
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Achieving State Space Reduction

in Generated Ajax Web

Application State Machine

by

Nadeem Fakhar

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2023

www.cust.edu.pk
www.cust.edu.pk
nadeem.fakhar@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Achieving State Space Reduction in Generated

Ajax Web Application State Machine

By

Nadeem Fakhar

(PC113002)

Dr. Seifedine Kadry, Professor

Noroff University College, Norway

(Foreign Evaluator 1)

Dr. Mehmet Kaya, Professor

Firat University, Elazig, Turkey

(Foreign Evaluator 2)

Dr. Aamer Nadeem

(Thesis Supervisor)

Dr. Abdul Basit Siddiqui

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2023

ii

Copyright © 2023 by Nadeem Fakhar

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

To my parents and teachers.

vii

List of Publications

It is certified that following publication has been made out of the research work

that has been carried out for this thesis:-

Journal publications:

1. N. F. Malik, A. Nadeem, and M. A. Sindhu,“ Achieving State Space Re-

duction in Generated Ajax Web Application State Machine”, Intelligent Au-

tomation and Soft Computing, vol. 33(1), pp. 429–455 , 2022.

Nadeem Fakhar Malik

(PC113002)

viii

Acknowledgement

All praise is due to Allah Almighty, who has all knowledge and has the power to

grant from his knowledge and peace, mercy and blessing upon his last and final

messenger and upon good-doers.

I would never have been able to finish my work without the support from my

respected mother, my brother, sisters, and my friends.

One of the most notable of Allah’s blessings upon me was in the form of my

supervisor. I would like to thank my supervisors, Professor/Head of Center for

Software Dependability (CSD) research group Professor Dr. Aamer Nadeem for

his guidance and support. I am also grateful to Dr. Muddassar Azam Sindhu,

Associate Professor QAU, whose reviews helped me a lot to improve my work. I

feel very lucky to be part of CSD research group members whose discussion and

constructive criticism maintained an environment that was conducive for research.

Moreover, without the recreational activities of our CSD research group, I may

have gone insane over the last few years. I also thank the faculty members of Cap-

ital University of Science and Technology who gave me the resources and healthy

education environment.

Apart from the mentioned above, many people helped me reach this point. May

Allah grant all of them peace and bless them with prosperity.

ix

Abstract

Ajax (Asynchronous JavaScript and XML) constructs dynamic web applications

by using Asynchronous communication and run time Document Object Model

(DOM) manipulation. Ajax involves extreme dynamism, which induces novel

kind of issues like state explosion, triggering state changes and unreachable states

etc. Finite State Machines (FSM) provide an effective way to model the behaviour

of software. However, the state model generated for an Ajax application can be

enormous and may be hit by state explosion problem. Recent research has not

addressed this issue comprehensively because existing techniques either apply par-

tial reduction or compromise the effectiveness of model. This research uses soft

computing based Fuzzy C Means (FCM) clustering algorithm to generate state

machine model of an Ajax web application. The focus is on devising a framework

to avoid the state explosion problem. The framework prioritizes the requirements

and use cases based on requirements weightage, stakeholder weightage and user

session based use case frequency. FCM uses this data to reduce the state space by

identifying the most pivotal usage areas. The resultant DOM mutations for only

these usage areas are considered to induce the finite state machine thus avoiding

the state explosion. The framework considers, not only, usage patterns and use

cases but also software requirements, which is a distinctive contribution that has

not been explored in prior researches. By incorporating software requirements

into the state space reduction process, the proposed framework enables more ac-

curate and effective reduction, leading to better optimization and performance of

the web applications. The experimental results demonstrate that the framework

achieved a reduction in overhead of 50 and a reduction in efficiency of 0.342(34)

and a reduction in overhead of 0.809(81) and a reduction in efficiency of 0.385(39)

in different case studies. These findings suggest that the framework is effective

in mitigating the state space explosion problem while maintaining reasonable ef-

ficiency.

Contents

Author’s Declaration iv

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xiii

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Research Aims and Objectives . 3

1.2 Research Questions . 4

1.3 Existing Solutions . 5

1.4 Problem Statement . 6

1.5 Proposed Solution . 6

1.6 Research Contribution . 7

1.7 Thesis Outline . 8

2 Background 9

2.1 Challenges in Constructing FSM for AJAX Based Web Applications 10

2.1.1 Reach Difficulty . 11

2.1.2 Event Triggering . 11

2.1.3 Result Dissemination . 11

2.1.4 Asynchronous Behavior . 12

2.1.5 Statefulness . 12

2.1.6 Backtracking . 13

2.1.7 DOM Tree Management . 13

2.1.8 The Oracle Problem . 13

2.1.9 DOM Validation . 13

x

xi

2.1.10 Invariants . 14

2.1.11 State Explosion . 14

2.2 System Stakeholders . 14

2.3 Requirements Prioritization Techniques 17

2.3.1 Software Requirements Prioritization Techniques 19

2.3.1.1 Analytical Hierarchy Process 19

2.3.1.2 Minimal Spanning Tree 20

2.3.1.3 Cost-Value Approach 20

2.3.1.4 Hierarchy AHP . 20

2.3.1.5 Numerical Assignment 20

2.3.1.6 Theory W . 21

2.3.1.7 Top-Ten Requirements 21

2.3.1.8 Planning Game . 21

2.3.1.9 Cumulative Voting or The Hundred Dollar Test . . 22

2.3.1.10 B-Tree Prioritize 22

2.3.1.11 Ranking . 22

2.3.1.12 Bubble Sort . 23

2.3.1.13 Hierarchical Cumulative Voting 23

2.3.1.14 Priority Groups . 23

2.3.1.15 Value-Based Intelligent Requirement Prioritization
(VIRP) . 24

2.3.1.16 Interactive Genetic Algorithm-Based Prioritization 24

2.3.1.17 Case-Based Ranking (CBR) 25

2.4 User Sessions . 26

2.5 Clustering . 26

2.5.1 Basic Clustering Techniques 28

2.5.1.1 Hierarchical Clustering 28

2.5.1.2 Agglomerative Algorithms 28

2.5.1.3 Divisive Algorithms 29

2.5.1.4 Partitional Clustering 29

2.6 FSM Based Web Application Modeling 32

2.6.1 Finite State-Machine (FSM) Based Verification 32

2.6.2 Invariant Based FSM . 32

2.6.3 Crawl Based AJAX States 32

3 Literature Review 34

3.1 State Model of AJAX . 34

3.1.1 Web Application Vs Traditional Application 34

3.1.2 Execution Trace Data based State Machine Construction . . 35

3.1.3 Crawler based State Machine Construction 36

3.1.3.1 Validated DOM . 38

3.1.3.2 DOM Error Messages 38

3.1.3.3 Other Invariants 39

3.1.3.4 No Dead Clickables 39

3.1.3.5 Consistent Back Button 39

xii

3.1.4 State Machine Construction from Requirements and Design
Documents . 41

3.2 State Explosion . 42

3.2.1 State Space Reductions . 43

3.2.1.1 State based Reductions 43

3.2.1.2 Path based Reductions 44

3.2.1.3 Compositional Methods 44

3.2.1.4 Storage Size Reductions 44

3.2.1.5 State Compression 44

3.2.1.6 Caching and Selective Storing 45

3.2.1.7 Randomized Techniques and Heuristics 45

3.2.1.8 Heuristic Search 45

3.2.1.9 Random Walk and Partial Search 46

3.2.1.10 Bitstate Hashing 46

3.3 ReactJS - A Modern Web Technology 48

3.3.0.1 Advantages of ReactJS 48

3.3.0.2 Disadvantages of ReactJS 49

3.3.0.3 Modeling ReactJS using Finite State Machines . . 49

3.3.0.4 Issues with Modeling ReactJS using Finite State
Machines . 50

3.4 Conclusion and Research Gaps . 51

4 StateReduceAjax 53

4.1 Stage I . 56

4.1.1 Requirements Prioritization 58

4.1.1.1 AHP . 58

4.1.1.2 PHandler . 60

4.1.1.3 Validation Mechanisms 66

4.2 Stage II . 67

4.2.1 User Session Recording and Log File Generation 70

4.2.2 Calculation of Use Case Frequency 71

4.2.3 Use Case Requirement Mapping 72

4.2.4 Application of Fuzzy C Mean Clustering 73

4.3 Stage III . 77

4.3.1 DOM Event Element Mapping 80

4.3.2 State Machine Construction 82

5 Experimentation and Results 88

5.1 Evaluation of the Proposed Solution 111

5.2 Comparison with Existing Techniques 117

6 Conclusion and Future Work 122

6.1 Conclusion . 122

6.2 Future Work . 123

Bibliography 124

List of Figures

1.1 Ajax Web Application Working . 2

4.1 StateReduceAjax Framework . 56

4.2 Stages I Block Diagram . 58

4.3 Exceptions between Same Priority Requirements 64

4.4 Stages of PHandler . 65

4.5 Stages II Block Diagram . 67

4.6 Selenium IDE . 68

4.7 Selenium Log File . 70

4.8 Selenium Sessions . 70

4.9 Use Case Frequency Calculation . 71

4.10 Fuzzy C Means Clustering Algorithm Working 75

4.11 FCM Clustering . 76

4.12 Stages III Block Diagram . 77

4.13 DOM Listener Interface . 78

4.14 HTML DOM Navigation Tool . 79

4.15 Event Element Mapping . 82

4.16 Graphviz Interface . 84

4.17 Proposed Use Case . 85

5.1 Selenium IDE for Coffee Maker . 92

5.2 FCM Results for Ajax Powered Coffee Maker 93

5.3 DOM Listener Interface for Coffee Maker 94

5.4 Coffee Maker HTML DOM Navigation Interface 95

5.5 State Machine of “Place Order by Entering Name and Default Set-
tings” Use Case . 95

5.6 State Machine of “Place Order by Selecting Size and Default Set-
tings” Use Case . 96

5.7 State Machine of “Place Order by Selecting BeverageType and De-
fault Settings” Use Case . 97

5.8 Place Order by Entering Name, Size and Beverage Type 98

5.9 FCM Results of ToDo List . 100

5.10 Add Task with Add Button . 102

5.11 Add Task with Advance Button . 103

5.12 Search Task by Label . 104

5.13 Mark Task as Complete . 105

5.14 Sort List by Priority . 106

xiii

xiv

5.15 Sort List by Due Date . 107

5.16 Sort All Tasks by Priority . 108

5.17 Sort All Tasks by Due Date . 109

5.18 Change Password Protection Settings 110

5.19 Set Date Format . 111

List of Tables

3.1 Summary of Included Studies . 46

3.2 Summary of Studies Handling State Space Explosion 47

4.1 Algorithm I . 57

4.2 AHP . 59

4.3 Pairwise Requirement Values . 59

4.4 Normalized Requirement Values . 60

4.5 Prioritized Requirement Values . 60

4.6 Requirements with Same RV and Different projRCF value 62

4.7 Requirements with Same RV, projRCF and Different valST value . 62

4.8 Requirements with Same RV, projRCF, valST and High Stake-
holder Value . 63

4.9 Requirements with Same RV, projRCF, valST and Medium Stake-
holder Value . 63

4.10 Requirements with Same RV, projRCF, valST and Low Stakeholder
Value . 64

4.11 Algorithm II . 66

4.12 Algorithm III . 69

4.13 Requirement Weightage . 72

4.14 Requirement Use Case Mapping . 72

4.15 Use Case Weightage and Frequency 73

4.16 Comparison of Clustering Techniques 74

4.17 Algorithm IV . 80

4.18 State Log File . 82

4.19 Use Case Steps with DOM States 84

5.1 Ajax Powered Coffee Maker Requirements Weightage 89

5.2 Averaging over Normalized Column 89

5.3 Weighted Requirements Matrix . 90

5.4 Ajax Powered Coffee Maker Use Cases 90

5.5 Ajax Powered Coffee Maker Requirement Weightage 91

5.6 Ajax Powered Coffee Maker Requirement Use Case Mapping 91

5.7 Ajax Powered Coffee Maker Use Case Weightage 92

5.8 Ajax Powered Coffee Maker Fuzzy Input 93

5.9 Place Order by Entering Name and Default Settings 95

5.10 Place Order by Selecting Size and Default Settings 96

5.11 Place Order by Selecting Beverage Type and Default Settings . . . 96

xv

xvi

5.12 Place Order by Entering Name, Size and Beverage Type 97

5.13 RV Value of ToDo List Requirements 99

5.14 ToDo List Use Case Chunk . 99

5.15 ToDo List FCM Input Data . 100

5.16 Add Task with Add Button to an Already Created List 101

5.17 Add Task with Advance Button to an Already Created List 102

5.18 Search Task by Label . 104

5.19 Mark Task as Complete . 105

5.20 Sort List by Priority . 105

5.21 Sort List by Due Date . 106

5.22 Sort All Tasks by Priority . 107

5.23 Sort All Tasks by Due Date . 108

5.24 Change Password Protection Settings 109

5.25 Set Date Format . 110

5.26 Fault Distribution . 113

5.27 Fault Severity Levels . 113

5.28 Effectiveness of a Use Case . 115

5.29 Calculation on Case Studies . 116

5.30 Comparison of Approaches . 119

Abbreviations

AHP Anylitical Hierarchy Process

AJAX Asynchronous JavaScript and XML

BDD Binary Decision Diagrams

CBR Case-Based Ranking

CV Cumulative Voting

DOM Document Object Model

ED Euclidean Distance

FCM Fuzzy C Means

FGKA Fast Genetic K-means Approach

FSM Finite State Machine

GA Genetic Algorithm

GKA Genetic K-means Algorithm

HAHP Hierarchy AHP

HCV Hierarchical Cumulative Voting

MD Mahalanobis Distance

MST Minimal Spanning Tree

POFOD Probability of Failure on Demand

RV Requirement Value

SRP Software Requirements Prioritization

VBSE Value based Software Engineerig

VIRP Value-based Intelligent Requirement Prioritization

XML Extensible Markup Language

xvii

Chapter 1

Introduction

Lately advanced web technologies under the umbrella of web 2.0 have appeared

and this advancement has transformed web applications into rich single page appli-

cations from existing static multi page applications [1, 2]. Modern society heavily

relies on interactive and smart web applications, which must be reliable, enhance-

able, and secure. The increasing complexity of current web applications implies

extensive questions to their reliability. The static analysis of web applications’

code provides significant perception to their reliability, however highly dynamic

character of current web applications has made dynamic analysis more crucial

[3, 4].

Ajax based applications are growing day by day. Ajax uses asynchronous mech-

anisms to interact with users via responsive, graphic rich, and interactive web-

browsers [5]. Ajax applications use DOM to manipulate information, and XML

to accomplish interoperability [6]. It presents information using HTML and CSS

and achieves data access from server by XMLHttpRequest object. It executes

JavaScript code upon callback activation [3]. Ajax works on distributed applica-

tion framework principles.

Ajax technology induces better user interaction [7], but not without a cost. The

asynchronous, event driven, stateful nature, use of loosely typed scripting lan-

guage, client-side extensive working, and exchange of page portions instead of

full-page exchange makes Ajax more error prone [8–10]. It is server-agnostic client-

1

Introduction 2

side approach and can work with various scripting languages which makes it fit

for autonomous and heterogeneous environments [9, 11]. These technology blends

require more effort to verify and maintain Ajax applications [9].

Figure 1.1: Ajax Web Application Working

Finite state machines (FSM) provide an effective way to model the behavior of

software without going into its implementation details. Numerous earlier works

have proposed methods to test applications using FSMs [8, 12, 13]. Just like

all other desktop and web applications, Ajax applications can also be modeled by

FSMs. Ajax web applications are single-page applications and theoretically, FSMs

can model them completely but practically issues like state explosion, triggering

state changes and unreachable states etc. are there to handle. Ajax applications

process diverse user inputs as well as frequent client-server interactions resulting

in abundant content change on the page. This causes number of DOM mutations

leading to a large number of concrete states thus resulting in state explosion prob-

lem [3, 12]. Therefore, FSM-based method to model the system is only feasible if

the FSM has limited states. Several state space reduction techniques have been

proposed to avoid state explosion problem in different applications [14–16] but

issues like partial reduction, processing overhead and effectiveness are still there

to be addressed.

Introduction 3

Verification and testing of web application proves to be a difficult task and the ad-

vent of Ajax applications has increased the complexity even further. Conventional

techniques [17–21] lack in verification and testing of Ajax application features like

asynchronous communication, client-server parallelism, and dynamic page segment

updates. These features have added the issues like forward-back page navigation,

enormous state changing elements, state explosion, and unreachable states.

To represent the behavior of a system without going into the implementation

intricacies, one beneficial technique is to make use of finite state machines, as

was just mentioned. By constructing the state machine, this research proposes a

mechanism for simulating Ajax applications. In order to solve the critical issue

of state space explosion, the methodology employs the utilization of a framework.

Instead of modelling the complete system, the framework focuses on the most fre-

quently used application components, which decreases the amount of state space

that needs to be modeled. The method selects the most significant use cases by

applying a fuzzy computing technique known as Fuzzy C Means (FCM) cluster-

ing, and thereafter creates a finite state machine for only those use cases. The

approximation and learning nature of FCM makes it a good candidate to handle

dynamic nature of Ajax application verification. These generated state machines

can later be combined to construct an aggregated state machine of the given Ajax

application.

1.1 Research Aims and Objectives

Like many software domains, web applications are becoming more complex. This

complexity arises due to several factors, such as a larger number of hyperlinks,

more complex interaction, and the increased use of distributed servers. The advent

of Ajax has further added to this complexity due to its asyncronous nature and

extreme dynamism. Modeling can help to understand these complex systems as it

provides convenient and understandable graphical description of systems without

going into the implementation details. System modeling helps in verification and

validation at all stages of development. System modeling of Ajax applications face

Introduction 4

a significant issue of state explosion due to extreme dynamism of Ajax applications.

The objectives in this research are to:

1. Identify and evaluate the limitations and inadequacies of the current tech-

niques used for state space reduction in Ajax web applications, as reported

in the existing literature.

2. Develop and propose an approach for constructing a reduced state machine

that can effectively manage the state explosion problem in Ajax web appli-

cations.

3. Assess the effectiveness of the proposed approach in reducing the state ma-

chine size in Ajax applications and to determine the extent of its contribution

towards achieving this goal.

1.2 Research Questions

RQ-1 What are the limitations or inadequacies, in the current techniques, em-

ployed for state space reduction in Ajax applications?

Objective: Our objective is to identify the weak areas in Ajax state space re-

duction techniques. These areas would then be addressed in our solution and an

approach would be devised by filling the gaps in these areas.

Methodology: This research question will be answered by going through the

current literature for its analysis. This findings of this analysis would then be

evaluated to identify the gaps. These gaps would then be addressed in our solu-

tion.

This requirement is fully achieved in section 3.3 of chapter 3 of this thesis.

RQ-2 How to design an approach to build a reduced state machine?

Objective: State machines of applications notably Ajax applications commonly

experience state explosion problem. Our objective is to design an approach that

would help in construction of reduced state machine and would avoid state explo-

sion.

Methodology: This question will be answered by looking through the literature

Introduction 5

of past and current works and identifying the primary factors contributing to the

state explosion problem in modeling Ajax applications. Existing solutions of this

problem would also be looked upon and lastly we will focus on the most pivotal

factors to be managed in order to find an efficient solution.

This requirement is fully achieved in chapter 4 of this thesis.

RQ-3 To what extent, does the proposed approach contribute to the reduction of

the state machine in Ajax applications?

Objective: Computer scientists and software engineers face a major challenge in

reducing state space. When state space is reduced, the effectiveness of a solution

is often affected. Our goal is to establish a mechanism that, either by merging

existing solutions or by developing a new one, can help reduce the state space of

Ajax applications while having no or minimal impact on the solution’s effective-

ness.

Methodology: The existing state space reduction strategies, as well as their

strengths and shortcomings, will be identified and evaluated to answer this ques-

tion. Then, either by combining existing strategies or by establishing a new one,

a state space reduction solution would be devised. Finally, experiments will be

conducted to demonstrate that the space reduction approach is effective without

compromising the solution’s effectiveness.

This requirement is fully achieved in section 5.1 of chapter 5 of this thesis.

1.3 Existing Solutions

Existing solutions in the area of Ajax based state machine reduction consists of

[6, 22]. Both these approaches are working to solve the state explosion problem

in Ajax based applications. In [6] the authors have discussed the use of Binary

Decision Diagrams (BDD) to avoid state explosion problem. In their approach

the state machine is generated for the whole application and then is reduced. The

mechanism starts by recording user sessions in xml log files and then by reading

those files to generate the state machine for the Ajax application. The authors

have claimed that the state machine is generated and reduced at the same time.

Introduction 6

This mechanism imposes a constant overhead on the system by comparing and

reducing the states all the time as the algorithm runs. Further the authors have

not discussed the effects of this reduction on application testing, i.e., whether the

reduced state machine has covered all the areas of the application under test. In

[22] the authors have claimed that state explosion problem is handled as every

session has got its own state machine. However this mechanism cannot guarantee

in absolute about the handling of state explosion problem due to following rea-

sons. Firstly the session of a large application can have large interacting events

and corresponding changing elements resulting in state explosion. Secondly the

framework constructs state machine for every session which is an overhead on the

application.

1.4 Problem Statement

One of the key technologies facilitating today’s dynamic web applications is Ajax.

A significant challenge in exploring the state or search space of Ajax applications

is state explosion problem.

Current solutions for state explosion problem majorly follow the approach of first

exploring the whole state space and then reduce it. Some solutions construct state

models by dividing the state space into smaller subspaces. Moreover, they do not

consider software requirements during the reduction process. This omission can

lead to incomplete or inaccurate models, of the web applications, which can affect

the effectiveness of subsequent analysis and testing.

State space reduction also pose challenges like losing information or change in

behavior of the system. The complete state space exploration of of a large ap-

plication is not feasable and the solutions constructing state machine for every

session have a big overhead associated. How much should we reduce the state

space?

1.5 Proposed Solution

Our proposed solution consists of a framework whose objective is to achieve state

space reduction in state machine of an Ajax web application. The framework uses

Introduction 7

soft computing based approach to achieve the obective.

Soft computing, as opposed to traditional computing, deals with approximate

models and gives solutions to complex real-life problems. Unlike hard computing,

soft computing is tolerant to imprecision, uncertainty, partial truth, and approxi-

mations [23]. In effect, the role model for soft computing is the human mind. One

of the most important techniques of soft computing is fuzzy logic based cluster-

ing. Clustering or cluster analysis is a form of exploratory data analysis in which

data is separated into groups or subsets such that the objects in each group share

some similarity. Clustering has been used as a preprocessing step to separate data

into manageable parts. Fuzzy C Means (FCM) [24] is a widely used clustering

algorithm that works best in overlapping data domains. In FCM, every point has

a degree of belonging to clusters thus the points on the edge of a cluster may be

in the cluster to a lesser degree than points in the center of the cluster.

The framework uses FCM to achieve state space reduction by passing through a

multistage progression to incrementally process the given information and generate

results that help in the state machine construction.

1.6 Research Contribution

1. We analysed the current literature on Ajax based web application modeling

to identify the challenges. There are many factors that contribute to the

complexity of state machine construction of Ajax applications. Foremost of

them is state explosion problem. We proposed a framework to handle state

explosion problem in Ajax applications.

2. We designed and implemented the framework that generates reduced state

machine for Ajax applications. The framework uses soft computing and

generates the reduced state machine based on the requirements, use cases

and usage patterns.

3. We evaluated the proposed framework to check the effectiveness of the ap-

proach. In this evaluation the effects of reduction in states on the coverage

were analysed.

Introduction 8

1.7 Thesis Outline

The thesis outline is as follows:

Chapter 2 gives the background of Ajax Web Application modeling and the chal-

lenges that are faced while creating the model of these dynamic applications.

Chapter 3 comprises a Literature Review in the area of Ajax applications, model

based presentation of Ajax applications, the issues, the challenges, the gaps and

the solutions that differnet researches propose.

Chapter 4 describes our proposed approach along with its details.

Chapter 5 is dedicated to the experimentaion and results. It discusses evaluation

of our solution and its comparison with existing techniques.

Chapter 6 concludes the thesis and provides possible future directions for re-

search.

Chapter 2

Background

Previously, users had to send requests to web servers via hyperlinks to update the

page content of typical web applications. The web servers then do business logic

executions for incoming requests and generate related web pages for client-side

browsers to display updated content to users. When a client loads an Ajax-based

web page, the browser on the client side creates Document Object Model (DOM)

objects by parsing the HTML documents of the received web pages. This creates

operation interfaces that programmes can use to change page content. The DOM

is built in the form of a tree. Each HTML element has a DOM node correspond-

ing to it, and each attribute in an HTML element has an attribute in DOM node

corresponding to it. In addition to HTML elements, there are DOM nodes that

represent browser windows and the HTML page itself, which programmes can

use to obtain attribute values and capture events. In addition, the majority of

well-known web browsers come equipped with integrated interpreters that allow

documents written in HTML to run scripts such as JavaScript. Web applications

can alter DOM nodes and attributes by asynchronously executing scripts, allowing

partial content of a web page to be dynamically modified without requesting the

entire page from servers. As a result, the amount of data sent between clients and

servers is cut down.

The basic operation of an Ajax-based online application is for browsers to down-

load the apps from a server, and then users can change the content of web pages

by triggering events such as clicking buttons or interacting with browser screens.

9

Background 10

Each triggered event has a callback handler that sends asynchronous requests to

a server using the browser’s XMLHttpRequest component, which processes the

requests and returns results to clients. The replies are serialized in Extensible

Markup Language (XML) format in most cases. When a client receives a re-

sponse, it passes the content of the response to a callback function, which can

update the partial content of the current web page based on the response and the

script specified in the function. Client-side browsers and web servers can inter-

change data in the background in this asynchronous way, and a chunk of business

logic executions can be migrated from servers to clients, reducing server load. Web

applications that use the Ajax approach, allow users to interact with them in the

same way that they would with desktop applications.

AJAX is intriguing because it opens up a plethora of new dynamic client-side

possibilities in a domain where dynamism was previously restricted to server-side

implementation of web applications. It proposes the concept of Web-2.0 [25],

which is defined as interactive web applications that include user-generated con-

tent. Web User Interface (UI) widgets were also introduced via AJAX.This is

similar to the widgets used in GUI application development. A table component,

for example, can be referenced and altered without requiring the entire application

to be updated or reloaded. The browser also ensures that the entire web applica-

tion remains responsive until the table in the DOM is changed and the result is

presented. AJAX opens up new possibilities for user interface design and enhances

the overall user experience, but it also comes with a set of new technical problems.

Using the browser’s back button to return to the previous state, for example, will

take you to a different state than you expected. In addition, the developer must

handle DOM manipulation, which includes a DOM clean-up once the visibility is

disabled. The DOM grows unexpectedly as a result of missing DOM clean-ups,

which is a common error.

2.1 Challenges in Constructing FSM for AJAX

Based Web Applications

AJAX presents whole new difficulties in the modeling and verification of web

applications, particularly through the Reach, Trigger, and Propagate features,

Background 11

which make matters even more complicated [12, 13]. Additional research into

this field carried out by A. Mesbah and A. van Deursen with the assistance of S.

Lenselink and D. Roest uncovered a variety of difficulties [26–29]. This section

presents the recognized obstacles, issues, and problems, and gives an overview of

them along with an explanation for each challenge individually.

2.1.1 Reach Difficulty

Traditional web apps have different states that may be accessed using a specific

URL that may also contain HTTP GET parameters. A unique URL is insufficient

for navigating to AJAX states as the states are concealed by DOM-integrated

JavaScript events. This indicates that in order to access AJAX states, such events

must be found throughout the crawling process. In order to navigate and check

the states, the crawler requires, in addition to recognizing such states, a way to

execute the AJAX events that can lead to another state. In addition to the reach

difficulty, there’s also the bookmarking and sharing issue as web application only

has a small number of unique URLs, which makes it difficult to create and share

bookmarks.

2.1.2 Event Triggering

To determine whether an event resulted in a new state for a web application, the

defined events must be triggered or executed within a verification environment.

It’s crucial in this period to not just start those events. AJAX states must take

user input into account in addition to being connected to an event. Even though

the same event is triggered, user input can alter the state. Identifying the data

input points and inserting data prior to triggering an event that has already been

detected are both prerequisite steps.

2.1.3 Result Dissemination

In order to make use of all available data inputs and events, the final output

must be disseminated to other systems which causes a client-side DOM alteration.

