-

ment of the host fluid. Ashikin et al. [31] addressed the issue of heat transfer for

the MHD Maxwell nanofluid flow past a vertical permeable sheet. Mansur et al.

[32] studiedlthe magnetohydrodynamic stagnation pointlflow of alnanofluid over

a stretching/shrinking sheetlwith suction. Noreen et al. [33] analyzed the Hall

effects onlthe flow of pressure driven pseudoplastic fluid having viscous dissipation

effects. Threeldimensional mixed convection viscoelastic nanofluid flow was ana-

lyzed by Hayat et al. [34] analytically. Inlanother article, Hayat et al. [35] studied

the unsteady magneto-nanofluid flowlwith double stratification over an inclined

stretching sheet. Shehzad et al. [36] worked on the Maxwell mixed convection

nanofluid flow with doubly stratified heat generation/absorption. Very recently,

Hayat et al. [37] investigated analytically thelMHD flow of Maxwell nanofluid

with thermal radiation and heat generation/absorption effects over a stretched

sheet. Alsaedi et al. [38] analyzed the gyrotactic micro-organisms stratified bio-

convective flow of MHD nanofluid. Inclined magnetic field islapplied along with

the additional effects of viscous dissipationland Joule heating. Study about the

water based nanofluid flow with carbon nanotubes through a porous space with

homogeneous-heterogeneous reactions and convective boundary conditions overla

stretching cylinder was studiedlby Hayat et al. [39]. They concluded that single

wall carbon nanotubes have more heat transfer coefficient as compared to mul-

tiwall carbon nanotubes. Mustafa et al. [40] presented the solutions of rotating

flowlof nanofluid over a convectivelyl heated exponentially deforming sheet numer-

ically. They used the zero mass flux condition for the nanoparticles. Hussanan

et al. [41] investigated the time dependent freel convection flow of micropolar

nanofluid overla vertical plate using the Laplace transformation method. They

considered five different types of nanoparticles, which are aluminumloxide, tita-

niumloxide, copperloxide, ironloxide and grapheneloxide with three different types

of base fluids, which are kerosene oil, water and engine oil.

Eringen [42, 43] forthput a theory of micropolar fluids based on the characteristic
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of inertial properties of the structure particles which undergo rotation. The micro-

scopic effects and micro motion of structure fluid elements describe the micropolar

fluids. In mathematical modeling, the interaction of microrotation field and macro

velocity field can be portrayed by a new material constant in classical Newtonian

fluids. Eringen’s fluid model based on the classical Navier-Stokes equations is

a special case for the incompressible and viscous fluids. These models are also

suitable for the study of colloidal fluids flow, polymers, lubricants, cerebro fluids,

animal blood, liquid crystals, real fluids with suspensions and ferro fluids etc., for

which the classical Navier-Stokes theory is inadequate. In the micropolar fluid

equation, a gyration parameter and microrotation vectors appear along with the

classical Navier-Stokes equations. Mabood et al. [44] examined the non-Darcian

magneto-micropolar fluid over an extending sheet with thermal radiation and non-

uniform heat source/sink impacts. Mirzaaghaian and Ganji [45] used differential

transformation method to investigate the heat and fluid flow of micropolar fluid

through permeable walls. Ali et al. [46] figured the analytical solutions of the

oblique stagnation point flow of micropolar fluid over a flat plate. They utilized

the modified Hiemenz flow which happens in the hjkns − skms boundary layer

close orthogonal stagnation point flow. Exact solutions of mixed convective MHD

micropolar fluid over a porous deformable plate with heat generation/absorption

were calculated by Turkyilmazoglu [47]. Shehzad et al. [48] analyzed the unsteady

mircopolar fluid flow through a convectively heated stretching sheet for heat and

fluid flow. Realizing the significance and applications of micropolar fluids, many

other researchers have also worked in this area [49–54].

The analysis of the effect of magnetohydrodynamics on the heat and mass trans-

fer of fluid flowing over a stretching sheet in the presence of viscous dissipation

and Joule heating is of great importance due to its extensive use in industrial

and engineering sector. Amin [55] considered the MHDlmixed convection flowl

over a non-isothermal cylinder with the additional effectslof Joule heating and vis-

cousldissipation in a porous medium. Alam et al. [56] discussed the Joulelheating

and viscous dissipation on an inclined isothermal permeable surface with MHD

and thermophoresis effects. MHD naturallconvection flow over a porouslmedium
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with the effects of viscous dissipation and Joule heating on a moving vertical plate

was studied for the chemical reaction and Soret effects by Ibrahim and Reddy [57].

Hayat et al. [58] analyzed the incompressible unsteady 3-dimensional MHD flow

overlan exponentially stretchinglsheet with Joulelheating and viscous dissipation.

Mushtaq et al. [59] used the non-linear radiative heat flux on three dimensional up-

per convected Maxwell fluid for the analysis of fluid and heat flow on bidirectional

stretching sheet.

Magnetic nanofluids is another imperative subbranch of nanofluids as it has mo-

mentous contribution in number of industrial and engineering fields [60]. Hydro-

dynamic characteristics and heat transfer rate is further manipulated when the

magnetic field is applied across the flow of nanofluids. Often aluminum oxide and

magnetite are oppressed during the formulation of such fluids. Sheikholeslami et

al. [61] investigated the force convection heat transfer of magnetic nanofluids flow

in a lid driven semi-annulus enclosure. They used the two phase model for the sim-

ulation of nanofluids. They concluded that higher values of Lewis and Hartmann

number decrease the rate of heat flux, but it is augmented for the larger values of

Reynolds number. Abbasi et al. [62] considered the boundary layer flow of two

dimensional Jeffrey nanofluid with hydromagnetic effects over a linearly stretched

sheet.

Mostly, Hall current and ion-slip effects are neglected because of their ignorable

contribution while applying Ohm’s law for small magnetohydrodynamics [63].

However, these have strong effect when the magnetic field is high [64], due to

the strong electromagnetic force. Hall effect plays an important role when the

Hall parameter is high. Hall parameter is the ratio of electron cyclotron frequency

to atom-electron collision frequency. So the Hall current effect is high when the

electron-atom collision frequency is low [63]. Steady MHD boundary layer flow

with free convection over a porous inclined plate was explored by Alam et al. [65]

with variable suction and Soret effect in the existence of Hall current. Eldahab

[66] studied the free convective MHD flow along with the Hall effects through a

stretching sheet. Thamizsudar [67] discussed the impactlof Hall current and ro-

tationlon the heatland mass transfer of MHD fluid flowing over an exponentially
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accelerated vertical plate. Nabil et al. [68] investigated the Hall effects on peri-

staltic flow of third order fluid with porosity factor. One dimensional unsteady

MHD micropolar fluid flow with the effect of Hall current was analyzed by Islam

et al. [69]. It is known that the mass of ions is much greater than the mass of

electrons, and ultimately their motion will be different from each other. As a re-

sult of different velocities of electrons and ions, their diffusion velocities will also

be different. As the current density mainly depends upon the diffusion velocity,

the current density of electrons is much higher than that of ions. However if the

magnetic field is high, then the diffusion velocity of ions is not negligible. The

combined effect of diffusion velocities of ions and electrons is called ion-slip effect.

Hall and ion-slip effects are involved in many engineering technologies such as Hall

sensors, Hall accelerators, construction of centrifugal and turbines, etc. Attia et

al. [70] discussed the heat transfer of Couette flow of a dusty fluid with ion-slip

effect and uniform suction and injection. MHD mass transfer problem by free

convection flow of an ionized incompressible viscous micropolar fluid across the

infinite vertical plate under the action of Hall current and ion-slip parameter has

been discussed by Anika et al. [71]. Ziya Uddin et al. [72] considered the Hall and

ion-slip effection MHD boundary layer flow of a micropolar fluid past a wedge.

Motsa et al. [73] studied the micropolar fluid with chemical reaction and Hall and

ion-slip effects with thermal diffusivity.

Applied and theoretical research in porous media for the flow, heat and mass

transfer has gained an immense attention during last few years. The usefulness

of porous media can be seen in many research areas and has a wide range of

engineering applications such as geothermal reservoirs, geophysics, exploration of

petroleum, thermal insulation engineering, water movements in geothermal reser-

voirs, and gas fields etc [74]. Hayat et al. [75] have made a comparative study

about the MHD flow of viscous nanofluids with convective boundary conditions

over an exponentially stretching sheet embedded in a porous medium. Silver, cop-

per, titanium oxide and alumina are considered as nanoparticles. Thermally radia-

tive mixed convective flow of nanofluid with magnetic field and porous medium in

a stretchable channel was investigated numerically by Rauf et al. [76]. They have
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further incorporated the effects of viscous dissipation, Brownian motion and ther-

mophoresis in the energy equations. Nadeem and Muhammad [77] focus on the

flow of viscous fluid, saturated with porous medium over a stretching sheet with

stratification and Cattaneo-Christov heat flux model. They concluded that higher

values of porosity parameter will enhance the velocity field. Sheikholeslami [78]

presented the MHD natural convection flow of viscous nanofluid flow in a porous

curved cavity. He applied the innovative numerical approach namely CVFEM.

It was found that temperature profile is enhanced for the higher values of Darcy

number.

Heat is transferred due to difference in temperature. If there is a large temper-

ature difference, then assumption of constant thermal conductivity will lead to

a noticeable error. Thus to minimize this type of error, it is necessary to con-

sider a temperature dependent variable thermal conductivity within the thermal

boundary layer region. The exploration of heat absorption/generation becomes in

demand due to capricious applications in scientific instrumentation and nuclear

reactor engineering. Many engineering procedures such as fossillfuel combustion,

solar power technology, space vehicle re-entry and astrophysical flows occur at

extremely high temperature. Radiative heat transfer in these processes perform

a very meaningful role. When there is a significant difference of temperature be-

tween the ambient and the surface temperature, the effects of thermal radiation

gain a significant importance. But a linear radiation is not valid for high tem-

perature difference. To overcome this obstacle, the effects of non-linearthermal

radiation are considered. In non-linear thermal radiation, the problem is governed

by three parameters which are the radiation parameter, Prandtl number, and the

temperature ratio parameter, whereas in linearized Rosseland approximation, only

the effective Prandtl number is involved.

Thermophoresis is a process in which the fluid particles move towards a cooler

region from the warmer [79]. This movement occurs because molecules from the

warmer region having high kinetic energy impinge with the molecules having low

energy in the cooler region. The velocity gained by the particles is thermophoretic

velocity and the force experienced by the particles is called the thermophoretic
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force [80]. Particles deposition due to thermophoresis was measured accurately by

Tsai et al. [81]. Applications of thermophoresis can be seen in aerosol technol-

ogy, radioactive particle expulsion in the nuclear reactor safety simulation, heat

exchanger corrosion and deposition of silicon thin film. Layers of glass (SiO2 and

GeO2) are built up by the deposition of particles on the tube wall with the help

of modified chemical vapour deposition process. For very small sized chips, the

potential failures increase due to the micro contamination by the particle depo-

sition. The process of thermophoresis can be used to inhibit the deposition of

small particles on the electronic chips for the purpose of efficiency. The ther-

mophoretic transport of particles in one-dimensional flow for the thermophoretic

velocity was studied first time by Goldsmith and May [82]. A theoretical analysis

of thermophoresis of aerosol particles in the laminar flow over a horizontal flat

plate was presented by Goren [83]. Since then, many researchers have considered

thermophoresis as an effective parameter in a variety of flow problems for different

types of fluids [84–88].

The aforementioned literature survey specifies that up till now a enormous litera-

ture regarding Newtonian and non-Newtonian fluid flow over a stretching sheet is

presented. The importance of heat and mass transfer over the sheet has a number

of practical applications in industrial and engineering sectors. Nanotechnology has

introduced a new type of fluid which has higher physical and thermal properties

as compared to the ordinary fluid. Due to the insertion of nanoparticles in the

base fluid, the rate of heat and mass transfer is enhanced. In spite of all the

earlier works done by various researchers, there is still a lot to do on boundary

layer flow of magneto-nanofluid flow and heat and mass transfer, specially in the

presence of strong magnetic field, Hall and ion-slip effects and non-linear thermal

radiation. The purpose of this thesis is to explore the combined effects of MHD

and nanofluid flow over the stretching sheet for the flow, heat and mass transfer of

Newtonian and non-Newtonian liquids. Upper convected Maxwell fluid is consid-

ered as a non-Newtonian fluid. Along with nanofluid and MHD effects, we have

also considered Hall and ion slip effects, variable thermal diffusivity, heat gener-

ation/absorption effects, non-linear thermal radiation, thermophoretic effects and
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different boundary conditions for the different geometries. Similarity factors are

utilized to change the partial differential equations into ordinary differential equa-

tions and these are solved numerically by implementing the shooting technique

with Runge-Kutta integration scheme. It is a very efficient method with very low

computational cost. Results are further compared with MATLAB built-in func-

tion bvp4c. Numerical results are plotted graphically and are discussed in detail

for the fluid flow, heat and mass transfer. The effects of prominent parameters

on skin friction, local Nusselt number and Sherwood number are discussed with

the help of numerical results arranged in the form of tables. Results are further

compared with previously published results in the limiting case.

The remaining thesis layout is as follows:

In Chapter 2, some fundamental laws governing the mathematical equations of

fluid flow are derived. Continuity equation, momentum equations, energy equation

and concentration equations are discussed which are based on the law of conser-

vation of mass, Newton’s second law of motion, first law of thermodynamics and

Fick’s law respectively. Tensor analysis is carried out for the upper convected

Maxwell fluid. After this, the numerical scheme i.e., the shooting method is ex-

plained briefly with an example.

Chapter 3 examines the boundary layer flow of micropolar nanofluidlover a lin-

early stretching porous sheet. Effects of magnetohydrodynamics, Hall and ion-slip

are also discussed. During the formulation of energy equation, the concept of

variable thermal conductivity is also considered. This Chapter is published in

“Bulletin of the Polish Academy of Sciences, Technical Science”, Vol. 65, No. 3,

2017, DOI: 10.1515/bpasts-2017-0043.

In Chapter 4, the effect of Hall current on boundary layer flow of magneto-

nanofluid flow with mixed convection and non-linear heat generation/absorption is

analyzed numerically. Non-linear differential equations arelsolved by the shooting

method.

In Chapter 5, three dimensional flow of upper convected Maxwell fluid over a

bidirectional linearly stretching sheet with the effects of magnetohydrodynamics
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and non-linear thermal radiation is investigated. Again shooting method is used to

solve the problem. This chapter is published in “Alexandria Engineering Journal”,

(2017) doi.org/10.1016/j.aej.2017.03.039.

Chapter 6 is comprised of the discussion on the MHD three dimensional flow of

upper convected Maxwell fluid over linearly stretching sheet. Non-linear thermal

radiation along with viscous dissipation, thermophoretic effect and Joule heating

are also considered. This chapter is accepted in “Canadian Journal of Physics”

(2017), https://doi.org/10.1139/cjp-2017-0250.

Chapter 7 consists of the conclusion of the thesis and the future outlook.



Chapter 2

Basic Governing Laws and

Solution Methodology

In this chapter the basic concept of Boundary layer thickness, basic conservation

laws of linear momentum, mass, energy and concentration diffusion are discussed.

The constitutive relationship of upper-convected Maxwell fluid is given. Basic idea

of shooting method is elaborated with an example. MATLAB built-in function

bvp4c is highlighted briefly.

2.1 Boundary Layer [89]

“Skin friction drag is due to the viscous shearing that takes place between the

surface and the layer of fluid immediately above it. This occurs on surfaces of

objects that are long in the direction of flow compared to their height. Such

bodies are called streamlined. When a fluid flows over a solid surface, the layer

next to the surface may becomes attached to it (it wets the surface). This is called

the no slip condition. The layers of the fluid above the surface are moving so there

must be shearing taking place between the layers of the fluid. The shear stress

acting between the wall and the first moving layer next to it is called the wall

shear stress and denoted τw.

12
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The result is that the velocity of the fluid u increases with height y. The boundary

layer thickness δ is taken as the distance required for the velocity to reach 99% of

u0. This layer is called the Boundary layer and δ is the boundary layer thickness.

Figure 2.1 shows how the velocity u varies with height y for a typical boundary

layer. In a pipe, this is the only form of drag and it results in a pressure and

Figure 2.1: Boundary layer thickness over a flat surface

energy lost along the length. A thin flat plate is an example of a streamlined

object. Consider a stream of fluid flowing with a uniform velocity u0. When the

stream is interrupted by the plate (Figure. 2.2) the boundary layer forms on both

sides. The diagram shows what happens on one side only. The boundary layer

thickness δ grows with distance from the leading edge. At some distance from the

leading edge, it reaches a constant thickness. It is then called a fully developed

boundary layer. The Reynolds number for these cases is defined as

(Re)x =
ρu0x

ν
(2.1)

x is the distance from the leading edge. At low Reynolds numbers, the bound-

ary layer may be laminar throughout the entire thickness. At higher Reynolds

numbers, it is turbulent. This means that at some distance from the leading edge

the flow within the boundary layer becomes turbulent. A turbulent boundary
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Figure 2.2: Boundary layer thickness in a pipe

layer is very unsteady and the streamlines do not remain parallel. The boundary

layer shape represents an average of the velocity at any height. There is a region

between the laminar and turbulent section where transition takes place.”