Background 12

In order to identify whether or not a new state has been reached, the altered

DOM needs to be inspected and compared with known states. In addition to

identifying the new state, it is necessary to identify the JavaScript defects in order

to determine whether or not the new state is solely the result of a JavaScript

event that was either not implemented correctly or was not implemented at all.

The propagated result serves as the foundation for invariant or condition-based

validation.

2.1.4 Asynchronous Behavior

When the browser needs to inquire about updated information from the server, it

makes use of an AJAX engine. This engine runs an asynchronous XmlHTTPRe-

quest. As a result, the user can continue using the browser and clicking on other

items without having to wait for the AJAX answer to come back before con-

tinuing on.When modelling these asynchronous requests, the modelling approach

must wait for the server’s response and the DOM alteration caused by AJAX

before comparing the propagated state to the previous state for state identifica-

tion. Aside from waiting for the answer, the wait time is crucial for figuring out

whether another candidate element event can be started without waiting for addi-

tional asynchronous AJAX responses.This complicates the process of DOM event

detection and outcome comparison.

2.1.5 Statefulness

The increasing statefulness of the client-side makes it more difficult to derive

AJAX states. A transition to examine and store the state-full behavior derived

from the DOM states is also made when functionality is moved from the server

to the client.This is particularly intriguing for drawing test cases from the web

application that was crawled. To repeat the same state results during test case

execution, the stateful behaviour must be duplicated within a stored test case.

The newly crawled states must be based on the same user behavior, including the

input values and navigation path.

Background 13

2.1.6 Backtracking

A noted issue in modern AJAX web applications is that as the client-side ex-

periences more stateful behavior, continuous backtracking create problems [29].

The gathered states must be accessible in both directions, saved, and compared

in order to test backtracking. This indicates that the source state must have a

backward edge from the target state. AJAX online applications have a well-known

drawback known as the back-tracking issue. If the test framework supports reli-

able back-tracking for the crawling web application, it must support comparing

the states.

2.1.7 DOM Tree Management

The proper handling of DOM trees is another issue that arises when AJAX is

used in web applications. In other words, AJAX can be used to make particular

DOM elements visible, or to add and delete elements from the page. AJAX-added

DOM elements must be correctly removed in order to prevent the DOM tree from

expanding and causing a slow browsing experience.

2.1.8 The Oracle Problem

According to the Oracle problem, fault positives might arise during state compar-

ison and the creation that follows. This implies that states listed as two distinct

states are same. The date component of a web page is a good illustration of this

concept because it displays both the date and the current time in the form of a

moving clock. If you compare the states without removing the information con-

tained in the text, you would come up with new states. In order to prevent the

production of new states that are not necessary, it has been recommended that

oracle comparators remove all state information that is not essential prior to doing

actual state comparisons [27].

2.1.9 DOM Validation

It is difficult to assess the veracity of the dynamic states. This refers to determining

whether the state’s Document Object Model is authentic. The states that have

Background 14

been found and gathered need to be checked to make sure they are correct.The

Document Object Model is validated against the specification of the related HTML

standard. Validation of the Document Object Model is performed by comparing

its contents to the requirements outlined in the associated HTML standard.

2.1.10 Invariants

In order to ensure that the crawling phase is proceeding correctly, it is necessary to

use application-specific invariants as an extra mechanism for validating the DOM

[29]. These invariants may be used to determine if a state’s DOM is also valid

according to its application-specific DOM requirements.

2.1.11 State Explosion

A single web page can contain a wide variety of text field inputs, a significant num-

ber of actions on both the client and server sides, and a variety of dynamic content

alterations. This leads to enormous and limitless tangible state possibilities. Any

click has the potential to initiate a new state. Even a small web application can

have an infinite number of states. In addition, the content could be different for

each visitor or dependent on the time of day.

2.2 System Stakeholders

Before a system can be constructed, it is necessary for a project team to collect

the requirements of the system from the many stakeholders. There are many ways

to define the term ”stakeholders.” According to Freeman, the fundamental idea of

stakeholders is as follows:

“A stakeholder is any group or individual who can affect or is affected by the

achievement of the organization’s objectives” [30].

The term, on the other hand, can also refer to “all those who have a stake in the

change being considered, those who stand to gain from it and those who stand to

Background 15

lose” [31].

In order to identify and select the key stakeholders of the software, several re-

searchers have provided various definitions of stakeholders. The definitions are as

follows:

According to Tom Gilb a stakeholder is “any person or organizational group with

an interest in, or ability to affect, the system or its environment” [32].

“We define stakeholders as these participants together with any other individuals,

groups or organizations whose actions can influence or be influenced by the devel-

opment and use of the system whether directly or indirectly” [33].

“The people and organizations affected by the application” [34].

“System stakeholders are people or organizations who will be affected by the sys-

tem and who have a direct or indirect influence on the system requirements” [35].

“Stakeholders are people who have a stake or interest in the project” [36].

“Anyone whose jobs will be altered, who supplies or gains information from it, or

whose power or influence within the organization will increase or decrease” [37].

Primary, secondary, external, and extended stakeholders are the four broad cate-

gories into which stakeholders can generally be separated. [38].Because they will

directly be affected by the project’s outcomes and because they have a strong

investment in the proposed system, the project’s primary stakeholders are crucial

to its success. The lack of these stakeholders may have a detrimental effect on the

overall progression of the project as well as its ability to achieve its goals. Primary

stakeholders are people who have a lot of power, authority, and responsibility over

resources like money. Individuals that are influenced indirectly by the project’s

outcomes are referred to as secondary stakeholders. They could be people who

have bought something or used a service. Despite not being involved in the con-

struction of the initiative, they keep track of how their interests are being met.

Even though they are not directly participating in the project, stakeholders from

the outside (external) nonetheless contribute valuable insight. Finally, stakeholder

who is frequently useful in assisting the aforementioned stakeholders in attaining

their aims could be termed an extended.

When work begins on a project, there is usually a large number of people who

Background 16

are eager to take part in it. Because of the constraints imposed by the project,

unfortunately, only few can be part of the roject. It’s also true that some people

are obligated but unwilling to engage in the process. To invite the proper indi-

viduals to join and contribute, it is necessary to identify, rank, and choose the

stakeholders. This is extremely important given that improper engagement will

lead to the collection of requirements that are both insufficient and incorrect, so

putting the quality of the software in peril [39–41].

Stakeholders can be found by using the definitions provided above so that we

know who might be impacted by or have influence over the project [39, 42]. In

addition to system types, goals and methods for attaining those goals, as well

as the systems’ own domain, help in stakeholder identification [43]. Examining

their contributions to the project is another way to find stakeholders. Examining

how they interact, for instance, can help identify possible stakeholders [44]. Every

stakeholder has a particular role they play which affects other roles. People can

connect with one another in a variety of ways, such as through verbal and nonver-

bal contact, the exchange of information, and the pursuit of knowledge. This can

be seen in the onion model [41]. Contexts are represented as onion rings, and each

has certain responsibilities. Because each ring is connected to its neighbors, there

are some jobs that are interconnected. The more actively a stakeholder partici-

pates in a discussion, the more substantial their participation is perceived to be.

The conventional model of authority, legitimacy, and urgency can also be used to

identify stakeholders [42]. It goes without saying that a stakeholder’s involvement

in a project is necessitated by their level of influence.

It’s important to remember that stakeholders are real people with real expecta-

tions. Their backgrounds are diverse, and each has a unique set of skills. Addition-

ally, they have a diversity of interests. The knowledge and interests of stakeholders

must therefore be taken into consideration when selecting stakeholders [45]. Re-

garding knowledge, there are two categories of stakeholders: inner and outer [46].

Members of the inner group include developers and other producers who use tech-

nical expertise in their work. The producers are in need of the business expertise

that is held by the stakeholders that make up the outer group. These stake-

holders include consumers, advisors, and sponsors. In essence, RE requires that

Background 17

these two groups share what they know with each other. The terms education

and professional experience can also be used to describe someone’s knowledge.

Numerous studies have found that one’s experience and education level directly

affect how individuals connect [47, 48]. Concepts such as personality analysis and

group dynamics might be utilized while selecting stakeholders [39]. According to

the findings of a number of studies, one way to establish the appropriateness of

potential stakeholders is to first determine the level of interest they have in the

project [45].

Knowledge is not adequate on its own. The ability to communicate and work

together with other stakeholders is necessary. The process of developing software

is frequently viewed as one in which numerous stakeholders must engage and com-

municate extensively. One of the most significant problems that exists in RE,

according to a study, is that stakeholders do not possess the necessary skills to

elicit requirements [41]. Stakeholders frequently have varying concerns, priorities,

and responsibilities. Requirements frequently conflict during conversations with

several stakeholders [49]. Negotiation and cooperation skills are needed to settle

the conflicts and acquire better requirements [50, 51]. In fact, most businesses

employ negotiation to help build shared understanding and set system boundaries

and priorities [52]. Conversely, successful interaction and idea expression between

stakeholders are made possible through communication skills [53]. Communica-

tion skills, both spoken and written, are also crucial. The usage of jargon by many

stakeholders is one of the challenges that can occur during RE. To communicate

effectively, domain specialists favour using commercial jargon, whereas developers

are more comfortable using technical language. This can make stakeholders hide

some requirements, which could lead to misconceptions [50]. Stakeholders must

have appropriate oral and written skills to prevent poor communication.

2.3 Requirements Prioritization Techniques

The most important stakeholder requirements are determined by requirements

engineers using the software requirements prioritization (SRP) approach before

a software solution is developed [47]. Customers must be satisfied, and this can

Background 18

only be done if the specified quality, time, resources, and costs are adhered to

strictly [54]. The SRP technique makes it easier to find conflicts between different

functional requirements, figure out how to solve them, and figure out where to

go next. The most difficult procedure, however, is choosing the right criteria in

order to meet all crucial stakeholder needs and increase the product’s market value

[55]. The improper collection of software requirements raises the cost of system

modification. The inappropriate criteria have a detrimental effect on the quality

of the software.

Innovation in the development of distinctive and value-added software is a signifi-

cant source of complexity. Complexity results from unclear user needs and goals.

The only approach to reduce complexity is to choose the right requirements based

on their level of importance or value. The requirements value is calculated using an

appropriate requirements prioritization method. Putting the requirements under

consideration in order of importance is also seen to be crucial for decision-making

[56]. The process of prioritizing requirements is a time-consuming one [54, 57–59].

Therefore, in order to implement methodologies for requirements prioritization,

professionals need to have not just a professional skill set but also a comprehen-

sive understanding of the domain [60].

When a high-quality software product fulfils all of the fundamental requirements

of its stakeholders or users, the contentment of those stakeholders or users is a

factor that is taken into account [61, 62]. Because of constraints such as the avail-

able budget and amount of time for marketing, etc., it is not possible to take into

account all of the requirements when developing the software. Only the most crit-

ical needs are taken into account in a single release [63]. Different characteristics

of software requirements include risk [56, 59, 64, 65], importance [66], volatility

[59], timing [65], and reliance on other requirements [67, 68].

On the grounds of the aforementioned characteristics, the insignificant require-

ments do not receive a great deal of attention. Requirements for high-quality

software are based on only those features that bring value. The software’s worth

can be measured in terms of profit, efficiency, high performance, accurate data,

and meeting the needs of the right users. To prioritise the most significant require-

ments, several SRP methodologies are used, and the requirements prioritization

Background 19

process still required a lot to be done [56].

Software engineers employ a variety of techniques based on factors such as cost,

time, and relevance, however this approach has resulted in some disagreements.

These conflicts arise as a result of the impact of one aspect on the other. Cost,

for example, has a considerable impact on the priority of requirements. If the

cost of a critical requirement is higher, there is a chance that the stakeholder will

reconsider the requirement. As a result of this shift in the customer’s mindset,

the priority of that particular requirement is adjusted. [69]. When it comes to the

SRP process, customers or other stakeholders who take part in the development

of software have influence on the characteristics or capabilities that are required

of the system. According to Donald Firesmith, many stakeholders have varying

perceptions of the word ”prioritizing requirements”[70].

The selection of user requirements is done using a variety of SRP approaches in

order to develop high-quality software. In a study, different SRP strategies were

used to ”prioritize 13 well-defined quality requirements on a small telephone sys-

tem,” with the statistics showing that AHP is more reliable than other techniques

[71]. However, it comes accross scalability issues and thus is suitable for smaller

sized projects having lesser number of requirements [58, 72].

2.3.1 Software Requirements Prioritization Techniques

A variety of software requirement prioritization approaches are suggested in order

to rank them. Depending on the measurement scales, the requirements are ranked

differently using various methodologies. These methods employ a variety of scales,

including nominal, ordinal, interval, and ratio scales. The data are divided into

many groups using these four main measurement scales. This section provides a

condensed explanation of a few of the more significant requirements prioritizing

strategies currently available.

2.3.1.1 Analytical Hierarchy Process

Pairwise comparisons are the foundation of the statistical method known as the

Analytical Hierarchy Process (AHP). Saaty proposed AHP to prioritize require-

Background 20

ments [73]. The requirements are evaluated in pairs, and then, based on the results

of those comparisons, the priorities are established. For a limited requirements

set, this approach performs well and accurately. The pairwise comparisons are

computed using the following formula: n× (n− 1)/2.

2.3.1.2 Minimal Spanning Tree

Repetitive comparisons are reduced using the Minimal Spanning Tree (MST),

reducing the total comparisons to n−1. According to MST, the fewer comparisons

are adequate to determine the relative importance of the requirements [71].

2.3.1.3 Cost-Value Approach

The relationship between the importance and implementation costs of require-

ments is investigted by cost-value approach [63]. The term cost relates to the

time and money required to meet the requirement, and benefits means the advan-

tage associated with the requirement. AHP is then used to determine the above

mentioned relationship.

2.3.1.4 Hierarchy AHP

The Hierarchy AHP (HAHP) was designed to address the AHP’s [71] scalability

problem. When there are more requirements in an AHP model, there will also

be more comparisons, which will cause the overall efficiency to decrease. AHP

is also only suitable for projects with a limited requirements; less suitable for

projects with a high or medium number of requirements. As a result, the new

HAHP approach is introduced, however, in comparison to AHP, HAHP is diffult

to implement and less reliable [71] .

2.3.1.5 Numerical Assignment

The stakeholders classify the requirements into separate groups using the nu-

merical assignment technique [74]. Determining the precise group that meets a

Background 21

particular condition is one of the technique’s major limitations. All requirements

are placed in the critical group using this strategy. As a result, all of the re-

quirements must be met, making the strategy less effective [75]. The three main

groups critical, standard, and optional are introduced. As a result, these three

classes will cover all of the requirements, and there may be more. However, the

requirements in each category have the same importance, and there is competition

between them [76].

2.3.1.6 Theory W

The Win-Win Model, often known as Theory W, is focused on initial planning,

risk assessment, and management. In the first step, the stakeholders rank all of

the needs using the value based software engineerig (VBSE) practises. As a result,

all required value negotiations take place in the initial step. Value and success

ctiteria are the two basic concepts of this philosophy. [77].

2.3.1.7 Top-Ten Requirements

This method is built on the notion of users or stakeholders selecting the top 10

most important requirements. However, this method does not account for each

requirement’s specific priority. The technique can be used to pick a critical set

of requirements from a small dataset of requirements. The technique’s granu-

larity isn’t particularly excellent [74]. Stakeholders are treated equally, and all

entities are given equal weight. Consequently, the process lacks credibility as a

prioritization technique.

2.3.1.8 Planning Game

The planning game is a method for prioritizing tasks based on the needs of the

client. Short sentences make up the stories that serve as representations of the

criteria. Experts determine which stories to include in the initial release, and they

also estimate the time commitment. Customers choose the stories for the next

Background 22

software releases based on the time or effort estimates provided by the experts.

Because of its adaptability, the technique is well suited to creative developmental

models such as extreme programming. Release and iteration planning are the

two essential components of the planning procedure in this technique. In first

type of planning, it is established which requirements to be handled in the initial

and subsequent software releases. Subsequent to completion of the requirements,

iteration planning is used to plan the various development actions.

2.3.1.9 Cumulative Voting or The Hundred Dollar Test

The hundred dollar test, also known as cumulative voting (CV) [78], is based

on conversations. During the conversations, the needs are examined holistically.

Depending on the significance of the requirements, stakeholders can allocate their

$100 allocation to different requirements. A stakeholder can assign any amount of

money to any demand. The dollars assigned to a certain requirement by various

stakeholders are tallied, and the final priority of the requirement is determined by

calculating the sum.

2.3.1.10 B-Tree Prioritize

The B-Tree prioritisation method [79] can deal with the problem of changing

requirements and how they change over time. Using the priority values derived

from the prioritized list of requirements, the function f is utilized in the B-Tree to

illustrate the requirements.

2.3.1.11 Ranking

Because of the application of the ordinal scale, numerical assignment and ranking

have a lot in common with each other [76]. The requirements are ordered starting

with the highest priority requirement, which is given a value of 1, moving on to

the next greatest priority requirement, which is given 2 , and so on. The value n,

which represents total requirements number, is assigned to the final requirement.

Background 23

Different algorithmic methods for prioritization criteria like bubble sort or binary

search tree etc. can be used in ranking [80].

2.3.1.12 Bubble Sort

The method of ranking is utilized in bubble sort in order to prioritize the require-

ments [71]. The importance of the requirement determines the priority. However,

how important is it is not taken into consideration. The steps involved are as

follows:

1. Requirements are organized in column format.

2. Priority based swapping is done starting from top two requirements. The

highest-priority requirement is prioritized first.

3. To determine the priority of each requirement, compare all of them and

switch them around.

4. The top two requirements are compared again, and the process is repeated

from the beginning.

2.3.1.13 Hierarchical Cumulative Voting

The scalability problem is addressed by hierarchical cumulative voting (HCV) [81].

HCV has the same notion as CV and requirements are scored like in CV with only

differenc being the selection criterion of the requirement. HCV organizes the needs

into a number of hierarchies, and then assigns priority to each of those according

on the concept of CV.

2.3.1.14 Priority Groups

The technique is introduced by Karlsson et al. and the following steps are con-

ducted in this technique [71].

Background 24

1. Make a list of all the requirements.

2. Define the various requirements’ priority levels, including high, medium, and

low.

3. The number of requirements can serve as a guide for the formation of other

subgroups, and the requirements can be adjusted within these subgroups.

4. Up until a one-on-one relationship is established, repeat step 3.

5. From left to right, read the requirements.

2.3.1.15 Value-Based Intelligent Requirement Prioritization (VIRP)

VIRP technique is comprised of following three steps.

1. The process of eliciting requirements and prioritizing at stakeholder level.

2. Prioritization at expert level.

3. Prioritization of Requirements Based on Fuzzy Logic.

The stakeholders elicit and prioritize the requirements in step one. The RV func-

tion, which is based on the prioritization of requirements at an expert level, is

used in the second phase to evaluate the requirement value. There are two sorts

of required factors in the RV function. rRCFs stand for requirement-specific re-

quirement classification factors, while pRCFs stand for project-specific require-

ment classification factors. In the third step of the VIRP, Fuzzy C-Means is used

to group the requirements into several clusters.

2.3.1.16 Interactive Genetic Algorithm-Based Prioritization

A posteriori analysis is performed using an interactive GA and pairwise compari-

son as the two primary methods [82, 83]. This technique’s major goal is to gather

pertinent information from the user. Extensive pairwise comparisons are imprac-

tical given current approaches. As a result, the GA is used to limit the number

Background 25

of comparisons. With this method, the fitness function receives incremental input

that is only partially understood when it is first applied to the data.

2.3.1.17 Case-Based Ranking (CBR)

An interactive preference elicitation system using the CBR technique has been

suggested [84]. Boolean values are used in the pairwise comparison for the pur-

pose of eliciting preference. The CBR method incorporates an acquisition policy,

which makes recommendations for the pairs of instances that should be investi-

gated first. To forecast or approximate the preference values of unknown couples,

a machine learning approach is used. To get the precise approximated ranks of

the requirements, the error and effort minimization approach is used. Another

approach Case-based reasoning is also discussed alongside case based ranking but

two are different approaches.

Case-based reasoning is a problem-solving methodology that involves finding a so-

lution to a novel problem, by identifying similarities with previously solved prob-

lems. The process involves storing a library of past cases and retrieving a similar

case to the current problem, then adapting the solution to fit the new situation.

In other words, Case-based reasoning uses past experiences to inform the solution

to a new problem [85–87].

On the other hand, ranking is a technique for assessing and prioritizing a set of

options or alternatives. Ranking involves assigning a numerical value or score to

each option, based on some criteria or attributes, and then ordering the options

according to their scores. Ranking is often used to make decisions when there are

multiple options to choose from and limited resources to allocate [88, 89].

In summary, Case-based reasoning concentrates on solving new problems based

on similarities with past experiences, while ranking is a technique for evaluating

and prioritizing options based on predefined criteria or attributes. While both ap-

proaches can be useful in decision-making, they are applied in different contexts

and have different goals.

Background 26

2.4 User Sessions

A session is a collection of user interactions with the web application that occur

over a set period of time. Multiple webpage views, events, social interactions,

and ecommerce transactions can all be part of a single session. A session can be

thought of as a wrapper for the actions that a user takes on a website.

S. Elbaum et.al [90, 91] explore a user session-based approach to testing a Web

application. They also introduce three approaches for creating test cases: US-

1, US-2, and US-3. Individual user sessions are successively replayed in US-1.

US-2 entails re-enacting a combination of interactions from many users. US-3 en-

tails combining routine user requests with those that are likely to cause problems

(e.g., navigating backward and forward while submitting a form). This study also

demonstrated that the efficiency of user session strategies improves as the amount

of gathered user sessions grows in quantity.

Jessica Sant et.al [92] proposed a method for constructing a web application model

using user session logs and storing it on the web server. The captured user session

log data reveals an application’s dynamic actions, which can be useful in resolving

web application verification issues. Their technologies are capable of generating

usage patterns with great coverage and accurate mapping of user behavior.

Several researches [93–96] have discussed the utilization of user sessions for soft-

ware and GUI verification

T.Deenadayalan et.al [97] investigates the clusters strategy based on user sessions.

This approach chooses a collection of demonstrative user sessions from each clus-

ter based on the service profile and personalizes them by augmentation with addi-

tional requests to cover the relationships of web page dependencies. Furthermore,

it allows the coverage of the implementation structure by attaching requests with

dependency relationships to requests contained in user sessions generated during

user events.

2.5 Clustering

The assigning of a set of observations into subsets (clusters) is known as clustering

[98, 99]. Clustering is the partitioning of data into groups of items that are simi-

Background 27

lar. Each group (cluster) is made up of things that are comparable to one another

but not to objects from other groups. Clustering is an unsupervised learning ap-

proach and a common statistical data analysis methodology used in a variety of

domains such as machine learning, data mining, pattern recognition, image anal-

ysis, and bioinformatics. The fundamental premise of software engineering is that

error-prone software modules will have comparable software measures and, as a

result, will most likely be located in the same cluster with other modules that

share same characteristics. Similarly, the modules that are not prone to failure

will most likely be clustered together in the same cluster (s) [100]. The distance

criterion is used to determine similarity: two or more objects belong to the same

cluster if they are ”close” in terms of distance. Distance-based clustering is the

term for this method. Another type of clustering is conceptual clustering, which

involves two or more objects belonging to the same cluster if one defines a concept

that is shared by all of them. To put it another way, objects are grouped based

on how well they fit descriptive concepts rather than simple similarity measures.

[101].

For developing a software quality estimation system, many clustering algorithms

have been presented thus far. .

Serban et al. [102] identified crosscutting issues using clustering algorithms. The

comparison was primarily performed from the perspective of aspect mining, em-

ploying a set of quality measures (SSE, PAM, ACC).

Berkhin [103] concentrated on clustering algorithms in the context of data mining.

Data mining adds to the complexity of clustering very large datasets with many

different sorts of attributes. This necessitates specific computational needs for

clustering techniques. A number of algorithms that match these conditions have

recently appeared and have been effectively applied to real-world data mining sit-

uations.

Xu et al. [104] concentrated on clustering algorithms, going over a wide range of

methodologies that have been proposed in the literature. These algorithms come

from many research communities, trying to handle diverse issues, and each has its

own set of advantages and disadvantages.

Kumar et al. [105] offered a comparison of six widely used software quality pre-

Background 28

diction modelling techniques: Classification and Regression Trees, Multiple Linear

Regression, Artificial Neural Networks, Case-Based Reasoning, Rule-Based Sys-

tems, and Fuzzy Systems. Fuzzy systems were found to produce better results

than previous strategies.

Gupta et al. [106] created a software quality estimation method using clustering

algorithms. To eliminate the need for an expert, software metrics thresholds are

applied. Hundreds of software modules were clustered into a small number of

coherent groups using the K-means and Fuzzy C-means clustering methods. If

at least one metric of the mean vector is higher than the threshold value of that

metric, a cluster is predicted to be fault-prone after this phase.

Fast Genetic K-means Approach was proposed by Lu et al. [107] as a new clus-

tering algorithm (FGKA). The Genetic K-means Algorithm (GKA) proposed by

Krishna and Murty in 1999 was the inspiration for FGKA, but it has numerous

enhancements over GKA. Experiments show that, while the K-means method may

converge to a local optimum, both FGKA and GKA eventually converge to the

global optimum, with FGKA being substantially faster than GKA.

2.5.1 Basic Clustering Techniques

Clustering techniques are divided into two main categories: hierarchical and par-

titional. [98, 100, 103, 108].

2.5.1.1 Hierarchical Clustering

The use of hierarchical clustering results in the formation of a hierarchy of clusters,

which can be depicted as a tree-like structure known as a dendrogram.The tree’s

root is made up of a single cluster that contains all of the data, while the leaves

correspond to individual observations. They are either agglomerative (from the

bottom up) or divisive (from the top down) (top-down) [108, 109].

2.5.1.2 Agglomerative Algorithms

Begin at the leaves, with each object forming its own cluster, then gradually

combine groupings based on a distance metric [108]. The clustering may come to

Background 29

an end when all of the items are in a single group, or at any other time the user

desires.

2.5.1.3 Divisive Algorithms

They begin at the root with a single group that contains all of the objects and

then proceed to divide that group into smaller and smaller subgroups until each

object is placed in a single cluster, or as desired. At each phase, dividing the data

items into distinct groups and following the same pattern until all objects fall into

a different cluster is a dividing strategy [110]. This is comparable to the divide-

and-conquer strategy used by divide-and-conquer algorithms. The basic method

of hierarchical clustering begins with a set of N items to be clustered and a N×N

distance (or similarity) matrix.

1. Begin by allocating each item to a cluster; if you have N items, you will now

have N clusters, each holding only one item. Allow the clusters’ distances

(similarities) to be equal to the distances (similarities) between the items

they include.

2. Find the most similar (closest) pair of clusters and merge them into a single

cluster, resulting in one less cluster.

3. Calculate the distances (similarities) between each of the previous clusters

and the new cluster.

4. Steps 2 and 3 should be repeated until all items are grouped into a single

N . (*) cluster.

2.5.1.4 Partitional Clustering

A partitional clustering algorithm creates k partitions of a database of n objects,

with each cluster optimising a clustering criterion inside each cluster, such as the

minimization of the sum of squared distance from the mean.Partitional clustering

comes in a variety of forms:

Background 30

K-Means Clustering

The K-means clustering method is one of the most basic clustering methods. The

k-means method allocates each point to the cluster with the nearest centre (also

known as centroid). The centre is the arithmetic mean of all the points in the

cluster — that is, its coordinates are the arithmetic mean of each dimension across

all the points in the cluster [111, 112].

The steps of the algorithm are as follows: [113, 114]

1. Determine the number of clusters, k.

2. Create k clusters at random and determine the cluster centers, or create k

random points as cluster centers.

3. Assign each point to the cluster center that is closest to it, where ”closest”

is defined in terms of one of the distance measurements given above.

4. Calculate the new cluster centres again.

5. Repeat the previous two steps till you reach a convergence threshold.

This algorithm seeks to reduce an objective function, in this case a squared error

function, to the smallest possible value. The objective function is shown in the

equation 2.1.

J =
k∑

j=1

n∑
i=1

||x(j)
i − cj||2 (2.1)

where ||x(j)
i − cj||2 is the distance between a data point x

(j)
i and the cluster centre

cj, and n denotes the distance between the n data points and their individual

cluster centres.

Fuzzy C-Means Clustering

Bezdek created a method called the fuzzy c-means clustering approach [115, 116].