2.2 Fundamental Laws

2.2.1 Mass Conservation (Continuity Equation)[90]

The expression for the law of conservation of mass is as follows:

“For any fluid, conservation of mass is expressed by the scalar equation

∂ρ

∂t
+∇. (ρV) = 0, (2.2)

where ρ is density of the fluid and V is the velocity field. Hence, a velocity

profile represents an admissible (real) flow, if and only if it satisfies the continuity

equation. For incompressible fluids, Eq. (2.2) reduces to

∇.V = 0 (2.3)

In Cartesian coordinates
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.4)
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Here, u, v and w are the velocity components along x, y and z direction respec-

tively.”

2.2.2 Momentum Equation (Conservation Law of Linear

Momentum) [90]

The law of conservation of momentum is stated as follows: “This law states that

the total linear momentum of the system is conserved. It is derived from Newton’s

second law. The mathematical form of momentum equation for any fluid is

∂

∂t
(ρV) +∇. [(ρV) V]−∇.τ1 − ρg = 0. (2.5)

The Cauchy stress tensor is defined as:

τ1 = −pI + S, (2.6)

the momentum equation takes the form

ρ

(
∂V

∂t
+ V. (∇V)

)
= ∇. (−pI + S) + ρg, (2.7)

where, g is the body force, p the pressure, S the extra stress tensor and µ the

dynamic viscosity. The Cauchy stress τ1 in the tensor form is expressed as

τ1 =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 . (2.8)

Eq. (2.7) is a vector equation and can be decomposed further into three scalar

components by taking the scalar product with the basis vectors of an appropriate

orthogonal coordinate system. By setting g = −g∇z, where z is the distance from

an arbitrary reference elevation in the direction of gravity, Eq. (2.7) can also be

expressed as
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ρ
DV

Dt
= ρ

(
∂V

∂t
+ V. (∇V)

)
= ∇. (−pI + S) +∇ (−ρgz) , (2.9)

where D/Dt is the substantial derivative. The momentum equation then states

that the acceleration of a particle following the motion is the result of a net force,

expressed by the gradient of pressure, viscous and gravity forces. In Cartesian

coordinates, using the velocity field V = [u (x, y, z, t) , v (x, y, z, t) , w (x, y, z, t)] ,

the momentum equation can be expressed as

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ ρbx,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

+ ρby,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

+ ρbz.


(2.10)

In which, τxx, τxy, τxz, τyx, τyy, τyz, τzx, τzy, and τzz denote the components of Cauchy

stress tensors and bx, by and bz denote the components of the body force.”

2.2.2.1 Magnetohydrodynamics [91]

“In MHD, the plasma is considered as an electrically conducting fluid. Govern-

ing equations are equations of fluid dynamics and Maxwell’s equations. A self-

consistent set of MHD equations connects the plasma mass density ρ, the plasma

velocity V, the thermodynamic (also called kinetic) pressure P and the magnetic

field B. In strict derivation of MHD, one should neglect the motion of electrons

and consider only heavy ions.

The momentum equation in the presence of magnetic field as a body force can be

described as

ρ

(
∂V

∂t
+ (V∇) V

)
= −∇P + j×B. (2.11)

The vector j is the electric current density which can be expressed through the

magnetic field B. Start with Ohm’s law,

j = σE′, (2.12)
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where σ is electric conductivity (the physical quantity inversed to the resistivity)

and E′ is the electric field experienced by the fluid element in its rest frame. When

the plasma is moving with respect to the external magnetic field at the velocity

V, applying the Lorentz transformation we obtain

E′ = E + V ×B. (2.13)

Now, Eq. 2.12 can be re-written as

1

σ
j = E + V ×B. (2.14)

In the case of perfect conductivity, σ →∞, we have

E = −V ×B. (2.15)

Calculating the curl of the electric field E and using one of Maxwell’s equation,

∇× E = −∂B

∂t
, (2.16)

we can exclude the electric field and obtain the 4-th MHD equation

∂B

∂t
= ∇× (V ×B) . (2.17)

To close the set of MHD equations, we have to express the current density j through

the magnetic field B. Consider the other Maxwell’s equation,

∇×B = µ0j +
1

c2
∂E

∂t
. (2.18)

From Ohm’s law, we had E = V×B. Consequently, we can estimate the electric

field as E ∼ V0B, where V0 is a characteristic speed of the process. Neglecting ∂E
∂t

terms in Eq. 2.18:

∇×B = µ0j, (2.19)
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or

j =
1

µ0

(∇×B) . (2.20)

In addition, the magnetic field B must satisfy the condition ∇.B = 0. Thus, the

closed set of MHD equations is

ρ

(
∂V

∂t
+ (V∇) V

)
= −∇P +

1

µ0

(∇×B)×B, (2.21)

and
∂B

∂t
= ∇× (V ×B) , (2.22)

is the equation for magnetic induction.”

2.2.3 Energy Equation (Conservation Law of Energy)

The law of conservation of energy based on the first law of thermodynamics is

stated as follows:

“The conservation law for the energy equation physically describes that the to-

tal energy of the system remains constant. It is derived from the first law of

thermodynamics. In mathematical form, it can be expressed as follows

ρ

[
∂U

∂t
+ V.∇U

]
= [τ1 : ∇V + p∇.V] +∇ (k∇T )± Ĥr, (2.23)

where U is the internal energy per unit mass, and Ĥr is the heat of reaction. By

invoking the definition of the internal energy, dU ≡ CvdT, Eq. (2.23) becomes,

ρCv

[
∂T

∂t
+ V.∇T

]
= [τ1 : ∇V + p∇.V] +∇ (k∇T )± Ĥr. (2.24)

For heat conduction in solids, i.e., when V = 0, ∇.V = 0, and Cv = C, the

resulting equation is

ρC
∂T

∂t
= ∇ (k∇T )± Ĥr. (2.25)

For phase change, the latent heat rate per unit volume must be added as a source

term to the energy equation.”
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2.2.4 Equation of Mass Transport

“It describes that the total concentration of the system under observation remains

constant. It is derived from Fick’s second law which stated as the rate of accu-

mulation (or depletion) of concentration within the volume as proportional to the

local curvature of the concentration gradient. Mathematically, in the absence of

chemical reaction, we have
dC

dt
= −∇.j. (2.26)

In which the accumulation is dC
dt

is proportional to the diffusivity D and the second

derivative (or curvature) of the concentration. From Fick’s first law we have

j = −D∇C. (2.27)

Thus equation of mass transport becomes

dC

dt
= D∇2C, (2.28)

where C represents the concentration of specie, D the mass diffusivity and j the

mass flux”.

2.2.5 Boundary Layer Equation of Upper-Convected

Maxwell Fluid [92]

It is a non-Newtonian fluid model and the simplest subclass of the rate type fluids

which elaborates the features of the linear viscoelastic fluids having the relaxation

time. This model is the generalization of Maxwell fluid model. The inclusion of

Oldroyd time dependent derivative deals for the large deformation in the fluid

flow. An example is the polymer solutions of low molecular weight. The extra

stress tensor S for a Maxwell fluid is

(
1 + λ1

D

Dt

)
S = µA1, (2.29)
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in which λ1 is the relaxation time, D
Dt

the covariant differentiation, µ denotes

the kinematic viscosity and A1 the first Rivlin-Erickson tensor. The first Rivlin-

Erickson tensor can be defined as

A1i = i (grad V) i+ i (grad V)′ , i (2.30)

where ′ (prime) denotes the matrix transpose. Here

A1 =


2∂u
∂x
l l ∂u

∂y
l + l ∂v

∂x
l l ∂u

∂z
l + l ∂w

∂x

∂u
∂y
l + l ∂v

∂x
l l2∂v

∂y
l l ∂v

∂z
l + l ∂w

∂y

∂u
∂z
l + l ∂w

∂x
l l ∂v

∂z
l + l ∂w

∂y
l l2∂w

∂z

 . (2.31)

The covariant derivative for a tensor S of rank two, a vector a1 and a scalar b1, is

expressed by

DS

Dt
=
∂S

∂t
+ (V.∇) S− S (grad V)′ − (grad V) S, (2.32)

Da1
Dt

=
∂a1
∂t

+ (V.∇) a1 − (grad V) a1, (2.33)

Db1
Dt

=
∂b1
∂t

+ (V.∇) b1. (2.34)

Multiplying equation of motion for the Maxwell fluid by
(
1 + λ1

D
Dt

)
, we have

iρ

(
1i+ iλ1

D

Dt

)
DV

Dt
i = i−

(
1i+ iλ1

D

Dt

)
∇pi+ i

(
1i+ iλ1

D

Dt

)
(∇.S) . (2.35)

Applying
D

Dt
(∇.) = ∇. D

Dt
, (2.36)

invoking the value of S in Eq. (2.35) and using Eq. (2.36) we have

iρ

(
1i+ iλ1

D

Dt

)
DV

Dt
= −

(
1i+ iλ1

D

Dt

)
∇pi+ i∇.

(
1i+ iλ1

D

Dt

)
S, (2.37)

using (2.29) and ignoring the pressure gradient, the above equation can be written

as

iρ

(
1i+ iλ1

D

Dt

)
DV

Dt
= iµ∇.A1, (2.38)
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Component form of the two-dimensional steady flow of Maxwell fluid can be rep-

resented by the following expression:

iu
∂u

∂x
i+ iv

∂u

∂y
i+ iλ1

(
u2
∂2u

∂x2
i+ iv2

∂2u

∂y2
i+ i2uv

∂2u

∂x∂y

)
= iν

(
∂2u

∂x2
i+ i

∂2u

∂y2

)
(2.39)

iu
∂v

∂x
i+ iv

∂v

∂y
i+ iλ1

(
u2
∂2v

∂x2
i+ iv2

∂2v

∂y2
i+ i2uv

∂2v

∂x∂y

)
= iν

(
∂2v

∂x2
i+ i

∂2v

∂y2

)
(2.40)

By employing the boundary layer assumptions, the equation of linear momentum

for the three-dimensional flow of Upper-Convected Maxwell fluid is as follows:

u
∂u

∂x
l+lv

∂u

∂y
l+lw

∂u

∂z
l+lλ1


u2 ∂

2u
∂x2
l + lv2 ∂

2u
∂y2
l

+l2uv ∂2u
∂x∂y

l + lw2 ∂2u
∂z2
l

+l2vw ∂2u
∂y∂z

l + l2wx ∂2u
∂z∂x

 = ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

(2.41)

u
∂v

∂x
l+lv

∂v

∂y
l+lw

∂v

∂z
l+lλ1


u2 ∂

2v
∂x2
l + lv2 ∂

2v
∂y2
l

+l2uv ∂2v
∂x∂y

l + lw2 ∂2v
∂z2
l+

l2vw ∂2v
∂y∂z

l + l2wx ∂2v
∂z∂x

 = ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

(2.42)

2.3 Solution Methodology

We have used two different techniques to solve the non-linear ordinary differential

equations. The shooting method and a MATLAB built-in function bvp4c.

2.3.1 Shooting Method [93]

“The problems formulated in this thesis are solved numerically by the shooting

method with the integration scheme of Runge-Kutta method of order four. To

solve the transformed non-linear ordinary differential equations with the help of

the shooting method, first convert the higher order ODEs to the system of first

order non-linear differential equations. To solve the system of the first order

equations, their respective initial conditions are needed. In case of the boundary
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value problems, their must be some missing initial conditions. In the shooting

method, the missing initial conditions are assumed, and the differential equations

are then integrated numerically as an initial value problem. The accuracy of the

assumed missing initial condition is then checked by comparing the calculated

values of the dependent variables at the terminal point with their given value

there, for only those dependent variables whose values at the terminal point are

known. If the difference exists, another value of the missing initial condition must

be chosen systematically. This process is continued until the agreement between

the calculated value and the given condition at the terminal point is within a

specified degree of accuracy. Newton’s method is used for the purpose of the

updation of the initial guess. Due to the sensitivity of the initial guesses in the

Newton’s method, some time this method diverges due to the singular Jacobian

matrix. There is no general hard and fast rule for the successful choice of initial

guesses. All the considered problem in this thesis are easily solved and no such

type of hurdle is faced because of the initial guesses. The shooting method, has

been explained with the help of considering a general second order differential

boundary value problem,

y′′(x) = f (x, y, y′(x)) , (2.43)

subject to the boundary conditions

y (0) = 0, y (L) = A. (2.44)

By denoting y by y1 and y′1 by y2, Eq. (2.43) can be written as the following

system of first order equations.

y′1 = y2, y1(0) = 0,

y′2 = f (x, y1, y2) , y1(L) = A.

 (2.45)
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Denote the missing initial condition y2(0) by s, to have

y′1 = y2, y1(0) = 0,

y′2 = f (x, y1, y2) , y2(0) = s.

 (2.46)

Now the problem is to find s such that the solution of the IVP (2.46) satisfies the

boundary condition y(L) = A. In other words, if the solutions of the initial value

problem (2.46) are denoted by y1 (x, s) and y2 (x, s), one should search for that

value of s which is an approximate root of the equation.

y1 (L, s)− A = φ (s) = 0. (2.47)

To find an approximate root of Eq. (2.47) by the Newton’s method, the iteration

formula is given by

sn+1 = sn −
φ (sn)

φ (sn) /ds
, (2.48)

or

sn+1 = sn −
y1 (L, sn)− A
dy1 (L, sn) /ds

. (2.49)

To find the derivative of y1 with respect of s, differentiate (2.46) with respect to s.

For simplification, use the following notations,

dy1
ds

= y3,
dy2
ds

= y4. (2.50)

This process results in the following IVP.

y′3 = y4, y3(0) = 0,

y′4 =
∂f

∂y1
y3 +

∂f

∂y2
y4, y4(0) = 1.

 (2.51)

Now, solving the IVP (2.51), the value of y3 at L can be computed. This value is

actually the derivative of y1 with respect to s computed at L. Setting the value of

y3 (L, s) in Eq. (2.49), the modified value of s can be achieved. This new value of

s is used to solve the Eq. (2.46) and the process is repeated until the value of s is

within a described degree of accuracy.” The case of more than one missing initial
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conditions, has been explained with the help of the following example.

Example

Consider the following fourth order boundary value problem.

y′′′′ −
(
1− x2

)
y′′2 + 5y2 = 0, (2.52)

with boundary condition

iy (0) i = i1, i iy′ (0) i = i0, i iy′′ (1) i = i− 2, i iy′′′ (1) i = i− 3.i (2.53)

To convert Eq. (2.52) into a system of first order equations, the following notations

has been introduced.

iyi = iy1, i iy′i = iy2, i iy′′i = iy3, i iy′′′i = iy4.i (2.54)

The given BVP, is then converted to the following form.

iy′1i = iy2, i iy1 (0) i = i1,

iy′2i = iy3, i iy2 (0) i = i0,

iy′3i = iy4, i iy3 (1) i = i− 2,

iy′4i = i
(
1− x2

)
y23 − 5y21, i iy4 (1) i = i− 3.


(2.55)

Denote the missing initial conditions y3(0) and y4(0) by s and t respectively, to

have the following IVP

iy′1i = iy2, i iy1 (0) i = i1,

iy′2i = iy3, i iy2 (0) i = i0,

iy′3i = iy4, i iy3 (0) i = is,

iy′4i = i
(
1− x2

)
y23 − 5y21, i iy4 (0) i = it.


(2.56)

Now, solving the above IVP by using the RK-4 method over the interval [0,1].

The solution obtained by the RK-4 is then analyzed for y′′(1) and y′′′(1). If these

solutions meet the boundary condition given in Eq. (2.53), then the problem is
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solved. However, usually this does not happen in the first go. So we have to refine

the initial guesses iteratively. For this purpose we use the Newton’s method to

solve the following system of non-linear algebraic equations,

y3 (x, s, t) + 2 = 0,

y4 (x, s, t) + 3 = 0,

 (2.57)

The iterative scheme of Newton’s method for the system of non-linear equations

(2.56), is given by

 sn+1

tn+1

 =

 sn

tn

−
 ∂

∂s
y3 (1, sn, tn) ∂

∂t
y3 (1, sn, tn)

∂
∂s
y4 (1, sn, tn) ∂

∂t
y4 (1, sn, tn)

−1  y3 (1, sn, tn) + 2

y4 (1, sn, tn) + 3


(2.58)

For simplification, use the following notations,

∂y1
∂s
≡ y5,

∂y2
∂s
≡ y6,

∂y3
∂s
≡ y7,

∂y4
∂s
≡ y8,

∂y1
∂t
≡ y9,

∂y2
∂t
≡ y10,

∂y3
∂t
≡ y11,

∂y4
∂t
≡ y12,

 (2.59)

To find the Jacobian matrix, differentiating the system of Eqs. (2.56) first with

respect to s and then with respect to t and using the new notations, we get

iy′5i = iy6, i iy5 (0) i = i0, i

iy′6i = iy7, i iy6 (0) i = i0, i

iy′7i = iy8, i iy7 (0) i = i1, i

iy′8i = i2
(
1− x2

)
y3y7 − 10y1y5, i iy8 (0) i = i0, i

iy′9i = iy10, i iy9 (0) i = i0, i

iy′10i = iy11, i iy10 (0) i = i0, i

iy′11i = iy12, i iy11 (0) i = i0, i

iy′12i = i2
(
1− x12

)
y3y11 − 10y1y9, i iy12 (0) i = i1.i



(2.60)

Solve the above system of equations (2.60) by the RK-4 method and put the

computed values of y7, y11, y8 and y12 in (2.58). This gives new modified initial

guesses. This procedure is repeated until we achieved the solutions with required
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accuracy. The result obtained by the shooting method are shown in Figure. 2.3

Figure 2.3: Solution of example

2.3.2 Matlab Solver bvp4c

“It is a MATLAB built-in function [94], which can be used to solve the system of

non-linear boundary value problems. It is a finite difference code that implements

the three-stage Lobatto IIIa formula. This is a collocation formula and the collo-

cation polynomial provides a C1-continuous solution that is fourth-order accurate

uniformly in [a,b]. Mesh selection and error control are based on the residual of

the continuous solution. It has the following Matlab syntax:

sol = bvp4c(@odefun,@bcfun, solinit, options).

Further details can be found in [95]”. Many researchers use this package to solve

the BVPs, see for example [32, 96, 97].



Chapter 3

Boundary Layer

Magneto-Micropolar Nanofluid

Flow with Hall and Ion-slip

Effects using Variable Thermal

Diffusivity

3.1 Introduction

The aim of this Chapter is to examine the effect of nanofluid on heat and mass

transfer in the presence of Hall current and ion-slip effects on an electrically con-

ducting magneto-micropolar fluid flowing on a linearly stretched sheet. Generally,

two types of models are used for the simulation of the convective heat transfer of

the nanofluids; the single phase and the double phase models. In the single phase

modeling, a combination of the base fluid and the nanoparticles is considered as a

homogenous mixture and their properties are studied collectively whereas in the

two phase model, the behaviour and properties of the nanoparticles are consid-

ered separately from those of the base fluid. In the present Chapter, a single

27
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phase model has been considered. A variable thermal diffusivity, is considered in

the formation of the energy equation. The dynamics of the flow is described by

the conservation laws of mass, momentum, energy and concentration. The gov-

erning set of non-linear PDEs is reduced into a system of ODEs and then solved

numerically through the shooting technique. The quantities of physical signif-

icance such as velocity, concentration, temperature, Nusselt number, Sherwood

number and skin-friction coefficient for various values of the emerging parameters,

are computed and elaborated.

3.2 Problem Formulation

Figure 3.1: Geometry of the Problem.

A steady, viscous and incompressible, electrically conducting magneto-micropolar

nanofluid flow over a horizontal porous plate with no slip effect stretching linearly

with velocity ux along the x−axis through a porous medium with the additional

effects of viscous dissipation has been considered. A strong constant magnetic

field of intensity B0 in the direction along y−axis is also assumed. Due to this

strong magnetic field strength, the electrically conducting fluid has the Hall and

ion-slip effects which gives rise a force on the fluid in the z-direction and hence the

flow becomes three dimensional. Further, the effects of Joule heating and thermal

radiation are ignored.
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Elgazery [98], generalized the Ohm’s law for the Hall current in the form

iJi = i
σ

1i+ i (ω/νe)
2

(
Ei+ i (V ×B) i− i 1

ene
(J×B)

)
, (3.1)

where ω the electron cyclotron and νe is the electron-atom collision frequency.

When the ratio ω/νe is very large then the phenomena is called “ion-slip”. By

considering all the fluid properties constant except thermal diffusivity and applying

Boussinesq approximations, the governing equations for the considered problem

become [73]

i
∂u

∂x
i+ i

∂v

∂y
i = i0, i (3.2)

iu
∂u

∂x
i+ iv

∂u

∂y
i = iν

∂2u

∂y2
i+ i

K0

ρ

∂N

∂y
i− i σB2

0

ρ (α2
ei+ iβ2

e )
(αeui+ iβew) i− i µ

ρk∗
u,

(3.3)

iu
∂w

∂x
i+ iv

∂w

∂y
i = iν

∂2w

∂y2
i+ i

σB2
0

ρ (α2
ei+ iβ2

e )
(βeui− iαew) i− i µ

ρk∗
w, i (3.4)

i
G1

K0

∂2N

∂y2
i− i2Ni− i∂u

∂y
i = i0, i (3.5)

iu
∂T

∂x
i+ iv

∂T

∂y
i = i

∂

∂y

(
α
∂T

∂y

)
i+ i

µ

ρcp

[(
∂u

∂y

)2

i+ i

(
∂w

∂y

)2
]
i

+ i
1

ρcp

σB2
0

(α2
ei+ iβ2

e )

(
u2i+ iw2

)
i+ iτ

[
DB

(
∂T

∂y

∂C

∂y

)
i+ i

DT

T∞

(
∂T

∂y

)2
]
, (3.6)

iu
∂C

∂x
i+ iv

∂C

∂y
i = iDB

∂2C

∂y2
i+ i

DT

T∞

∂2T

∂y2
, i (3.7)

where ν the kinematic viscosity, u, v, and w are the velocity components along x, y

and z-axis respectively, ρ the density of the fluid, K0 the vortex velocity, N the

micro-rotation component, σ the electric conductivity, βe the Hall current param-

eter, µ the dynamic viscosity, B0 the magnetic field strength, k∗ the permeability

of porous medium, G1 the spin gradient viscosity, α the thermal diffusivity, C and

T are the fluid concentration and temperature respectively, cp the specific heat

at constant pressure, τ the ratio of effective heat capacity of nanoparticles to the

effective heat capacity of base fluid, DB the Brownian diffusion coefficient, DT the
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thermophoresis coefficient, C∞ and T∞ are the ambient fluid concentration and

temperature respectively. The last terms of Eq. (3.3) and (3.4) appears due to

the porosity of the medium, ∂N
∂y

in Eq. (3.3) represents the micropolar effects of

particles. The corresponding boundary conditions for the governing PDEs are as

follows.

iui = iuxi = ibx, i ivi = i− Vw, i iNi = i0, i iwi = i0, i

iT i = iTw, i iCi = iCw, i at iyi = i0, i

iu→ i0, i iw → i0, i iN → i0, i iT → iT∞, i iC → C∞.i as iy → i∞.i

 (3.8)

Here, Vw is the velocity of suction (> 0) or injection (< 0), αe = 1 + βiβe, where

βi is ion-slip parameter, b is a dimensional constant with unit (time)−1.

The dependence of thermal diffusivity on temperature is given by

α = α0 (1 + β2θ) . (3.9)

Here, α0 is thermal diffusivity at wall temperature. The similarityltransformations

which arelused to convert thelpartial differential equations intolordinary differen-

tial equations are frequentlylused in many research articles [99, 100]

iηi = i

√
b

ν
y, iiui = ibxf ′ (η) , iivi = i−

√
bνf (η) , iiwi = i

√
bνg (η) , i

iNi = i

√
b3

ν
xh (η) , iiθ (η) i = i

T i− iT∞
Twi− iT∞

, iφ (η) i = i
Ci− iC∞
Cwi− iC∞

.i

 (3.10)

Using the above mentioned similarity transformations, Eqs. (3.2) and (3.3) are de-

rived in detail. For this purpose, we first convert the following derivatives involved

in Eqs. (3.2) - (3.3) into the dimensionless form:

∂u

∂x
=

∂

∂x
(bxf ′ (η)) ,

∂u

∂x
= bf ′ (η) ,

∂v

∂y
= −
√
bν

∂

∂y
(f (η)) = −

√
bνf ′ (η)

√
b

ν
,
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∂v

∂y
= −bf ′ (η) ,

∂u

∂y
=

∂

∂y
(bxf ′ (η)) ,

∂u

∂y
= bxf ′′ (η)

√
b

ν
,

∂2u

∂y2
= bx

√
b

ν
f ′′′ (η)

√
b

ν
=
b2x

ν
f ′′′ (η) ,

∂N

∂y
=

√
b3

ν
x
∂

∂y
(h (η)) =

√
b3

ν
xh′ (η)

√
b

ν
,

∂N

∂y
=
b2x

ν
h′ (η) .

By putting the above derivatives into the continuity equation, it is observed to be

satisfied identically as follows:

∂u

∂x
+
∂v

∂y
= bf ′ (η)− bf ′ (η) = 0.

The momentum equation is converted into the dimensionless form as follows:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
Ko

ρ

∂N

∂y
− σB2

o

ρ (α2
e + β2

e )
(αeu+ βew)− µ

ρk∗
u,

⇒ bxf ′ (η) bf ′ (η)−
√
bνf (η) bxf ′′ (η)

√
b

ν
= ν

b2x

ν
f ′′′ (η) +

Ko

ρ

b2x

ν
h′ (η)

− σB2
o

ρ (α2
e + β2

e )

(
αebxf

′ (η) + βe
√
bνg (η)

)
− µ

ρk∗
bxf ′ (η) ,

⇒ b2xf ′2 (η)− b2xf (η) f ′′ (η) = b2xf ′′′ (η) + b2x
Ko

νρ
h′ (η)

− σB2
obx

ρ (α2
e + β2

e )

(
αef

′ (η) + βe

√
ν

bx2
g (η)

)
− µ

ρk∗
bxf ′ (η) ,

⇒ f ′2 (η)− f (η) f ′′ (η) = f ′′′ (η) +
Ko

νρ
h′ (η)−

σB2
o

ρb (α2
e + β2

e )

(
αef

′ (η) + βe

√
ν

bx2
g (η)

)
− µ

bρk∗
f ′ (η) ,

⇒ f ′2 (η)− f (η) f ′′ (η) = f ′′′ (η) +N1h
′ (η)

− M

(α2
e + β2

e )

(
αef

′ (η) +
βe√
Re

g (η)

)
− 1

kp
f ′ (η) ,
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⇒ f ′′′ (η)− f ′2 (η) + f (η) f ′′ (η) +N1h
′ (η)

− M

(α2
e + β2

e )

(
αef

′ (η) +
βe√
Re

g (η)

)
− 1

kp
f ′ (η) = 0.

Other partial differential equations can also be transformed into the ordinary dif-

ferential equations by the same manner,

.g′′.+ .fg′.+ .
.M

(α2
e + β2

e )

(
βe
√
Ref ′.− .αeg

)
− 1

kp
g. = .0, (3.11)

.Gh′′.− .2h.− .f ′′. = .0, . (3.12)

.θ′′.+
β2

1.+ .β2θ
θ′2.+ .

P rEc

1.+ .β2θ

[
f ′′2.+ .

g′2

Re
.+ .

M

(α2
e.+ .β2

e )

(
f ′2.+ .

g2

Re

)]
.

+
Pr

1.+ .β2θ
fθ′.+ .

P rNb

1.+ .β2θ

(
θ′φ′.+ .

Nt

Nb
θ′2
)
. = .0, . (3.13)

.φ′′.+ .
Nt

Nb
θ′′.+ .LePrfφ′. = .0.. (3.14)

The transformed boundary conditions are:

f (0) = ifw, iif
′ (0) = i1, iig (0) = i0, iih (0) = i0, iiθ (0) = i1, iiφ (0) = i1,

f ′ (η)→ i0, iig (η)→ .0, iih (η)→ i0, iiθ (η)→ i0, iiφ (η) → i0.,as η →∞

 .

(3.15)

Here, θ, f, h, g and φ are dimensionless temperature, stream functions along

x & y-axis direction, micro-rotation component, dimensionless concentration of

fluid. N1, Nb, M, Re, Nt, kp, G, β2, Ec, Le, and Pr, are coupling constant

parameter, Brownian motion parameter, Magnetic parameter, Reynolds number,

thermophoresis parameter, permeability parameter, Micro rotation parameter,

fluid nature dependent parameter, Eckert number, Lewis number, and Prandtl

number respectively and these are defined as;

N1 =
K0

ρν
, M =

σB2
0

ρb
, G =

G1b

K0ν
, Pr =

ν

α
, fw =

Vw√
bν
,

Ec =
(bx)2

cp (Tw − T∞)
, kp =

k∗bρ

µ
, Re =

bx2

ν
, γ =

kν

(bx)2
,

Nb =
τDB

ν
(Cw − C∞), Nt =

DT

T∞

τ

ν
(Tw − T∞), Le =

α

DB

, β2 =
kw − k∞
kw

.


(3.16)
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The quantities concerning the engineering purpose, such as the skin-friction coef-

ficient in x− and z− directions, local Sherwood number and Nusselt number, are

illustrated as

Cfx =
τwx

ρbx
√
bν
, Cfz =

τwz

ρbx
√
bν
,

Nux =
−
(
∂T
∂y

)
y=0

(Tw − T∞)
√

b
ν

, Shx =
−
(
∂C
∂y

)
y=0

(Cw − C∞)
√

b
ν

.


(3.17)

Here, the local wall shear stresses are defined as

τwz =

[
(µ+K0)

(
∂u

∂y

)
+K0N

]
y=0

, τwz =

[
(µ+K0)

(
∂w

∂y

)]
y=0

. (3.18)

The local Nusselt number, skin friction and Sherwood number, in the dimensionless

form are:

Cfx = (1 +N1) f
′′ (0) , Cfz = (1 +N1) g

′ (0) ,

Nux = −θ′ (0) , Shx = −φ′ (0) .

 (3.19)

3.3 Solution Methodology

The resulting system of non-linear ODEs (??-3.14) subject to the conditions (3.15)

has been explored numerically through shooting method [93], which is used fre-

quently by many researchers to obtain the solution of such type of problems [101–

105] for numerous values of different parameters. To apply the shooting method,

the system of non-linear ODEs (??-3.14) is converted to the following system of

first order ODEs:

.y′1. = .y2, .y1 (0) . = .fw.

.y′2. = .y3, .y2 (0) . = .1.

.y′3. = .y22 − y1y3 −N1y7 +
M

α2
e + β2

e

(
αey2 +

βe√
Re

y4

)
+

1

kp
y2, .y3 (0) . = .%1.

.y′4. = .y5, .y4 (0) . = .0.


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.y′5. = .y1y5 −
M

α2
e + β2

e

(
βe
√
Rey2 − αey4

)
+

1

kp
y4, .y5 (0) . = .%2.

.y′6. = .y7, .y6 (0) . = .0.

.y′7. = .
1

G
(2y6 + y3) , .y7 (0) . = .%3.

.y′8. = .y9, .y8 (0) . = .1.

.y′9. = .
−1

βy8 + 1

 βy9 + PrEc
(
y23 + 1

Re
y25
)

+

PrEcM
α2
e+β

2
e

(
y22 + 1

Re
y24
)

+ Pry1y9

 .y9 (0) . = .%4.

+
PrNb

1 + β2y8

(
y8y11 +

Nt

Nb
y29

)
,

.y′10. = .y11, .y10 (0) . = .1.

.y′11. = .− LePry1y11 −
Nt

Nb
y′9. .y11 (0) . = .%5.


Here, f is denoted by y1, g by y4, h by y6, θ by y8 and φ by y10. After choosing the

five missing conditions, the above system of first order ODEs, is solved by using

the Runge Kutta method of order four. To refine the missing initial conditions %1,

%2, %3, %4 and %5, the Newton’s iterative scheme is used which requires another

system of 55 first order ODEs along with the initial conditions. This new system

is then solved by using the RK-4 method. The solution of this IVP is then used to

construct the Jacobian matrix involved in the Newton’s iterative method. On the

basislof a number of computationallexperiments, we are considering [0, 8] as the

domainlof the problemlinstead of [0, ∞). The stopping criteria for the iterative

process is set as

max {|y2 (8)− 1| , |y4 (8)| , |y6 (8)| , |y8 (8)| , |y10 (8)|} < ε. (3.20)

All the computations are made with the tolerance of ε = 10−6, using a verified

Matlab code. To strengthen the results obtained by shooting method, we have

also solved this system of ODEs with MATLAB built-in function bvp4c.
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3.4 Results and Discussions

This section is devoted to the detailed discussions of the numerical solutions of

our problem. In Table 3.1, a comparison between the present results obtained

by shooting method and bvp4c in the absence of nanofluid, with those given by

Motsa and Shateyi in [73] has been presented. Motsa and Shateyi have used

successive linearization method together with the Chebyshev collocation method.

An excellent agreement is observed between these results, which strengthens our

methodology.

To seelthe effect of physical parameterlon skin-friction coefficient, local Nusselt

and Sherwood number, numerical results are obtained and are tabulated. From

Table 3.2, it is noticed that the skin friction coefficient Cfx in x- direction in-

creases with the increasing value of magnetic parameter M , coupling parameter

N1 and mass transfer parameter fw, whereas it is a decreasing function for in-

creasing values of βe, βi and kp. Table 3.2 also shows the variation of parameters

for skin-friction coefficient in z-direction. It is observed that Cfz increases with

the increment of magnetic parameter M , material parameter N1, Hall current pa-

rameter βe and permeability parameter kp. However by increasing fw and βi, the

skin friction decreases. In Table 3.3, the effect of magnetic parameter M , mass

transfer parameter fw, Brownian motion parameter Nb, Eckert number Ec, ther-

mophoresis parameter Nt, Lewis number Le, ion-slip parameter βi, Hall current

parameter βe, variable thermal diffusivity parameter β2 and Prandtl number Pr

on local Sherwood number and Nusselt number are shown. From the table it is

analyzed that M,Ec, Le,Nb,Nt and β2 have decreasing effect on Nusselt number,

whereas it increases for the increasing values of fw, P r, βe and βi. Furthermore, the

magnitude of local Sherwood number −φ′(0) increases when M, fw, Ec, Le, Pr,Nb

and β2 are increased while it decreases by increasing βi, βe and Nt.