For this technique, each instance can belong to any cluster with a distinct mem-

bership grade between 0 and 1 [117]. A dissimilarity function is minimized, as in

Background 31

equation 2.2, and centroids that minimise this function are found.

J(U, V |Z) =
c∑

i=1

N∑
j=1

(µij)
m||xj − ci||2 (2.2)

In this equation, V is a vector of cluster prototypes (centers) and m is a constant.

Also, in equation 2.3 we have

D2
ijA = ||xj − ci||2A = (xj − ci)

TA(xj − ci) (2.3)

If A = I, we’re dealing with a Euclidian norm and the clusters will be round in

shape. If we use the Mahalanobis norm, A is defined, as shown in the equation

2.4 and the clusters will be ellipsoidal in form [118].

A =
(N∑

j=1

(xj − x)(xj − x)T
)

(2.4)

The algorithm steps are

1. Randomly initialize the membership function, as in 2.5.

2. Determine the centroids, as in 2.6

3. Calculate the degree of dissimilarity, as in 2.2. Stop if the improvement over

the previous iteration is less than a certain threshold.

4. Make a new u calculation, as in 2.7. Go to step 2.

c∑
i=1

uij = 1, ∀j = 1,, n (2.5)

ci =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(2.6)

uij =
1∑c

k=1

(
Dij

Dkj

)2/(m−1)
(2.7)

ci is ith cluster’s centroid, u is between 0 and 1, Dij is the Euclidean distance

between centroid and the data point, m is a weighting exponent which is between 1

and∞. The most significant benefit of Fuzzy C Means is that it always converges.

Background 32

2.6 FSM Based Web Application Modeling

Finite state machine is a very effective method to model a web application. Few

researches have used this technique to model Ajax applications.

2.6.1 Finite State-Machine (FSM) Based Verification

This method infers a finite state machine from the web application’s traces [9].

When necessary, the produced FSM can undergo additional redefinition so that

the verification model can be fine-tuned with the assistance of interacting events’

sequences. Manual re-definition of the FSM is a requirement of this technique.

2.6.2 Invariant Based FSM

This method infers an FSM using invariants [119]. The FSM contains several

states, each of which is represented by a node, and events are what cause transi-

tions between states. The application’s FSM serves as the foundation for creating

more complex models.

2.6.3 Crawl Based AJAX States

It is a tough piece of work to crawl the web application by utilizing Crawljax and

derive a finite state machine [5]. The WebDriver application programming inter-

face (API), which is utilised by Crawljax, makes it possible to use and control the

WebDriver browser interface. Crawljax is able to crawl the application thanks to

the WebDriver browser interface, which provides full browser support. Crawljax

is able to carry out JavaScript-related actions thanks to the support provided by

browsers. Crawler employs a variety of strategies to infer application states, but

they are not without chellanges, the most prominent of which being state explo-

sion [3].

Ajax is a technique for building dynamic web applications that allows for asyn-

chronous communication and the manipulation of the Document Object Model

Background 33

(DOM) at runtime. However, the highly dynamic nature of Ajax can lead to is-

sues such as state explosion, state changes being triggered, and unreachable states.

Finite State Machines (FSMs) are an effective way to model the behavior of soft-

ware, but when used to model an Ajax application, the resulting state model can

become extremely large and may suffer from the state explosion problem due to

a large number of user-triggered state changes and the high level of dynamism in

the application.

To build a system, the project team must gather the requirements for the sys-

tem from various stakeholders. If stakeholders are not involved in the process,

it can hinder the progress of the project and prevent it from achieving its objec-

tives. Requirements engineers use a software requirements prioritization approach

to identify the most critical stakeholder requirements before creating a software

solution.

The way a user interacts with a system can provide valuable information on which

areas should be tested more extensively. A session refers to a series of interactions

between a user and a web application over a specified time period. It can be

conceptualized as a grouping of a user’s actions on a website.

Soft computing-based learning algorithms can assist in identifying which areas of

an application are more important and which are less important. Clustering in-

volves dividing data into groups of similar items. Each group, or cluster, consists

of items that are similar to each other but not to those in other groups.

Finite state machines can be a useful approach to modeling a web application.

Few researches have applied this technique to model Ajax applications.

Chapter 3

Literature Review

3.1 State Model of AJAX

Web applications are represented using a variety of notations and diagrammatic

methods, but finite state machines are the most convenient way to show their

dynamic behavior [17]. A state machine is a convenient technique to simulate

software behavior without having to deal with implementation difficulties [17].

A finite state machine model can be very helpful in illustrating this dynamic

behaviour since object states in Ajax web applications alter in response to user or

server-driven events at run time [9, 120].

3.1.1 Web Application Vs Traditional Application

The complexity of web-based applications has substantially expanded over time,

according to Donley and Offutt [121]. Even software experts have trouble distin-

guishing between web-based and traditional applications. They stressed the point

that in order to test web-based applications, it is very vital to first obtain a deeper

understanding of the applications themselves. This is a very critical step in the

testing process. They talked about the key distinctions between traditional and

web-based applications.

34

Literature Review 35

According to this study, online software does not fall into any of the classic cat-

egories of shrink wrapped, bundled, contractual, or embedded software. Web

developers upload the web application that they have created onto a web server,

which is a computer that is linked to the World Wide Web and is capable of ac-

cepting requests via the HyperText Transfer Protocol (HTTP) . End users then

utilize browsers on their client computers to access the software. This is a signif-

icant deviation from past software deployment methods: All users share a single

copy of the application.

3.1.2 Execution Trace Data based State Machine Con-

struction

the application. Arora and Sinha [122] examine two popular testing techniques:

invariant-based and state-based testing. Despite the fact that these strategies are

still effective in a variety of applications, numerous concerns and problems remain,

such as scalability issues. The issues of ”gathering session data”, ”limiting state

space”, and ”advancing in FSM retrieval to automatically determine user session-

based test scenarios” are still open. The authors agreed that a more meaningful

method for DOM to FSM advancement is required. Experiments using this tech-

nique were able to generate test cases for semantically interacting sequences, with

data indicating that longer sequences yield more test cases with higher fault expos-

ing potential. Finally, the authors emphasized that testing is heavily dependent

on the technology through which it is carried out, and that future testing method-

ologies must adapt to the diverse and dynamic nature of web-based applications.

Marchetto et al. acquired the web application’s execution trace data and used

it to create a finite state machine. [120]. This method’s foundation is an Ajax

application’s dynamically extracted state machine; however, the method is only

partially dynamic and manual validation is also utilized for model extraction. Ac-

cording to the findings of this study, finite state machine retrieval is primarily

an untapped area that requires further development. [120]. In Ajax testing, dy-

namic state identification is a challenging process that demands constant attention.

Literature Review 36

As a result, a dynamic analysis technique was needed to build the application’s

state-based model. The authors primarily concentrated on identifying groups of

event sequences that interact semantically and are used to generate test cases.

[123].Their understanding was that the length of these sequences has an effect on

their fault exposing capability, i.e., more length equals more faults, and the results

of the studies that were carried out verified this understanding. [22, 123–125].The

method generates a very high number of test cases, which leads to state explosion,

and also involves events that have no connection to one another. Marchetto only

contributed to the reduction of the number of test cases that used asynchronous

communication. This method only addresses a few aspects of asynchronous com-

munication; other testing issues, such as how to get runtime DOM changes and

transition between several DOM states, still require investigation. Furthermore,

dynamic analysis-based finite state machine retrieval is also necessary.

Arora and Sinha [6] concentrated on testing the issues with asynchronous web

applications’ runtime behavior. They came up with a number of experiments for

it. They provided a method that creates a state machine to find all dynamically

generated states, their associated events, and DOM changing elements. To achieve

scalability in state machine generation, they used a technique which is based on

Model Checking and that technique lessened the state space paths to evade the

problem of state explosion. However the approach contains processing overheads.

Moreover the effects of state reduction on testing effectiveness are not discussed

and remain unclear.They employed a method that is based on model checking

to accomplish scalability in the production of state machines, and that method

reduced the state space paths to avoid the issue of state explosion. Processing

overheads are present in the method, though. Furthermore, the consequences of

state reduction on test efficacy are not covered and are still unknown. the appli-

cation.

3.1.3 Crawler based State Machine Construction

Key elements of AJAX-based Web 2.0 applications include client-side runtime ma-

nipulation of the Domain Object Model (DOM) tree and stateful asynchronous

Literature Review 37

client/server communication. They are not only fundamentally different from con-

ventional Web apps as a result, but they are also more prone to errors and more

difficult to test.

VeriWeb is a tool that was developed by Benedikt et al. [126] that automatically

explores the pathways of multi-page websites using a crawler and a detector for

anomalies such as navigation and page problems (which are configurable through

plugins). In contrast to more traditional tools of this type (such as spiders),

which frequently only look at static links, VeriWeb can automatically investigate

the dynamic contents of a website, including form submission and client-side script

execution[126]. For form-based pages, VeriWeb extracts potential input values us-

ing SmartProfiles. User-specified SmartProfiles are essentially collections of pairs

of attributes and their values. Then, forms are automatically filled out with these

attribute-value pairs. The configuration of the SmartProfile does not depend in

any way on the structure of the website that is being evaluated. It is unclear if

VeriWeb’s crawling technique may be utilized for testing in AJAX apps, despite

the fact that it has some support for client-side scripting execution.the applica-

tion.

Mesbah et al. [13, 26] suggested that Ajax user interfaces be tested automat-

ically using invariants. The primary objective of this work was to crawl Ajax

applications using the CRAWLJAX tool, which simulates actual user activities

on various clickable application interface elements and derives the model from a

state flow graph. Additionally, he advocated the usage of CRAWLJAX-based au-

tomatic invariant detection. Crawljax uses the Levenshtein method [127] to find

out what’s different about two DOM instances by figuring out how far apart they

are in terms of edits. The authors stated in their study that the optimal path

seeding strategy for automated testing of web applications is capture and replay,

which did not apply in his work. According to Mesbah’s perspective in his work

[13], invariant-based testing is a poor substitute for an oracle. The authors also

noted that employing capture and reply techniques is the best way to manage dy-

namic state extraction because Ajax dynamism makes extensive testing extremely

difficult.

Crawljax has access to client-side code and can recognize clicked components that

Literature Review 38

cause a state change in the built-in DOM of the browser. The user interface’s

states and any potential (event-based) transitions between them are represented

in a state-flow graph once the state changes have been identified. In an AJAX

application, a UI state change is defined as a modification to the DOM tree struc-

ture brought on by either server-side or client-side state changes. These DOM

modifications’ paths are also noted.

The user interface is compared to various constraints after the various dynamic

states have been identified. These constraints are stated as DOM tree invariants,

allowing any state to be checked.

In accordance with a fault model, Mesbah and van Deursen [13, 26] divide these

invariants into: DOM-tree invariants, DOM-state invariants, and application-

specific invariants categories. Below is a description of the common DOM-tree

invariants [128].

3.1.3.1 Validated DOM

This invariant ensures a correct DOM structure on all execution paths. Following

the completion of each state transition, the DOM tree that was generated is then

converted into an HTML instance. To make sure there are no mistakes or warnings,

a W3C validator serves as an oracle. Many browsers do not display errors due to

minor HTML code mistakes, but all HTML validators expect the structure and

content of the source code to exist. Consequently, this is significant. On the other

hand, modifications to the user interface of a single-page app built using AJAX

are brought about by partially updating the Document Object Model (DOM) with

JavaScript. This is a concern since client-side JavaScript cannot be validated by

HTML validators. the application.

3.1.3.2 DOM Error Messages

the application. This invariant guarantees that a string pattern representing an

error message will never be present in the states. Error messages should be auto-

matically recognized, whether they are client-side errors like ”404 Bad Request”

Literature Review 39

and ”400 Not Found” or server-side errors like ”500 Internal Server Error” and

”MySQL Error.”

3.1.3.3 Other Invariants

These contain invariants for additional purposes like finding linkages, adding more

security restrictions, and invariants that may lead to enhanced accessibility at any

time during the crawling process, among other things.

3.1.3.4 No Dead Clickables

This invariant’s primary responsibility is to ensure that an AJAX application does

not have any physical links that are ”dead” or ”broken.” This is important because

any link in an AJAX application that can be clicked has the potential to really

change the state of the programme via background data retrieval form server

utilizing the susceptible to errors JavaScript. The AJAX engine will typically

conceal these kinds of error signals, and it will ensure that the user interface is not

made aware of any broken links. You can find any broken links or clickables on

the website by monitoring the client-server request-and-response flow subsequent

to each event.

3.1.3.5 Consistent Back Button

The malfunctioning back button in the browser is one of the most frequent prob-

lems that occur with AJAX-based web applications. The browser entirely leaves

the application’s page when the back button is clicked. Crawling enables a com-

parison between the expected state of a graph and its actual state after the back

button has been executed. This comparison enables the automatic detection of

any inconsistencies or errors that may have occurred.

The authors of [129] and [130] figure out hash values based on how the state is set

up (structure) and what it contains. However, despite the fact that these tech-

niques can eliminate superfluous copies of the same state, they are insufficient for

Literature Review 40

the task of identifying pages that are almost identical to one another.

[27] improves the algorithm’s state equivalence mechanism by first performing

Oracle Comparator Pipelining (OCP) before computing hash values. Each com-

parator is designed to remove an irrelevant substring from the DOM string, which

may result in meaningless variations between two states, such as time stamps or

marketing banners.

In jAk, the term ”Jaccard similarity” is used [131]. In this study, the authors

define two pages as comparable if their Jaccard indices are higher than a specific

threshold and they have the same normalized URL. After removing query values

and sorting query parameters lexicographically, a normalized URL is returned.

The Jaccard similarity is calculated using the sets of JavaScript events, HTML

forms, and links that are present on the web pages.

In [132], two methods for enhancing any state equivalence mechanism based on

the DOM are provided. The first seeks to identify unneeded dynamic content by

repeatedly loading and refreshing a page. The second recognizes session parame-

ters and does not take into account requests and answers that change because of

them.

The DOM uniqueness tool that is described in [133] finds pages that have a similar

DOM structure by locating repeated patterns and reducing them to a canonical

DOM representation. This representation is then hashed into a single integer

value. When configuring the algorithm, the user can choose which HTML tags

should be included in the canonical representation as well as whether or not to

include their textual content. This method keeps track of structural changes, like

adding or taking away rows from a table. Since it includes sorting the items in

each DOM subtree, it is likewise unaffected by elements shuffles. Nevertheless, a

misleading distinction between two nearly identical states might arise as a result

of adjustments that are not identified as being components of a structural pattern.

This process is further extended by the method found in [134], which divides a

DOM tree into several subtrees, each of which corresponds to an individual ap-

plication component, such as widgets. Because the DOM uniqueness technique is

applied to each component on its own, this prevents an explosion in the number of

Literature Review 41

alternative states that could occur when the same data is displayed using a variety

of different configurations.

A web application’s state machine model is constructed by grouping related pages

[135] according to a page’s structure. A prefix tree is used by the authors to model

a page utilizing its links (anchors and forms). The Abstract Page Tree (APT), a

different prefix tree that is used to hold these trees, is vectorized. Analyzing APT

subtrees enables the discovery of related pages.

A distinct way of clustering application states into multiple equivalence clusters

emerges in software tools that describe and test Rich Internet Applications (RIAs)

using execution traces, such as RE-RIA [136], CrawlRIA [137], and CreRIA [138].

The process of clustering is accomplished by analysing a number of equivalence

criteria, all of which are dependant on the DOM set of elements, event listeners,

and event handlers. If one set includes the other as a subset, then two DOMs are

regarded as being comparable. Both memory use and computation time are high

for this strategy.

In-depth discussions of the problems and difficulties encountered when crawling

modern asynchronous apps were conducted by Deursen et al [3]. Modern web

applications have made tremendous progress toward the single-page approach, in

which the JavaScript engine maintains the DOM-based user interface and inter-

action. This results in a great deal of analysis and comprehension problems, most

of which cannot be solved by the static analysis techniques available in the con-

temporary day. They include state explosion, navigation through state changes

and the inability to access states that can’t be reached. The authors of this work

have discovered, through the use of automated crawling, a method by which these

problems can be overcome. For future study, they mentioned dynamic web appli-

cation analysis, such as benchmarking, guided crawling and example-based crawls;

model-based web application analysis; and cyber security as attractive areas for

future research.

3.1.4 State Machine Construction from Requirements and

Design Documents

Sabharwal et al [139] came up with a methodology to model the navigation mech-

anism of online applications. This mechanism is based on user requirements and

Literature Review 42

design that too at lower level. Their algorithm collects the information from the

requirements and the low level design to construct a navigation graph of the page

and this graph is further used for the synthesis of test sequences. This method has

the advantage of using workflows that can be positive or negative. The tester can

thus use the path navigation graph for any of the above mentioned test sequences.

The problems of page and link explosion are also focused in this research.

Ajax Web applications are DOM based applications which are functioned by

user event connected message handlers or by server messages. It is evident from

above mentioned studies that Ajax is vulnerable because of features like stateful

client, asynchronous communication, delta updates, un-typed JavaScript, client-

side DOMmanipulation, event handling, timing, back/ forward button and browser

dependence. As Ajax application work as a single page applications, they have to

handle large traffic on one page. Inputs to text fields, client side event handling

server side activities, and other dynamic changes on single page might result in

unbounded concrete states, i.e., state explosion. As discussed earlier in this sec-

tion, several state space reduction techniques have been proposed but not without

issues. Issues like processing overheads, effects of state reduction on testing effec-

tiveness remain unaddressed. Moreover, techniques adopt exhaustive methods of

state machine creation which results in scalability issues. This research proposes

a framework to address these issues by limiting the state space by identifying the

most frequently used areas of the application under test. The framework addresses

the issues of state explosion without compromising the effectiveness of testing.

3.2 State Explosion

When it comes to building and validating software systems, one of the most well-

known methodologies is called state-based modelling [140]. It is a method of brute

force verification that can automatically and methodically examine the state space

(SS) and specification of a given system to show whether or not its attributes

are fully satisfied. Clarke Clarke et al. [140], Queille, and Sifakis [141] have all

separately advocated this strategy. The level of trust in the system is greatly

increased by the brute-force check of SS in state-based modelling.

Literature Review 43

However, state-based modelling has some restrictions because of the expanding

state space (SSE). SSE happens when a system’s state space grows at a rate that

is proportional to the number of its components and quickly fills up the computer’s

memory. As a result, only a limited number of SS will be able to be examined.

But the promising benefits of model-checking have still pushed researchers to try

to solve the SSE problem, which has led to the main direction of state-based

modelling research. [142, 143].

There are four primary categories of state space explosion prevention methods.

[144]:

1. Cut the number of states to explore.

2. Reduce the amount of memory required to store investigated states.

3. Use a distributed environment or parallel processing.

4. Give up the completeness constraint and only examine a portion of the state

space.

The description of these four different techniques is presented below.

3.2.1 State Space Reductions

When examining the state spaces of some simple models, it is immediately ap-

parent that they include significant redundancy. The obvious solution is to try to

take advantage of this redundancy and cut down on the states that need to be

searched in. It is important to specify which states are excluded from the search

in order to put this theory into practice. Additionally, it is necessary to show that

the method is correct—specifically, in terms of state space coverage as per some

criterion, typically bi-simulation or stutter equivalence.

3.2.1.1 State based Reductions

State-based reductions take advantage of the fact that if two states are bisimilar,

it is enough to look at the states that come after (successors) only one of them.

Literature Review 44

Either dynamically, while the exploration is taking place, or statically, before the

exploration begins, by a modification of the model, the reduction can be carried

out. Examples of these reductions include symmetry reduction [145–150], live

variable reduction [151, 152], cone of influence reductions, and slicing [153, 154].

3.2.1.2 Path based Reductions

Path-based reductions take advantage of the fact that occasionally only one of two

action sequences needs to be investigated because they are simply two alternative

linearizations of ”independent” actions and hence have the same outcome. These

reductions aim to cut down on the amount of similar interleavings. Examples of

these reductions include [155, 156], partial order reduction [157–161], confluence

[162], and simultaneous reachability analysis [163].

3.2.1.3 Compositional Methods

Systems are frequently described as being composed of several parts. There are

two techniques to take advantage of this structure: compositional state space

generation [164] and the assume-guarantee approach [165–167].

3.2.1.4 Storage Size Reductions

Memory constraints are typically the key barrier in model checking. As a result,

we can use some sort of time-memory trade-off to conserve some memory at the

expense of requiring more time. The memory requirements of the method are

mostly driven by the structure that is examined, which maintains a history of

previously traversed states. As a result, approaches that aim to reduce the amount

of memory required do so by focusing on this structure in particular.

3.2.1.5 State Compression

Each state is represented as a byte vector during the search procedure, which

might have a very high size (e.g., 100 bytes). This vector can either be compressed

Literature Review 45

[168–174] to take up less space, or its components that are shared can be used

interchangeably [175]. We can represent the entire implicitly visited structure as a

minimum deterministic automaton rather than compacting individual states[176].

This is an alternative to compressing individual states. [176].

3.2.1.6 Caching and Selective Storing

We can save only a subset of the visited structure’s states as opposed to storing

all of them. This strategy may result in revisiting some states, which may in

turn cause an increase in runtime; but, it does not waste memory. These kinds of

methods include, for instance:

� caching [177–179] is used to purge some previously stored data, as soon as

system is out of memory,

� only selected states are saved through selective storing [172, 180], in accor-

dance with predetermined heuristics,

� sweep line [181–183] utilizes the progress function, which ensures that some

states will not be used in the future, allowing them to be removed from

memory.

3.2.1.7 Randomized Techniques and Heuristics

We can utilise randomised techniques and heuristics if the memory needs of the

search remain too high even after applying the aforementioned techniques. These

methods only look at a small part of the space of possible states. As a result, they

can only assist in the identification of errors; we cannot rely on them to help us

establish that something is accurate.

3.2.1.8 Heuristic Search

(This is also called a ”directed” or ”guided” search.) The order in which states are

visited is set by some heuristics [184–186]. As an alternative heuristic technique, a

Literature Review 46

genetic algorithm can be used in which the objective state is ”evolved” over time

[187].

3.2.1.9 Random Walk and Partial Search

The random walk method retains no data and always visits one successor of the

present state. [188, 189]. A number of modifications can be made to this basic

strategy, such as visiting some of the successors as opposed to just one, stor-

ing certain states in the visited structure, or combining random walk and local

breadth-first search. [189–193].

3.2.1.10 Bitstate Hashing

The technique does not record entire states but instead simply saves one bit of

information for each state in a large hash table [194]. When there is a collision, the

search skips over some states. This method can also be performed using Bloom

filters, which is a more complex approach [195, 196].

Table 3.1 shows the summary of included studies while table 3.2 shows the sum-

mary of studies handling state space explosion along with their advantages and

limitations.

Table 3.1: Summary of Included Studies

Sr. No. Study Approach

State Model Construction

1 [6, 22, 120, 122–125] Execution trace data based construction

2 [3, 13, 26, 27, 126–138] Crawler based construction

3 [139] Requirements based construction

State Space Explosion

1 [145–154] State based reductions

2 [155–163] Path based reductions

3 [164–167] Compositional methods

4 [168–176] State compression

5 [177–183] Caching and selective storing

6 [184–187] Heuristic search

7 [188–193] Random walk and Partial search

8 [194–196] Bistate hashing

Literature Review 47

Table 3.2: Summary of Studies Handling State Space Explosion

Sr.

No.

Study Problem solved Advantages Limitations

1 [145–154] State based re-

ductions

Works well for system

having bisimilar states

Poor perfor-

mance for

systems with

distinct states

2 [155–163] Path based re-

ductions

Works well if alternate

paths of same actions

are present

Weak in absence

of alternative

linearizations

3 [164–167] Compositional

reductions

Strong for discretely

structured systems

Weak for system

components

with vague

boundaries

4 [168–176] State compres-

sion

Works well for systems

having state byte vec-

tors with interchange-

able components

Weak for sys-

tems with large

state byte vec-

tors

5 [177–183] Caching and se-

lective storing

Save only a subset of

the visited structure’s

states

Issue of state

revisiting caus-

ing increased

runtime

6 [184–187] Heuristically

guided search

Works well when

guided by an accurate

heuristic function

Terminates late

if the heuristic

function is not

admissible

7 [188–193] Random state

selection

Simple to implement Computationally

expensive

8 [194–196] Hashing Good hash function

can reduce the number

of hash collisions

Weak for large

or dynamic data

here

Literature Review 48

3.3 ReactJS - A Modern Web Technology

ReactJS is a JavaScript library that was produced by Facebook for building user

interfaces. It has become one of the most popular front-end frameworks for web

development, known for its simplicity, reusability, and scalability. ReactJS allows

developers to create components that can be reused across multiple projects and

scales easily from small to large applications. In this section, we will discuss the

advantages and disadvantages of ReactJS, how we can model it using finite state

machines, and how this can help with dependability and testing of software. [197].

3.3.0.1 Advantages of ReactJS

1. Reusability: One of the leading advantages of ReactJS is the ability to create

reusable components. This can be a major time-saver in development, as it

allows developers to create components once and use them across multiple

projects. Additionally, it can lead to more consistent and maintainable code.

2. Scalability: React JS is designed to scale easily from small to large appli-

cations. Its component-based architecture permits for easy management of

complex user interfaces and data flow. This can make it a good choice for

projects that may need to grow and evolve over time.

3. Performance: ReactJS is known for its high performance. It uses a virtual

DOM (Document Object Model) that updates only the essential changes,

reducing the number of manipulations to the actual DOM and improving

the application’s speed. This can lead to faster rendering times and a better

user experience.

4. Community: ReactJS has a large and active community of developers, which

means there are many resources available online for learning and troubleshoot-

Literature Review 49

ing. Moreover, there are many open-source libraries and tools, that can be

used, with React to extend its functionality.

3.3.0.2 Disadvantages of ReactJS

1. Learning Curve: While ReactJS is relatively easy to learn for experienced

developers, it can be challenging for beginners to handle its concepts. It

requires knowledge of JavaScript, HTML, and CSS, as well as additional

concepts like JSX (JavaScript XML) and the virtual DOM.

2. Complexity: ReactJS can be complex to manage in larger applications.

There are many dynamic parts and dependencies, which can make debugging

and testing more difficult. Additionally, the component-based architecture

can lead to code duplication and other issues if not managed carefully.

3. Limited Scope: ReactJS is a front-end library and does not include features

such as routing or HTTP requests, which require additional libraries. This

can make it less viable for certain types of projects or applications.

3.3.0.3 Modeling ReactJS using Finite State Machines

Finite State Machines (FSM) are mathematical models that depict the behavior of

a system with a finite number of states and transitions between those states. Using

FSMs to model ReactJS can help with dependability and testing of software. By

defining the states and transitions of React components, it is possible to identify

edge cases and ensure that the application behaves as expected. The Xstate library

is a common tool for modeling ReactJS using Finite State Machines. It allows

developers to define the state and transitions of a component using a declarative

syntax. Xstate also provides a visual representation of the state machine, making

it easier to reason about the behavior of the component [198, 199].

Benefits of using Finite State Machines for modeling ReactJS:

1. Improved Dependability: By modeling React components using Finite State

Machines, developers can detect edge cases and ensure that the application

Literature Review 50

behaves as expected. This can lead to more dependable software that is less

likely to fail or exhibit unexpected behavior.

2. Easier Testing: Finite State Machines provide a clear and obvious represen-

tation of the state and transitions of a React component, making it easier

to write tests for the application. This can lead to more reliable and robust

testing.

3. Simplified Debugging: By breaking down the behavior of a React component

into finite states and transitions, it becomes easier to mark and debug errors.

This can save time and effort in the development process.

3.3.0.4 Issues with Modeling ReactJS using Finite State Machines

1. State Explosion: The more states and transitions a React component has,

the more complex and challenging it can be to model using Finite State

Machines. This can result in a state explosion, where there are too many

states and transitions to manage effectively. This can lead to code that is

difficult to understand and maintain.

2. Tooling: While there are many tools and libraries available for modeling

React JS using Finite State Machines, there is deficiency of standardization

in the field. This can make it challenging to choose the right tools and ensure

compatibility with other parts of the development stack. Additionally, the

tools themselves can be complex and difficult to learn, requiring a significant

investment in time and resources.

3. Limited Application: While modeling React JS using Finite State Machines

can be helpful for specific types of applications, it may not be suitable for

all projects. Some applications may have complex or dynamic behavior that

is difficult to model using Finite State Machines.