To see the insight impact of various emerging parameters on tangential velocity

f ′(η), lateral velocity g(η), angular velocity h(η), temperature θ(η) and nanopar-

ticle concentration profiles φ(η), Figures 3.2 to 3.23 are plotted. Figure 3.2 and

3.3 depict the effect of Hall parameter βe on velocity components along x− and
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z− directions respectively. Due to the involvement of Hall parameter, the Lorentz

force which is a resistive force in nature, enforced by the magnetic field, is reduced,

and therefore the effective conductivity decreases. Hence an increase in the Hall

parameter will increase the velocity component but this increase in the velocity

is very small. Similarly the transverse velocity also increases with the enhancing

value of βe. The temperature distribution θ(η) increases by increasing the variable

thermal diffusivity parameter β2 and this fact is shown in Figure 3.4.

Figure 3.5 gives the effect of permeability parameter kp on the velocity f ′(η). As

shown in figure, stream velocity f ′(η) is an increasing functioniof permeability

parameter. This is because of the fact that the holes of the porous medium be-

come large resulting in the reduction in the resistive force. A similar behavior is

observed for the lateral and angular velocity profile against the increasing values

of permeability parameter kp as shown in Figures 3.6 and 3.7 respectively. Figures

3.8 and 3.9 show the effect of ion-slip parameter βi on the horizontal and lateral

velocity respectively. In the presence of Hall and ion-slip parameters, the veloc-

ity of the flow increases and consequently the boundary layer thickness increases.

Hence the horizontal velocity f ′(η) increases with an increment in βi. An oppo-

site behavior is observed for the velocity across the plate as it decreases by the

enhancement of ion-slip parameter. Figure 3.10 shows the effect of variation in

the mass transfer parameter fw on velocity with suction if fw > 0 and injection if

fw < 0. It is recorded that the momentum boundary layer thickness reduces with

an increase in fw and the flow becomes more uniform within the boundary layer.

Figure 3.11 shows the reverse relation between the nanoparticle concentration pro-

file φ(η) and the Lewis number Le, as concentration decreases with an increase in

the Lewis number. As we know that the Lewis number is inversely proportional to

the Brownian diffusion coefficient, so an increase in the Lewis number will reduce

the Brownian diffusion which affect the concentration of the fluid.

Figures 3.12 and 3.13 show the typical profiles of tangential and lateral velocities

for the magnetic parameter M . By increasing the magnetic parameter M , a drag

force known as the Lorentz force also increases which resultantly reduces the ve-

locity of the fluid. As we are considering an electrically conducting micropolar
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nanofluid with the strong magnetic field in the direction normal to the flow, so

an increase in the magnetic field will increase a force in the z−direction, which

resultantly increases the lateral velocity g(η), as shown in Figure 3.13. To see the

variation in temperature against the increasing value of Prandtl number Pr, Figure

3.14 is plotted. It is observed that for increasing value of Prandtl number, there

is a thinner temperature boundary layer thickness. Fluids having larger Prandtl

number have lower thermal diffusivity and hence the temperature decreases.

The coupling parameter or the material parameter N1 has decreasing effects on

velocity component as the induced velocity g(η) decreases with the increasing

value of N1 as shown in Figure 3.15. Influence of Brownian motion parameter

Nb on the temperature and concentration profile is studied in Figures 3.16 and

3.17. From these figures, we notice that an enhancement in the values of Nb

gives rise to the temperature, while it decreases the nanoparticle concentration

profile. The random motion of the particles produced due to the collision of the

suspended nanoparticles with the particles of the base fluid is called Brownian

motion. Due to the increment in Brownian motion effect, the kinetic energy of

the molecules increases and hence the temperature increases. Figures 3.18 and

3.19 illustrate the effect of Nt on temperature and nanoparticles concentration

profiles. One can notice that temperature and concentration fields increase with

an enhancement in Nt. Thermophoresis parameter plays an important role in

temperature flow. Thermophoresis force enhances when Nt is increased. This

increment in Nt will tend to accelerate the nanoparticles from hot region to cold

region and as a result the boundary layer thickness and temperature increase.

From Figure 3.20, it is witnessed that the temperature profile is enhanced with

an enhancement in the Eckert number. Increase in Ec increases the friction force

between the fluid particles which resultantly stores the heat energy and hence

the temperature increases. An enhancement in the micro-rotation parameter will

definitely reduce the angular velocity of the fluid away from the wall, however it

has an increasing effect near the surface and this phenomenon is depicted in Figure

3.21. In Figure 3.22, the influence of the material parameter N1 on the stream

velocity is portrayed. The tangential velocity is slightly reduced as we move away
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from the stretching sheet for η > 1. The Reynolds number Re on lateral velocity

can be seen in Figure 3.23 which shows an increase in the lateral velocity.

-(1 +N1) f
′′(0) (1 +N1) g

′(0)

Motsa Present Motsa Present

M βe βi N1 Shooting bvp4c Shooting bvp4c

1 5 0.4 0.2 1.563229 1.563229 1.563229 0.085991 0.085989 0.085992

2 1.610774 1.610775 1.610774 0.164225 0.164221 0.164226

3 1.659723 1.659725 1.659723 0.235543 0.235536 0.235544

4 1.709225 1.709228 1.709226 0.300893 0.300882 0.300893

5 1.758729 1.758731 1.758729 0.361156 0.361143 0.361156

0.3 0 1.658124 1.658124 1.658124 0 0 0

2 1.555081 1.555081 1.555081 0.048860 0.048859 0.048860

4 1.535302 1.535302 1.535301 0.031719 0.031718 0.031719

6 1.528942 1.528942 1.528941 0.022920 0.022919 0.022920

0 1.524377 1.524377 1.524377 0.035105 0.035104 0.035105

0.5 1.532225 1.532225 1.532224 0.024303 0.024303 0.024303

1 1.532737 1.532737 1.532737 0.014833 0.014833 0.014833

1.5 1.531103 1.531103 1.531103 0.009320 0.009319 0.009320

0 1.287381 1.286723 1.286723 0.020386 0.022352 0.022352

0.2 1.532225 1.531435 1.531435 0.024303 0.026647 0.026648

0.5 1.891326 1.890341 1.890339 0.030063 0.032963 0.032964

1.0 2.467535 2.466231 2.466227 0.039313 0.043106 0.043107

Table 3.1: Comparison of the present results with those of Motsa and Shateyi
[73] for Re=1.0, G=2.0, kp = 2.0, fw = 0.1, Pr = 0.72, Ec = 0.02, Le = 0.014

and β2 = 0.5.
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Shooting bvp4c

M fw N1 βe βi kp (1 +N1)f
′′(0) (1 +N1)g

′(0) (1 +N1)f
′′(0) (1 +N1)g

′(0)

0.3 0.1 1.0 0.1 0.1 0.2 4.914013 0.008673 4.914014 0.008675

0.5 4.980245 0.014255 4.980249 0.014256

0.7 5.045650 0.019686 5.045653 0.019687

1.0 5.142261 0.027565 5.142264 0.027570

0.3 0.2 5.017363 0.008657 5.017367 0.008660

0.3 5.122830 0.008638 5.122833 0.008640

0.4 5.230402 0.008613 5.230405 0.008617

0.1 0.5 3.756071 0.006500 3.756072 0.006504

0.8 4.456686 0.007801 4.456690 0.007806

1.0 4.914012 0.008672 4.914014 0.008675

1.0 0.2 4.912004 0.017002 4.912008 0.017006

0.3 4.908831 0.024690 4.908836 0.024692

0.4 4.904715 0.031510 4.904722 0.031511

0.1 3.0 4.906403 0.007410 4.906409 0.007412

4.0 4.899860 0.006403 4.899865 0.006405

5.0 4.894167 0.005586 4.894174 0.005590

0.1 0.1 6.636182 0.006348 6.636183 0.006349

0.2 4.914012 0.008673 4.914014 0.008675

0.3 4.191970 0.010273 4.191973 0.010276

Table 3.2: Numerical values of Cfx, Cfz, when Re = 1.0, G = 0.8, Le =
2.0, Ec = 0.02, P r = 0.72, Nb = 0.3, Nt = 0.7, β2 = 0.8.
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Shooting bvp4c

M fw Ec Le Pr Nb Nt βe βi β2 −θ′ (0) −φ′ (0) −θ′ (0) −φ′ (0)

0.3 0.1 0.02 2.0 0.72 0.3 0.7 0.1 2.0 0.8 0.151872 0.462619 0.151872 0.462620

0.5 0.150651 0.462813 0.150653 0.462815

0.7 0.149471 0.463007 0.149472 0.463009

1.0 0.147762 0.463295 0.147765 0.463297

0.2 0.174790 0.497349 0.174793 0.497351

0.3 0.199190 0.533777 0.199192 0.533779

0.4 0.224815 0.573860 0.224820 0.573862

0.05 0.136794 0.496608 0.136799 0.496611

0.1 0.111673 0.553274 0.111676 0.553276

0.2 0.061412 0.666653 0.061414 0.666655

1.0 0.154774 0.224936 0.154777 0.224938

1.5 0.153114 0.341616 0.153121 0.341618

2.0 0.151868 0.462617 0.151872 0.462620

1.0 0.173673 0.563014 0.173677 0.563017

1.5 0.205772 0.773660 0.205775 0.773662

2.0 0.225211 1.024993 0.225215 1.024995

0.5 0.141812 0.528838 0.141816 0.528841

0.7 0.132350 0.556662 0.132353 0.556664

0.9 0.123450 0.571710 0.123451 0.571711

0.6 0.155107 0.471947 0.155111 0.471949

0.8 0.148688 0.456202 0.148692 0.456204

1.0 0.142498 0.451987 0.142501 0.451989

0.2 0.152195 0.462487 0.152197 0.462489

0.3 0.152432 0.462407 0.152434 0.462411

0.4 0.152611 0.462360 0.152613 0.462362

3.0 0.152032 0.462546 0.152036 0.462547

4.0 0.152177 0.462490 0.152179 0.462491

5.0 0.152290 0.462446 0.152292 0.462448

0.6 0.163807 0.425330 0.163811 0.425332

0.8 0.151869 0.462619 0.151872 0.462620

1.0 0.142231 0.494938 0.142235 0.494941

Table 3.3: Numerical values of Nux and Shx for various values of Pr, fw, kp,
Re, G, Ec, M , βe, βi, N1.
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Figure 3.2: Influenceoof βe onif ′(η).

Figure 3.3: Influenceoof βe onig(η).
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Figure 3.4: Influenceoof β2 oniθ(η).

Figure 3.5: Influenceoof kp onif ′(η).
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Figure 3.6: Influenceoof kp onig(η).

Figure 3.7: Influenceoof kp onih(η).
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Figure 3.8: Influenceoof βi onif ′(η).

Figure 3.9: Influenceoof βi onig(η).
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Figure 3.10: Influenceoof fw onif ′(η).

Figure 3.11: Influenceoof Le oniφ(η).
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Figure 3.12: Influenceoof M onif ′(η).

Figure 3.13: Influenceoof M onig(η).
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Figure 3.14: Influenceoof Pr oniθ(η).

Figure 3.15: Influenceoof N1 onig(η).
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Figure 3.16: Influenceoof Nb oniθ(η).

Figure 3.17: Influenceoof Nb oniφ(η).
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Figure 3.18: Influenceoof Nt oniθ(η).

Figure 3.19: Influenceoof Nt oniφ(η).
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Figure 3.20: Influenceoof Ec oniθ(η).

Figure 3.21: Influenceoof G onih(η).
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Figure 3.22: Influenceoof N1 onif ′(η).

Figure 3.23: Influenceoof Re onig(η).
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3.5 Concluding Remarks

In this Chapter, the effect of Hall current and ion-slip effects with variable thermal

diffusivity on magneto-micropolar nanofluid on a stretching porous medium is

numerically and graphically analyzed by using the shooting method which has

been frequently used to calculate the solutions in many fluid mechanics problems

and related fields. The main points are summarized as follows.

• Thermal and concentration boundary layer thickness increase with the in-

crease in thermophoresis parameter.

• Brownian motion parameter has opposite effect on temperature and concen-

tration fields.

• Stronger magnetic parameter M results an increase in temperature, concen-

tration and decrease in stream and lateral velocity.

• Velocity components such as stream velocity, velocity distribution along the

stretching sheet and angular velocity all are increased by the enhancement

in the permeability parameter.

• Minor increase of the velocity along the x−direction is observed for the

increasing values of ion-slip and Hall current parameter.



Chapter 4

Hall Current and Non-linear Heat

Generation Effects on MHD

Nanofluid

4.1 Introduction

In this chapter, the impact of Hall current on an electrically conducting nanofluid

flow past a continuously stretching surface with heat generation/absorption has

been explored. Transverse magnetic field with the assumption of small Reynolds

number is implemented vertically. Appropriate similarity transformations are uti-

lized toltransform the governing partial differential equations intolthe non-linear

ordinary differential equations. Numerical solutions forlthe dimensionless veloc-

ity, temperature and nanoparticle concentration are computed with the help of

the shooting method. Results are further supported with the results obtained

by bvp4c, a MATLAB built-in function. Both these methods show the excellent

agreement. The impact of each of the Hall current parameter, Brownian motion

parameter, Prandtllnumber, thermophoresis parameter and magnetic parameter

on velocity, concentration and temperature, is discussed through graphs. The

53
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skin friction coefficient along the x− and z− directions, the local Nusselt num-

ber andlthe Sherwood number are calculated numerically to look into the inside

behavior of the emerging parameters.

4.2 Problem Formulation

Figure 4.1: Geometry of the Problem.

Here, steady heat andimass transfer ofian incompressible hydromagnetic nanofluid

flow along a vertical stretchingisheet coinciding with the plane y = 0, has been

considered in the presence of the Hall current effects. By keeping theiorigin fixed,

two opposite and equal forces are assumed to employ along the x-axis so that the

sheet stretches linearly in both positive and negative direction (see Figure 4.1).

With the assumption that the Newtonian nanofluid be electrically conducting and

heat generating/absorbing, a strong magnetic field has been imposed normal to

the direction of flow. Moreover, no electric field has been assumed to apply and

the frequency of atom-electron collision has also been considered high for the

generation of Hall current effect [106]. Due to the strong magnetic flux density

B0, the Hall current effect is taken into consideration, however the small magnetic
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Reynolds number is employed and the induced magnetic field is ignored. Hall

current effect is strong enough to give rise tola force in the z−directioniand a

cross flow is induced in the same direction which causes a three dimensional flow.

It is further assumed that there are no variations in the flow, heat and mass

transfer inlthe z-direction. This assumption can be achieved by taking the sheet

of infinite width. Non-conducting plate is considered so that the generalized Ohm’s

law [107] gives Jy. = .0 in the flow field. Brownian motion and thermophoresis

effects are considered using the Buongiorno model [29] for the nanofluid. Further,

the effects of viscous dissipation and Joule heating are ignored. By the above

mentioned assumptions and Boussinesq approximation, the mathematical form of

the problem is

∂u

∂x
l + l

∂v

∂y
= 0, (4.1)

iu
∂u

∂x
l + lv

∂u

∂y
= ν

∂2u

∂y2
− σB2

0

ρ (1 + β2
e )

(u+ βew)

+ gcβT (T − T∞) + lgcβC (C − C∞) , (4.2)

iu
∂w

∂x
+ lv

∂w

∂y
= ν

∂2w

∂y2
l + l

σB2
0

ρ (1 + β2
e )

(βeu− w) , (4.3)

iu
∂T

∂x
l + lv

∂T

∂y
i = i

k

ρcp

∂2T

∂y2
i+ i

qm

ρcp
i+ iτ

(
DB

∂C

∂y

∂T

∂y
i+ i

DT

T∞

(
∂T

∂y

)2
)
, i (4.4)

iu
∂C

∂x
l + lv

∂C

∂y
i = iDB

∂2C

∂y2
i+ i

DT

T∞

∂2T

∂y2
.i (4.5)

Here, qm indicates the coefficient of internal heat absorption (or generation).

From [108, 109], it follows that

qm =

(
ka

ν

)[
A∗ (Twi− iT∞) e−ηi+ iB∗ (Ti− iT∞)

]
.i (4.6)

When both A∗ and B∗ are positive, we have the heat generation case whereas for

the negative values of both of them, there is the internal heat absorption. The

corresponding boundary conditions for the governing PDEs are
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iui = iax, i ivi = i0, i iwi = i0, i iT i = iTw, i iCi = iCw iati iyi = i0, i

iui→ i0, i iv → i0, i iwi→ .0i iT i→ iT∞, i iCi→ iC∞ iasi iyi→ i∞.i


(4.7)

Now, propose the following dimensionless variables to non-dimensionalize the

PDEs.

iηi = i

√
a

ν
y, i iψ (x, y) i = i

√
aνxf (η) , i iwi = .axg (η) , i

iφ (η) i = .
Ci− iC∞
Cwi− iC∞

, i iθ (η) i =
Ti− .T∞
Twi− iT∞

, i

 (4.8)

whereiψ(x, y) represents theistream function with u = ∂ψ
∂y

and v = −∂ψ
∂x

. The

resulting ordinary differential equations are

if ′′′i+ iff ′′i− if ′2i+ iGrxθi+ iGrcφi− i
M

1i+ iβ2
e

(f ′i+ iβeg) i = i0, i (4.9)

ig′′i+ ifg′i− if ′gi+ i
M

1i+ iβ2
e

(βef
′i− ig) i = i0, i (4.10)

iθ′′i+ iPrfθ′i+ .P rNb

(
θ′φ′.+ .

Nt

Nb
θ′2
)
i+ iA∗e−ηi+ iB∗θi = i0, i (4.11)

iφ′′i+ iPrLef φ′i+ i
Nt

Nb
θ′′i = i0.i (4.12)

The transformed boundary conditions are

if ′ (0) i = i1, i if (0) i = i0, i ig (0) i = i0, i iθ (0) i = i1, i iφ (0) i = i1, i

if ′ (η) i→ .0, i iθ (η) i→ .0, i ig (η) i→ .0, i iφ (η) i→ 0.ias η →∞.

 (4.13)

Different dimensionless parameters appearing in equations (4.9-4.13) are defined

as

Grx =
gcβT (Tw − T ∞)

a2x
, Pr =

ν

α
=
νρcp
k

, Nb =
τDB

ν
(Cw − C∞) ,

Nt =
DT τ

T∞ν
(Tw−T∞) , Le =

α

DB

, M =
σB2

0

ρa
Grc =

gcβC(Cw − C ∞)

a2x
,


(4.14)
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The important quantities of interest are the coefficients of skin-friction in x− and

z− directions, local Nusselt number and Sherwood number. These are defined as

Cfx =
2τwx

ρ (ax)2
, Cfz =

2τwz

ρ (ax)2
,

Nux =
xqw

k (Tw − T∞)
, Shx =

xjw
DB (Cw − C∞)

.

 (4.15)

Here, the local skin-friction, heat and mass fluxes are defined as

iτwxi = iµ
∂u

∂y

∣∣∣∣
y=0

, i iτwzi = iµ
∂w

∂y

∣∣∣∣
y=0

, i

iqwi = i− k ∂T
∂y

∣∣∣∣
y=0

, i ijwi = i−DB
∂C

∂y

∣∣∣∣
y=0

.i

 (4.16)

The dimensionless forms of skin-friction, local Nusselt number and Sherwood num-

ber are:

CfxRe
1/2
x = 2f ′′ (0) , CfzRe

1/2
x = 2g′ (0) ,

NuxRe
−1/2
x = −θ′ (0) , ShxRe

−1/2
x = −φ′ (0) .

 (4.17)

4.3 Solution Methodology

The resulting non-linear system of ODEs can be solved by a number of analytical

and numerical techniques such as homotopy perturbation method [110], homotopy

analysis method [111], optimized homotopy analysis method [112], adomian de-

composition method [113], finite difference method [114], finite element method

[61], etc. We have opted the well known numerical technique shooting method [93]

which is considered to be an efficient scheme in the sense of computational time.

The system of non-linear ODEs (4.9-4.12) subject to the boundary conditions 4.13

has been solved by the shooting method for various values of the involved param-

eters. We observed through graphs that for η > 8, there is no significant variation

in the behavior of solutions. Therefore, on the basis of such computational exper-

iments, we are pondering [0, 8] as theidomain of the problemiinstead of [0, ∞).

We denote f by y1, g by y4, θ by y6 and φ by y8 for converting the boundary value
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problem (4.9-4.13) to the following initiallvalue problem consisting of 9 firstlorder

differential equations.

iy′1i = iy2, i iy1 (0) i = i0, i

iy′2i = iy3, i iy2 (0) i = i1, i

iy′3i = .y22 − y1y3 −Grxy6 −Grcy8 +
M

1 + β2
e

(y2 + βey4) , i iy3 (0) i = i%1, i

iy′4i = iy5, i iy4 (0) i = i0, i

iy′5i = .y2y4 − y1y5 −
M

1 + β2
e

(βey2 − y4) , i iy5 (0) i = .%2, .

iy′6i = iy7, i iy6 (0) i = i1, i

iy′7i = i− Pry1y7 − PrNb
(
y7y9 +

Nt

Nb
y27

)
− A∗e−η −B∗y6, i y7 (0) = %3,

y′8 = y9, y8 (0) = 1,

y′9 = − LePry1y9 −
Nt

Nb
y′7, y9 (0) = %4.


(4.18)

To solve the above initial value problem with RK4 method, we have to take some

initial guesses for %1, %2, %3, and %4. Newton’s method is utilized to improve these

original estimates of %1, %2, %3, %4 until the following benchmark is achieved

max{|y2{8}|, l|y4{8}|, l|y6{8}|, l|y8{8}} < ε, (4.19)

where ε > 0 is a small positive real number. All the numerical results in this

chapter are attained with ε = 10−6 .

4.4 Results and Discussions

For the validation of our MATLAB code, a comparison reflecting a convincing

agreement between the present results and those of Salem and Aziz [115], is pre-

sented in Table. 4.1. It is valuable to mention here that Salem and Aziz have also

used the shooting technique with Runge-Kutta integration algorithm. To perceive
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the impact of the various physical parameters on the local Sherwood number, skin-

friction coefficient and local Nusselt number, mathematical results are achieved

and are enumerated. From Table 4.2, it is viewed that the skin-friction coefficient

in x− direction decreasesiwith an increase in the thermaliGrashof number and

the mass Grashoffinumber and increases withian increase in the magnetic param-

eter M iand Prandtl number Pr.. The coefficient of the local skin-frictioniin z−

direction increases withian increase in Grx, M , and Grc and decreases when Pr

increases. Nusselt number increasesiwhen Grx,iPr and Grc increase whereas itiis

reduced by increasingithe value of M . Sherwood number has increasing behavior

for Grx and M while it has decreasing behavior for Pr and Grc.

Table 4.3 shows the impact of Hall current parameter βe, Brownian motion param-

eter Nb and thermophoresis parameter Nt on the skin friction, Nusselt number and

Sherwood number for Pr = 0.71, Le = 0.6,M = 0.5, Grx = 0.5, Grc = 0.5, A∗ =

0.01, B∗ = 0.01. It is clear that Cfx decreases for the increasing value of βe and

Nt while it increases for the increasing value of Nt. A completely opposite behav-

ior is recorded for the coefficient of the skin-friction in the z-direction. With the

enhancement of Hall current parameter βe, the value of the Nusselt number in-

creases while the Sherwood number decreases, though this reduction is very small.

Brownian motion parameter Nb and thermophoresis parameter Nt both cause a

decreasing trend in the Nusselt number and increasing in the Sherwood number.

In Table 4.4, the effect of the space-dependentlheat generation/absorption param-

eterlA∗, theltemperature dependentlheat generation/absorption parameterlB∗ and

thelLewis number Le onlthe skin friction coefficient,llocal Nusselt andlSherwood

numbers, isldiscussed. The skin-friction coefficient in the x-direction increases

whenA∗, B∗ and Le are increased whereas skin-friction coefficient in the z-direction

decreases for Le and increases for A∗ and B∗. For A∗ and B∗, Nusselt number

increases whereas an opposite behavior is seen in Sherwood number, however in

case of Lewis number both the Nusselt and Sherwood numbers decrease.

The effect of Hall current parameter βe on shear wall stress f ′′(0) for different

parameters is shown in Table 4.5. We have considered βe = 0, (i.e., without Hall

current effect), βe = 0.2 and βe = 0.5. From the table, it is observed that the
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wall shear stress in the direction of flow decreases when βe increases. It is also

observed that this decrement in the skin friction is enhanced when the impact of

Hall current increases.

To envision the effect of various physical parameters on tangential velocity f ′(η),

transverse velocity g(η), nanoparticle concentration φ(η) and temperature θ(η)

profiles, Figures 4.2-4.26 are plotted. In all these computations, unless mentioned,

otherwise we have considered Nb = 0.3, Nt = 0.7, P r = 0.71, Le = 0.6, M =

0.5, βe = 0.2, Grx = 0.5, Grc = 0.5, A∗ = 0.01, B∗ = 0.01. The impact of

spatial-dependent internal heat generation parameteriA∗ > 0iand the heat ab-

sorption parameter A∗ < 0 on the temperature fieldiis presented in Figure 4.2. It

is evident fromithis figure that asiA∗ > 0 increases, the temperature of theifluid

also increases, because in the presence of heat source, energy is generated which

results in the rise of the temperature. Due to the temperature rise, velocity of

the fluid also increases and this phenomenon can be observed in Figure 4.3. An

opposite effect i.e., cooling, is observed in the case of heat sink A∗ < 0. Velocity

of the fluid is also found to decrease for the heat sink case.

From Figures 4.4 and 4.5, it is evident that temperature as well as the tangential

velocity grow while enhancing the temperature dependent heat source B∗ > 0.

Figures 4.6−4.9 show the typical profiles of the tangential and lateral velocities,

temperature and concentration profiles for the magnetic parameter M . By in-

creasing the magnetic parameter M , a drag force known as the Lorentz force is

increased which resultantly reduces the velocity of the fluid and hence the rate

of heat and mass transfer is reduced and this leads to an increment in the tem-

perature and concentration profiles. Influence of Brownian motion parameter Nb

on the temperature and concentration profiles is studied in Figures 4.10 and 4.11.

From these figures, we notice that an enhancement in the values of Nb gives rise

to the temperature, while it causes a decrease in the nanoparticle concentration

profile. Brownian motion is the random motion of nanoparticles suspended in

the fluid, caused by the collision of nanoparticles with the fluid particles. An

increment in the thermophoretic effect causes an increment in the Brownian mo-

tion effect which results in the rise of the temperature due to the increment in the
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kinetic energy. Figures 4.12 and 4.13 illustrate the effect of thermophoresis param-

eter Nt on the temperature and the nanoparticles concentration profile. One can

observe that temperature and concentration fields increase with an enhancement

in Nt. Thermophoresis parameter plays an important role in the heat transfer

flow. Thermophoresis force enhances when Nt is increased which tends tolmove

the nanoparticles from the hot region to the cold and as a result the temperature

and the boundary layer thickness increase.

Effect of Prandtl number Pr on the temperature and the concentration profiles

is shown in Figures 4.14 and 4.15. These figures show a decreasing trend in

these profiles when Pr is increased. Reduction in the thermal boundary layer

isiencountered when Pr is increased. Larger the Prandtl number results lowerithe

thermal diffusivity. Thus a riseiin Pr reduces diffusivity and conductioniand hence

the thermal characteristicsiincrease. A minor increase is seen, in Figure 4.16, in

the fluid velocity when the Hall current parameter is increased. The magnetic

damping on f ′(η) decreases as βe increases and the magnetic field seems to have

a propelling effect on f ′(η). An increase in the values of M (consequently the

Hall parameter βe) greatly affects the lateral direction cross flow due to the Hall

current. The inclusion of the Hall parameter decreasesithe resistive force imposed

byithe magnetic field, which resultantly rises the tangential velocity component,

but this increase in the velocity is very small. Similarly the transverse velocity also

increases with the increasing values of βe as clearly seen in Figure 4.17. Figures 4.18

and 4.19 show the impact of the Lewis number Le on temperature and nanoparticle

concentration profiles respectively. It is observed that the temperature increases by

increasing Le while concentration decreases with an increase in the Lewis number.

In Figures 4.20−4.23 the effects of the thermal Grashof Grx and concentration

Grashof Grc numbers on the tangential velocity f ′(η) and the lateral velocity g(η)

are displayed. As the Grashof number is airatio of the buoyancy force to the vis-

cous force and it appears due to the natural convection flow, so an increase in the

tangential velocity as well as the lateral velocity of the fluid is observed when the

thermal and the concentration Grashof numbers are increased. It happens because

of the fact that higher the Grashof number implies higher the buoyancy force which
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means higher the movement of the flow. However in Figure 4.23, away from the

plate a reverse relation i.e. a decrease in the lateral velocity is observed. Figures

4.24 and 4.25 depict the influence of the solutal Grashof number on the tempera-

ture and the concentration profile respectively. An increase in the solutal Grashof

number means a decrease in the viscous force which reduces the temperature and

the concentration of the fluid. Similarly temperature is reduced when the thermal

Grashof number is enhanced and this phenomenon can be observed in Figure 4.26.

[115] Present [115] Present [115] Present

M βe A∗ −2f ′′(0) −2f ′′(0) −2g′(0) −2g′(0) −θ′(0) −θ′(0)

0.0 0.2 0.01 0.870809 0.870247 0 0 0.536486 0.536477

0.5 1.358619 1.358236 0.115852 0.115933 0.503496 0.503336

1.0 1.786271 1.785839 0.191908 0.191998 0.474604 0.474244

1.5 2.167098 2.166598 0.247956 0.248055 0.449427 0.448809

1.0 0.2 1.786271 1.785839 0.191908 0.191998 0.474604 0.474244

0.6 1.623616 1.623231 0.473443 0.473690 0.483100 0.482784

1.3 1.312373 1.312085 0.592181 0.601313 0.502332 0.502116

1.5 1.248158 1.247886 0.600892 0.592634 0.506818 0.506625

1.7 1.194659 1.194397 0.575677 0.576154 0.510692 0.510518

2.0 1.131002 1.130745 0.543739 0.544241 0.515457 0.515309

0.2 0.01 1.786271 1.785839 0.191908 0.191998 0.474604 0.474244

0.5 1.709803 1.709259 0.197192 0.197301 0.106995 0.106322

1.0 1.635663 1.635064 0.201996 0.202113 -0.261874 -0.262738

2.0 1.496325 1.495686 0.210345 0.210467 -0.985212 -0.986259

Table 4.1: Comparisonlof thelpresent resultslfor the wall shear stress

CfxRe
1/2
x = 2f ′′(0) and CfzRe

1/2
z = 2g′(0) and Nusselt number NuxRe

−1/2
z =

−θ′(0) forlvarious valueslof M , βe andlA∗ when B∗ = 0.01, lP r = 0.71, Sc =
0.6, lGrx = 0.5, Grc = 0.5land γ = 0.1.
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Grx M Pr Grc −2f ′′(0) −2g′(0) −θ′(0) −φ′(0)
0.5 0.5 0.71 0.5 0.995469 0.133782 0.448254 0.194116
0.4 1.092577 0.132638 0.444418 0.192656
0.5 0.995469 0.133782 0.448254 0.194116
0.6 0.899398 0.134886 0.451958 0.195504

0.6 1.097146 0.153870 0.448254 0.194741
0.7 1.196273 0.172299 0.438634 0.195234
0.8 1.292930 0.189256 0.433933 0.195592

0.8 1.017091 0.132157 0.465032 0.183197
0.9 1.040024 0.130492 0.480201 0.166163
1.0 1.061794 0.128966 0.492292 0.144968

0.5 0.995469 0.133782 0.448254 0.194116
0.6 0.844106 0.136940 0.457292 0.188976
0.7 0.696075 0.139809 0.465553 0.184431

Table 4.2: Numerical values of CfzRe
1/2
z , CfxRe

1/2
z , NuxRe

−1/2
z and

ShxRe
−1/2
z when A∗ = 0.01, B∗ = 0.01, Le = 0.6, βe = 0.2, Nb = 0.3, Nt = 0.7

m Nb Nt −2f ′′(0) −2g′(0) − θ′(0) − φ′(0)
0.2 0.3 0.7 0.995469 0.133782 0.448254 0.194116
0.1 1.008624 0.068468 0.447697 0.194130
0.2 0.995469 0.133782 0.448254 0.194116
0.3 0.974886 0.193261 0.449131 0.194084

0.4 1.062111 0.131188 0.427629 0.025649
0.5 1.101593 0.129513 0.410054 0.074239
0.6 1.127173 0.128352 0.394269 0.140229

0.6 1.032373 0.132274 0.453247 0.124867
0.7 0.995469 0.133782 0.448254 0.194116
0.8 0.960115 0.135186 0.442973 0.258732

Table 4.3: Numerical values of CfzRe
1/2
z , CfxRe

1/2
x , NuxRe

−1/2
z and

ShxRe
−1/2
z when A∗ = 0.01, lB∗ = 0.01, Le = 0.6, lM = 0.5, P r = 0.71, lGrx =

0.5, Grc = 0.5
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B∗ A∗ Le −2f ′′(0) −2g′(0) − θ′(0) − φ′(0)
0.01 0.01 0.6 0.995469 0.133782 0.448254 0.194116
0.1 1.005849 0.133973 0.364631 0.023924
0.2 1.020086 0.134254 0.254466 0.197742
0.3 1.039068 0.134646 0.114194 0.475945

0.1 1.002399 0.133890 0.387820 0.068761
0.2 1.010132 0.134003 0.320517 0.070879
0.3 1.017901 0.134114 0.253049 0.210898

0.7 1.028049 0.131963 0.438410 0.124009
0.8 1.056744 0.130394 0.429851 0.060449
0.9 1.082308 0.129029 0.422338 0.002216

Table 4.4: Numerical values of CfxRe
1/2
x , CfzRe

1/2
z , NuxRe

−1/2
z and

ShxRe
−1/2
z when βe = 0.2, Nb = 0.3, Nt = 0.7,M = 0.5, P r = 0.71, Grx =

0.5, Grc = 0.5

−2f ′′(0)
M Grx Grc Pr Nt Nb βe = 0.0 βe = 0.2 βe = 0.5
0.5 0.5 0.5 0.71 0.7 0.3 1.013153 0.995469 0.918411
0.6 1.117358 1.097146 1.008663
0.7 1.218783 1.196273 1.097339
0.8 1.317542 1.292930 1.184399

0.4 1.110164 1.092577 1.015915
0.5 1.013153 0.995469 0.918411
0.6 0.917178 0.899398 0.821953

0.5 1.013153 0.995469 0.918411
0.6 0.862144 0.844106 0.765536
0.7 0.714439 0.696075 0.616110

0.8 1.034592 1.017091 0.940876
0.9 1.057344 1.040024 0.964644
1.0 1.078952 1.061794 0.987159

0.6 1.049876 1.032373 0.956119
0.7 1.013154 0.995469 0.918411
0.8 0.977972 0.960115 0.882295

0.4 1.079482 1.062111 0.986429
0.5 1.118769 1.101593 1.026774
0.6 1.144217 1.127173 1.052938

Table 4.5: Numerical values of CfxRe
1/2
x = 2f ′′(0) when A∗ = 0.01, B∗ =

0.01, Le = 0.6, βe = 0.
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Figure 4.2: lInfluence of A∗ oniθ(η).