4. Maintenance: As with any software development tool, modeling React JS

using Finite State Machines demands ongoing maintenance and updates.

This can be a significant investment of time and resources, especially for

large or complex applications.

Literature Review 51

Overall, modeling React JS using Finite State Machines can be a powerful tool for

enhancing the dependability and testing of software. However, it is important to

be aware of the potential issues and limitations of this approach, and to carefully

evaluate whether it is the right choice for a particular project [200, 201].

3.4 Conclusion and Research Gaps

This chapter depicts following conclusions.

1. Due to the fact that online software only consists of a single copy of the

application that is shared by all users, it does not fall under any of the

traditional classifications for software.

2. Better user engagement is induced by current Ajax-based web applications,

but at a price. Ajax is more error prone due to its asynchronous, event-

driven, stateful, usage of a loosely typed scripting language, client-side sub-

stantial functioning, and exchange of page fragments rather than the entire

page. [RQ1].

3. The use of finite state machines is a convenient technique to demonstrate

the dynamic behavior of web applications without dealing with challenges

of actual implementation. [RQ2].

4. Modeling Ajax applications comes with a whole new set of problems, such

as state navigation, state change triggers, states that can’t be reached, and,

most importantly, state explosion. [RQ1].

5. Recent studies focused on modelling Ajax applications have only partially

addressed the problem of state explosion by applying partial reduction or by

reducing the model’s effectivness. [RQ1].

6. The majority of research on preventing state explosions only looks at user

session data. Other crucial application elements, such as the significance of

the requirements or the stakeholders, are not taken into account. [RQ1].

Literature Review 52

7. According to some studies, the state machine can be generated and reduced

simultaneously. As the algorithm runs, this mechanism constantly compares

and reduces the states, adding overhead to the system. Also not included

are the impacts of this reduction on application verification. [RQ1,RQ3].

Chapter 4

StateReduceAjax

This chapter proposes a framework StateReduceAjax to achieve state space re-

duction in state machine of an Ajax web application. In the context of modeling

web applications, the state explosion problem refers to the difficulty of dealing

with a large number of possible states that a web application can be in, and the

resulting combinatorial explosion of possible paths that a user can take through

the application. This can make it challenging to model and test the application

effectively, as it becomes impractical to test all possible paths, and combinations,

of user interactions.

In particular, Ajax web applications, which use asynchronous requests to update

parts of a page without requiring a full page reload, can exacerbate the state explo-

sion problem. This is because Ajax interactions can introduce additional states,

and interactions, that must be considered when modeling the application.

To address the state explosion problem in modeling Ajax web applications, tech-

niques such as model checking, symbolic execution, and state space reduction can

be used to explore the state space of the application more efficiently and effectively.

These approaches aim to identify and prioritize the most important paths, and

interactions, to test while avoiding redundant or irrelevant paths that would not

significantly contribute to the overall test coverage. Larger the state space, more

this issue becomes unmanageable. The main objective behind the construction of

StateReduceAjax is to reduce the state space.

Prior to delving into the specifics of the proposed framework, it is important to

53

StateReduceAjax 54

examine the connection between an approach and a framework. An approach

refers to a general method or strategy that is used to solve a problem or achieve

a goal. It is a broad set of principles and guidelines that guide decision-making

and action in a particular field or discipline. For example, Agile is an approach

to software development that emphasizes iterative and incremental development,

collaboration, and customer feedback. On the other hand, a framework is a struc-

tured and organized set of guidelines, concepts, and tools that can be used to

apply an approach or solve a particular problem. A framework provides a specific

structure or template for the implementation of an approach. For example, Scrum

is a framework that is based on the Agile approach and provides a specific set of

roles, events, and artifacts to guide the development process. In summary, an

approach provides a high-level strategy or viewpoint, while a framework provides

a specific set of guidelines and tools to implement that approach.

It is possible for a framework to integrate different approaches or methodologies.

A framework is typically designed to provide a structure and guidance for a specific

domain or problem space, and it may draw on different approaches or techniques

to achieve its goals. For example, the Six Sigma framework for quality manage-

ment integrates elements of statistical process control, design of experiments, and

other approaches to improve processes and reduce defects. Similarly, the Lean

Startup framework for entrepreneurship combines lean manufacturing principles

with agile software development methodologies to help startups build and iterate

on products more efficiently. In these cases, the framework serves as a placeholder

for multiple approaches, providing a unified structure and language for practition-

ers to work within.

The proposed framework StateReduceAjax passes through a multistage progres-

sion to incrementally process the given information and generate results that help

in the state machine construction. Initial process starts by gathering and storing

the stakeholder information along with the use cases and system requirements.

Requirements pass through prioritization process and the result is stored back in

the form of prioritized value for each requirement. This prioritized requirement

value is used in use case requirement mapping to calculate Use Case Requirement

Weightage (UiW) for each use case. The use case based session recording calcu-

StateReduceAjax 55

lates how frequently a use case is executed.

The framework uses Fuzzy C Means (FCM) [24] to achieve state space reduction

by segregating system use cases as high priority and low priority. The functionality

of only these high priority use cases are considered for state machine construction.

This reduced use case set helps to control state explosion in state machine of an

Ajax application.

Fuzzy C Means (FCM) takes set of UiW values along with the use case frequency

to identify the most pivotal use cases. These pivotal use cases comprise of the

most frequently performed user actions. It is practically impossible to record all

possibilities and then to extract and test these event and element mappings. One

way to limit the possibilities is considering only the most frequently used events

and then mapping them to the corresponding elements. StateReduceAjax runs

only these pivotal use cases and maps user actions to Document Object Model

(DOM) mutations using DOM tools [202, 203]. These DOM mutations are the

DOM states and StateReduceAjax finally connects these DOM states to construct

the state machine. Figure 4.1 shows the complete working of the proposed solu-

tion. In this research the proposed framework accomplishes its objectives by using

Algorithm I shown in Table 4.1.

This algorithm initiates by taking requirement set as input and then sends it to

requirement prioritization module. Requirement prioritization module applies re-

quirement prioritization and returns prioritized requirement set. The algorithm

passes this data to the use case prioritization module. This module takes use case

set data as input and performs user session recordings, use case requirement map-

ping, and use case frequency calculation to generate use case frequency data and

use case requirement weightage. This data is then sent to FCM that generates the

prioritized use case set which is returned to the main algorithm. The algorithm

then iterates through the prioritized use case set and invokes generateFSM mod-

ule for each use case. The generateFSM module takes Source DOM of the Ajax

application and use case set as input and implements event element mapping to

generate state Log file. It then uses this log file to append the states and transition

information to FSM data file for each use case. Finally it sends FSM data file to

drawGraph function to generate the state machine for the use case.

StateReduceAjax 56

Use Case Set

File

Stakeholders

Set File

Requirement

Set File

Large PHandler

AHP

User Session Recordings

using Selenium

Prioritized

Requirements Set

File

Selenium Log

File

Use Case Frequency

Calculation

Use Case

Requirement Mapping

Use Case

Frequency File

FCM

Prioritized Use

Case Cluster

Data

DOM Event Element Mapping

State Log File Construct FSM FSM Data File

YES

NO

S
ta

g
e

 I
S

ta
g

e
 I

I
S

ta
g

e
 I

II

Use Case Requirement

Weightage File

Source DOM

Figure 4.1: StateReduceAjax Framework

4.1 Stage I

Requirements of a software may vary from smaller to larger in number and there

are many techniques to prioritize requirements. Requirements could be simple

or complex having muliple features to be considered for prioritization. Because

StateReduceAjax 57

Table 4.1: Algorithm I

procedure stateReduceAjax ()
Declare : Prioritized Requirements Set,

Prioritized Usecase Set, FSM Data
Input : Requirements Set, Stakeholder Set, UseCase Set
Output : FSM Data File
1 Prioritized Requirements Set =

PrioritizeRequirements(Requirements Set, Stakeholder Set)
2 Prioritized Usecase Cluster Data =

PrioritizeUsecases (Prioritized Requirements Set)
3 for each Prioritized Usecase id in

Prioritized Usecase Cluster Data.Usecase id
4 gererateFSM()
end procedure

of its ease of use, variety, and high level of accuracy, the Analytical Hierarchy

Process, often known as the AHP, is one of the multi-criteria decision making

(MCDM) techniques that is utilized most frequently by researchers from all over

the world [204]. AHP employs pair-wise comparisons as opposed to traditional

approaches, which improves the accuracy of the findings and permits verbal as-

sessments. The comparisons between pairs are used to find the right ratios and

scales for the priorities. AHP offers a tried-and-true method for handling complex

decision-making and can help with defining and weighing criteria, assessing the

information gathered, and speeding up the decision-making process. [205]. AHP

technique, however, is only appropriate for a few requirements [58] and this re-

search uses AHP to prioritize smaller set of requirements.

There are many requirement prioritization techniques for larger requirement sets.

This research uses PHander which is considered as a recent and robust requirement

prioritization technique [206–208]. It is an expert system that employs value-based

intelligent prioritization (VIRP) method and neural networks to prioritize a vast

collection of requirements [209, 210]. Phandler initially uses a machine learning

technique to group related requirements, then an artificial neural network (ANN)

is used for additional prioritization, and finally AHP is used for concluding com-

parisons [211].

The first stage of the solution reads system requirements and stakeholder infor-

mation from the file for further processing. If the requirement set is smaller than

the threshold value than AHP is applied on it. If the requirement set is larger

StateReduceAjax 58

than the threshold value than it is input to PHandler alonwith the stakeholder

information. Many researches have taken threshold value from experts and this

research also uses the same so the requirement set having less than equal to expert

given threshold value is considered small otherwise large [207, 212, 213]. Figure

4.2 shows the block diagram of Stage I.

Requirement Set

Stakeholder Set

AHP?

PHandler

Prioritized
Requirements

Small

Large

Figure 4.2: Stages I Block Diagram

4.1.1 Requirements Prioritization

The first step of Stage I prioritizes the requirements. The requirement set having

small set of requirements fall in small project group and AHP [214] methodology

is utilised in this study to rank it. A potential candidate for PHandler is the

requirement set that has a significant number of requirements [215].

4.1.1.1 AHP

AHP is a requirement prioritization technique to rank the contesting requirements.

Prioritization process uses pair wise comparisons of the requirements to identify

which requirement has higher precedence and to what degree on a gauge of 1 to 9.

Requirements with equal importance have a pair wise comparison value 1 while 9

depicts substantial difference in importance. The steps of AHP are shown in table

4.2 while results are shown in tables 4.3, 4.4, and 4.5.

StateReduceAjax 59

Table 4.2: AHP

procedure AHP ()

Declare : Prioritized Requirements Set

Input : Requirements Set

Output : Prioritized Requirements Set

1 Matrix construction of order n

(n is the number of requirements).

2 Comparisons of the requirements using the pairwise method

3 Normalizing the matrix and

figuring out the eigenvalues

4 Valuing each requirement

5 Prioritized Requirements Set ←

Result accuracy estimation

end procedure

In the first step, AHP reads the requirements file and formulates an n x n matrix

where n is the number of candidate requirements e.g. R1 to R6 in case of six

requirments.

It then performs pair wise comparisons on these requirements and assigns ranking

values ranging between 1 and 9. The value of ‘1’ shows both requirements are

equally important and ‘9’ shows a significant difference in importance. For two

requirements R1 and R2, if R1 has value ‘5’ then it is strongly more important

than R2 and AHP places this value at the intersection of row R1 and column R2.

Row R2 and column R1 gets the reciprocal value, i.e., 1/5. A comparison of any

requirement with itself gives ‘1’ showing equality in importance thus the diagonal

of matrix remains ‘1’.

Table 4.3: Pairwise Requirement Values

R1 R2 R3 R4 R5 R6

R1 1.0 2.0 1.0 2.0 5.0 1.0

R2 0.5 1.0 0.5 0.2 1.0 1.0

R3 1.0 2.0 1.0 3.0 2.0 1.0

R4 0.5 5.0 0.3 1.0 1.0 0.5

R5 0.2 1.0 0.5 1.0 1.0 0.5

R6 1.0 1.0 1.0 2.0 2.0 1.0

StateReduceAjax 60

Next step takes the sum of every column of the matrix and then normalizes the

matrix by dividing each element in every column by the sum of that column. AHP

then takes the average of each row in the normalized matrix. This process adds

value of each element of a row and then divides this sum by total element count

of that row.

Table 4.4: Normalized Requirement Values

R1 R2 R3 R4 R5 R6 SUM PM

R1 0.222 0.166 0.230 0.210 0.416 0.200 1.446 0.241

R2 0.111 0.083 0.115 0.052 0.083 0.200 0.645 0.107

R3 0.222 0.166 0.230 0.315 0.166 0.200 1.302 0.217

R4 0.111 0.416 0.076 0.105 0.083 0.100 0.893 0.148

R5 0.111 0.083 0.115 0.105 0.083 0.100 0.598 0.099

R6 0.222 0.083 0.230 0.210 0.166 0.200 1.113 0.185

The succeeding step checks the consistency by multiplying the average row value

with each row element of the original matrix, resulting in a consistency matrix.

Table 4.5: Prioritized Requirement Values

R1 R2 R3 R4 R5 R6 SUM Priority V

R1 0.241 0.482 0.241 0.482 1.205 0.241 2.893 12.000

R2 0.053 0.107 0.053 0.053 0.107632 0.107 0.484 4.500

R3 0.217 0.434 0.217 0.651 0.434 0.217 2.170 10.000

R4 0.074 0.744 0.049 0.148 0.148 0.074 1.240 8.333

R5 0.049 0.099 0.049 0.099 0.099 0.049 0.448 4.500

R6 0.185 0.185 0.185 0.371 0.371 0.185 1.484 8.000

The last step takes the dot product sum of each row of the consistency matrix by

1/W resulting in weight assignments to each requirement.

4.1.1.2 PHandler

This research applies the PHandler to prioritize large requirement set. The PHan-

dler uses three stages to prioritize the requirements. In the first task of stage I,

StateReduceAjax 61

experts evaluate just the requirements without any other details. In the next task,

the experts assess the stakeholder data, which comprise of their brief profiles, their

expectations about the system and system functionality of their choice. These pro-

files form the basis to quantify and identify the weightage of the stakeholders in

reference to the system. Experts perform the quantification of the stakeholders

using STAR triangle ranking method [216]. This method assigns a 1-10 range

value to each stakeholder based on some key attributes which include the amount

of significance, domain expertise, involvement, dependency, control, and decision-

making authority. PHandler uses the quantified stakeholder profiles in later stages

to resolve the conflicts among contending requirements. The third task takes re-

quirement classification factors (RCFs) and then uses these factors to calculate

requirement value (RV) for each requirement. These RCFs are project related

(projRCFs) or requirement related (reqRCFs). While the reqRCFs are complete-

ness, consistency, understandability, within the scope, and non-redundancy, the

projRCFs are feasibility, modifiability, urgency, traceability, and testability. Equa-

tion 4.1 uses these RCFs to determine value of each requirement (RV) in the range

of 0 to 5.

RV = 0.35 + 0.42
5∑

i=1

pRCFi+
5∑

i=1

rRCFi (4.1)

RCFi in equation 4.1 indicates the specific classification factor whose existence

or nonexistence affects the RV of a requirement [214].

The second stage of the PHandler applies exceptions on the requirements with

similar RV. These exceptions, along with RV, take profile values of the stake-

holders as input and assign the requirement/s to different priority clusters. The

stakeholder profile value depends on the influence, role, interest, and urgency of

the stakeholder in reference to the project.The PHandler comes across five differ-

ent cases to resolve competing requirements

Case 1: Requirements with Same RV and Different projRCF Value

For two requirements R1 and R2 having same RV, the PHandler compares the

projRCF value and places the requirement with greater projRCF value in pri-

orityCluster1. The example data in Table 4.6 shows the assignment of R2 to

priorityCluster1.

StateReduceAjax 62

Table 4.6: Requirements with Same RV and Different projRCF value

Req ID RV FeasibilityModifiabilityUrgencyTraceabilityTestability projRCF

R1 0.71 2 2 2 1 2 9

R2 0.71 2 2 1 3 2 10

Case 2: Requirements with Same RV, projRCF and Different valST

Value

For two requirements R1 and R2 having same RV and projRCF, the PHandler

compares the valST value and places the requirement with greater valST value in

priorityCluster2.The example data in Table 4.7 shows that R1 will be placed in

priorityCluster2.

Table 4.7: Requirements with Same RV, projRCF and Different valST value

Req ID RV FeasibilityModifiabilityUrgencyTraceabilityTestability projRCFStakeholder: valST

R1 0.71 3 2 1 2 2 10 S1:15

R2 0.71 2 2 1 3 2 10 S2:14

Requirements can have same requirement value (RV), project requirement clas-

sification factors (projRCF) value, and stakeholder profile value (valST). For all

such cases, the PHandler calculates whether a stakeholder falls in high, medium

or low value groups, using following Equation 4.2.

Average(N) =

∑n
i=1 valST

N
(4.2)

PHandler takes the average of profile values of all the stakeholders who are part

of the elicitation process and then places the stakeholders, having profile val-

ues greater than or equal to the calculated average, in High Stakeholder Value

group. The stakeholders having profile values less than the average are remaining

stakeholders (remST). The PHandler repeats the above process for the remaining

stakeholders to establish Medium and Low Value stakeholder groups. The process

first calculates the remaining number of stakeholders using following Equation 4.3.

StateReduceAjax 63

Average(remST) =

∑remN
i=1 valST

remN
(4.3)

remN are the number of stakeholders we get by subtracting Number of stake-

holders in high stakeholder group from the total number of stakeholders. The

PHandler places the stakeholders with profile values higher than the average in

Medium Stakeholder Value group and the remaining in Low Stakeholder Value

Group.

Case 3: Requirements with Same RV, projRCF, valST and High Stake-

holder Value

For two requirements R1 and R2 having same RV, projRCF, and valST, PHandler

calculates the stakeholder value and places the requirements with high Stakeholder

value in priorityCluster3. The example data in Table 4.8 shows that R1 and R2

are assigned to priorityCluster3.

Table 4.8: Requirements with Same RV, projRCF, valST and High
Stakeholder Value

Req ID RV FeasibilityModifiabilityUrgencyTraceabilityTestability projRCFStakeholdervalST

R1 0.71 3 2 1 2 2 10 S3:13

R2 0.71 2 2 1 3 2 10 S4:13

Case 4: Requirements with Same RV, projRCF, valST and Medium

Stakeholder Value

For two requirements R1 and R2 having same RV, projRCF, and valST, PHandler

calculates the stakeholder value and places the requirements with high Stakeholder

value in priorityCluster4. The example data in Table 4.9 shows that R1 and R2

will be placed in priorityCluster4.

Table 4.9: Requirements with Same RV, projRCF, valST and Medium
Stakeholder Value

Req ID RV FeasibilityModifiabilityUrgencyTraceabilityTestability projRCFStakeholdervalST

R1 0.71 3 2 1 2 2 10 S5:8

R2 0.71 2 2 1 3 2 10 S6:8

Case 5: Requirements with Same RV, projRCF, valST and Low Stake-

holder Value

StateReduceAjax 64

For two requirements R1 and R2 having same RV, projRCF, and valST, PHandler

calculates the stakeholder value and places the requirements with high Stakeholder

value in priorityCluster5. The example data in Table 4.10 shows that R1 and R2

would be placed in priorityCluster5.

Table 4.10: Requirements with Same RV, projRCF, valST and Low
Stakeholder Value

Req ID RV FeasibilityModifiabilityUrgencyTraceabilityTestability projRCFStakeholdervalST

R1 0.71 3 2 1 2 2 10 S7:6

R2 0.71 2 2 1 3 2 10 S8:6

Figure 4.3 shows the exceptions for a given requirements x in comparison to a

requirement y

Figure 4.3: Exceptions between Same Priority Requirements

The third stage of the PHandler applies AHP to remove the contest among the

StateReduceAjax 65

competing requirements. AHP produces prioritized lists for the given clusters and

finally, the PHandler combines all the priority lists to generate final priority list.

Figure 4.4 shows the woking stages of PHandler.

Figure 4.4: Stages of PHandler

StateReduceAjax 66

Table 4.11 shows the algorithm for stage I. Algorithm II takes requirement set as

input and the output of this module is Prioritized Requirement Set.

Table 4.11: Algorithm II

function prioritizeRequirements();
1 Declare : THRESHOLD ¬ n
2 Input : RequirementsSet, StakeholderSet, n
3 Output : PrioritizedRequirementsSet
4 if (RequirementsSet.count()³THRESHOLD)
5 PrioritizedRequirementsSet ¬

 PHandler(RequirementsSet,StakeholderSet)
6 else
7 PrioritizedRequirementsSet ¬ AHP(RequirementsSet)

endfunction

4.1.1.3 Validation Mechanisms

To ensure objectivity and validity in the proposed framework’s use of expert in-

put, for determining requirement importance, we can implement validation mech-

anisms. One possible approach would be to have multiple experts provide their

opinions independently and then compare and reconcile their ratings to establish

a consensus. Alternatively, we can use statistical methods to, analyze the ratings

and, identify any outliers or inconsistencies. These validation mechanisms would

help to lessen the potential biases and errors that could arise from subjective and

expert opinion setups.

Following are few examples of statistical methods that could be used to analyze

ratings from experts and identify, outliers or, inconsistencies:

1. Inter-rater reliability: This measures the degree of agreement or consistency

among multiple raters. It can be calculated using statistical measures such

as Cohen’s kappa or Fleiss’ kappa, which compare the ratings of different

raters to see how closely they align.

2. Mean, median, and mode: These are basic descriptive statistics that can

help to recognize outliers. For example, if the mean rating is significantly

StateReduceAjax 67

higher or lower than the median or mode, it could suggest that one or more

ratings are outliers.

3. Box plots: Box plots are a visual tool for displaying the distribution of

ratings. They display the median, interquartile range, and outliers of the

data set. Outliers can be identified as any points that fall outside of the

whiskers of the box plot.

4. Principal component analysis (PCA): PCA is a statistical technique that

can be used to mark patterns and relationships in complex data sets. It can

help to identify outliers by detecting any data points that are far from the

others in the data set.

5. Z-scores: A z-score measures the number of standard deviations a data point

is from the mean. If a rating has a z-score that is considerably higher or

lower than the others, it could be an outlier.

These are just a few examples of statistical methods that could be used to validate

expert input and identify, outliers or, inconsistencies. The choice of method will

depend on the specific context and the nature of the data being analyzed.

4.2 Stage II

Stage II initiates by reading use cases from Use Case Set for later use in different

levels of this stage. It then performs user session recording, using Selenium [217], to

gather the user interaction information with reference to the system functionality.

Figure 4.5 shows the block diagram of Stage II.

Requirement Set

Use Case Set

Use Case
Requirement

Mapping

FCM
Prioritized Use

Case File

Use Case Requirement
Weightage

Use Session
Recording

Use Case
Frequency
Calculation

Session Log File

Use Case Frequency

Figure 4.5: Stages II Block Diagram

StateReduceAjax 68

Selenium is a tool that records the user events and subsequent behavior as the

user interacts with system. Selenium can then re-run these recorded steps as

and when required. It uses JavaScript, iframes, and test automation engine to

run, record, and rerun the user actions within the browser [218, 219]. Selenium

provides basic as well as advanced commands to the users including, opening URIs,

clicking elements, typing into fields, and verification commands. User can stipulate

anticipated value or behavior using verification commands. Selenium also provides

the option to insert programming logic while evaluationg the software. Two other

tools available with Selenium are the IDE and Remote Control. Selenium IDE

is web browser plugin and woks on record/replay base mechanism, while Remote

Control server enables the users to write their scripts in programming language of

their choice. Figure 4.6 shows the Selenium IDE interface.

Figure 4.6: Selenium IDE

StateReduceAjax uses these recordings to calculate the use case frequency which

along with Use Case Requirement Weightage UiW is input to Fuzzy C Means

(FCM) classification algorithm [24]. (FCM) then generates the most pivotal use

cases which are later used for DOM event element mapping in the next stage for

State Machine generation. UiW is calculated by mapping each use case with its

StateReduceAjax 69

relevant prioritized requirements to generate Use Case Requirements Weightage

Set. The output of this stage as mentioned before is prioritized Use Case Set.

Table 4.12 depicts the algorithm for stage II.

Table 4.12: Algorithm III

 function PrioritizeUsecases ();
1 Declare : Usecase Requirement Weight ¬ 0,

 Usecase Count ¬ 0,
 Usecase Frequency ¬ 0,
 Intermediate Usecase Frequency ¬ 0,
 Intermediate Usecase Count ¬ 0,
 Fuzzy Data File, Number of Clusters ¬ 2,
 Usecase Requirement Weightage Set,
 Selenium Log File,
 Usecase Frequency Data ¬ 20

2 Input : Prioritized Requirements Set
 Usecase Set
 Ajax URL
 Session Id

3 Output : Prioritized Usecase Set
4 foreach Usecase in Usecase Set
5 foreach Step in Usecase
6 foreach Prioritized Requirement in Prioritized
7 if (Map(Prioritized Requirement, Step) == True)
8 Usecase Requirement Weight +=

 Prioritized Requirements Set.Prioritized Requirement.Weight
9 Usecase Requirement Weightage Set.append

 ([Usecase.Usecase id,Usecase Requirement Weight])
10 Usecase Requirement Weight ¬ 0
11 Selenium Log File ¬ Selenium.Execute(Session Id, Ajax URL)
12 while !EOF (Selenium Log File)
13 foreach Session id in Selenium Log File.Session id
14 foreach Usecase id in Usecase Set.Usecase id
15 Intermediate Usecase Count ¬
 Calculate Usecase Count

 (Session id,Usecase id,Usecase Set, Selenium Log File)
16 Intermediate Usecase Frequency ¬
 Usecase Count / Selenium Log File.SessionTime
17 Intermediate Usecase Frequency Data.append
 (Usecase id,Intermediate Usecase Frequency)
18 foreach Usecase id in Usecase Set
19 while !EOF() Intermediate Usecase Frequency Data
20 if (Usecase id == Intermediate Usecase Frequency Data.Usecase id)
21 Usecase Frequency ¬ Usecase Frequency +
 Intermediate Usecase Frequency Data.

 Intermediate Usecase Frequency
22 Usecase Frequency Data.appned(Usecase id, Usecase Frequency)
23 Usecase Frequency ¬ 0
24 foreach Usecase in Usecase Frequency Data
25 Fuzzy Data File.append() ¬ [Usecase Frequency Data.Usecase.
 Usecase id,Usecase Frequency Data.Usecase Frequency,
 Usecase Requirement Weightage Set.Usecase Requirement Weight]
26 Prioritized Usecase Set ¬ FCM.Execute

 (Fuzzy Data File, Number of Clusters)
 endfunction

StateReduceAjax 70

4.2.1 User Session Recording and Log File Generation

In this level the framework records the user sessions to identify the usage patterns

of the application. Selenium records the sessions as user performs different actions

on the system [219]. The user interaction with the system triggers different events

and Selenium records the user action data, resulting events, and the corresponding

application traces in a log file. Figure 4.7 shows the sample selenium log file.

Figure 4.7: Selenium Log File

In order to record multiple sessions, multiple users use the application. Figure 4.8

shows the Selenium sessions.

Selenium

Figure 4.8: Selenium Sessions

StateReduceAjax 71

Selenium records the usage data from multiple sessions in log files, which later

merge into a central log file referred as Selenium Log File in this research. Line

8 in the Algorithm III in Table 4.12 shows the working of user session recording

functionality.

4.2.2 Calculation of Use Case Frequency

The next level of Stage II calculates the use case frequency of the system which

depicts the system usage in a quantifiable manner [220]. It models the way users

operate the system, the actions they perform, the corresponding function calls,

and the parameter value distributions. This identifies the most frequently used

functions thus helping in focusing on most pivotal system areas. In this research,

the identification of the most used functions becomes the base to discover and work

on only those DOM changes, which emerge because of this usage pattern. This

helps in identifying those DOM mutations that result from the most frequently

used operations of the system.

This level starts by taking Selenium Log File and Use case set. Use case set is

used to identify and map steps read from Selenium Log File with corresponding

use cases. Initially the use case count is calculated for each user session from

Selenium Log File and then is divided by the total user session time to calculate

the use case frequency for that session. The final use case frequency is calculated

by adding frequencies from all user sessions for each use case. Line 9 to 20 of the

Algorithm III in Table 4.12 shows the working of use case frequency calculation.