Figure 4.3: lInfluence of A∗ onif ′(η).
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Figure 4.4: lInfluence of B∗ onif ′(η).

Figure 4.5: lInfluence of B∗ oniθ(η).
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Figure 4.6: lInfluence of M onif ′(η).

Figure 4.7: lInfluence of M onig(η).
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Figure 4.8: lInfluence of M oniθ(η).

Figure 4.9: lInfluence of M oniφ(η).
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Figure 4.10: lInfluence of Nb oniθ(η).

Figure 4.11: lInfluence of Nb oniφ(η).
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Figure 4.12: lInfluence of Nt oniθ(η).

Figure 4.13: lInfluence of Nt oniφ(η).
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Figure 4.14: lInfluence of Pr oniθ(η).

Figure 4.15: lInfluence of Pr oniφ(η).
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Figure 4.16: lInfluence of βe onif ′(η).

Figure 4.17: lInfluence of βe onig(η).
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Figure 4.18: lInfluence of Le oniθ(η).

Figure 4.19: lInfluence of Le oniφ(η).
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Figure 4.20: lInfluence of Grc onif ′(η).

Figure 4.21: lInfluence of Grc onig(η).
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Figure 4.22: lInfluence of Grx onif ′(η).

Figure 4.23: lInfluence of Grx onig(η).
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Figure 4.24: lInfluence of Grc oniθ(η).

Figure 4.25: lInfluence of Grc oniφ(η).
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Figure 4.26: lInfluence of Grx oniθ(η).

4.5 Concluding Remarks

In the present chapter, the impact of the Hall current on heat and mass trans-

fer of nanofluid flowing over a linearly stretching sheet, is addressed. The main

achievements have been summarized as follows.

• Prandtl number has a decreasing effect on the temperature and concentration

profiles.

• The temperature θ(η) of the fluid is enhanced while increasing the ther-

mophoresis parameter Nt and the Brownian motion parameter Nb.

• A stronger magnetic parameter M resultslin an increaselin the tempera-

ture,lconcentration and transverselvelocity.

• The boundaryllayer thickness increaseslwhen the spaceland the tempera-

tureldependent heat generationlparameters A∗ and B∗ respectively, are in-

creased.
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• Increasing values of the Lewis number have the tendency to increase the

temperature θ(η) and reduce the mass transfer.

• Wall shear stress decreases when the Hall current parameter βe increases.



Chapter 5

Three Dimensional MHD

Upper-Convected Maxwell

Nanofluid Flow with Non-linear

Radiative Heat Flux

5.1 Introduction

In this chapter, a three dimensional upper-convected Maxwell (UCM) nanofluid

flow over a stretching surface, has been considered to examine the effects of

nanoparticles and magnetohydrodynamics (MHD) on the heat and mass trans-

fer. A non-linear radiative heat flux is incorporated in the formulation of the

energy equation. Similarity transformation reduces the non-linear partial differ-

ential equations of the problem to the ordinary differential equations, which are

then solved by the well known shooting technique through Runge-Kutta integra-

tion procedure of order four. To strengthen the reliability of our results, the

MATLAB built-in function bvp4c is also used. The effects of some prominent

parameters suchias Brownian motion parameter, Prandtl number, thermophore-

sis parameter, magnetic parameter onithe velocity, temperature andiconcentration

79
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profiles are discussed graphically and numerically. It is witnessed that the flow

velocity is a diminishing function of the linear and non-linear thermal radiation

parameter. Moreover, mounting values of Brownian motion parameter reduce the

nanoparticle concentration profile.

5.2 Problem Formulation

Figure 5.1: Geometry of the Problem.

A steady incompressible upper convected Maxwell nanofluid over a bilinear stretch-

ing surface in the positive xy-plane is considered to investigate the behavior of tem-

perature and concentration. Aiuniform magnetic field of strength B0 is applied

normal to theiflow i.e. in the z−direction. The induced magnetic field isiignored

because of the assumption of the small Reynolds number. Applied magnetic field

drags the magnetic field lines in the direction of the flow which interactiwith the

induced current density toigive rise a force known as the Lorentz force. Further,

a non-linear thermal radiation is taken into account during the formulation of

the energy equation. The stretching surface velocities in the x and y plane are

considered as Uw(x). = .ax and Vw(y). = .by respectively as shown in Figure 5.1.

The basic equations of the described problem for the velocity, temperature and
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the nanoparticle concentration in the absence of viscous dissipation, Joule heating,

mixed convection and chemical reaction [116–119] can be expressed as :

.
∂u

∂x
i+ i

∂v

∂y
i+ i

∂w

∂z
i = i0, i (5.1)

iu
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i+ iv
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The corresponding boundary conditions for the governing PDEs are

iui = iuwi = iax, iivi = ivwi = iby, iiwi = i0, iiT i = iTw, iiCi = iCwiatiIzi = i0, i

iui→ i0, i ivi→ i0, i iT i→ iT∞, i iCi→ iC∞ ias izi→ i∞.i


(5.6)

In Eq. (5.4), Rosseland radiative heat flux qr, is defined as [111, 120]:

qr =
4σ∗

3ℵ
∂T 4

∂z
. (5.7)

For the conversion of the system of governing non-linear PDEs to system of ODEs,

we use the following dimensionless variables [121]:

iui = iaxf ′ (η) , i ivi = iayg′ (η) , i iwi = i−
√
aν (f (η) i+ ig (η)) ,

iθ (η) i = i
T i− iT∞
Twi− iT∞

, iφ (η) i =
Ci− iC∞
Cwi− iC∞

, iηi = i

√
a

ν
z.i

 (5.8)
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As we are considering non-linear thermal radiation, so T in (5.8) can be expressed

as [120]:

T = T∞ ((θw − 1) θ + 1) . (5.9)

Using Eq. (5.9) into Eq. (5.7), we obtain

qr = −16σ∗

3ℵ
T 3
∞ ((θw − 1) θ + 1)3

∂T

∂z
, (5.10)

where, θw = Tw
T∞

is the temperature ratio parameter.

Eq. (5.1) is identically satisfied while Eqs. (5.2) to (5.5) areiconverted to theiordinary

differential equations:

if ′′′i− if ′2i+ i
(
M2Λi+ i1

)
(fi+ ig)f ′′i+ i2Λf ′ (fi+ ig) f ′′i

− iΛ(fi+ ig)2f ′′′i− iM2f ′i = i0, i (5.11)

ig′′′i− ig′2i+ i
(
M2Λi+ i1

)
(fi+ ig)g′′i+ i2Λg′ (fi+ ig) g′′i

− i(fi+ ig)2g′′′i− iM2g ′i = i0, i (5.12)

iθ′′i+ i(4/3) Rd
[
(1i+ i (θwi− i1) θ)3 θ′′i+ i3 (θwi− i1) (1i+ i (θwi− i1) θ)2 θ′2

]
i+ iPr (fi+ ig) θ′i+ iPrNt θ′2i+ iPrNb θ′φ′i = i0, i (5.13)

iφ′′i+ i
Nt

Nb
θ′′i+ iPrLe (fi+ ig)φ′i = i0, i (5.14)

The transformed boundary conditions are:

if (0) i = i0, iif ′ (0) i = i1, iig (0) i = i0, iig′(0)i = ic, iiθ (0) i = i1, iiφ (0) i = i1, i

if ′ (η) i→ i0, ig′ (η) i→ i0, iθ (η) i→ i0, iφ (η) i→ i0, as η →∞,


(5.15)

Different dimensionless parameters appearing in Eqs. (5.11)-(5.15) are defined as

Λ = λa, M =
σB2

0

ρa
, Pr =

ν

α
=
ρcpν

k
, Rd =

4σ∗T 3
∞

kℵ
, θw =

Tw
T∞

Nb =
τDB

ν
(Cw − C∞), Nt =

DT

T∞

τ

ν
(Tw − T∞), Le =

α

DB

, c =
b

a
.

 (5.16)
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The important quantities of interest,llocal Nusseltland Sherwood numbers, areldefined

as

Nuz =
xqw

k (Tw − T∞)
, Shz =

x jw
DB (Cw − C∞)

. (5.17)

Here, heat and mass fluxes are defined as

qw = −k
(
∂T

∂z

)
z=0

, jw = −DB

(
∂C

∂z

)
z=0

. (5.18)

The dimensionless formlof Local Nusseltlnumber and Sherwood numberlare:

Re−1/2z Nuz = −[1 + 4/3Rdθ3w]θ′ (0) , Re−1/2z Shz = −φ′ (0) . (5.19)

5.3 Solution Methodology

The resulting system of non-linear ODEs (5.11) - (5.14) along with boundary con-

ditions (5.15) is solved iteratively by thelshooting method [93] for various values

of different parameters. The results are validated by using MATLAB built-in

function bvp4c. After performing numerous computational trials, we are taking

[0, 7] as the domain of the problem rather than [0,∞), as there are no substantial

changes in the results after η > 7. We denote f by y1, g by y4, θ by y7 and φ by

y9 forlconverting the boundarylvalue problem (5.11) - (5.14) tolthe following ini-

tiallvalue problem (IVP)lconsisting of 10 firstlorder ordinary differential equations.

y′1 = y2 y1 (0) i = i0, i

y′2 = y3 y2 (0) i = i1, i

y′3 = 1
1−K(y1+y4)2

(y22 − (M2Λ + 1)(y1 + y4)y3

+2Λy2y3(y1 + y4) +M2y2) y3 (0) i = i%1, i

y′4 = y5 y4 (0) i = i0, i

y′5 = y6 y5 (0) i = ic, i

y′6 = 1
1−K(y1+y4)

2 (y25 − (M2Λ + 1) (y1 + y4) y6

−2Λy5y6 (y1 + y4) +M2y5) y6 (0) i = i%2, i


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y′7 = y8 y7 (0) i = 1i, i

y′8 = −3y8
3+4Rd(1+(θw−1)y7)3

(4Rd (θw − 1) (1 + (θw − 1) y7)
2 y8

+Pr((y1 + y4) +Nty8 +Nby10) y8 (0) i = i%3, i

y′9 = y10 y9 (0) i = i1, i

y′10 = −PrLe (y1 + y4) y10 − Nt
Nb
y′8 y10 (0) i = i%4.i


(5.20)

To solve the above initial value problem arising in the shooting method, Runge

Kutta method of order four is used. Classical Newton method is applied for the

refinement of initial guesses %1, %2, %3 and %4 subject to the tolerance of ε = 10−7.

The stopinglcriteria forlthe iterative processlis set as

max {|y2 (7)− 0| , |y5 (7)− 0| , |y7 (7)− 0| , |y9 (7)− 0|} < ε. (5.21)

5.4 Results and Discussions

The results obtained by the shooting method and bvp4c are almost the same

but still for more satisfaction, we feel a need to validate our MATLAB code by

implementation on some published work of similar nature. For this purpose, we re-

produced the numerical values of the Nusselt number for the model investigated by

Mushtaq et al. [14]. They have incorporated the shooting method with RK-4 in-

tegration scheme. An impressively convincing agreement of our results with those

of Mushtaq et al. can be seen in Table 5.1. Numerical results of the local Nusselt

and Sherwood numbers for various values of different parameters are tabulated in

Table 5.2. From Table 5.2, it is observed that the rate of heat flux decreases for

the increasing values of Deborah number Λ and magnetic parameter M . It hap-

pens due to the fact that an increase in the magnetic parameter will enhance the

Lorentz force which slows down the motion of the fluid and resultantly the rate of

heat flux is reduced. The same phenomenon is observed for the increasing value of

Λ and M for the case of Sherwood number φ′(0). An increment is observed in the

rate of the heat flux for the thermal radiation parameter Rd, the temperature ratio
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parameter θw and the stretching ratio c. Similarly for temperature ratio parameter

θw, thermal radiation parameter Rd and stretching ratio c, a decreasing trend is

noticed for the mass transfer rate. Thelinfluence of thelthermophoresis parameter

Nt, Brownianlmotion parameterlNb, Prandtl number Pr,land thelLewis number

Le on the rate of heat and mass transfer is also shown in Table 5.2. From the

numerical values, it is noticeable that Nt,Nb and Le have a decreasing effect on

Nusselt number while this increases for the increasing values of Prandtl number.

On the other hand, Sherwood number decreases for the increasing thermophoresis

parameter Nt, however the rate of mass transfer enhances for the increasing values

of Nb, Pr and Le.

To visualize the effect of different physical parameters on velocity f ′(η), tem-

perature θ(η) and nanoparticle concentration profiles φ(η), Figures 5.2−5.21 are

plotted. Figures 5.2 and 5.3 reflect the impact of the Deborah numberiΛ,iwhich

is a ratio of the fluid relaxation time toiits characteristic time scale onithe ve-

locity profiles. When the shear stress isiapplied on the fluid, theitime in which

it gains itsiequilibrium position is calledirelaxation time. This time is higher for

theifluids having high viscosity. So an increaseiin the Deborah number may in-

crease the iviscosity of the fluid and hence the velocity decreases as shown in

Figures 5.2 and 5.3. The fluid becomes Newtonian if we consider Λ = 0 and its

viscosity gradually increases with an increaseiin the Deborah number Λ. From

Figure 5.3, it is also concluded that boundary layer thickness reduces for the up-

per convectediMaxwell fluid. When Λ is increased, the hydrodynamic boundary

layer thickness decreases. In Figures 5.4 and 5.5, the effect of the variationiin

the Deborah number onithe temperature θ(η) and the nanoparticle concentration

φ(η)iis displayed respectively. It is observed thatithe temperature and the concen-

tration increase with aniincrease in the relaxation time. From this observation,

we can concludeithat the elastic force promotes the heat and the mass transfer in

the upper-convected Maxwell nanofluid.

Figures 5.6 and 5.7 depict the typical profiles of velocity and temperature for the

magnetic parameter M . By increasing the magnetic parameter M , a drag force

known as the Lorentz force also increases which resultantly reduces the velocity
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of the fluid and hence the rate of heat transfer is reduced and this leads to an

increment in the temperature. To see the variation in the temperature profile

against the increasing values of the Prandtl number Pr, Figure 5.8 is plotted in

which the increasing values of Prandtl number result in a thinner temperature

boundary layer thickness. Fluids having larger Prandtl number have lower thermal

diffusivity, and hence the temperature decreases. The same decreasing trend of

Pr number on the mass concentration profile is observed in Figure 5.9.

Figure 5.10 shows the influence of the thermal radiation parameter Rd on the ve-

locity profile for linear and non-linear radiation. From this figure, it is seen that

flow decreases with the increasing value of Rd. Here it is noticeable that there is no

variation in the flow velocity for the linear radiation (θw = 1.0) and the non-linear

radiation (θw = 1.3). In Figures 5.11 and 5.12, the effect of the thermal radiation

parameter Rd on the temperature and nanoparticle concentration profiles, both

for linear and non-linear radiation, is displayed. It is observed that θ(η) and φ(η)

both have decreasing trend for the increasing values of Rd. It is also observed

that a decrease in the temperature and concentration is lower in non-linear ra-

diation case (θw = 1.3) as compared to the linear radiation case (θw = 1.0). In

Figure 5.13, the variation of θw is studied for the temperature profile. From the

figure, it is analyzed that the temperature moves upward for the increasing values

of the temperature ratio parameter θw. Figure 5.14 shows the effect of the Lewis

number Le on the concentration profile. A decrement in the concentration profile

is analyzed against the higher values of the Lewis number and as a result a mi-

nor molecular diffusivity and emaciated concentration boundary layer is observed.

Figures 5.15 and 5.16 demonstrate the influence of the stretching ratio parameter

c on the velocity profiles f ′ and g′ respectively. The displayed sketch shows that

f ′ diminishes and g′ enhances when the stretching ratio parameter c escalates. It

can be validated from the relation c = b
a

that increasing the value of c implies the

stretching along the y−axis is more rapid as compared to x−axis. So the velocity

along the y−axis seems to be increasing whereas it decreases along the x−axis.

In Figure 5.17, temperature of the fluid reduces with the increasing value of the

stretching ratio parameter c.
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Temperature is enhanced when the Brownian motion parameter Nb is increased.

Larger the Brownian motion parameter, lower the viscous force and higher the

Brownian diffusion coefficient which results an enhancement in the thermal bound-

ary layer thickness and temperature and this phenomenon can be observed in

Figure 5.18. From Figure 5.19, it is observed that the nanoparticle concentration

decreases with an increment in Nb. The effect of thermophoresis parameter Nt on

the temperature and the nanoparticle concentration is displayed in Figures 5.20

and 5.21 respectively. Thermophoresis parameter depends on the thermal diffusion

coefficient and the viscous force. This viscous force is inversely proportional to Nt,

so an enhancement in the thermophoresis parameter Nt implies a reduction in the

viscous force and increment in the thermal diffusion coefficient which resultantly

enhances the temperature and the nanoparticle concentration.