The output of use case frequency calculation is the use case frequency data. Figure

4.9 shows the Selenium sessions for Use Case Frequency Calculation.

Final Use Case

Frequency

Calculation

User Session

User Session
User Session

User Session

Selenium Log File

Selenium Log File

Selenium Log File

Selenium Log File

Figure 4.9: Use Case Frequency Calculation

StateReduceAjax 72

4.2.3 Use Case Requirement Mapping

The next level of this stage calculates the use case requirement mapping. The

requirement weightage already calculated is used in this stage to calculate the

overall weightage of the use case. Every use case comprises of multiple require-

ments and here the solution identifies the requirements related to each use case.

Figure 4.13 and 4.14 shows the requirement weightage and the requirement use

case mapping.

Table 4.13: Requirement Weightage

ID Weightage

R1 R1 - Weightage

R2 R2 - Weightage

R3 R3 - Weightage

R4 R4 - Weightage

. . - Weightage

. . - Weightage

. . - Weightage

Rn Rn - Weightage

Table 4.14: Requirement Use Case Mapping

ID Requirment Desc. Use Case 1 Use Case 2 Use Case 3 . . Use Case n

R1 R1-Description I . I . . I

R2 R2-Description I I I .

R3 R3-Description I I I .

R4 R4-Description I I I

. .-Description

. .-Description

. .-Description

Rn Rn-Description I I

In 4.14 the ’I’ at the Requirement Use Case intersection shows the use case in which

the current requirement is included in. It then sums up the prioritized weights of

StateReduceAjax 73

the requirements related to the use case and calculates the overall weight of the use

case. This use case weight alongside the use case frequency is another important

factor to consider for use case prioritization. Figure 4.15 shows the weightage of

each use case alongwith its frequency.

Table 4.15: Use Case Weightage and Frequency

Use Case ID Use Case Weightage Use Case Frequency

Use Case 1 Sum of Weightages of all the requirements in Use case 1 Use Case 1 Frequency

Use Case 2 Sum of Weightages of all the requirements in Use case 2 Use Case 2 Frequency

Use Case 3 Sum of Weightages of all the requirements in Use case 3 Use Case 3 Frequency

. Sum of Weightages of all the requirements in Use case . Use Case . Frequency

. Sum of Weightages of all the requirements in Use case . Use Case . Frequency

. Sum of Weightages of all the requirements in Use case . Use Case . Frequency

Use Case n Sum of Weightages of all the requirements in Use case n Use Case n Frequency

Use case frequency addresses a use case in terms of its usage while the weightage

of a use case addresses it in terms of the requirements it is fulfilling and their

importance to the system. The more the weight of a use case, the more important

it is to the system. Both these factors are then input to FCM for overall priority

calculation of each use case. Line 1 to 7 of the Algorithm III in Table 4.12 shows

the working of use case requirement mapping. The output of this step is Use Case

Requirement Weightage Set.

4.2.4 Application of Fuzzy C Mean Clustering

The last level of Stage II implements Fuzzy C Means (FCM) classification algo-

rithm [24] that generates the most pivotal use cases. Fuzzy is a dominant un-

supervised clustering technique for data analysis and model construction. FCM

is a soft clustering algorithm which processes different data elements, gives them

membership labels, and refers them to one or more clusters. In comparison to

other clustering algorithms, FCM demonstrates better efficiency, reliability, and

robustness in most situations or applications [221–225]. Table 4.16 shows the

comparison of clustersing techniques.

StateReduceAjax 74

Table 4.16: Comparison of Clustering Techniques

Algorithm Input Parameters Cluster Structure Computational Complexity

Hirarcical Number of Clusters, Branching

Factor, Diameter Threshold

Spherical O(N2) (time), O(N2) (space)

K Means Number of Clusters Spherical O(NKd) (time), O(N+K) (space)

Fuzzy C Mens Number of Clusters Spherical, Ellipsoidal O(NCT) Near O(N)

Previously studies have used FCM and its variations in the area of software re-

quirements prioritization [214] and pattern recognition [226]. FCM identifies key

features of dataset objects and based on this information group them into clus-

ters. It computes the correct location of an object in the dataset and assigns it

to its designated cluster in a set of multiple clusters. Fuzzification parameter m

determines the degree of fuzzification, in the range [1-n], of an object into a clus-

ter. FCM starts by identifying the central points or centroids, and these centroids

are referred as the mean of each cluster. The algorithm then creates the distance

matrix using the Euclidean distance formula given in Equation 4.4.

d(x, y) =

√√√√ d∑
i=1

|xi − yi|2 (4.4)

d is the Euclidean distance between two objects x, and y and xi and yi are the

attributes of the objects. FCM assigns a membership level to every object in

each cluster. It iteratively updates the centroid and membership levels and then

readjusts the centroid location in each cluster of dataset. FCM uses an objective

function to adjust the centroid position. This objective function takes the mem-

bership level of every object in the cluster and then calculates the distance of the

object from centroid. Equation 4.5 is used in FCM to compute membership level

during iterative optimization process of the FCM.

Uij =
1∑c

k=1[
||xi−cj ||
||xi−ck||

]
2

m−1

(4.5)

Equation 4.6 denotes the objective function used in the FCM.

J =
N∑
i=1

.

N∑
j=1

Um
ij ||xj − vi||2 (4.6)

StateReduceAjax 75

In Equation 4.5 and 4.6 Uij is the membership of xj in ith cluster, vi is the center

of the ith cluster, the bars ||. . . || represent the norm metric and m constant is

associated with the degree of fuzzification. FCM assigns higher values of mem-

bership to the data values closer to the centroid and minimizes the cost function

while it assigns lower membership values to the data objects far away from the

centroid.

Stage 1
Set the stopping condition, the fuzzy parameter to be

a constant greater than 1, and the number of clusters.

Perform an initialization of the fuzzy partition matrix.

Put C, the loop counter, equal to 0.

Determine the cluster centroids and the objective

value Obj.

Compute the matrix membership values for each

object within each cluster.

Stop

Stop if Obj is less than the halting condition between

iterations; otherwise, set C=C+1 and advance again to

step 4.

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Figure 4.10: Fuzzy C Means Clustering Algorithm Working

StateReduceAjax 76

The probability of association of a given data object with a cluster is shown with

the membership function. This probability depicts the distance of an object from

its cluster centroid. Figure 4.10 shows the working of Fuzzy C Means Clustering

Algorithm.

The above mentioned situation is candidate for the use of soft computing, i.e., a

learning algorithm to generate trusted results as traditional methods might not

be able to handle such scenarios. We cannot anticipate the usage pattern of any

user beforehand and every new user might change the patterns of the input data.

We need a robust solution here, which changes itself with the change of input data

and that is why FCM is used here to generate the results. Figure 4.11 shows the

general FCM diagram.
F

 C

M

Data

Cluster 1

Cluster 2

Cluster 3

Figure 4.11: FCM Clustering

FCM in this research places data into two clusters labeled as pivotal and non-

pivotal. Pivotal cluster contains the pivotal use cases which in this research are

input to next stage for the generation of state machine. Line 21 to 23 of the

Algorithm III in Table 4.12 shows the functionality of FCM. The output of FCM

is prioritized use case set cluster.

StateReduceAjax 77

4.3 Stage III

Stage III of the solution takes the pivotal use case list generated from the previous

stage as input along with the source DOM and Use Case Set. In this state the use

cases listed in the FCM generated pivotal list are rerun using Selenium to identify

the pivotal user actions, resulting triggered events and the corresponding changing

elements of DOM. Figure 4.12 shows the block diagram of Stage III.

Prioritized Use Case
File

Use Case Set
DOM Event

Element
Mapping

Construct
FSM

FSM

State Log File

Source DOM

Figure 4.12: Stages III Block Diagram

Here it is important to consider that the actions performed by user on the Ajax

web application only identify the front-end changes and the Selenium records the

same. It implies that the action resulting DOM changes do not link automatically

with the browser history. This means that the orthodox forward back mechanisms

on the browser do not work in the Ajax application, as the DOM changes occur

on the same page. In order to link the functional changes recorded by user actions

with the DOM tree changes, generated as a result by those functional changes,

the solution requires recording DOM tree mutations as well. For this purpose,

the solution collects all application execution traces by executing pivotal use cases

and subsequently matches the user actions to DOM events by employing DOM

Listener [202] and HTML DOM Navigation [203] tools.

On a webpage, when there is a trigger such as a user interaction or browser manip-

ulation it triggers of client-side JavaScript event. These events effect the DOM by

StateReduceAjax 78

executing a JavaScript function. Events include anything from a click to mouse

hover over an element to a webpage loading or refreshing. An event handler,

also known as an event listener, is a section of programming code—typically a

user-defined JavaScript function—that gets executed whenever one of the avail-

able events is triggered.

DOM Listener provides interface for observing DOM changes i.e. node removal and

addition, attribute and text modifications, resulting from executions of JavaScript

handler functions in response to the fired events or user interaction. This tool is a

browser extension or add-on, which runs from within the browser to help observe

the DOM changes. During this process, the user can apply sorting on the observed

DOM changes according to the path of elements or nature of DOM changes, and

view desired DOM changes. Figure 4.13 shows the DOM Listener interface.

Figure 4.13: DOM Listener Interface

Every DOM has elements associated with it and programming tools access these

elements through their respective DOM nodes. These elements have properties like

position, appearance, content etc. A front-end change can alter more than one

StateReduceAjax 79

DOM nodes or elements. Therefore, there should exist a mechanism to traverse

through these interrelated DOM nodes or set of elements. HTML DOM Naviga-

tion Tool provides a way of traversing DOM and helps in identifying the relative

position of DOM elements or nodes. It works as a browser extension or add-on

and provides a mechanism to identify DOM path corresponding to the front-end

elements. User can switch between multiple views to extract useful information

from the DOM paths.

Figure 4.14 shows the working of HTML DOM Navigation Tool.

The solution then maps the extracted events to corresponding DOM elements.

It finally uses this event-element data to construct the state machine where the

event denotes the transitions between states while the element list denotes the

states itself. The output of this stage is the sate machine.

Algorithm for stage III can be seen here in Table 4.17.

Figure 4.14: HTML DOM Navigation Tool

StateReduceAjax 80

Table 4.17: Algorithm IV

 function prioritizeRequirements();
1 Declare : Current DOM,

 New DOM,
 Element List,
 State List,
 transition,
 targetState,
 startState,
 state Log File

2 Input : Prioritized Usecase id, SourceDOM, Usecase Set
3 Output : FSM Data File
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Current DOM ¬ SourceDOM
while !EOF(Usecase Set)
 if (Usecase Set.Usecase id == Prioritized Usecase id)
 foreach Step in Usecase
 Event ¬ Selenium.execute(Step)
 newDOM ¬ browser.fetchDom(Ajax URL)
 if (isDifferent(currDOM, newDOM))
 Element List ¬ ChangedElements(NewDOM)
 Curr DOM ¬ New DOM
 State List ¬ [Event , Element List]
 State Log File.append(State List)
 State List ¬ 0
 Element List ¬ 0
if (State Log File not empty)
 StartState = SourceDOM
 while (! EOF (State Log File)
 transition ¬ State Log File.Event
 targetState ¬ State Log File.Element List
 FSM Data File.append
 (startState, transition, targetState) StartState ¬ targetState
 drawGraph(FSM Data File)
 State Log File ¬ NULL

 endfunction

4.3.1 DOM Event Element Mapping

State changes in an Ajax application are the changes in its DOM tree. The user

action based changes recorded in Selenium are only functional in nature and a

DOM change identification requires a link from the user action to the changed

DOM element. In order to get these DOM changes, the solution first identifies the

link between selenium-recorded actions with the triggered events and then maps

StateReduceAjax 81

those events to the modified DOM elements.

The aggregate number of DOM elements and probable concrete DOM states are

commonly huge and exponential. However, this research only takes a prioritized

subset of total use cases resulting in considering only the prioritized user actions,

triggered events and corresponding changing elements. This results in processing

only pivotal and discarding less pivotal triggered events and linked elements thus

avoiding state explosion problem [227–230].

The process starts by rerunning the FCM identified prioritized use cases in browser

alongside DOM listener and HTML navigation tools. A Use case comprises of user

actions that trigger Ajax events [120] which are detected using DOM Listener

tool. The xpath of the corresponding changing elements are identified by HTML

Navigation Tool, which works along with the browser as its extension and performs

internal DOM processing to identify and log dynamically changing elements as a

result of trigged events.
In oredr to understand this step of solution we can take the example of Ajax

powered Coffee Maker which is one of our case studies. Ajax powered Coffee Maker

is an Ajax application to allow the office workers to order coffee online. There is a

main coffee maker (Coffee Maker 1) and a supporting coffee maker (Coffee Maker

2), both Coffee makers can brew one cup at a time. Once a user places the order

and no coffee is brewing, the main coffee maker handles the order. If an order is

brewing in Coffee Maker 1 then Coffee Maker 2 will handle the additional order.

If both coffee makers are busy then the user gets a wait alert. User can order

coffee by entering the name (optional), selecting the beverage type and coffee cup

size. Default beverage type is Mocha and default cup size is small. Suppose the

user orders coffee by entering the name and default beverage and cup size. The

use case is order coffee by entering name and default settings. User action is to

submit the order, and parameters are user name, coffee size, and coffee type. Ajax

event is OnClick () and the corresponding java script function is OrderCoffee ().

Elements changed are

//INPUT[@id = ’name’],

//DIV[@id = ’controls1’]/FORM[1]/P[2]/INPUT[1],

//DIV[@id = ’controls1’]/FORM[1]/P[3]/INPUT[1],

//DIV[@id = ’controls1’]/FORM[1]/P[4]/INPUT[1], and

StateReduceAjax 82

//DIV[@id = ’controls1’]/FORM[1]/P[4].

Figure 4.15 shows the complete working of Event Element mapping.

Figure 4.15: Event Element Mapping

Line 1 to 13 of Algorithm IV in Table 4.17 shows the working of event element

mappings functionality that outputs State Log File. This file is then used in

subsequent phases to construct the Sate Machine.

4.3.2 State Machine Construction

In the final phase of stage III state machine is constructed from the State Log File

generated in previous phase. In this method of state machine construction, every

use case has its own state machine. Table 4.18 shows the sample State Log File

chunk. Table 4.18: State Log File

Sr. No. Source DOM Destination DOM

1
html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

2
html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"
value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

3
html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-
status"value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

4
html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-
status"value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"
value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"
value(Brewing<UserID,Size,BeverageType>)

5

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-
status"value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-
status"value(Brewing<UserID,Size,BeverageType>)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"
value(Brewing<UserID,Size,BeverageType>)

6

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-
status"value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-
status"value(Brewing<UserID,Size,BeverageType>)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"
value(Brewing<UserID,Size,BeverageType>)

html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

7
html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-
status"value(Brewing<UserID,Size,BeverageType>)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"
value(Brewing<UserID,Size,BeverageType>)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"
value(Brewing<UserID,Size,BeverageType>)

8
html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-
status"value(Brewing<UserID,Size,BeverageType>)

html/body/div"wrapper"/div"coffeemaker1"/div"coffeemaker1-status"value(Idle)
html/body/div"wrapper"/div"coffeemaker2"/div"coffeemaker2-status"value(Idle)

A use case depicts a partial behavior of the system and a state machine generated

from the use case portrays the same.

StateReduceAjax 83

There can be many use cases of an Ajax application, thus many state machines.

However, in this research we have used FCM that filters out the most pivotal use

cases of the application resulting in a prioritized use case set. The aggregate of

these prioritized use cases depicts the aggregated system behavior and the same is

true for state machines, their aggregate will show the overall prioritized behavior

of the system. However we have left the aggregation of these state machines for

the future work and this research is limited to separate state machine per use

case.

A major challenge in modeling Ajax application is the number of DOM states,

which can be unlimited thus making it difficult to construct a state machine. Our

solution handles this state explosion problem by considering only the prioritized

use case set. This prioritized set possesses a lot lesser number of user actions as

compared to overall action possibilities. This limited user action set triggers a lot

lesser number of events as compared to all the event possibilities resulting in only

the most essential element changes. In this way, the most crucial DOM changes

become the basis of state machine construction.

Line 14 to 22 in Table 4.17 shows the working of state machine construction which

outputs FCM Data File.

This file is ultimately submitted to the Draw Graph function, which will draw

the state machine. The Draw Graph method generates the graph by utilizing

Graphviz. The DOT language is the name of the graph description language that

is included in Graphviz. Additionally, Graphviz includes a variety of tools that

are able to handle the DOT language. DOT is very modifiable, and it gives you

control over a wide variety of layout characteristics, like the colors of lines, the

shapes of arrows and nodes, and many others.

The description of the DOT graph can be sent to Graphviz in one of three different

ways: as a string, as a link to a Graphviz file (file extension .gv), or as a text

connection. All of these methods are supported.

First, a directive must specify whether or not an undirected or directed graph is

desired for use in the Graphviz graph specification. From a semantic perspective,

this shows whether or not there is a natural direction connecting one of the edge’s

nodes to the other. A graph can optionally also be characterised as strict. This

StateReduceAjax 84

prohibits the development of many edges. It is possible for an undirected graph

to have a maximum of one edge connecting the same two nodes, but not more.

The edge with the previously defined one will be identified by subsequent edge

statements using the same two nodes, and any attributes specified in the edge

statement will be applied. Figure 4.16 shows the sample Graphviz interfce.

Figure 4.16: Graphviz Interface

Table 4.19 shows the use case steps along with DOM states.

Table 4.19: Use Case Steps with DOM States

S. No. Use Case Steps DOM state XPath

1 Use Case Step 1 //*[@XPath of Use Case Step 1]

2 Use Case Step 2 //*[@XPath of Use Case Step 2]

3 Use Case Step 3 //*[@XPath of Use Case Step 3]

4 Use Case Step 4 //*[@XPath of Use Case Step 4]

5 Use Case Step 5 //*[@XPath of Use Case Step 5]

StateReduceAjax 85

The steps of the sample use case are input to Graphviz for state machine con-

struction. Figure 4.17 shows the state machine for proposed used case.

Figure 4.17: Proposed Use Case

This chapter proposes a framework StateReduceAjax to reduce the state space

StateReduceAjax 86

of the state machine of an Ajax web application. As previously mentioned, one

major challenge in model-based testing of Ajax applications is the issue of state

explosion, where the larger the state space becomes, the more difficult it is to

manage. The main goal of this framework is to reduce the state space.

StateReduceAjax involves a multi-stage process that progressively processes input

information and generates results to aid in the construction of the state machine.

The initial step involves collecting and storing stakeholder information, use cases,

and system requirements.

The requirements undergo a prioritization process, and the resulting prioritized

values for each requirement are stored. These prioritized requirement values are

used in the use case requirement mapping to calculate the Use Case Requirement

Weightage for each use case. The use case-based session recording determines how

often a use case is executed.

The framework employs FCM to reduce the state space by dividing system use

cases into high-priority and low-priority groups. Only the functionality of the

high-priority use cases is taken into account when constructing the state machine.

This reduced set of use cases helps to prevent state explosion in the state machine

of an Ajax application.

FCM uses a set of use case weightage values and frequency data to identify the

most critical use cases, which consist of the most commonly performed user ac-

tions. It is impractical to record all possibilities and then test the event and

element mappings. To limit the number of possibilities, the framework focuses on

the most frequently used events and maps them to the corresponding elements.

It then runs only the pivotal use cases and uses DOM tools to map user actions

to DOM mutations. The framework uses these DOM mutations, which are DOM

states, to construct the state machine.

The proposed framework in this research aims to reduce the state space of gener-

ated AJAX web applications, and it comprises three stages i.e. requirement pri-

oritization, pivotal use case identification, and state machine construction. The

noteworthy contribution of this research lies in its unique approach of utilizing

requirements alongside use cases and usage patterns to reduce the state space of

AJAX applications. This approach has not been used before in any other research.

StateReduceAjax 87

The proposed framework also uses a learning algorithm, Fuzzy C Means (FCM),

in its second stage to identify the most pivotal use cases. With more data, the

FCM algorithm ensures that the framework evolves and performs better over time.

This feature is essential in today’s ever-changing technological world.

The comprehensive method of the proposed framework ensures that it captures

the necessary information to generate a state machine that accurately reflects

the application’s behavior. The use of FCM allows for more efficient and accurate

identification of the most pivotal use cases, making the state machine construction

more efficient. In summary, the proposed framework offers a unique approach to

reduce the state space of AJAX web applications, utilizing requirements alongside

use cases and usage patterns. The use of FCM as a learning algorithm ensures

that the framework can evolve to perform better over time. The framework’s com-

prehensive approach ensures that the generated state machine accurately reflects

the application’s behavior, making it a valuable contribution to the field of web

application development.

Next chapter discusses the experimental results and analysis on those results.

Chapter 5

Experimentation and Results

This section presents the experiments conducted to prove the hypothesis stated

earlier. The experiments implement StateReduceAjax discussed in the previous

section. StateReduceAjax uses Ajax Powered Coffee Maker [231] and Ajax based

ToDo list [232] as its case studies. These case studies are selected as they are used

in many researches [11, 22, 27, 120, 233–236].

The first case study taken in this regard is a small Ajax based application called

Ajax powered Coffee Maker [231].

The process initiates by reading the requirements from Requirement Set. This is a

small system having 20 requirements thus a candidate for the AHP to prioritize the

requirements. AHP initiates by constructing an ‘n x n’ matrix where ‘n’ denotes

the total number of requirements. AHP then carries out all the steps as mentioned

in section 4.1.1 to generate Weighted Requirements Matrix. Table 5.1, 5.2 and 5.3

show the Weighted Requirements Matrix for Ajax powered coffee maker.

The output of AHP is the Prioritized Requirement Set for Ajax powered Coffee

Maker.

StateReduceAjax then reads the use cases from the Use Case Set. Table 5.4 shows

the use cases of Ajax powered Coffee Maker.

88

Experimentation and Results 89

Table 5.1: Ajax Powered Coffee Maker Requirements Weightage

R/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

R1 1.0 2.0 2.0 3.0 2.0 1.0 3.0 2.0 2.0 3.0 2.0 2.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0

R2 0.5 1.0 2.0 2.0 1.0 2.0 2.0 0.5 1.0 2.0 1.0 1.0 1.0 2.0 1.0 0.5 1.0 0.5 1.0 2.0

R3 0.5 0.5 1.0 3.0 2.0 2.0 3.0 2.0 2.0 3.0 2.0 2.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 1.0

R4 0.3 0.5 0.3 1.0 0.5 3.0 1.0 3.0 0.5 1.0 0.5 0.5 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3

R5 0.5 1.0 0.5 2.0 1.0 0.5 2.0 0.5 1.0 0.5 2.0 2.0 1.0 0.5 1.0 2.0 1.0 0.5 1.0 0.5

R6 1.0 0.5 0.5 0.3 2.0 1.0 0.3 1.0 2.0 3.0 2.0 0.5 2.0 1.0 2.0 1.0 0.5 1.0 2.0 1.0

R7 0.3 0.5 0.3 1.0 0.5 3.0 1.0 0.3 0.5 1.0 0.5 2.0 0.5 3.0 0.5 0.3 0.5 0.3 0.5 0.3

R8 0.5 2.0 0.5 0.3 2.0 1.0 3.0 1.0 2.0 3.0 2.0 0.5 2.0 1.0 2.0 1.0 0.5 1.0 2.0 1.0

R9 0.5 1.0 0.5 2.0 1.0 0.5 2.0 0.5 1.0 2.0 1.0 1.0 1.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5

R10 0.3 0.5 0.3 1.0 2.0 0.3 1.0 0.3 0.5 1.0 0.5 2.0 0.5 0.3 0.5 3.0 0.5 0.3 0.5 3.0

R11 0.5 1.0 0.5 2.0 0.5 0.5 2.0 0.5 1.0 2.0 1.0 1.0 1.0 2.0 1.0 0.5 1.0 2.0 1.0 0.5

R12 0.5 1.0 0.5 2.0 0.5 2.0 0.5 2.0 1.0 0.5 1.0 1.0 1.0 2.0 1.0 2.0 1.0 0.5 1.0 2.0

R13 0.5 1.0 0.5 2.0 1.0 0.5 2.0 0.5 1.0 2.0 1.0 1.0 1.0 2.0 1.0 0.5 1.0 2.0 1.0 0.5

R14 1.0 0.5 1.0 3.0 2.0 1.0 0.3 1.0 2.0 3.0 0.5 0.5 0.5 1.0 2.0 1.0 0.5 1.0 2.0 1.0

R15 0.5 1.0 0.5 2.0 1.0 0.5 2.0 0.5 1.0 2.0 1.0 1.0 1.0 0.5 1.0 0.5 1.0 2.0 1.0 0.5

R16 1.0 2.0 1.0 3.0 0.5 1.0 3.0 1.0 2.0 0.3 2.0 0.5 2.0 1.0 2.0 1.0 2.0 1.0 0.5 1.0

R17 0.5 1.0 0.5 2.0 1.0 2.0 2.0 2.0 1.0 2.0 1.0 1.0 1.0 2.0 1.0 0.5 1.0 2.0 1.0 0.5

R18 1.0 2.0 0.5 3.0 2.0 1.0 3.0 1.0 2.0 3.0 0.5 2.0 0.5 1.0 0.5 1.0 0.5 1.0 0.5 1.0

R19 0.5 1.0 0.5 2.0 1.0 0.5 2.0 0.5 1.0 2.0 1.0 1.0 1.0 0.5 1.0 2.0 1.0 2.0 1.0 2.0

R20 0.5 0.5 1.0 3.0 2.0 1.0 3.0 1.0 2.0 0.3 2.0 0.5 2.0 1.0 2.0 1.0 2.0 1.0 0.5 1.0

Table 5.2: Averaging over Normalized Column

R/R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 SUM PM

R1 0.0833 0.0976 0.1379 0.0756 0.0784 0.0411 0.0786 0.0945 0.0755 0.0818 0.0816 0.0870 0.0851 0.0423 0.0800 0.0484 0.0976 0.0455 0.0909 0.0923 1.5949 0.0797

R2 0.0417 0.0488 0.1379 0.0504 0.0392 0.0822 0.0524 0.0236 0.0377 0.0545 0.0408 0.0435 0.0426 0.0845 0.0400 0.0242 0.0488 0.0227 0.0455 0.0923 1.0533 0.0527

R3 0.0417 0.0244 0.0690 0.0756 0.0784 0.0822 0.0786 0.0945 0.0755 0.0818 0.0816 0.0870 0.0851 0.0423 0.0800 0.0484 0.0976 0.0909 0.0909 0.0462 1.4515 0.0726

R4 0.0278 0.0244 0.0230 0.0252 0.0196 0.1233 0.0262 0.1417 0.0189 0.0273 0.0204 0.0217 0.0213 0.0141 0.0200 0.0161 0.0244 0.0152 0.0227 0.0154 0.6486 0.0324

R5 0.0278 0.0244 0.0230 0.0252 0.0196 0.1233 0.0262 0.1417 0.0189 0.0273 0.0204 0.0217 0.0213 0.0141 0.0200 0.0161 0.0244 0.0152 0.0227 0.0154 0.6486 0.0324

R6 0.0417 0.0488 0.0345 0.0504 0.0392 0.0205 0.0524 0.0236 0.0377 0.0136 0.0816 0.0870 0.0426 0.0211 0.0400 0.0968 0.0488 0.0227 0.0455 0.0231 0.8716 0.0436

R7 0.0833 0.0244 0.0345 0.0084 0.0784 0.0411 0.0087 0.0472 0.0755 0.0818 0.0816 0.0217 0.0851 0.0423 0.0800 0.0484 0.0244 0.0455 0.0909 0.0462 1.0494 0.0525

R8 0.0278 0.0244 0.0230 0.0252 0.0196 0.1233 0.0262 0.0157 0.0189 0.0273 0.0204 0.0870 0.0213 0.1268 0.0200 0.0161 0.0244 0.0152 0.0227 0.0154 0.7005 0.0350

R9 0.0417 0.0976 0.0345 0.0084 0.0784 0.0411 0.0786 0.0472 0.0755 0.0818 0.0816 0.0217 0.0851 0.0423 0.0800 0.0484 0.0244 0.0455 0.0909 0.0462 1.1508 0.0575

R10 0.0417 0.0488 0.0345 0.0504 0.0392 0.0205 0.0524 0.0236 0.0377 0.0545 0.0408 0.0435 0.0426 0.0211 0.0400 0.0242 0.0488 0.0227 0.0455 0.0231 0.7556 0.0378

R11 0.0278 0.0244 0.0230 0.0252 0.0784 0.0137 0.0262 0.0157 0.0189 0.0273 0.0204 0.0870 0.0213 0.0141 0.0200 0.1452 0.0244 0.0152 0.0227 0.1385 0.7892 0.0395

R12 0.0417 0.0488 0.0345 0.0504 0.0196 0.0205 0.0524 0.0236 0.0377 0.0545 0.0408 0.0435 0.0426 0.0845 0.0400 0.0242 0.0488 0.0909 0.0455 0.0231 0.8676 0.0434

R13 0.0417 0.0488 0.0345 0.0504 0.0196 0.0822 0.0131 0.0945 0.0377 0.0136 0.0408 0.0435 0.0426 0.0845 0.0400 0.0968 0.0488 0.0227 0.0455 0.0923 0.9935 0.0497

R14 0.0417 0.0488 0.0345 0.0504 0.0392 0.0205 0.0524 0.0236 0.0377 0.0545 0.0408 0.0435 0.0426 0.0845 0.0400 0.0242 0.0488 0.0909 0.0455 0.0231 0.8872 0.0444

R15 0.0833 0.0244 0.0690 0.0756 0.0784 0.0411 0.0087 0.0472 0.0755 0.0818 0.0204 0.0217 0.0213 0.0423 0.0800 0.0484 0.0244 0.0455 0.0909 0.0462 1.0261 0.0513

R16 0.0417 0.0488 0.0345 0.0504 0.0392 0.0205 0.0524 0.0236 0.0377 0.0545 0.0408 0.0435 0.0426 0.0211 0.0400 0.0242 0.0488 0.0909 0.0455 0.0231 0.8238 0.0412

R17 0.0833 0.0976 0.0690 0.0756 0.0196 0.0411 0.0786 0.0472 0.0755 0.0091 0.0816 0.0217 0.0851 0.0423 0.0800 0.0484 0.0976 0.0455 0.0227 0.0462 1.1676 0.0584

R18 0.0417 0.0488 0.0345 0.0504 0.0392 0.0822 0.0524 0.0945 0.0377 0.0545 0.0408 0.0435 0.0426 0.0845 0.0400 0.0242 0.0488 0.0909 0.0455 0.0231 1.0197 0.0510

R19 0.0833 0.0976 0.0345 0.0756 0.0784 0.0411 0.0786 0.0472 0.0755 0.0818 0.0204 0.0870 0.0213 0.0423 0.0200 0.0484 0.0244 0.0455 0.0227 0.0462 1.0717 0.0536

R20 0.0417 0.0488 0.0345 0.0504 0.0392 0.0205 0.0524 0.0236 0.0377 0.0545 0.0408 0.0435 0.0426 0.0211 0.0400 0.0968 0.0488 0.0909 0.0455 0.0923 0.9656 0.0483

Experimentation and Results 90

Table 5.3: Weighted Requirements Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SUM Priority

1 0.08 0.11 0.15 0.1 0.06 0.04 0.16 0.07 0.12 0.11 0.08 0.09 0.1 0.04 0.1 0.04 0.12 0.05 0.11 0.1 1.82 22.78

2 0.04 0.05 0.15 0.06 0.03 0.09 0.1 0.02 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.03 0.05 0.1 1.2 22.88

3 0.04 0.03 0.07 0.1 0.06 0.09 0.16 0.07 0.12 0.11 0.08 0.09 0.1 0.04 0.1 0.04 0.12 0.1 0.11 0.05 1.67 23.03

4 0.03 0.03 0.02 0.03 0.02 0.13 0.05 0.11 0.03 0.04 0.02 0.02 0.02 0.01 0.03 0.01 0.03 0.02 0.03 0.02 0.69 21.28

5 0.04 0.05 0.04 0.06 0.03 0.02 0.1 0.02 0.06 0.02 0.08 0.09 0.05 0.02 0.05 0.08 0.06 0.03 0.05 0.02 0.98 30.21

6 0.08 0.03 0.04 0.01 0.06 0.04 0.02 0.04 0.12 0.11 0.08 0.02 0.1 0.04 0.1 0.04 0.03 0.05 0.11 0.05 1.17 26.76

7 0.03 0.03 0.02 0.03 0.02 0.13 0.05 0.01 0.03 0.04 0.02 0.09 0.02 0.13 0.03 0.01 0.03 0.02 0.03 0.02 0.78 14.87

8 0.04 0.11 0.04 0.01 0.06 0.04 0.16 0.04 0.12 0.11 0.08 0.02 0.1 0.04 0.1 0.04 0.03 0.05 0.11 0.05 1.35 38.41

9 0.04 0.05 0.04 0.06 0.03 0.02 0.1 0.02 0.06 0.08 0.04 0.04 0.05 0.02 0.05 0.02 0.06 0.03 0.05 0.02 0.89 15.5

10 0.03 0.03 0.02 0.03 0.06 0.01 0.05 0.01 0.03 0.04 0.02 0.09 0.02 0.01 0.03 0.12 0.03 0.02 0.03 0.14 0.83 22.04

11 0.04 0.05 0.04 0.06 0.02 0.02 0.1 0.02 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.1 0.05 0.02 1.02 25.81

12 0.04 0.05 0.04 0.06 0.02 0.09 0.03 0.07 0.06 0.02 0.04 0.04 0.05 0.09 0.05 0.08 0.06 0.03 0.05 0.1 1.06 24.41

13 0.04 0.05 0.04 0.06 0.03 0.02 0.1 0.02 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.1 0.05 0.02 1.03 20.83

14 0.08 0.03 0.07 0.1 0.06 0.04 0.02 0.04 0.12 0.11 0.02 0.02 0.02 0.04 0.1 0.04 0.03 0.05 0.11 0.05 1.16 26.05

15 0.04 0.05 0.04 0.06 0.03 0.02 0.1 0.02 0.06 0.08 0.04 0.04 0.05 0.02 0.05 0.02 0.06 0.1 0.05 0.02 0.97 18.87

16 0.08 0.11 0.07 0.1 0.02 0.04 0.16 0.04 0.12 0.01 0.08 0.02 0.1 0.04 0.1 0.04 0.12 0.05 0.03 0.05 1.37 33.16

17 0.04 0.05 0.04 0.06 0.03 0.09 0.1 0.07 0.06 0.08 0.04 0.04 0.05 0.09 0.05 0.02 0.06 0.1 0.05 0.02 1.15 19.74

18 0.08 0.11 0.04 0.1 0.06 0.04 0.16 0.04 0.12 0.11 0.02 0.09 0.02 0.04 0.03 0.04 0.03 0.05 0.03 0.05 1.25 24.43

19 0.04 0.05 0.04 0.06 0.03 0.02 0.1 0.02 0.06 0.08 0.04 0.04 0.05 0.02 0.05 0.08 0.06 0.1 0.05 0.1 1.1 20.57

20 0.04 0.03 0.07 0.1 0.06 0.04 0.16 0.04 0.12 0.01 0.08 0.02 0.1 0.04 0.1 0.04 0.12 0.05 0.03 0.05 1.3 26.83

Table 5.4: Ajax Powered Coffee Maker Use Cases

Sr. No. Use Case

UC 1 Place Order with Default Settings

UC 2 Place Order by Entering Name and Default Settings

UC 3 Place Order bySelecting Size and Default Settings

UC 4 Place Order by Selecting Beverage Type and Default Settings

UC 5 Place Order by Entering Name, Size and Beverage Type

UC 6 Acknowledge Wait Request

It uses Prioritized Requirement Set and Use Case Set to apply use case-requirements

mapping. Table 5.5 shows the requirement weightage.

Experimentation and Results 91

Table 5.5: Ajax Powered Coffee Maker Requirement Weightage

Requirement ID Requirement Weightage

1 22.77872007

2 22.87712412

3 23.02900707

4 21.27860694

5 30.20582427

6 26.76265

7 14.86613933

8 38.4093347

9 15.49634389

10 22.04218892

11 25.80990133

12 24.40635319

13 20.82877419

14 26.045751

15 18.87053865

16 33.15820938

17 19.74255956

18 24.43362155

19 20.57234037

20 26.83404868

Table 5.6 shows the requirement use case mapping.

Table 5.6: Ajax Powered Coffee Maker Requirement Use Case Mapping

Use Case Mapped Requirements

UC1 9,10,11,12,13,14

UC2 2,3,9,10,11,12,13,14

UC3 4,5,9,10,11,12,13,14

UC4 6,7,9,10,11,12,13,14

UC5 9,10,11,12,13,14

UC6 15,16,17,18,19

Experimentation and Results 92

Table 5.7 shows the use case weightage.

Table 5.7: Ajax Powered Coffee Maker Use Case Weightage

Use Case Weightage

UC1 134.6293125

UC2 180.5354437

UC3 186.1137437

UC4 176.2581018

UC5 134.6293125

UC6 116.7772695

The output of this function is the Use case Requirement Weightage Data having

Use cases along with their weights. The next stage of StateReduceAjax uses

Selenium and record user sessions to identify usage patterns. Selenium archives

the user action statistics in a log file. This leads StateReduceAjax to calculate use

case frequency of the system. This identifies the most frequently used functions

thus helping in focusing on most pivotal system areas for testing. Figure 5.1 shows

the Selenium IDE session for Coffer Maker.

Figure 5.1: Selenium IDE for Coffee Maker

Experimentation and Results 93

In this research, the identification of the most used functions becomes the base to

discover and work on only those DOM changes, which emerge because of this usage

pattern. The output of this step is the Use Case Frequency Data. The last level of

Stage II implements Fuzzy C mean classification algorithm (FCM) [24]. FCM takes

features of the objects and classifies them into clusters. It iteratively calculates

the appropriate position the objects, identify their suitable cluster among multiple

clusters and place them in it. Table 5.8 shows the Ajax Powered Coffee Maker

Fuzzy Input Set taken from Use Case Requirement Weightage Data and Use Case

Frequency Data respectively.

Table 5.8: Ajax Powered Coffee Maker Fuzzy Input

Use Case Weightage Frequency

UC1 134.6293125 7

UC2 180.5354437 23

UC3 186.1137437 15

UC4 176.2581018 14

UC5 134.6293125 8

UC6 116.7772695 12

Figure 5.2: FCM Results for Ajax Powered Coffee Maker

Experimentation and Results 94

The output of FCM is the Prioritized Use Case Set having two clusters, i.e.,

pivotal and non-pivotal. Pivotal cluster represents the prioritized use cases. These

use cases give the most essential user actions and the solution identifies event

element mapping only for these user actions. The event element mapping of this

reduced action set gives limited events, thus reduced DOM mutation set, and state

machine. However, as the identified action set comprise the most vital user actions

so the state machine models the most essential system behavior. Figure 5.2 shows

the Fuzzy C Mean results of the Coffer Maker.

DOM event element relationship links a triggered event, because of user action,

with resulting elements that change their behavior. Here the model will create

a list of elements which alter behavior in reference to associated event. Here

the solution uses DOM Listener [202] and HTML DOM Navigation [203] tools to

rerun application execution traces by executing pivotal use cases and subsequently

matches the user actions to DOM events. Figure 5.3 shows the DOM Listener for

Coffee Maker.

Figure 5.3: DOM Listener Interface for Coffee Maker

Experimentation and Results 95

Figure 5.4 shows the HTML DOM Navigation for Coffee Maker.

Figure 5.4: Coffee Maker HTML DOM Navigation Interface

Table 5.9 shows the “Place Order by Entering Name and Default Settings” use

case steps along with DOM states.

Table 5.9: Place Order by Entering Name and Default Settings

S. No. Use Case Steps DOM state XPath

1 Enter Name //div[@id=’controls1’]/form/p/input

//div[@id=’controls1’]/form/p/input value = ”Name”

2 Order Coffee //div[@id=”controls1”]/form/p[4]/input

Figure 5.5 shows the state machine for use case.

Click

Type

Click

Figure 5.5: State Machine of “Place Order by Entering Name and Default
Settings” Use Case

Experimentation and Results 96

Table 5.10 shows the “Place Order by Selecting Size and Default Settings” use

case steps along with DOM states.

Table 5.10: Place Order by Selecting Size and Default Settings

S. No. Use Case Steps DOM state XPath

1 Select Size //div[@id=”controls1”]/form/p[2]/input[2]

2 Order Coffee //div[@id=”controls1”]/form/p[4]/input

Figure 5.6 shows the state machine for use case.

//*div[@id='coffeemaker1']/p[1]
//*div[@id='controls']/form[1]/p[1]
//*div[@id='controls']/form[1]/p[2]
//*div[@id='controls']/form[1]/p[3]
//*div[@id='controls']/form[1]/p[4]

//div[@id='controls1']/form/p[2]/input[2]

//div[@id='controls1']/form/p[4]/input

Click

Click

Figure 5.6: State Machine of “Place Order by Selecting Size and Default
Settings” Use Case

Table 5.11 shows the “Place Order by Selecting Beverage Type and Default Set-

tings” use case steps along with DOM states.

Table 5.11: Place Order by Selecting Beverage Type and Default Settings

S. No. Use Case Steps DOM state XPath

1 Select Beverage Type //div[@id=”controls1”]/form/p[3]/input[2]

2 Order Coffee //div[@id=”controls1”]/form/p[4]/input

Experimentation and Results 97

Figure 5.7 shows the state machine for use case.

//*div[@id='coffeemaker1']/p[1]
//*div[@id='controls']/form[1]/p[1]
//*div[@id='controls']/form[1]/p[2]
//*div[@id='controls']/form[1]/p[3]
//*div[@id='controls']/form[1]/p[4]

//div[@id='controls1']/form/p[3]/input[2]

//div[@id='controls1']/form/p[4]/input

Click

Click

Figure 5.7: State Machine of “Place Order by Selecting BeverageType and
Default Settings” Use Case

Table 5.12 shows the “Place Order by Entering Name, Size and Beverage Type”

use case steps along with DOM states.

Table 5.12: Place Order by Entering Name, Size and Beverage Type

S. No. Use Case Steps DOM state XPath

1 Enter Name //div[@id=’controls1’]/form/p/input

//div[@id=’controls1’]/form/p/input value = ”Name”

2 Select Size //div[@id=”controls1”]/form/p[2]/input[2]

3 Select Beverage Type //div[@id=”controls1”]/form/p[3]/input[2]

4 Order Coffee //div[@id=”controls1”]/form/p[4]/input

Figure 5.8 shows the state machine for use case.

Experimentation and Results 98

//*div[@id='coffeemaker1']/p[1]
//*div[@id='controls']/form[1]/p[1]
//*div[@id='controls']/form[1]/p[2]
//*div[@id='controls']/form[1]/p[3]
//*div[@id='controls']/form[1]/p[4]

//div[@id='controls1']/form/p/input

//div[@id='controls1']/form/p/input value = "Name"

//div[@id='controls1']/form/p[2]/input[3]

Click

Type

Click

//div[@id='controls1']/form/p[4]/input

//div[@id='controls1']/form/p[3]/input[3]

Click

Click

Figure 5.8: Place Order by Entering Name, Size and Beverage Type

Second case study is an Ajax based ToDo list [232]. The ToDo List helps the users

to manage daily task list in Ajax style. It includes the features like multiple lists,

task notes, tags, due dates, task priority, and task sorting searching. The system

falls in large requirement set so PHandler is used to prioritize the requirements.

PHandler takes stakeholder and requirements data to carry out the prioritization

process. Requirement classification factors projRCFs and reqRCFs are used to

calculate the value of requirements RV. Table 5.13 shows the RV values of some

ToDo list requirements. The output of PHandler is the Prioritized Requirement

Experimentation and Results 99

Table 5.13: RV Value of ToDo List Requirements

F
ea
si
b
il
it
y

M
o
d
ifi
ab

il
it
y

U
rg
en
cy

T
ra
ce
ab

il
it
y

T
es
ta
b
il
it
y

C
om

p
le
te
n
es
s

C
on

si
st
en
cy

U
n
d
er
st
an

d
ab

il
it
y

W
it
h
in

S
co
p
e

N
on

R
ed
u
n
d
an

t

T
ot
al

5 4 5 5 5 5 5 5 5 5 1.33
2 1 1 3 2 1 2 2 1 1 0.67
2 1 2 3 2 1 2 2 1 1 0.69
3 2 2 1 2 2 2 2 2 1 0.73
4 3 4 3 3 3 4 3 3 3 1.01
2 1 2 1 2 1 2 2 1 1 0.65
2 1 1 1 2 1 2 2 1 1 0.63

Set. The solution then reads ToDo list use cases from Use Case Set and uses both

these sets to apply use case-requirements mapping. Table 5.14 shows a chunk of

ToDo list use cases.

Table 5.14: ToDo List Use Case Chunk

Sr. No. Use Case

UC10 Filter task/s by tag/s

UC11 Delete a task

UC12 Mark a task as complete

UC13 Select option to view incomplete tasks

UC14 Rename a list

UC15 Delete a list

UC16 Clear completed tasks

UC17 Export a list

UC18 Publish a list

UC19 Move a task from one list to another list

UC20 Arrange the lists by hand

The output of this function is the Use Case RequirementWeightage Data. StateRe-

duceAjax records user sessions to identify usage patterns in Selenium Log File.

StateReduceAjax then calculates the use case frequency of the system and logs

into Use Case Frequency Data. The next stage of StateReduceAjax implements

Experimentation and Results 100

(FCM). Table 5.15 shows the ToDo List Fuzzy input Set taken from Use Case

Requirement Weightage Data and Use Case Frequency Data respectively.

Table 5.15: ToDo List FCM Input Data

U
se

C
a
se

W
e
ig
h
ta
g
e

F
re
q
u
e
n
cy

U
se

C
a
se

W
e
ig
h
ta
g
e

F
re
q
u
e
n
cy

U
se

C
a
se

W
e
ig
h
ta
g
e

F
re
q
u
e
n
cy

U
se

C
a
se

W
e
ig
h
ta
g
e

F
re
q
u
e
n
cy

UC1 3.4 7 UC12 4.2 103 UC23 1.1 61 UC34 4.3 3

UC2 3 141 UC13 5.1 44 UC24 1 11 UC35 2.8 1

UC3 6.8 63 UC14 1.1 5 UC25 1 31 UC36 2.2 1

UC4 3.5 33 UC15 1.3 3 UC26 1 26 UC37 1.6 1

UC5 4.2 8 UC16 1.1 13 UC27 0.9 15 UC38 3.1 2

UC6 3.4 13 UC17 2 21 UC28 1 71 UC39 2.2 2

UC7 2.6 19 UC18 1 2 UC29 1 57 UC40 4.7 7

UC8 1.2 127 UC19 1.2 17 UC30 0.9 16 UC41 1.5 1

UC9 1.2 35 UC20 1 9 UC31 1 6 UC42 2.1 17

UC10 2 17 UC21 1 30 UC32 1.7 2

UC11 1 7 UC22 1 54 UC33 2.5 0

The output of FCM is the prioritized use case set having two clusters, i.e., pivotal

and non-pivotal. Figure 5.9 shows the Fuzzy C Mean results of the ToDo list.

Figure 5.9: FCM Results of ToDo List

Experimentation and Results 101

These FCM identified use cases give the most frequently used user actions and the

solution identifies event element mapping only for these user actions. The event el-

ement mapping of this reduced action set gives limited events, thus reduced DOM

mutation set, and state machine. However, as the identified action set comprise

the most vital user actions so the state machine models the most frequent system

behavior.

StateReduceAjax uses DOM Listener and HTML DOM Navigation tool to iden-

tify the links among front end user actions to the corresponding triggered events

and further to the changed elements. These changing elements represent the DOM

mutations which in fact are the Ajax application state changes.

The output of DOM event element mapping is the state log file having event el-

ement mapping records for each use case. This state log file for each use case is

input to Construct FSM function.

Table 5.16 shows the “Add Task with Add Button to an Already Created List”

use case steps along with DOM states.

Table 5.16: Add Task with Add Button to an Already Created List

S. No. Use Case Steps DOM state XPath

1 Select List //li[@id=”list name”]/a/span

2 Enter Task Name //form[@id=”newtask form”]/input

//form[@id=”newtask form”]/input

value ”task name”

3 Click Add Button //form[@id=”newtask form”]/div

Figure 5.10 shows the state machine for proposed used case.

Experimentation and Results 102

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//li[@id='list_1']/a/span

//form[@id='newtask_form']/input

//form[@id='newtask_form']/input value = "Task Name"

//form[@id='newtask_form']/div

Click

Click

Type

Click

Figure 5.10: Add Task with Add Button

Table 5.17: Add Task with Advance Button to an Already Created List

S. No. Use Case Steps DOM state XPath

1 Select List //li[@id=’list name’]/a/span

2 Enter Task Name //form[@id=’newtask form’]/input

//form[@id=’newtask form’]/input

value ’task name’

3 Click Advanced Button //div[2]/div[2]/div/div/a/span

4 Select Priority //form[’taskedit form’]/div/select

//form[’taskedit form’]/div/select

value ”priority value”

5 Select Due Date //form[@id=’taskedit form’]/div[2]/img

//div[@id=’ui-datepicker-div’]

/table/tbody/tr[2]/td[4]/a

6 Enter Note //form[@id’taskedit form’]//div[5]

/textarea

//form[@id’taskedit form’]//div[5]

/textarea value ’note text’

7 Enter Tag //form[@id=’taskedit form’]/div[6]

/table/tbody/tr/td/input

//form[@id=’taskedit form’]/div[6]

/table/tbody/tr/td/input value ”tag name”

8 Click Save Button //form[@id=’taskedit form’]/div[8]/input

Experimentation and Results 103

Figure 5.11 shows the state machine for proposed used case.

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//form[@id='newtask_form']/input

//form[@id='newtask_form']/input value = Meeting

//div[2]/div[2]/div/div/a/span

//form[@id='taskedit_form']/div/select

//form[@id='taskedit_form']/div[2]/img

//form[@id='taskedit_form']/div/select value = +2

//div[@id='ui-datepicker-div']/table/tbody/tr[2]/td[4]/a

//form[@id='taskedit_form']/div[5]/textarea

//form[@id='taskedit_form']/div[5]/textarea value Online

//form[@id='taskedit_form']/div[6]/table/tbody/tr/td/
input

//form[@id='taskedit_form']/div[8]/input

//form[@id='taskedit_form']/div[6]/table/tbody/tr/td/input
value SRS

Click

Select

Click

Click

Click

Click

Click

Click

Type

Click

Type

Type

//li[@id='list_1']/a/span

Click

Figure 5.11: Add Task with Advance Button

Table 5.18 shows the “Search Task by Label” use case steps along with DOM

states.

Experimentation and Results 104

Table 5.18: Search Task by Label

S. No. Use Case Steps DOM state XPath

1 Select List //li[@id=’list 1’]/a/span

2 Enter Task Name in Search Bar //div[@id=’toolbar’]/div/div[2]/div/input

//div[@id=’toolbar’]/div/div[2]/div/input

value = ’task name’

3 Click Search Buton //div[@id=’toolbar’]/div/div[2]/div/div

Figure 5.12 shows the state machine for proposed used case.

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//li[@id='list_1']/a/span

//div[@id='toolbar']/div/div[2]/div/input

//div[@id='toolbar']/div/div[2]/div/input value =
 List Label]

//div[@id='toolbar']/div/div[2]/div/div

Click

Click

Type

Click

Figure 5.12: Search Task by Label

Table 5.19 shows the “Mark Task As Complete” use case steps along with DOM

Experimentation and Results 105

states. Table 5.19: Mark Task as Complete

S. No. Use Case Steps DOM state XPath

1 Select List //li[@id=’list 1’]/a/span

2 Check the Task to be Marked as complete //a[contains(@href, ’#list/id’)]

//li[@id=’taskrow num’]/div/div

/label/input

Figure 5.13 shows the state machine for proposed used case.

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//li[@id='list_1']/a/span

//a[contains(@href, '#list/1')]

//li[@id='taskrow_9']/div/div/label/input

Click

Mouse over

Click

Figure 5.13: Mark Task as Complete

Table 5.20 shows the “Sort List by Priority” use case steps along with DOM states.

Table 5.20: Sort List by Priority

S. No. Use Case Steps DOM state XPath

1 Select List //li[@id=’list 1’]/a/span

2 Select List Action Button //li[@id=’list id’]/a/div

3 Select ’Sort List by prioity option’ //div[@id=’listmenucontainer’]

/ul/li[12]

Experimentation and Results 106

Figure 5.14 shows the state machine for proposed used case.

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//li[@id='list_1']/a/span

//li[@id='list_id']/a/div

//div[@id='listmenucontainer']/ul/li[12]

Click

Click

Click

Figure 5.14: Sort List by Priority

Table 5.21 shows the “Sort List By Due Date” use case steps along with DOM

states.

Table 5.21: Sort List by Due Date

S. No. Use Case Steps DOM state XPath

1 Select List //li[@id=’list 1’]/a/span

2 Select List Action Button //li[@id=’list id’]/a/div

3 Select ’Sort List by Due Date’ //div[@id=’listmenucontainer’]

/ul/li[13]

Figure 5.15 shows the state machine for proposed used case.

Experimentation and Results 107

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//li[@id='list_1']/a/span

//li[@id='list_id']/a/div

//div[@id='listmenucontainer']/ul/li[13]

Click

Click

Click

Figure 5.15: Sort List by Due Date

Table 5.22 shows the “Sort All Tasks By Priority” use case steps along with DOM

states.

Table 5.22: Sort All Tasks by Priority

S. No. Use Case Steps DOM state XPath

1 Select Task or List Selection option //div[@id=’tabs buttons’]

/div/div/span

2 Select All Tasks option //li[@id=’slmenu list:-1’]/a

3 Select ’Select All Tasks Action Button’ //div[@id=’list all’]/a/div

4 Select ’Select Sort by Priority option’ //li[@id=’sortByPrio’]/div

Figure 5.16 shows the state machine for proposed used case.

Experimentation and Results 108

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//div[@id='tabs_buttons']/div/div/span

//li[@id='slmenu_list:-1']/a

//div[@id='list_all']/a/div

//li[@id='sortByPrio']/div

Click

Click

Click

Click

Figure 5.16: Sort All Tasks by Priority

Table 5.23 shows the “Sort All Tasks By Due Date” use case steps along with

DOM states.

Table 5.23: Sort All Tasks by Due Date

S. No. Use Case Steps DOM state XPath

1 Select Task or List Selection option //div[@id=’tabs buttons’]

/div/div/span

2 Select All Tasks option //li[@id=’slmenu list:-1’]/a

3 Select ’Select All Tasks Action Button’ //div[@id=’list all’]/a/div

4 Select ’Select Sort by Due Date option’ //div[@id=’listmenucontainer’]

/ul/li[13]

Figure 5.17 shows the state machine for proposed used case.

Experimentation and Results 109

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//div[@id='tabs_buttons']/div/div/span

//li[@id='slmenu_list:-1']/a

//div[@id='list_all']/a/div

//div[@id='listmenucontainer'/ul/li[13]

Click

Click

Click

Click

Figure 5.17: Sort All Tasks by Due Date

Table 5.24 shows the “Change Password Protection Settings” use case steps along

with DOM states.

Table 5.24: Change Password Protection Settings

S. No. Use Case Steps DOM state XPath

1 Click Settings //div[@id=’mtt body’]/div/div[2]

/div[3]/span/a

2 Enable Password Protection //form[@id=’settings form’]/table

/tbody/tr[3]/td/label/input

3 Set Password //form[@id=’settings form’]/table

/tbody/tr[4]/td/input

//form[@id=’settings form’]/table

/tbody/tr[4]/td/input value =”password”

4 Submit Changes //form[@id=’settings form’]/table

/tbody/tr[15]/td/input

Figure 5.18 shows the state machine for proposed used case.

Experimentation and Results 110

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//div[@id='mtt_body']/div/div[2]/div[3]/
span/a

//form[@id='settings_form']/table/tbody/
tr[3]/td/label/input

//form[@id='settings_form']/table/tbody/tr[4]/td/
input

Click

Click

Click

//form[@id='settings_form']/table/
tbody/tr[4]/td/input value ="password"

//form[@id='settings_form']/table/tbody/
tr[15]/td/input

Click

Type

Figure 5.18: Change Password Protection Settings

Table 5.25 shows the “Set Date Format” use case steps along with DOM states.