Rd = 0.0 Rd = 1.0

θw = 0 θw = 0 θw = 1.1 θw = 1.5

Λ c Pr Ref. [14] Present Ref. [14] Present Ref.[14] Present Ref.[14] Present

1 0.5 2 1.01695 1.01694 0.61177 0.61271 0.53932 0.53950 0.31686 0.31709

4 1.60165 1.60165 1.01695 1.01694 0.90348 0.90348 0.55107 0.55106

7 2.24393 2.24392 1.47271 1.47270 1.31435 1.31435 0.82083 0.82083

10 2.75508 2.75507 1.83692 1.83692 1.64284 1.64283 1.03739 1.03739

1 0 7 1.82603 1.82602 1.20254 1.20253 1.07372 1.07371 0.67255 0.67254

0.3 2.09403 2.09402 1.37824 1.37823 1.23051 1.23050 0.77013 0.77013

0.6 2.31293 2.31292 1.51544 1.51543 1.35219 1.36099 0.84341 0.84340

1 2.55918 2.55918 1.66440 1.66441 1.48361 1.48362 0.92038 0.92040

0 0.5 7 2.35436 2.35435 1.59321 1.59225 1.42760 1.42759 0.91088 0.91087

0.5 2.29665 2.29664 1.53021 1.53020 1.36840 1.36840 0.86380 0.86380

1.0 2.24393 2.24392 1.47271 1.47270 1.31435 1.31435 0.82083 0.82083

1.5 2.19501 2.19500 1.41998 1.42007 1.26482 1.26492 0.78170 0.78182

Table 5.1: Comparison of the presently computed values of wall tempera-
turelgradient −θ′(0)lwith those oflMushtaq et al. [14]
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NuzRe
−1/2
z ShzRe

−1/2
z

Λ M Rd θw c Nt Nb Pr Le shooting bvp4c shooting bvp4c

1.0 0.2 1.0 1.5 0.5 0.8 0.2 2.0 1.0 1.15466 1.15467 0.60558 0.60557

0 1.48631 1.48631 0.71205 0.71205

0.4 1.32518 1.32517 0.64011 0.64011

0.6 1.25997 1.25997 0.62158 0.62158

0.4 1.12955 1.12955 0.60388 0.60388

0.7 1.06936 1.06935 0.60331 0.60332

1.0 0.99669 0.99669 0.60910 0.60910

0.4 0.88525 0.88525 0.27462 0.27463

0.6 0.99209 0.99210 0.40982 0.40981

1.0 1.15466 1.15467 0.60558 0.60557

1.1 0.93546 0.93546 0.22320 0.22320

1.3 1.04641 1.04642 0.43067 0.43067

1.5 1.15466 1.15467 0.60558 0.60557

0.2 1.07374 1.07373 0.58254 0.58254

0.3 1.10441 1.10441 0.59053 0.59054

0.4 1.13110 1.13110 0.59824 0.59823

0.5 1.22537 1.22536 0.73009 0.73010

0.6 1.20118 1.20117 0.68494 0.68495

0.7 1.17761 1.17761 0.64346 0.64345

0.3 1.11733 1.11734 0.75525 0.75525

0.4 1.08121 1.08122 0.82974 0.82973

0.5 1.04625 1.04625 0.87416 0.87416

1.0 0.82197 0.82197 0.51519 0.51519

1.5 0.98939 0.98939 0.54706 0.54705

2.0 1.15466 1.15467 0.60558 0.60557

0.8 1.16125 1.16125 0.43720 0.43720

1.0 1.15466 1.15467 0.60558 0.60557

1.2 1.14992 1.14993 0.76043 0.76043

Table 5.2: Numericallvalues of locallNusselt number andlLocal Sherwood
number
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Figure 5.2: iInfluence of Λ onif ′(η).

Figure 5.3: iInfluence of Λ onig′(η).
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Figure 5.4: iInfluence of Λ oniθ(η).

Figure 5.5: iInfluence of Λ oniφ(η).
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Figure 5.6: iInfluence of M onif ′(η).

Figure 5.7: iInfluence of M oniθ(η).
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Figure 5.8: iInfluence of Pr oniθ(η).

Figure 5.9: iInfluence of Pr oniφ(η).
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Figure 5.10: iInfluence of Rd onif ′(η).

Figure 5.11: iInfluence of Rd oniθ(η).
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Figure 5.12: iInfluence of Rd oniφ(η).

Figure 5.13: iInfluence of θw oniθ(η).
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Figure 5.14: iInfluence of Le oniφ(η).

Figure 5.15: iInfluence of c onif ′(η).
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Figure 5.16: iInfluence of c onig′(η).

Figure 5.17: iInfluence of c oniθ(η).
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Figure 5.18: iInfluence of Nb oniθ(η).

Figure 5.19: iInfluence of Nb oniφ(η).
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Figure 5.20: iInfluence of Nt oniθ(η).

Figure 5.21: iInfluence of Nt oniφ(η).
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5.5 Concluding Remarks

This study in the present Chapter reveals the influence ofinon-linear thermal radi-

ation of electrically conducting upper convected Maxwell fluid over a bi-directional

stretching surface. Non-linearidifferential equations are solved numericallyiby shoot-

ing method with fourth orderiRunge-Kutta integration technique. The main fea-

tures ofithe study are as follows:

• UCM fluids haveilower boundary layer thickness as comparedito Newtonian

fluid.

• Nusselt and Sherwood number both are gradually increased when tempera-

ture ratio is enhanced.

• Nanoparticle concentration decreases for Nb and increases for Nt.

• Flow velocity decreases for increasing value of thermal radiation parameter,

however there is no variation for the linear and non-linear radiation.

• An increase in thermal boundary layer thickness is observed in temperature

and concentration profiles for non-linear radiation (θw = 1.3), as compared

to linear radiation (θw = 1.0).



Chapter 6

MHD 3D Upper Convected

Maxwell Fluid Flow with

Thermophoretic Effect

6.1 Introduction

In this chapter, a three dimensional upper-convected Maxwell (UCM) fluid flow

in the presence of the viscous dissipation and Joule heating through a linearly

stretching sheet, is considered to examine the effects of thermophoresis and mag-

netohydrodynamics (MHD) on the heat and mass transfer. The energy equation is

formulated under the assumption of the non-linear radiative heat flux. The ODEs

are deduced from the governing PDEs with the aid of the similarity transformation.

These non-linear ODEs are then numerically tackled by the shooting technique,

through the fourth order Runge-Kutta integration process. To strengthen the re-

liability of our results, the MATLAB built-in function bvp4c is also used. Effects

of some prominent physicallparameters suchlas Eckert number,lPrandtl number,

thermophoretic parameter,lmagnetic parameter onlthe velocity, temperatureland

concentration profiles,lare discussed graphicallyland numerically. Itlis found that

100
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the concentration profile decreases for the higher values of thermophoretic param-

eter and Schmidt number. The heat flux rate, is observed to enhance for the

increasing values of the thermal radiation and Prandtl number.

6.2 Problem Formulation

Three dimensionallsteady, incompressible upper-convected Maxwelllfluid flow dueito

stretching surface in xy-plane has been considered in the present Chapter. The

flat surface has been stretched in the positive x− direction with velocity Uw(x) =

axiand in the positive y− direction withiVw(y) = by.iA magnetic field with small

Reynolds number is applied along the z−axis. The effects of viscous dissipa-

tion and Joule heating have also been taken into account. Thermophoresis and

non-linear thermal radiation effects are incorporated duringithe formulation of en-

ergy equation.iTw and Cw are the constantitemperature and concentration respec-

tivelyion the surface wall, whereas T∞ and C∞idenote the ambient temperature

andiconcentration of the fluidias shown in Figure 6.1. The fundamental equations

Figure 6.1: Geometry of the Problem.

describing the proposed problem for the velocity, temperature and concentration
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[116–119] can be expressed in the operator form as follows,

∇.V = 0, (6.1)

∂

∂t
(ρV) +∇. [(ρV) V] = ∇.τ1 + j×B, (6.2)

(V.∇)T = α∇2T − 1

ρcp
∇qr +

µ

ρcp
(∇V) . (∇V) +

σB2
0

ρcp
(V.V) , (6.3)

(V.∇)C = D ∇2C −∇ (VTC) , (6.4)

where

τ1 = −pI + S, (6.5)(
1 + λ

D

Dt

)
S = S + λ

DS

Dt
= µA1, (6.6)

A1 = grad V + (grad V)T . (6.7)

Here, ρ is the density of the fluid, V the velocity of the fluid, τ1 the Cauchy stress

tensor, p the pressure, S the extra stress tensor, B = (0, 0, B0) the magnetic field,

D/Dt the material time derivative, λ the relaxation time, µ the kinematic viscosity

and A1 the first Rivin-Erickson tensor. After simplifying the above equations,

ignoring the pressure gradient and applying the boundary layer approximation,

we get

∂u

∂x
i+ i

∂v

∂y
i+ i

∂w

∂z
= 0, (6.8)

u
∂u

∂x
i+ iv

∂u

∂y
i+ iw

∂u

∂z
i+ iλ

 u2 ∂
2u
∂x2

+ v2 ∂
2u
∂y2

+ w2 ∂2u
∂z2

+

2uv ∂2u
∂x∂y

+ 2uw ∂2u
∂x∂z

+ 2vw ∂2u
∂y∂z


= υ

∂2u

∂z2
i− iσB

2
0

ρ

(
u+ λw

∂u

∂z

)
, (6.9)

u
∂v

∂x
i+ iv

∂v

∂y
i+ iw

∂v

∂z
i+ iλ

 u2 ∂
2v
∂x2

+ v2 ∂
2v
∂y2

+ w2 ∂2v
∂z2

+

2uv ∂2v
∂x∂y

+ 2uw ∂2v
∂x∂z

+ 2vw ∂2v
∂y∂z


= υ

∂2v

∂z2
i− iσB

2
0

ρ

(
v + λw

∂v

∂z

)
, (6.10)



Chapterl6 103

u
∂T

∂x
i+ iv

∂T

∂y
i+ iw

∂T

∂z
= α

∂2T

∂z2
i− i 1

ρcp

∂qr
∂z

+

µ

ρcp

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)
i+ i

σB2
0

ρcp

(
u2 + v2

)
, (6.11)

u
∂C

∂x
i+ iv

∂C

∂y
i+ iw

∂C

∂z
= D

∂2C

∂z2
i− i ∂

∂z
(VTC) . (6.12)

The corresponding boundary conditions for the governing PDEs are

lul = lUwl = lax, ilvl = lVwl = lby, ilwl = l0,

ilT l = .Tw, ilCl = Cwllatlzl = l0, l

lul→ l0, ilvl → l0, ilT l→ lT∞, ilCl → lC∞laslzl → l∞.l

 (6.13)

The term qr in Eq. (6.11) is Rosseland radiative heat flux and VT is the ther-

mophoretic velocity in Eq. (6.12). These are defined as

qr =
4σ∗

3ℵ
∂T 4

∂z
, VT = K1

ν

Tr

∂T

∂z
. (6.14)

Here, ℵ is the Rosseland mean absorption coefficient and σ∗ the Steffan-Boltzmann

constant. For the conversion of the system of governing non-linear PDEs to the

system of ODEs, we use the following dimensionless variables:

lul = laxf ′ (η) , llvl = layg′ (η) , llwl = l −
√
aν (f (η) l + lg (η)) , l

lθ (η) l = l
T l − lT∞
Twl − lT∞

, lφ (η) l = l
Cl − lC∞
Cwl − lC∞

, llηl = l

√
a

ν
z.l

 (6.15)

As we are considering the non-linear thermal radiation, so T in (6.15) can be

expressed as

T = T∞ ((θw − 1) θ + 1) . (6.16)

Using Eq. (6.16) into Eq. (6.14), we obtain

qr = −16σ∗

3ℵ
T 3
∞ ((θw − 1) θ + 1)3

∂T

∂z
, (6.17)



Chapterl6 104

where θw =
Tw
T∞

is the temperature ratio parameter. Using the similarity trans-

formation defined in (6.15), Eq. (6.8) is identically satisfied while Eqs. (6.9) to

(6.13) are converted to the following ordinary differential equations.

lf ′′′l − lf ′2l + l
(
M2Λl + l1

)
(fl + lg)f ′′l + l2Λf ′ (fl + lg) f ′′l

− l(fl + .g)2f ′′′l − lM2f ′l = l0, l (6.18)

lg′′′l − lg′2l + l
(
M2Λl + l1

)
(fl + lg)g′′l + l2Λg′ (fl + lg) g′′l

− l(fl + lg)2g′′′l −M2g′l = l0, l (6.19)

l

(
1l + l

4

3
Rd (1l + l (θwl − l1) θ)3

)
θ′′l + lP r (fl + lg) θ′l

+ l4Rd (θwl − l1) (1l + l (θwl − l1) θ)2 θ′2l + l + lP rEc
(
f ′′2l + lL2g′′2

)
l

+ lP rEcM2
(
f ′2l + lL2g′2

)
= 0, (6.20)

lφ′′l − lτ ∗Sc (φθ′′l + lθ′φ′) l + lSc (fl + lg)φ′l = l0.l (6.21)

The transformed boundary conditions are:

if (0) i = i0, if ′ (0) i = i1, ig (0) i = i0, ig′(0)i = ic, iθ (0) i = i1, iφ (0) i = i1,

if ′ (η) i→ i0, ig′ (η) i→ i0, iθ (η) i→ i0, iφ (η) i→ i0 as η →∞.


(6.22)

Different dimensionless parameters appearing in Eqs. (6.18)-(6.22) are defined as

M =
σB2

0

ρa
, Pr =

ν

α
=
ρcpν

k
, Rd =

4σ∗T 3
∞

kℵ
, τ ∗ = −K1(Tw − T∞)

Tr

Λ = λa, Sc =
ν

D
, Ec =

a2x2

cp (Tw − T∞)
, θw =

Tw
T∞

, c =
b

a
, L =

y

x
.

 (6.23)

The important quantities of interest, local Nusselt and Sherwood numbers are

formulated as

Nuz =
xqw

k (Tw − T∞)
, Shz =

xjw
D (Cw − C∞)

. (6.24)

Here, the heat and mass fluxes are defined as

qw = −k
(
∂T

∂z

)
z=0

, jw = −D
(
∂C

∂z

)
z=0

. (6.25)
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The local Nusselt and Sherwood numbers in the dimensionless form, are

Re−1/2z Nuz = −[1 + (4/3)θ3wRd]θ′ (0) , Re−1/2z Shz = −φ′ (0) . (6.26)

6.3 Solution Methodology

The system of non-linear ordinary differential Eqs. (6.18)-(6.21) along with the

boundary conditions (6.22) has been solved iteratively by the shooting method

[93] for various values of different physical parameters. To verify the numerical

results achieved by the shooting method, we have also implemented the MATLAB

built-in function bvp4c. For the solution of the initial value problem arising in

the shooting method, Runge-Kutta method of order four has been used. The

unbounded domain [0, ∞) has been replaced by the bounded domain [0, ηmax]

for some suitable choice of the positive real number ηmax because no significant

variations in the solution are observed for η > ηmax. For the numerical values

presented in Tables 6.1, 6.2 and 6.3, ηmax is taken as 8 whereas for different

figures, we have taken different values of ηmax. To convert the higher order ODEs

(6.18)-(6.21) into a system of first order ODEs, denote f by y1, g by y4, θ by y7

and φ by y9. As a result, the following initialivalue problem consisting of ten first

order ordinary differential equations is obtained.

y′1 = y2

y′2 = y3

y′3 =
1

1− Λ (y1 + y4)
2

 y22 − (M2Λ + 1) (y1 + y4) y3−

2Λy2y3 (y1 + y4) +M2y2


y′4 = y5

y′5 = y6

y′6 =
1

1− Λ (y1 + y4)
2

 y25 − (M2Λ + 1) (y1 + y4) y6−

2Λy5y6 (y1 + y4) +M2y5




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y′7 = y8

y′8 =
−3

3 + 4Rd (1 + (θw − 1) y7)
3


4Rd (θw − 1) (1 + (θw − 1) y7)

2 y28+

Pr (y1 + y4) y8 + PrEc (y23 + L2y26)

+PrEcM2 (y22 + L2y25)


y′9 = y10

y′10 = −Sc (y1 + y4) y10 + τ ∗Sc (y9y
′
8 + y8y10) ,


(6.27)

with the initial conditions

y1 (0) = 0, y2 (0) = 1, y3 (0) = %1,

y4 (0) = 0, y5 (0) = c, y6 (0) = %2,

y7 (0) = 1, y8 (0) = %3, y9 (0) = 1,

y10 (0) = %4.


The above initial value problem is solved by Runge-Kutta method of order 4. For

the refinement of the choices of %1, %2, %3 and %4 in each iteration of the shooting

method, the classical Newton method is used to solve a system of four non-linear

algebraic equations in %1, %2, %3 and %4. The stopping criteria for the iterative

process is set as

max {|y2 (ηmax)− 0| , |y5 (ηmax)− 0| , |y7 (ηmax)− 0| , |y9 (ηmax)− 0|} < ε.

To achieve more sharp numerical results, ε has been given the value 10−6 through-

out the present numerical investigation.

6.4 Results and Discussion

Although, almost the same numerical results for different quantities of interest

are achieved by two different techniques, nevertheless for more satisfaction, the

MATLAB code for the current problem has been validated by reproducing some

published work of the similar nature. For this purpose, numerical values of f ′′(0)
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and g′′(0) for different values of c are computed and presented in Table 6.1. The

values of f ′′(0) and g′′(0) are compared with those published by Ariel [122] and

Hayat et al. [123] and found in an excellent agreement. Numerical values of Nusselt

number are also computed for different choices of the values of Deborah number,

stretching ratio parameter, Prandtl number and thermal radiation parameter. A

convincing comparison of these values with those reported by Mushtaq et al. [14]

can be seen in Table 6.2. They have also used the shooting method with RK-4

integration scheme.

Numerical results of local Nusselt number and local Sherwood number for various

values of different parameters are tabulated in Table 6.3. From the table, it is

observed that the rate of heat flux decreases for the increasing values of Deborah

number Λ, magnetic parameter M and Eckert number Ec. The rate of heat

flux is found to increase for thermal radiation parameter Rd, stretching ratio c,

temperature ratio parameter θw and Prandtl number Pr. The rate of mass transfer

is observed to reflect the decreasing behavior for Deborah number Λ, magnetic

parameterM , thermal radiation parameter θw, Eckert number Ec and temperature

ratio parameter θw whereas it increases for the stretching ratio parameter c and

Prandtl number Pr. On the other hand, Sherwood number is enhanced for the

higher values of Schmidt number Sc and thermophoretic parameter τ ∗.

To visualizelthe effect ofldifferent physical parameterslon the velocitieslf ′(η), g′(η),

temperaturel θ(η) and concentrationlprofile φ(η), Figures 6.2–6.19 are plotted.

Figures 6.2 and 6.3 reflect the impact of Deborah numberiΛ, which is the ratioiof

the fluid relaxation timeito its characteristic time scale, onithe velocity and con-

centration profiles. When the shearistress is applied on theifluid, the time in which

it gainsiits equilibrium position is called theirelaxation time. This timeiis higher

for the fluids having highiviscosity. So, an increase in Deborahinumber may in-

crease the viscosity of the fluid resulting in the decreasing behavior of the velocity

as shown in Figure 6.2. The fluid becomes Newtonian if we consider Λ = 0 and

its viscosity gradually increases with an increase in Deborah number Λ. From

Figure 6.2, it is also concluded that the boundary layer thickness reduces for the

upper convected Maxwell fluid. The hydrodynamic boundary layer thickness, is
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known to decreases for the increasing values of the Deborah number. In Figure

6.3, the concentration φ(η) is displayed for different values of the Deborah number

Λ. It is observed thatithe concentration increasesiwith an increase in the relax-

ationitime. From this observation, weican conclude that elastic force promotes

theiheat transfer in the upper-convectediMaxwell fluid which resultantly increases

the mass transfer.

In Figures 6.4, 6.5 and 6.6, the effect of stretching ratio c on the velocities and

concentration profiles is shown. An opposite effect of c on velocity profiles in

x− and y− directions is noticed in Figures 6.4 and 6.5. As c = b/a, where

a and b are the velocity coefficients along the x and y-axes respectively, soian

increment in c meansia decrement in a, which impliesia decrease in the velocity

along x− axis. Similarly, an increasing value ofic causes an increment inib, which

resultantly increases the velocity of the fluid in y− direction. From Figure 6.6,

it is seen that the mass transfer decreases for the increasing value of c. To see

the variation in the temperature against the increasing values of Prandtl number

Pr, Figure 6.7 is plotted. It is observed that if the Prandtl number is augmented,

there are thinning effects in the thermal boundary layer thickness. Fluids having

larger Prandtl number, have lower thermal diffusivity which results in the fall of

temperature.

Figures 6.8–6.10 depict the typical profiles of velocity, temperature and concen-

tration for magnetic parameter M . By increasing the magnetic parameter M , a

drag force known as Lorentz force increases which resultantly reduces the velocity

of the fluid and hence the rate of heat and mass transfer is reduced and this leads

to an increment in the temperature and concentration. In Figure 6.11, the effect

of thermal radiation parameter Rd on temperature for both linear and non-linear

radiation, is shown. It is seen that θ(η) has increasing trend for increasing values

of Rd. It is also noticed that temperature rises more quickly in non-linear radia-

tion case (θw = 1.3) as compared with the linear radiation case (θw = 1.0). The

thermal radiation is increased due to the fact that more energy is released in the

fluid.
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To see the effect of Eckert number Ec on temperature, Figure 6.12 is presented.

From this figure, it is clear that temperature increases with an increase in Ec.

Due to friction, the heat energy is stored in the fluid for increasing values of Ec,

which results in the enhancement of the temperature profile. The effect of the

variation in the Schmidt number Sc on the mass transfer, is shown in Figure 6.13.

From this figure, it is noticed thatithe concentration boundary layeriand hence the

concentration fieldiφ(η) is reduced with theiincrement in the Schmidt numberiSc.

This is due to the factithat Sc is inversely proportional to theidiffusion coefficient.

Because an increase inithe diffusion coefficient decreases the mass transfer rate,

therefore aniincrease in Sc results in aidecrease in the concentration profile. The

effect of the thermophoretic parameter τ ∗ on the concentration profile, is shown

in Figure 6.14. We observe that the increasing values of the thermophoretic pa-

rameter τ ∗ induce a decrement in the concentration of the particles throughout

the flow domain. In Figure 6.15, the variation in the temperature ratio parameter

θw is analyzed for the temperature profile. From this figure, it is observed that

temperature is enhanced for the increasing values of θw. An increase in θw implies

an increase in the wall temperature Tw, which leads to an increase in the tem-

perature of the fluid within the boundary layer. In Figure 6.16, the temperature

profile is found to increase, when L increases. Remember that L is the ratio of

the thickness of the plate along y−axis to that along the x−axis.

Through Figure 6.17, the effects of the non-linear thermal radiation and the tem-

perature ratio parameter on the Nusselt number, have been analyzed. It is ob-

served that both of these parameters cause the increasing behavior in the Nusselt

number. Figure 6.18 is plotted to see the trend of the Sherwood number due to

the rise in the Schmidt number Sc and the thermophoretic parameter τ ∗. Here,

the rate of mass transfer is found to enhance for the higher values of τ ∗ and Sc.

When the Prandtl number increases form 0.2 to 0.5, the value of Nusselt number

is also enhanced, as shown in Figure 6.19. However, the Eckert number has the

opposite effect on the Nusselt number.
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f ′′(0) g′′(0)

c [122] [123] Present [122] [123] Present

HPM Exact HAM HPM Exact HAM

0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0

0.1 1.017027 1.020260 1.020259 1.020246 0.073099 0.066847 0.066847 0.066835

0.2 1.034587 1.039495 1.039495 1.039462 0.158231 0.148737 0.148736 0.148721

0.3 1.052470 1.057955 1.057954 1.057922 0.254347 0.243360 0.243359 0.243338

0.4 1.070529 1.075788 1.075788 1.075750 0.360599 0.349209 0.349208 0.349182

0.5 1.088662 1.093095 1.093095 1.093062 0.476290 0.465205 0.465204 0.465193

0.6 1.106797 1.109947 1.109946 1.109928 0.600833 0.590529 0.590528 0.590518

0.7 1.124882 1.126398 1.126397 1.126373 0.733730 0.724532 0.724531 0.724526

0.8 1.142879 1.142489 1.142488 1.142461 0.874551 0.866683 0.866682 0.866670

0.9 1.160762 1.158254 1.158253 1.158230 1.022922 1.016539 1.016538 1.016523

1.0 1.178511 1.173721 1.173720 1.173710 1.178511 1.173721 1.173720 1.173714

Table 6.1: Comparison of the present results of f ′′(0) and g′′(0) with those
computed by Ariel [122] and Hayat et al. [123] for different values of c

Rd = 0 Rd = 1.0

θw = 0 θw = 0 θw = 1.1

Λ c Pr [14] Present [14] Present [14] Present

1 0.5 2 1.01695 1.0169493 0.61177 0.6127148 0.53932 0.5395022

4 1.60165 1.6016506 1.01695 1.0169493 0.90348 0.9034844

7 2.24393 2.2439298 1.47271 1.4727082 1.31435 1.3143535

10 2.75508 2.7550740 1.83692 1.8369216 1.64284 1.6428361

1 0 7 1.82603 1.8260260 1.20254 1.2025347 1.07372 1.0737145

0.3 2.09403 2.0940290 1.37824 1.3782398 1.23051 1.2305095

0.6 2.31293 2.3129240 1.51544 1.5154397 1.35219 1.3609931

1 2.55918 2.5591800 1.66440 1.6644187 1.48361 1.4836290

0 0.5 7 2.35436 2.3543502 1.59321 1.5922506 1.42760 1.4275931

0.5 2.29665 2.2966491 1.53021 1.5302076 1.36840 1.3684014

1.0 2.24393 2.2439299 1.47271 1.4727082 1.31435 1.3143533

1.5 2.19501 2.1950047 1.41998 1.4200796 1.26482 1.2649215

Table 6.2: Comparison of the presently computed values of the wall temper-
ature gradient −θ′(0) with those of Mushtaq et al. [14] for different values of

Λ, c, Pr,Rd and θw.
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NuzRe
−1/2
z ShzRe

−1/2
z

Λ M c Rd θw Pr Ec L Sc τ ∗ Shooting bvp4c Shooting bvp4c

0.1 0.2 0.5 1.0 1.3 0.2 0.1 1.0 0.3 0.2 0.3202000 0.3202000 0.2956925 0.2956921

0.2 0.3127308 0.3127305 0.2855532 0.2855529

0.3 0.3061861 0.3061856 0.2763398 0.2763395

0.4 0.3003928 0.3003922 0.2679526 0.2679521

0.3 0.3175056 0.3175050 0.2926446 0.2926442

0.4 0.3139047 0.3139041 0.2885396 0.2885391

0.5 0.3095445 0.3095438 0.2835238 0.2835234

0.2 0.3071753 0.3071747 0.2636041 0.2636038

0.3 0.3122098 0.3122091 0.2751217 0.2751215

0.4 0.3165321 0.3165316 0.2857615 0.2857612

0.9 0.3068894 0.3068890 0.2959023 0.2959020

1.0 0.3202000 0.3202000 0.2956924 0.2956921

1.1 0.3336676 0.3336672 0.2955106 0.2955102

1.0 0.2777206 0.2777203 0.2981455 0.2981451

1.1 0.2901385 0.2901382 0.2972483 0.2972480

1.2 0.3042220 0.3042217 0.2964293 0.2964290

0.3 0.3830036 0.3830032 0.2967939 0.2967934

0.4 0.4522845 0.4522842 0.2978659 0.2978655

0.5 0.5261987 0.5261983 0.2988827 0.2988824

0.2 0.3050372 0.3050368 0.2954590 0.2954589

0.3 0.2898744 0.2898740 0.2952253 0.2952251

0.4 0.2747115 0.2747112 0.2949912 0.2949911

0.5 0.3223145 0.3223141 0.2957250 0.2957250

1.0 0.3202000 0.3202000 0.2956925 0.2956922

1.5 0.3166757 0.3166753 0.2956381 0.2956376

0.1 0.3202000 0.3202000 0.1369700 0.1369700

0.2 0.3202000 0.3202000 0.2156863 0.2156862

0.3 0.3202000 0.3202000 0.2956924 0.2956921

0.1 0.3202000 0.3202000 0.2935038 0.2935037

0.2 0.3202000 0.3202000 0.2956924 0.2956922

0.3 0.3202000 0.3202000 0.2978858 0.2978854

Table 6.3: Numerical values of local Nusselt number and Sherwood number
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Figure 6.2: iInfluence of Λ on f ′(η).

Figure 6.3: iInfluence of Λ oniφ(η).
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Figure 6.4: iInfluence of c onif ′(η).

Figure 6.5: iInfluence of c onig′(η).



Chapterl6 114

Figure 6.6: iInfluence of c oniφ(η).

Figure 6.7: iInfluence of Pr oniθ(η).
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Figure 6.8: iInfluence of M onif ′(η).

Figure 6.9: iInfluence of M oniθ(η).



Chapterl6 116

Figure 6.10: iInfluence of M oniφ(η).

Figure 6.11: iInfluence of Rd oniθ(η).
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Figure 6.12: iInfluence of Ec oniθ(η).

Figure 6.13: iInfluence of Sc oniφ(η).
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Figure 6.14: iInfluence of τ∗ oniφ(η).

Figure 6.15: iInfluence of θw oniθ(η).
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Figure 6.16: iInfluence of L oniθ(η).

Figure 6.17: iInfluence of θw, Rd oniNuzRe
−1/2
z .
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Figure 6.18: iInfluence of τ∗, Sc oniShzRe
−1/2
z .

Figure 6.19: iInfluence of Pr, Ec oniNuzRe
−1/2
z .
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6.5 Concluding Remarks

This study revealsithe influence of non-linear thermaliradiation of electrically con-

ductingiupper convected Maxwell nanofluid over a bi-directional stretching surface.

Non-linear boundary value problem is solvedinumerically byithe shooting method

involving the fourth order Runge-Kutta integration technique. The main findings

of the study are as follows:

• UCM fluids have lower boundary layer thickness as compared to the Newto-

nian fluids.

• The present results are valid for both the linear radiation (θw = 1.0) as well

as for the non-linear radiation (θw > 1).

• There is a decrease in the concentration profile when thermophoretic param-

eter and Schmidt number are increased.

• An increase in the temperature is observed, when the thermal radiation pa-

rameter Rd is increased for linear and non-linear radiation θw. However, the

boundary layer thickness increases more quickly for the non-linear radiation

(θw = 1.3) as compared with the linear radiation (θw = 1.0).

• Eckert number and magnetic parameter, have the increasing impact on the

temperature profile.



Chapter 7

Conclusion

7.1 Conclusion

In this treatise, the numerical results of non-linear equations, governing the flow

of Newtonian and non-Newtonian fluids (upper convected Maxwell fluid) for the

heat, flow and mass transfer over a stretching sheet are obtained for different ge-

ometries and for the distinct values of the emerging parameters. Boundary layer

approximations are used to acquire the mathematically modeled equations based

on the laws of conservations. Continuity equation is derived from the law of con-

servation of mass, momentum equations based on the Newton’s second law of

motion, energy equations is obtained from the first law of thermodynamics, and

Fick’s law is used to derive the concentration equations. These governing partial

differential equations are transformed to the non-linear coupled ordinary differ-

ential equations by the implementation of similarity transformations. In all the

cases, these differential equations are solved numerically by the shooting method

through the integration scheme RK-4. Results are further supported by a MAT-

LAB built-in function bvp4c. In all the Chapters, results are analogized with the

previously published articles in limiting cases. The main findings of the thesis are

as follows:
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• Due to the enhancement of Lorentz forces, the increasing magnetic parameter

reduces the speed of the fluid. Because of the reduction in the speed of the

fluid, the concentration and temperature profiles are increased.

• When the thermophoresis parameter is increased, the concentration and the

thermal boundary layer thickness are also increased, and consequently the

temperature and nanoparticles concentration are raised.

• The temperature distribution is a growing function of the Brownian motion

parameter but a reverse relation is noticed in the case of the concentration

distribution.

• The mass and temperature profiles both are decreasing functions of Prandtl

number.

• The velocity profile always shows a decreasing role for the thermal radiation

parameter regardless of the linear and the non-linear thermal radiation.

• The thermal boundary layer thickness increases more quickly for the non-

linear thermal radiation as compared to the linear one.

• The concentration profile is a decreasing function of the thermophoretic pa-

rameter and Schmidt number.

• The transverse and the tangential velocity both increase for the higher values

of the Hall current and ion-slip parameter.

• The wall shear stress decreases when the Hall current parameter is increased.

• The value of the mass transfer rate is getting high for the higher values of

Prandtl number but it reduces for the Eckert number.

7.2 Future Outlooks

The work described in this thesis contributes to the importance of nanofluid for

heat and mass transfer over the stretching sheet. In the 3rd and 4th chapters,
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the effects of Hall current and ion-slip along with thermal diffusivity and heat

generation absorption are also studied, whereas in 5th and 6th chapters, upper

convected Maxwell fluid on bidirectional stretching sheet is investigated with MHD

and non-linear thermal radiation effects. The described work can be extended in

the following directions.

• The effects of Hall and ion-slip with nanofluid over the stretching cylinder

and between the rotating disks is still missing in the literature. So the

articles mentioned in 3rd and 4th chapters can be extended for the stretching

cylinder and rotating disks with some other prominent effects such as non-

linear thermal radiation, Joule heating and viscous dissipation.

• As in 3rd and 4th chapters, we have considered the Newtonian fluid. At-

tempts can be made to model the same problem for the non-Newtonian fluid

such as Williamson fluid, Maxwell fluid, Oldroyd-B fluid etc.

• Different boundary conditions can be imposed such as convective boundary

condition, velocity, thermal and concentration slip conditions, Melting heat,

zero mass flux conditions etc.

• The problem described in 5th and 6th chapters can be further extended for

the cylinder and rotating disk geometries. Some other parameters can also

be incorporated e.g. variable thermal conductivities, porous media, Soret

and Dufour effects, permeable sheets, heat generation absorption effects,

chemical reaction, homogeneous/heterogeneous effects, Joule heating etc.

The nature of the non-Newtonian fluid can also be varied.

• All the problems solved here are based on the linearly stretching sheets.

The same problems can be modified for the non-linear stretching sheet and

exponential stretching sheets.
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