Table 5.25: Set Date Format

S. No. Use Case Steps DOM state XPath

1 Click Settings //div[@id=’mtt body’]/div/div[2]

/div[3]/span/a

2 Select Date Format //form[//form[@id=’settings form’]/table

/tbody/tr[10]/td/select

//form[@id=’settings form’]/table

/tbody/tr[10]/td/select label = ”selected format”

3 Select Short Date Format //form[//form[@id=’settings form’]/table

/tbody/tr[11]/td/select

//form[@id=’settings form’]/table

/tbody/tr[11]/td/select label = ”selected format”

4 Select Short Date (current year) Format //form[//form[@id=’settings form’]/table

/tbody/tr[12]/td/select

//form[@id=’settings form’]/table

/tbody/tr[12]/td/select label = ”selected format”

4 Submit Changes //form[@id=’settings form’]/table

/tbody/tr[15]/td/input

Experimentation and Results 111

Figure 5.19 shows the state machine for proposed used case.

//[@id='taskrow_id']/div[3]/div[2]
//[@id='taskrow_id']/div[3]/div[2]/span[1]
//[@id='taskrow_id']/div[3]/div[2]/span[2]
//[@id='taskrow_id']/div[3]/div[2]/span[3]

//div[@id='mtt_body']/div/div[2]/div[3]/
span/a

//form[@id='settings_form']/table/tbody/
tr[10]/td/select

Click

Click

Select

//form[@id='settings_form']/table/tbody/
tr[10]/td/select label = "selected format"

//form[@id='settings_form']/table/
tbody/tr[15]/td/input

Click

//form[@id='settings_form']/table/tbody/
tr[11]/td/select

//form[@id='settings_form']/table/tbody/
tr[11]/td/select label = "selected format"

//form[@id='settings_form']/table/tbody/
tr[11]/td/select

//form[@id='settings_form']/table/tbody/
tr[11]/td/select label = "selected format"

Click

Click

Select

Select

Figure 5.19: Set Date Format

5.1 Evaluation of the Proposed Solution

In order to evaluate the proposed approach we need to use some metric. We have

considered here, the impact of reduction of FSM on testing effectiveness. For this

purpose, we calculated testing cost and testing effectiveness. Our experiments

Experimentation and Results 112

show that the reduction in cost is significant as compared to the loss of effec-

tiveness. The parameters we used in order to gauge the effectiveness of testing,

are faults detected and frequency of execution of different elements of the system

under test.

In order to evaluate effectiveness of our approach, we used fault seeding. This

technique is a combination of artificially induced faults and the measure whether

testing is capable enough to uncover them. The comparison of detected and unde-

tected seeded faults gives a confidence measure of testing [237]. One of the issues

to cater in this approach is identification of potential fault seeding areas in the

application. Randomly placed faults may prove to be an overhead as the seeded

areas may be less or not executed. Two factors that are pivotal in identifying the

fault seeding areas are usage patterns and the testers’ perspective of the applica-

tion usage. One perspective is from user and the other is from tester point of view

and both could be quite different from one another. There should be a systematic

way to incorporate both in fault seeding process.

Use cases are the main source to record user interaction with the application and

in turn to identify usage patterns. These usage patterns help in identifying the

application areas that are more used than the others. The faults in these more

used areas have greater impact on the system behavior. This argument supports

the idea that all the faults do not have same significance. The faults in areas

encountered more by the users have different effect on reliability than the same

type of faults in less encountered areas [238]. Almost all studies consider the faults

alone as the measure of testing effectiveness without considering their frequency of

execution [239–243]. This frequency of execution or the frequency profile provides

the quantitative characterization of system usage [244]. Software testing based

on this frequency of execution confirms that most frequently used operations are

focused thus achieving maximum reliability in available testing time [244]. One

important thing to consider here is the fault types to be seeded. This research uses

classification of faults given in [245] and their distribution given in [246]. Grigorjev

et al. [246] give a classification of faults and their distribution in the program, as

shown in Table 5.26

Experimentation and Results 113

Table 5.26: Fault Distribution

Class of Faults Percentage

Logic Control Faults 32

Data Faults 24

Interface Faults 18

Computational Faults 13

Initialization Faults 13

There are a number of ways to seed faults in a system, i.e., seeding in random

manner [247], in isolated manner [248], or by a human expert [249]. In this

research, we have seeded one fault in every use case of our case studies from

different classes of faults, and used fault severity definitions as given in [246].

Only those severity types are used that do not lead to system crashes, i.e., 3 to 5.

Table 5.27 shows the severity levels as given by [246].

Table 5.27: Fault Severity Levels

Severity Description

1 Catastrophic–Bug causes system crash

2 Major– Bug makes the product unusable

3 Moderate–Bug affecting product usage

4 Minor– Bug is not affecting product usage

5 Nuisance– Easily reparable faults

Several reliability metrics are available to measure the reliability of a system. One

such metric is Probability of Failure on Demand (POFOD) [250, 251]. The argu-

ment to prove the effectiveness of proposed solution initiates by seeding a fault

in each use case. The idea is that the seeded fault is encountered once the user

executes the use case. Since all use cases do not have same execution frequency,

the faults in use cases do not trigger the same number of times, which makes

some faults more critical than others. In order to assess the reliability of the sys-

tem, testing is performed using test cases. For simplicity, we assume that all use

Experimentation and Results 114

cases have equal number of test cases, i.e., one test case per use case. In order

to calculate effectiveness of testing we first need to calculate effectiveness of a

test case. Effectiveness of a test case is the ratio of its corresponding use case’s

frequency to the sum of frequencies of all use cases. Effectiveness of testing would

then be calculated by taking the sum of Effectiveness of only the high category

test cases. High category test cases are the test cases corresponding to the high

category use cases identified by FCM. Cost of testing is the ratio of number of test

cases executed to the total number of test cases. Executing all test cases incurs

higher cost, our approach reduces the number of test cases by reducing the state

machine, and thus testing cost is reduced. equation 5.1, 5.2 and 5.3 show the defi-

nitions of Effectiveness of a test case, Effectiveness of testing and Cost respectively.

Effectivenesstc =
Frequencyofcorrospondingusecase∑n

i=1 Frequencyofuci
(5.1)

EffectivenessHigh =
h∑

i=1

Effectivenesstci (5.2)

Costtesting =

∑h
j=1 tcj∑n
i=1 tci

(5.3)

Here ‘n’ and ‘h’ show the total number of use cases and total number of high

category use cases respectively. More test cases means more testing cost and vice

versa. However the decrease in test cases may affect the effectiveness of testing.

Here, we evaluate the impact of reduction in testing cost, on effectiveness of testing.

As we mentioned earlier, we are writing one test case per use case, so reduced use

case set would mean reduced test case set. As we are using POFOD, we argue

that the use cases executed more often have the functionality that is requested

frequently by the user and the faults in these use cases are encountered more by

the user. The state machine generated by our solution comprise of the states

corresponding to the most frequently executed use cases. The discarded group of

use cases decreases the testing cost. We compare the relationship between this

decreased cost and effectiveness of testing to prove the usefulness of our solution.

Table 5.28 shows the frequency and effectiveness of a use case for an example

scenario.

Experimentation and Results 115

Table 5.28: Effectiveness of a Use Case

Use Case/Test Case Frequency Effectiveness

UC1/TC1 2 0.0625

UC2/TC2 3 0.09375

UC3/TC3 10 0.3125

UC4/TC4 5 0.15625

UC5/TC5 12 0.375

FCM results show that UC3 and UC5 fall in high category and their corresponding

test cases would be considered for calculating the testing effectiveness. By using

Eq. (8) the testing effectiveness of system is 68.7 and by using Eq. (9) the cost

of testing is 40. This shows that the cost is reduced by 60 but the effectiveness is

not reduced that much and is reduced only by 31.3.

We have used Coffee Maker and ToDo List case studies to further strengthen

the argument regarding effectiveness of our solution. We have seeded a fault in

each use case and these seeded faults ensure that whenever the user runs that use

case, it triggers the seeded fault. Our solution implements the FCM algorithm

to prioritize the use cases. This information depicts the most frequently used

application areas and the faults in these areas tend to be encountered the most.

The discarded use cases are not considered for testing which reduces the testing

cost.

FCM categorizes use cases into two groups, i.e., high priority and low priority.

FCM processes the given data and calculates a threshold value. The use cases

falling above the threshold value belong to high priority group and rest belong to

low priority group. Our solution discards the low priority use cases. equation 5.4

shows the relationship between high and low priority use cases.

UCAll = UCHighUUCLow (5.4)

The cost of testing is determined as the ratio of test cases executed to the to-

tal number of test cases. Thus cost of solution calculates the percentage of high

category use cases in reference to all the use cases. equation 5.5 shows this rela-

Experimentation and Results 116

tionship.

Cost(UCHigh) =
|UCHigh|
|UCAll|

(5.5)

In our solution we claim that although we have reduced the testing cost but the

effectiveness of testing is not compromised. This implies that effectiveness of

testing is reduced less as compared to number of use cases reduced. Equation 5.6

shows the effectiveness calculation.

Effectiveness(UCtesting) =

∑h
j=1(freq(ucj))High∑n

i=1 freq(uci)All

(5.6)

Here n and h represent the total number and the number of high category use

cases respectively. In order to find the reduction in overhead of use cases and in

efficiency of testing, equation 5.7 and equation 5.8 are used respectively.

ReductionCost(UCAll) = 1− Cost(UCHigh) (5.7)

And

ReductionEffectiveness(UCAll) = 1− Effectiveness(UCHigh) (5.8)

Table 5.29 shows the results of these calculations on the Coffee Maker and ToDo

List case studies.

Table 5.29: Calculation on Case Studies

Case Study/ Calculations Coffee Maker ToDo List

No of Use Cases 6 42

Frequency of Use Cases 79 1102

High Category Use Cases 3 8

Frequency of High Category Use Cases 52 677

Overhead of High Category Use Cases 50% 19%

Efficiency of High Category Use Cases 66% 61%

Reduction in Cost 50% 81%

Reduction in Effectiveness 34% 39%

Coffee Maker case study has got a total of six use cases. Out of these six use cases

Experimentation and Results 117

three use cases (UC2, UC3, and UC4) fall in high category group and in turn are

used by our solution to generate state machine. FCM has placed remaining 3 use

cases in low category. Our solution has discarded these low category use cases.

The percentage of these high category use cases is 0.5(50). The Coffee Maker case

study use cases are executed 79 times by the users during frequency calculation.

Each use case is seeded by one fault so the system comes across these faults 79

times during this use case set execution. Our solution considers only the use cases

falling in high category group. The statistics show that these high category use

cases are executed 52 times out of 79. This implies that although the use cases are

reduced by 50 percent, the efficiency of these reduced use cases remains 0.658(66).

Here the calculations show that the reduction in overhead is 50 while the reduction

in efficiency is 0.342(34). These numbers support our claim that the reduction in

use case number into half by our solution does not reduce the reliability into half.

Todo List case study has got a total of 42 use cases which are categorized into two

groups by FCM, i.e., high and low. In the ToDo List case study eight use cases

(UC2, UC3, UC8, UC12, UC22, UC23, UC28 and UC29) fall in high category

group and in turn are used by our solution to generate the state machine. The

percentage of these high category use cases is 0.19(19). 34 use cases are discarded

by our solution. The percentage of this low category use cases is 0.809(81). The

ToDo List case study use cases are executed 1102 times by the users during fre-

quency calculation. Each use case is seeded by one fault so the system comes

across these faults 1102 times during this use case execution. Our solution consid-

ers only the use cases falling in high category group. The statistics show that these

use cases are executed 677 times out 1102. This shows that although the use cases

are reduced by 81 percent the efficiency of the use cases remain 0.614(61). Thus,

the reduction in overhead is 0.809(81) while reduction in efficiency is 0.385(39).

This number supports our claim that the reduction in use case number by 81 does

not reduce the reliability by 81 percent.

5.2 Comparison with Existing Techniques

In this section we have performed comparative analysis of our technique with other

techniques. We have discussed various approaches in related work section and here

Experimentation and Results 118

we have selected [6, 22] for comparison. The basis of this selection is that both

these approaches are working to solve the state explosion problem in Ajax based

applications.

In [6] the authors have discussed the use of Binary Decision Diagrams (BDD) to

avoid state explosion problem. In their approach the state machine is generated

for the whole application and then is reduced. The mechanism starts by record-

ing user sessions in xml log files and then by reading those files to generate the

state machine for the Ajax application. The authors have claimed that the state

machine is generated and reduced at the same time. This mechanism imposes a

constant overhead on the system by comparing and reducing the states all the

time as the algorithm runs. Further the authors have not discussed the effects of

this reduction on application testing, i.e., whether the reduced state machine has

covered all the areas of the application under test.

In [22] the authors have claimed that state explosion problem is handled as every

session has got its own state machine. However this mechanism cannot guarantee

in absolute about the handling of state explosion problem due to following rea-

sons. Firstly the session of a large application can have large interacting events

and corresponding changing elements resulting in state explosion. Secondly the

framework constructs state machine for every session which is an overhead on the

application.

Our solution handles these issues in a more efficient way. Firstly the pivotal use

cases are identified using FCM and state machine is generated only for those use

cases. These limited use cases are the most frequently used actions of the user

regarding the application thus depicting the most pivotal areas of the application.

Our framework records the triggered events, corresponding elements, and DOM

changes only for these use cases thus avoiding state explosion. These use cases in

fact cover all the important functions of the application thus effectiveness of the

state machine regarding application coverage remain intact.

Table 5.30 shows the comparison amongst the approaches.

Experimentation and Results 119

Table 5.30: Comparison of Approaches

Factors/

Approach

Arora et. al Arora et. al StateReduceAjax

Using FCM

Scalability Low (Difficult to im-

plement as lot manual

effort and human in-

tervention required)

High (No additional

functionality or exten-

sive modification re-

quired)

High (No additional

functionality or exten-

sive modification re-

quired)

Cost High (Machine is first

built and then re-

duced)

High (Machine is built

for every session)

Low (Machine is built

only for most pivotal

use cases)

Effectiveness Low (Effects of reduc-

tion not addressed)

Low (Do not guar-

antee state explosion

avoidance)

High (All the pivot ar-

eas are tested)

Adaptability Low (Difficult to

manage large size,

complexity, and

non-determinism of

modern applications)

Low (Difficult to per-

form verification and

accuracy checks on

machine due to het-

erogeneity of new ap-

plications)

High (No additional

functionality or exten-

sive modification re-

quired as machine is

built only for most

pivotal use cases)

Maintainability Low(problems with

scalability, accuracy,

and expressiveness

as manual effort and

human intervention

required)

Low (Framework may

become too large or

complex to be easily

modified, which can

hinder the maintain-

ability)

High (Smaller and

more manageable

state machines with

reduced computa-

tional complexity,

which are easier to

understand, alter, and

maintain)

Usability Low (complexity and

learning curve associ-

ated with using the

BDD tool, the diffi-

culty in understanding

and inferring the re-

sulting BDDs)

Medium (complex but

delivers a view of the

system that allows for

more thorough analy-

sis of the state space)

High (user-friendly

because of its simpli-

fied nature, making it

easier to learn and use

for developers)

Experimentation and Results 120

Quantitative comparison of the approaches was not viable due to the lack of spe-

cific quantitative metrics and data, such as the number of users, data points, and

processing time. Following are some details.

1. Lack of relevant data: In some cases, the data required to make a quanti-

tative comparison may be difficult or impossible to obtain. For example, if

one of the approaches is relatively new and has not been widely used, it may

be difficult to find sufficient data to make a meaningful comparisons.

2. Differences in context: The approaches being compared may be designed

for different contexts, such as different types of applications or different end

users. This can make it difficult to compare them in a meaningful way,

as their performance may be influenced by factors that are unique to their

respective contexts.

3. Non-linear relationships: Some aspects of software development, such as cost

or effectiveness, may not have a linear relationship with the metrics being

used for comparison. This can make it difficult to compare approaches based

solely on quantitative metrics, as the results may not correctly reflect their

actual performance.

4. Subjectivity of metrics: Even when metrics are well-defined, their interpre-

tation can be subjective. For example, different people may have different

opinions on what makes good maintainability or usability. This can lead to

discrepancies in the results of a quantitative comparison.

5. Qualitative factors: Some aspects of software development, such as usability

and adaptability, may be hard to measure quantitatively. In these cases,

qualitative methods such as user surveys or expert evaluations may be more

appropriate.

In conclusion, while quantitative comparisons can be useful in some cases, they

may not always be feasible or appropriate. Instead, a qualitative comparison

was conducted based on several criteria, including scalability, cost, effectiveness,

adaptability, maintainability, and usability. The comparison has revealed that the

Experimentation and Results 121

first approach has low scalability, high cost, low effectiveness, low adaptability,

low maintainability, and low usability. The second approach has high scalability,

high cost, low effectiveness, low adaptability, low maintainability, and medium

usability. The third approach has high scalability, low cost, high effectiveness,

high adaptability, high maintainability, and high usability. Therefore, a qualitative

analysis was performed to identify the strengths and weaknesses of each approach

based on available information, expert opinions, and real-world examples. This

qualitative comparison delivers valuable insights into the trade-offs involved in

each approach and forms a basis for making informed recommendations.

Chapter 6

Conclusion and Future Work

Web applications of today are getting more difficult to use because there are now

more hyperlinks, interactions are getting more complicated, and more distributed

servers are being used. Ajax has made things even more complicated because

it works in an asynchronous way and is very dynamic. Modeling, which gives

convenient and intelligible graphical descriptions of systems without diving into

the implementation details, can aid in the understanding of these complicated

systems. At each level of development, system modeling facilitates verification and

validation. Due to the extreme dynamism of Ajax applications, system modeling

of Ajax apps is hampered by the issue of state explosion. The focus of this study

was on addressing the state explosion issue in modelling Ajax applications. The

research began by analysing the gaps in existing state space reduction strategies for

Ajax applications, and then proceeded to propose a methodology for constructing

a state machine with reduced states. This was accomplished by constructing a

framework that generates a reduced state machine, which avoids the problem of

state explosion. Finally, the solution’s effectiveness was assessed.

6.1 Conclusion

The results of the implemented solution show that the proposed approach is fea-

sible to generate a state machine of an Ajax application. The proposed solution

122

Conclusion and future work 123

offers a soft computing based process that detects all dynamically generated states

and the relevant events and DOM changing elements. The state explosion prob-

lem addressed here is also handled comprehensively without compromising the

dynamic behavior of these applications using FCM. The approach not only gener-

ates a reduced state machine but also does it without compromising the efficiency

of testing. Experimental results prove that StateReduceAjax controls the size of

generated state machine without compromising the quality of testing. In case of

Coffee Maker, statistical results show that 50% of reduction in number of use cases

reduces the efficiency by 34%. In the other case study of ToDo List the use cases

are reduced by 81% while the efficiency is reduced merely by 39%.

6.2 Future Work

For each of the selected use cases in this study, a reduced finite state machine was

created. FCM was employed in the use case selection process. In the future, we

can aggregate all of these created state machines into a single FSM for the entire

system.

Using the aggregated FSM, test cases for the system’s most frequently used com-

ponents can be generated. This process can apply standard coverage criteria to

the FSMs and a technique for aggregating tests defined for single use case-based

FSMs into tests for the aggregate FSM.

In the future, we plan to propose an algorithm for traversing the FSM to generate

test sequences that satisfy a specific coverage criterion. We also aim to automat-

ically generate input test data, which can be used to convert abstract test cases

into concrete test cases. We can also address the ”oracle” problem, which involves

determining whether the results are correct.

Bibliography

[1] S. Raj, R. Krishna, and A. Nayak, “Distributed component-based crawler

for ajax applications,” in 2018 Second International Conference on Advances

in Electronics, Computers and Communications (ICAECC), 2018, pp. 1–6.

[2] S. Khalid, S. Khusro, and I. Ullah, “Crawling ajax-based web applications:

Evolution and state-of-the-art,” Malaysian Journal of Computer Science,

vol. 31, pp. 35–47, 01 2018.

[3] A. van Deursen, A. Mesbah, and A. Nederlof, “Crawl-based analysis of web

applications: Prospects and challenges,” Science of Computer Programming,

vol. 97, pp. 173–180, 2015, special Issue on New Ideas and Emerging Results

in Understanding Software.

[4] M. V. Bharathi and S. Rodda, “Survey on testing technique for modern web

application-rookies vantage point,” International Journal of Networking and

Virtual Organisations, vol. 21, no. 2, pp. 277–288, 2019.

[5] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling ajax by inferring

user interface state changes,” in 2008 Eighth International Conference on

Web Engineering, 2008, pp. 122–134.

[6] A. Arora and M. Sinha, “Avoiding state explosion problem of generated

ajax web application state machine using bdd,” in 2013 Sixth International

Conference on Contemporary Computing (IC3), 2013, pp. 381–386.

[7] H. Z. Jahromi, D. T. Delaney, and A. Hines, “Beyond first impressions:

Estimating quality of experience for interactive web applications,” IEEE

Access, vol. 8, pp. 47 741–47 755, 2020.

124

Bibliography 125

[8] A. Mesbah and A. van Deursen, “A component- and push-based architec-

tural style for ajax applications,” Journal of Systems and Software, vol. 81,

no. 12, pp. 2194–2209, 2008, best papers from the 2007 Australian Software

Engineering Conference (ASWEC 2007), Melbourne, Australia, April 10-13,

2007.

[9] A. Marchetto, F. Ricca, and P. Tonella, “A case study-based comparison of

web testing techniques applied to ajax web applications,” STTT, vol. 10,

pp. 477–492, 12 2008.

[10] S. Pradhan, M. Ray, and S. Patnaik, “Clustering of web application and

testing of asynchronous communication,” International Journal of Ambient

Computing and Intelligence, vol. 10, pp. 33–59, 07 2019.

[11] A. Arora, “Test case generation using progressively refined genetic algorithm

for ajax web application testing,” Recent Patents on Computer Science,

vol. 11, 10 2018.

[12] A. van Deursen and A. Mesbah, “Research issues in the automated testing

of ajax applications,” in SOFSEM 2010: Theory and Practice of Computer

Science, J. van Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, and B. Rumpe,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 16–28.

[13] A. Mesbah and A. Deursen, “Invariant-based automatic testing of ajax user

interfaces,” 01 2009, pp. 210–220.

[14] E. M. Clarke and O. Grumberg, “Avoiding the state explosion problem in

temporal logic model checking,” in Proceedings of the Sixth Annual ACM

Symposium on Principles of Distributed Computing, ser. PODC ’87. New

York, NY, USA: Association for Computing Machinery, 1987, p. 294–303.

[Online]. Available: https://doi.org/10.1145/41840.41865

[15] S. Kimura and E. Clarke, “A parallel algorithm for constructing binary

decision diagrams,” in Proceedings., 1990 IEEE International Conference

on Computer Design: VLSI in Computers and Processors, 1990, pp. 220–

223.

https://doi.org/10.1145/41840.41865

Bibliography 126

[16] K. Böhmer and S. Rinderle-Ma, “A systematic literature review on process

model testing: Approaches, challenges, and research directions,” 09 2015.

[17] A. Andrews, J. Offutt, and R. Alexander, “Testing web applications by

modeling with fsms,” Software and System Modeling, vol. 4, pp. 326–345, 07

2005.

[18] G. A. Di Lucca and A. R. Fasolino, “Testing web-based applications: The

state of the art and future trends,” Information and Software Technology,

vol. 48, no. 12, pp. 1172–1186, 2006, quality Assurance and Testing of Web-

Based Applications.

[19] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II, “Leveraging user-

session data to support web application testing,” IEEE Transactions on

Software Engineering, vol. 31, no. 3, pp. 187–202, 2005.

[20] F. Ricca and P. Tonella, “Analysis and testing of web applications,” 06 2001,

pp. 25– 34.

[21] S. Sampath and S. Sprenkle, “Chapter four - advances in web application

testing, 2010–2014,” ser. Advances in Computers, A. Memon, Ed. Elsevier,

2016, vol. 101, pp. 155–191.

[22] A. Arora and M. Sinha, “A sustainable approach to automate user session

based state machine generation for ajax web applications,” Journal of The-

oretical and Applied Information Technology, vol. 54, pp. 401–419, 08 2013.

[23] D. Ibrahim, “An overview of soft computing,” Procedia Computer Science,

vol. 102, pp. 34–38, 2016, 12th International Conference on Application

of Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30 August 2016,

Vienna, Austria.

[24] A. Ahmad and S. S. Khan, “Survey of state of the art mixed data clustering

algorithms,” IEEE Access, vol. 7, pp. 31 883–31 902, 2019.

[25] A. Mesbah and A. Deursen, “An architectural style for ajax,” 2007 Working

IEEE/IFIP Conference on Software Architecture (WICSA’07), 08 2006.

Bibliography 127

[26] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web

applications through dynamic analysis of user interface state changes,”

ACM Trans. Web, vol. 6, no. 1, Mar. 2012. [Online]. Available:

https://doi.org/10.1145/2109205.2109208

[27] D. Roest, A. Mesbah, and A. van Deursen, “Regression testing ajax appli-

cations: Coping with dynamism,” 2010 Third International Conference on

Software Testing, Verification and Validation, pp. 127–136, 2010.

[28] D. Roest, “Automated regression testing of ajax web applications,” 2010.

[29] A. Mesbah, A. Deursen, and D. Roest, “Invariant-based automatic testing

of modern web applications,” Software Engineering, IEEE Transactions on,

vol. 38, pp. 1 – 1, 01 2012.

[30] E. Annon, “Strategic management: A stakeholder approach,” Boston Pit-

man. ISBN 0-273, vol. 1456, 2018.

[31] L. A. Macaulay, “Requirements capture as a cooperative activity,” [1993]

Proceedings of the IEEE International Symposium on Requirements Engi-

neering, pp. 174–181, 1993.

[32] T. Gilb, Competitive engineering: a handbook for systems engineering, re-

quirements engineering, and software engineering using Planguage. Else-

vier, 2005.

[33] A. Pouloudi, “Stakeholder analysis as a front-end to knowledge elicitation,”

AI & SOCIETY, vol. 11, pp. 122–137, 2008.

[34] S. A. Conger, The new software engineering. Course Technology Press,

1993.

[35] G. Kotonya and I. Sommerville, “Requirements engineering (processes and

techniques) john wiley & sons ltd: England,” 1998.

[36] M. Cotterell and B. Hughes, Software project management. International

Thomson Computer Press, 1995.

https://doi.org/10.1145/2109205.2109208

Bibliography 128

[37] A. Dix, J. E. Finlay, G. D. Abowd, and R. Beale, Human-Computer Inter-

action (3rd Edition). USA: Prentice-Hall, Inc., 2003.

[38] J. McManus, “A stakeholder perspective within software engineering

projects,” 10 2004, pp. 880 – 884 Vol.2.

[39] S. Young, S. Mcdonald, H. Edwards, and J. Thompson, “Quality & people

in the development of situationally specific methods.” 01 2001, pp. 199–203.

[40] C. Pacheco and E. Tovar, “Stakeholder identification as an issue in the im-

provement of software requirements quality,” in Proceedings of the 19th In-

ternational Conference on Advanced Information Systems Engineering, ser.

CAiSE’07. Berlin, Heidelberg: Springer-Verlag, 2007, p. 370–380.

[41] I. F. Alexander and S. Robertson, “Understanding project sociology by mod-

eling stakeholders,” IEEE Software, vol. 21, pp. 23–27, 2004.

[42] K. Power, “Stakeholder identification in agile software product development

organizations: A model for understanding who and what really counts,”

2010 Agile Conference, pp. 87–94, 2010.

[43] O. Preiss and A. Wegmann, “Stakeholder discovery and classification based

on systems science principles,” Proceedings Second Asia-Pacific Conference

on Quality Software, pp. 194–198, 2001.

[44] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder identification in the re-

quirements engineering process,” in Proceedings. Tenth International Work-

shop on Database and Expert Systems Applications. DEXA 99, 1999, pp.

387–391.

[45] L. Ballejos and J. Montagna, “Method for stakeholder identification in in-

terorganizational environments,” Requir. Eng., vol. 13, pp. 281–297, 11 2008.

[46] J. Wan, “Research on knowledge creation in software requirement devel-

opment,” Journal of Software Engineering and Applications, vol. 03, pp.

487–494, 01 2010.

Bibliography 129

[47] G. Kotonya and I. Sommerville, “Requirements engineering with view-

points,” Softw. Eng. J., vol. 11, pp. 5–18, 1996.

[48] C. Urquhart, “Analysts and clients in organisational contexts: A conversa-

tional perspective,” Journal of Strategic Information Systems - J STRATE-

GIC INFORM SYST, vol. 10, pp. 243–262, 09 2001.

[49] R. Fuentes-Fernández, J. Gómez-Sanz, and J. Pavón, “Understanding the

human context in requirements elicitation,” Requir. Eng., vol. 15, pp. 267–

283, 09 2010.

[50] J. Price and J. Cybulski, “Consensus making in requirements negotiation:

the communication perspective,” Australasian Journal of Information Sys-

tems; Vol 13, No 1 (2005), vol. 13, 01 2007.

[51] S. Ahmad, “Negotiation in the requirements elicitation and analysis pro-

cess,” 04 2008, pp. 683–689.

[52] U. Erra and G. Scanniello, “Assessing communication media richness in

requirements negotiation,” Software, IET, vol. 4, pp. 134 – 148, 05 2010.

[53] S. Hornik, H.-G. Chen, G. Klein, and J. Jiang, “Communication skills of is

providers: An expectation gap analysis from three stakeholder perspectives,”

Professional Communication, IEEE Transactions on, vol. 4, pp. 17 – 34, 04

2003.

[54] J. Karlsson, “Software requirements prioritizing,” Proceedings of the Second

International Conference on Requirements Engineering, pp. 110–116, 1996.

[55] G. Ruhe, A. Eberlein, and D. Pfahl, “Quantitative winwin: a new method

for decision support in requirements negotiation,” in SEKE ’02, 2002.

[56] A. Aurum and C. Wohlin, “Wohlin, c.: The fundamental nature of re-

quirements engineering activities as a decision making process. information

and software technology 45, 945-954,” Information and Software Technology,

vol. 45, pp. 945–954, 11 2003.

Bibliography 130

[57] P. Carlshamre, “Release planning in market-driven software product devel-

opment: Provoking an understanding,” Requir. Eng., vol. 7, pp. 139–151, 09

2002.

[58] L. Lehtola and M. Kauppinen, “Empirical evaluation of two requirements

prioritization methods in product development projects,” in European Con-

ference on Software Process Improvement. Springer, 2004, pp. 161–170.

[59] F. Moisiadis, “The fundamentals of prioritising requirements,” in Proceed-

ings of Systems Engineering Test and Evaluation Conference, J. Andersen,

Ed. Systems Engineering society of Australia, 2002, pp. 59–70, systems

Engineering Test and Evaluation Conference 2002 ; Conference date: 29-10-

2002 Through 30-10-2002.

[60] L. Karlsson, P. Berander, B. Regnell, and C. Wohlin, “Requirements priori-

tisation: an experiment on exhaustive pair-wise comparisons versus planning

game partitioning,” in 8th Internation Conference on Empirical Assessment

in Software Engineering (EASE 2004) Workshop - 26th International Con-

ference on Software Engineering. IEE, 2004, pp. 145–154, 8th Internation

Conference on Empirical Assessment in Software Engineering (EASE 2004)

Workshop - 26th International Conference on Software Engineering ; Con-

ference date: 24-05-2004 Through 25-05-2004.

[61] B. Bergman and B. Klefsjö, Quality from customer needs to customer satis-

faction. New York: Mc-Graw Hill Book Company, 1994.

[62] J. I. McManus and G. G. Schulmeyer, The Handbook of Software Quality

Assurance. New Jersey: Prentice Hall, 1999.

[63] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing require-

ments,” IEEE Software, vol. 14, no. 5, pp. 67–74, 1997.

[64] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice

Guide. New Jersey: Wiley, 1997.

[65] K. Wiegers, “First things first: prioritizing requirements,” Software Devel-

opment, vol. 7, no. 9, pp. 48–53, 1999.

Bibliography 131

[66] L. Lehtola, M. Kauppinen, and S. Kujala, “Requirements prioritization chal-

lenges in practice,” 04 2004, pp. 497–508.

[67] S. Dahlstedt and A. Persson, “Requirements interdependencies - moulding

the state of research into a research agenda,” 06 2003.

[68] G. Ruhe, A. Eberlein, and D. Pfahl, “Trade-off analysis for requirements

selection,” International Journal of Software Engineering and Knowledge

Engineering, vol. 13, pp. 345–366, 08 2003.

[69] S. Lauesen, “Software requirements-styles and techniques,” 01 2002.

[70] D. Firesmith, “Prioritizing requirements,” Journal of Object Technology,

vol. 3, pp. 35–48, 09 2004.

[71] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of methods for

prioritizing software requirements,” Information and Software Technology,

vol. 39, pp. 939–947, 02 2001.

[72] P. Laurent, J. Cleland-Huang, and C. Duan, “Towards automated require-

ments triage,” 11 2007, pp. 131–140.

[73] T. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Re-

source Allocation, ser. Advanced book program. McGraw-Hill International

Book Company, 1980.

[74] K. Khan, “A systematic review of software requirements prioritization,”

2006.

[75] V. Ahl, “An experimental comparison of five prioritization methods: inves-

tigating ease of use, accuracy and scalability,” 2005.

[76] P. Berander, “Prioritization of stakeholder needs in software engineering:

Understanding and evaluation,” Ph.D. dissertation, Blekinge Institute of

Technology, 2004.

[77] B. W. Boehm and R. Ross, “Theory-w software project management prin-

ciples and examples,” IEEE Transactions on Software Engineering, vol. 15,

no. 7, pp. 902–916, 1989.

Bibliography 132

[78] D. Leffingwell and D. Widrig, Managing Software Requirements: A Unified

Approach. Boston: Addison-Wesley, 1999.

[79] R. Beg, Q. Abbas, and R. Verma, “An approach for requirement prioritiza-

tion using b-tree,” Emerging Trends in Engineering & Technology, Interna-

tional Conference on, vol. 0, pp. 1216–1221, 07 2008.

[80] P. Zave, “Classification of research efforts in requirements engineering.”

ACM Comput. Surv., vol. 29, pp. 315–321, 12 1997.

[81] P. Berander and P. Jönsson, “Hierarchical cumulative voting (hcv) - prior-

itization of requirements in hierarchies,” Int. J. Softw. Eng. Knowl. Eng.,

vol. 16, pp. 819–850, 2006.

[82] P. Tonella, A. Susi, and F. Palma, “Using interactive ga for requirements

prioritization,” 10 2010, pp. 57 – 66.

[83] ——, “Interactive requirements prioritization using a genetic algorithm,”

Information and Software Technology, vol. 55, pp. 173 – 187, 01 2013.

[84] P. Avesani, S. Ferrari, and A. Susi, “Case-based ranking for decision support

systems,” vol. 2689, 06 2003, pp. 35–49.

[85] A. Zabin, V. A. González, Y. Zou, and R. Amor, “Applications of machine

learning to bim: A systematic literature review,” Advanced Engineering In-

formatics, vol. 51, p. 101474, 2022.

[86] S. Hameed, Y. Elsheikh, and M. Azzeh, “An optimized case-based software

project effort estimation using genetic algorithm,” Information and Software

Technology, vol. 153, p. 107088, 2023.

[87] A. Yan and Z. Cheng, “A review of the development and future challenges

of case-based reasoning,” 2023.

[88] U. Dash and A. A. Acharya, “A systematic review of test case prioritiza-

tion approaches,” in Proceedings of International Conference on Advanced

Computing Applications: ICACA 2021. Springer, 2022, pp. 653–666.

Bibliography 133

[89] S. Ali, Y. Hafeez, M. Humayun, N. Jhanjhi, and D.-N. Le, “Towards as-

pect based requirements mining for trace retrieval of component-based soft-

ware management process in globally distributed environment,” Information

Technology and Management, vol. 23, no. 3, pp. 151–165, 2022.

[90] S. Elbaum, S. Karre, and G. Rothermel, “Improving web application testing

with user session data,” 06 2003, pp. 49– 59.

[91] S. G. Elbaum, G. Rothermel, S. Karre, and M. Fisher, “Leveraging user-

session data to support web application testing,” IEEE Transactions on

Software Engineering, vol. 31, pp. 187–202, 2005.

[92] J. Sant, A. L. Souter, and L. G. Greenwald, “An exploration of statistical

models for automated test case generation,” 2005.

[93] S. Sprenkle, E. Hill, S. Sampath, and L. Pollock, “Automated replay and

failure detection for web applications,” 01 2005, pp. 253–262.

[94] G. A. Di Lucca and A. R. Fasolino, “Testing web-based applications: The

state of the art and future trends,” Information and Software Technology,

vol. 48, no. 12, pp. 1172–1186, 2006, quality Assurance and Testing of Web-

Based Applications.

[95] S. Sprenkle, E. Hill, S. Sampath, and L. Pollock, “A case study of auto-

matically creating test suites from web application field data,” 01 2006, pp.

1–9.

[96] I. Alsmadi and M. Kenneth, “Using user sessions for test case generation

and execution,” Lecture Notes in Engineering and Computer Science, vol.

2168, 03 2008.

[97] T. Deenadayalan, V. Kavitha, and S. Rajarajeswari, “Examining web

application by clumping and orienting user session data,” ArXiv, vol.

abs/1006.4537, 2010.

[98] M. L. Brian S. Everitt, Sabine Landau and D. Stahl, Cluster Analysis. New

Jersey: Wiley, 2011.

Bibliography 134

[99] E. Backer and A. K. Jain, “A clustering performance measure based on fuzzy

set decomposition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, no. 1, pp. 66–75, 1981.

[100] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”

ACM Comput. Surv., vol. 31, no. 3, p. 264–323, sep 1999. [Online].

Available: https://doi.org/10.1145/331499.331504

[101] C. Aggarwal, A. Hinneburg, and D. Keim, “On the surprising behavior of

distance metrics in high dimensional space,” vol. 1973, 01 2001, pp. 420–434.

[102] G. Serban and G. Cojocar, “A comparison of clustering techniques in aspect

mining,” Studia Universitatis Babeş-Bolyai. Informatica, vol. 51, 01 2006.

[103] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping

Multidimensional Data, 2006.

[104] R. Xu and D. Wunsch, “Survey of clustering algorithms,” Neural Networks,

IEEE Transactions on, vol. 16, pp. 645 – 678, 06 2005.

[105] v. kumar and H. Mittal, “Comparative study of soft computing techniques

for software quality model,” International Journal of Software Engineering

Research and Practices, vol. 1, pp. 33–37, 01 2011.

[106] D. Gupta, V. Goyal, and H. Mittal, “Analysis of clustering techniques for

software quality prediction,” Proceedings - 2012 2nd International Con-

ference on Advanced Computing and Communication Technologies, ACCT

2012, 01 2012.

[107] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S. Brown, “Fgka: a fast genetic

k-means clustering algorithm,” 01 2004, pp. 622–623.

[108] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. USA: Prentice-

Hall, Inc., 1988.

[109] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction

To Cluster Analysis, 01 1990.

https://doi.org/10.1145/331499.331504

Bibliography 135

[110] J.-S. Cherng and M.-J. Lo, “A hypergraph based clustering algorithm for

spatial data sets,” in Proceedings of the 2001 IEEE International Conference

on Data Mining, ser. ICDM ’01. USA: IEEE Computer Society, 2001, p.

83–90.

[111] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means clustering

algorithm,” Applied Statistics, vol. 28, no. 1, pp. 100–108, 1979. [Online].

Available: http://dx.doi.org/10.2307/2346830

[112] J. A. Hartigan, Clustering Algorithms, 99th ed. USA: John Wiley &; Sons,

Inc., 1975.

[113] J. B. MacQueen, “Some methods for classification and analysis of multivari-

ate observations,” in Proc. of the fifth Berkeley Symposium on Mathematical

Statistics and Probability, L. M. L. Cam and J. Neyman, Eds., vol. 1. Uni-

versity of California Press, 1967, pp. 281–297.

[114] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Ap-

plications. Society for Industrial and Applied Mathematics, 2007.

[115] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms.

Springer Science & Business Media, 2013.

[116] M.-S. Yang, Y.-J. Hu, K. C.-R. Lin, and C. C.-L. Lin, “Segmentation tech-

niques for tissue differentiation in mri of ophthalmology using fuzzy cluster-

ing algorithms,” Magnetic Resonance Imaging, vol. 20, no. 2, pp. 173–179,

2002.

[117] L. A. Zadeh, “Fuzzy sets,” in Fuzzy sets, fuzzy logic, and fuzzy systems:

selected papers by Lotfi A Zadeh. World Scientific, 1996, pp. 394–432.

[118] X. Yuan, T. M. Khoshgoftaar, E. B. Allen, and K. Ganesan, “An applica-

tion of fuzzy clustering to software quality prediction,” in Proceedings 3rd

IEEE symposium on application-specific systems and software engineering

technology. IEEE, 2000, pp. 85–90.

http://dx.doi.org/10.2307/2346830

Bibliography 136

[119] A. Nederlof, A. Mesbah, and A. v. Deursen, “Software engineering for the

web: the state of the practice,” in Companion Proceedings of the 36th In-

ternational Conference on Software Engineering, 2014, pp. 4–13.

[120] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web

applications,” in 2008 1st International Conference on Software Testing,

Verification, and Validation, 2008, pp. 121–130.

[121] B. Donley and J. J. Offutt, “Web application testing challenges blaine donley

and jeff offutt,” 2010.

[122] A. Arora, “Web application testing: A review on techniques, tools and state

of art,” 2012.

[123] A. Marchetto and P. Tonella, “Search-based testing of ajax web applica-

tions,” in 2009 1st International Symposium on Search Based Software En-

gineering, 2009, pp. 3–12.

[124] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock, “A scalable approach

to user-session based testing of web applications through concept analysis,”

in Proceedings. 19th International Conference on Automated Software Engi-

neering, 2004., 2004, pp. 132–141.

[125] A. Marchetto and P. Tonella, “Using search-based algorithms for ajax

event sequence generation during testing,” Empirical Software Engineering,

vol. 16, pp. 103–140, 02 2011.

[126] M. Benedikt, J. Freire, and P. Godefroid, “Veriweb: Automatically testing

dynamic web sites,” in In Proceedings of 11th International World Wide

Web Conference (WW W’2002. Citeseer, 2002.

[127] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions,

and reversals,” Soviet physics. Doklady, vol. 10, pp. 707–710, 1965.

[128] Y.-F. Li, P. K. Das, and D. L. Dowe, “Two decades of web application

testing—a survey of recent advances,” Information Systems, vol. 43, pp.

20–54, 2014.

Bibliography 137

[129] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou, “Ajax crawl: Mak-

ing ajax applications searchable,” in 2009 IEEE 25th International Confer-

ence on Data Engineering. IEEE, 2009, pp. 78–89.

[130] G. Frey, “Indexing ajax web applications,” Master’s thesis, ETH Depart-

ment of Computer Science, Institute of Computational Sciences, 2007.

[131] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jäk: Using dynamic

analysis to crawl and test modern web applications,” in International Sym-

posium on Recent Advances in Intrusion Detection. Springer, 2015, pp.

295–316.

[132] S. Choudhary, M. E. Dincturk, G. V. Bochmann, G.-V. Jourdan, I. V. Onut,

and P. Ionescu, “Solving some modeling challenges when testing rich internet

applications for security,” in 2012 IEEE Fifth International Conference on

Software Testing, Verification and Validation. IEEE, 2012, pp. 850–857.

[133] K. Ayoub, H. Aly, and J. Walsh, “Document object model (dom) based page

uniqueness detection,” Jul. 16 2013, uS Patent 8,489,605.

[134] A. Moosavi, S. Hooshmand, S. Baghbanzadeh, G.-V. Jourdan, G. V.

Bochmann, and I. V. Onut, “Indexing rich internet applications using

components-based crawling,” in International Conference on Web Engineer-

ing. Springer, 2014, pp. 200–217.

[135] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:

A {State-Aware}{Black-Box} web vulnerability scanner,” in 21st USENIX

Security Symposium (USENIX Security 12), 2012, pp. 523–538.

[136] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “Reverse engineering

finite state machines from rich internet applications,” in 2008 15th Working

Conference on Reverse Engineering. IEEE, 2008, pp. 69–73.

[137] ——, “Rich internet application testing using execution trace data,” in 2010

Third International Conference on Software Testing, Verification, and Val-

idation Workshops. IEEE, 2010, pp. 274–283.

Bibliography 138

[138] ——, “An iterative approach for the reverse engineering of rich internet ap-

plication user interfaces,” in 2010 Fifth International Conference on Internet

and Web Applications and Services. IEEE, 2010, pp. 401–410.

[139] S. Sabharwal, P. Bansal, and M. Aggarwal, “Article: Modeling the naviga-

tion behavior of dynamic web applications,” International Journal of Com-

puter Applications, vol. 65, no. 13, pp. 20–27, March 2013, full text available.

[140] O. Grumberg, E. Clarke, and D. Peled, “Model checking,” 1999.

[141] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent

systems in cesar,” in International Symposium on programming. Springer,

1982, pp. 337–351.

[142] R. Jhala and R. Majumdar, “Software model checking,” ACM Computing

Surveys (CSUR), vol. 41, no. 4, pp. 1–54, 2009.

[143] C. Tian, S. Liu, and Z. Duan, “Abstract model checking with sofl hierarchy,”

in International Workshop on Structured Object-Oriented Formal Language

and Method. Springer, 2012, pp. 71–86.

[144] R. Pelánek, “Fighting state space explosion: Review and evaluation,” in

International Workshop on Formal Methods for Industrial Critical Systems.

Springer, 2008, pp. 37–52.

[145] D. Bošnački, “A light-weight algorithm for model checking with symmetry

reduction and weak fairness,” in International SPIN Workshop on Model

Checking of Software. Springer, 2003, pp. 89–103.

[146] E. A. Emerson and T. Wahl, “Dynamic symmetry reduction,” in Interna-

tional conference on tools and algorithms for the construction and analysis

of systems. Springer, 2005, pp. 382–396.

[147] R. Iosif, “Symmetry reduction criteria for software model checking,” in In-

ternational SPIN Workshop on Model Checking of Software. Springer, 2002,

pp. 22–41.

Bibliography 139

[148] C. Norris Ip, D. L. Dill et al., “Better verification through symmetry,” For-

mal methods in system design, vol. 9, no. 1, pp. 41–75, 1996.

[149] A. P. Sistla and P. Godefroid, “Symmetry and reduced symmetry in model

checking?” in International Conference on Computer Aided Verification.

Springer, 2001, pp. 91–103.

[150] T. Wahl, “Adaptive symmetry reduction,” in International Conference on

Computer Aided Verification. Springer, 2007, pp. 393–405.

[151] J.-C. Fernandez, M. Bozga, and L. Ghirvu, “State space reduction based on

live variables analysis,” Science of Computer Programming, vol. 47, no. 2-3,

pp. 203–220, 2003.

[152] J. P. Self and E. G. Mercer, “On-the-fly dynamic dead variable analysis,”

in International SPIN Workshop on Model Checking of Software. Springer,

2007, pp. 113–130.

[153] M. B. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, T. Wallentine et al.,

“Evaluating the effectiveness of slicing for model reduction of concurrent

object-oriented programs,” in International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems. Springer, 2006, pp.

73–89.

[154] J. Hatcliff, M. B. Dwyer, and H. Zheng, “Slicing software for model construc-

tion,” Higher-order and symbolic computation, vol. 13, no. 4, pp. 315–353,

2000.

[155] Y. Dong and C. Ramakrishnan, “An optimizing compiler for efficient model

checking,” in Formal Methods for Protocol Engineering and Distributed Sys-

tems. Springer, 1999, pp. 241–256.

[156] R. Kurshan, V. Levin, and H. Yenigün, “Compressing transitions for

model checking,” in International conference on computer aided verification.

Springer, 2002, pp. 569–582.

[157] P. Godefroid, Partial-order methods for the verification of concurrent sys-

tems: an approach to the state-explosion problem. Springer, 1996.

Bibliography 140

[158] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv, “Cartesian partial-order

reduction,” in International SPIN Workshop on Model Checking of Software.

Springer, 2007, pp. 95–112.

[159] G. J. Holzmann and D. Peled, “An improvement in formal verification,” in

Formal Description Techniques VII. Springer, 1995, pp. 197–211.

[160] D. Peled, “Combining partial order reductions with on-the-fly model-

checking,” in International Conference on Computer Aided Verification.

Springer, 1994, pp. 377–390.

[161] W. Penczek, M. Szreter, R. Gerth, and R. Kuiper, “Improving partial order

reductions for universal branching time properties,” Fundamenta Informat-

icae, vol. 43, no. 1-4, pp. 245–267, 2000.

[162] S. Blom and J. v. d. Pol, “State space reduction by proving confluence,” in

International Conference on Computer Aided Verification. Springer, 2002,

pp. 596–609.

[163] K. Ozdemir and H. Ural, “Protocol validation by simultaneous reachability

analysis,” Computer Communications, vol. 21, no. 6, pp. 591–591, 1998.

[164] J.-P. Krimm and L. Mounier, “Compositional state space generation from

lotos programs,” in International Workshop on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 1997, pp. 239–258.

[165] C. Flanagan and S. Qadeer, “Thread-modular model checking,” in Interna-

tional SPIN Workshop on Model Checking of Software. Springer, 2003, pp.

213–224.

[166] O. Grumberg and D. E. Long, “Model checking and modular verification,”

ACM Transactions on Programming Languages and Systems (TOPLAS),

vol. 16, no. 3, pp. 843–871, 1994.

[167] A. Pnueli, “In transition from global to modular temporal reasoning about

programs,” in Logics and models of concurrent systems. Springer, 1985, pp.

123–144.

Bibliography 141

[168] J. Geldenhuys, P. De Villiers, and J. Rushby, “Runtime efficient state com-

paction in spin,” in International SPIN Workshop on Model Checking of

Software. Springer, 1999, pp. 12–21.

[169] J. Geldenhuys and A. Valmari, “A nearly memory-optimal data structure

for sets and mappings,” in International SPIN Workshop on Model Checking

of Software. Springer, 2003, pp. 136–150.

[170] J.-C. Grégoire, “State space compression in spin with getss,” in Proc. Second

SPIN Workshop, Rutgers Univ. Citeseer, 1996.

[171] G. J. Holzmann, P. Godefroid, and D. Pirottin, “Coverage preserving reduc-

tion strategies for reachability analysis,” in Protocol Specification, Testing

and Verification, XII. Elsevier, 1992, pp. 349–363.

[172] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Efficient verification

of real-time systems: Compact data structure and state-space reduction,”

in Proceedings Real-Time Systems Symposium. IEEE, 1997, pp. 14–24.

[173] B. Parreaux, “Difference compression in spin,” in SPIN, vol. 56, 1998.

[174] W. Visser and H. Barringer, “Memory efficient state storage in spin,” in

Proceedings of the 2nd SPIN Workshop, vol. 21. American Mathematical

Society Providence, RI, 1996.

[175] G. J. Holzmann, “State compression in spin: Recursive indexing and com-

pression training runs,” in Proceedings of third international Spin workshop,

1997.

[176] G. J. Holzmann and A. Puri, “A minimized automaton representation of

reachable states,” International Journal on Software Tools for Technology

Transfer, vol. 2, no. 3, pp. 270–278, 1999.

[177] J. Geldenhuys, “State caching reconsidered,” in International SPIN Work-

shop on Model Checking of Software. Springer, 2004, pp. 23–38.

Bibliography 142

[178] P. Godefroid, G. J. Holzmann, and D. Pirottin, “State space caching

revisited,” in International Conference on Computer Aided Verification.

Springer, 1992, pp. 178–191.

[179] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,

“Exploiting transition locality in automatic verification of finite-state con-

current systems,” International Journal on Software Tools for Technology

Transfer, vol. 6, no. 4, pp. 320–341, 2004.

[180] G. Behrmann, K. G. Larsen, and R. Pelánek, “To store or not to store,” in

International Conference on Computer Aided Verification. Springer, 2003,

pp. 433–445.

[181] S. Christensen, L. M. Kristensen, and T. Mailund, “A sweep-line method

for state space exploration,” in International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems. Springer, 2001, pp.

450–464.

[182] T. Mailund and M. Westergaard, “Obtaining memory-efficient reachabil-

ity graph representations using the sweep-line method,” in International

Conference on Tools and Algorithms for the Construction and Analysis of

Systems. Springer, 2004, pp. 177–191.

[183] K. Schmidt, “Automated generation of a progress measure for the sweep-line

method,” International Journal on Software Tools for Technology Transfer,

vol. 8, no. 3, pp. 195–203, 2006.

[184] A. Groce and W. Visser, “Heuristics for model checking java programs,”

STTT, vol. 6, pp. 260–276, 08 2004.

[185] A. Kuehlmann, K. McMillan, and R. Brayton, “Probabilistic state space

search,” in 1999 IEEE/ACM International Conference on Computer-Aided

Design. Digest of Technical Papers (Cat. No.99CH37051), 1999, pp. 574–

579.

[186] K. Qian and A. Nymeyer, “Guided invariant model checking based on

abstraction and symbolic pattern databases,” in International Conference

Bibliography 143

on Tools and Algorithms for the Construction and Analysis of Systems.

Springer, 2004, pp. 497–511.

[187] P. Godefroid and S. Khurshid, “Exploring very large state spaces using ge-

netic algorithms,” International Journal on Software Tools for Technology

Transfer, vol. 6, no. 2, pp. 117–127, 2004.

[188] P. Haslum, “Model checking by random walk,” 1999.

[189] R. Pelánek, T. Hanžl, I. Černá, and L. Brim, “Enhancing random walk

state space exploration,” in Proceedings of the 10th international workshop

on Formal methods for industrial critical systems, 2005, pp. 98–105.

[190] G. J. Holzmann, “Algorithms for automated protocol verification,” AT&T

technical journal, vol. 69, no. 1, pp. 32–44, 1990.

[191] M. D. Jones and J. Sorber, “Parallel search for ltl violations,” International

Journal on Software Tools for Technology Transfer, vol. 7, no. 1, pp. 31–42,

2005.

[192] F. J. Lin, P. Chu, and M. T. Liu, “Protocol verification using reachability

analysis: the state space explosion problem and relief strategies,” in Pro-

ceedings of the ACM workshop on Frontiers in computer communications

technology, 1987, pp. 126–135.

[193] M. Mihail and C. H. Papadimitriou, “On the random walk method for pro-

tocol testing,” in International Conference on Computer Aided Verification.

Springer, 1994, pp. 132–141.

[194] G. J. Holzmann, “An analysis of bitstate hashing,” Formal methods in sys-

tem design, vol. 13, no. 3, pp. 289–307, 1998.

[195] P. C. Dillinger and P. Manolios, “Bloom filters in probabilistic verification,”

in International Conference on Formal Methods in Computer-Aided Design.

Springer, 2004, pp. 367–381.

Bibliography 144

[196] ——, “Fast and accurate bitstate verification for spin,” in International

SPIN Workshop on Model Checking of Software. Springer, 2004, pp. 57–

75.

[197] P. Rawat and A. N. Mahajan, “Reactjs: A modern web development frame-

work,” International Journal of Innovative Science and Research Technol-

ogy, vol. 5, no. 11, pp. 698–702, 2020.

[198] A. Bhalla, S. Garg, and P. Singh, “Present day web-development using reac-

tjs,” International Research Journal of Engineering and Technology, vol. 7,

no. 05, 2020.

[199] H. J. S. Sitio, I. Christovita, R. K. Ahmad, and Y. Setiawan, “Web-based

application development for training data management using reactjs,” In-

donesian Journal of Multidisciplinary Science, vol. 2, no. 6, pp. 2573–2588,

2023.

[200] M. F. S. Lazuardy and D. Anggraini, “Modern front end web architectures

with react. js and next. js,” Research Journal of Advanced Engineering and

Science, vol. 7, no. 1, pp. 132–141, 2022.

[201] F. Ferreira and M. T. Valente, “Detecting code smells in react-based web

apps,” Information and Software Technology, vol. 155, p. 107111, 2023.

[202] K. Dzwinel. (2018) Dom listener extension. [Accessed 29-Nov-2021].

[Online]. Available: https://github.com/kdzwinel/DOMListenerExtension

[203] hkokila. (2016) Html dom navigation. [Accessed 29-Nov-

2021]. [Online]. Available: https://chrome.google.com/webstore/detail/

html-dom-navigation/eimpgjcahblfpdgiknmbmglcafegimil?hl=en

[204] A. Khaira and R. Dwivedi, “A state of the art review of analytical hierarchy

process,” Materials Today: Proceedings, vol. 5, no. 2, pp. 4029–4035, 2018.

[205] D. Dalalah, F. AL-Oqla, and M. Hayajneh, “Application of the analytic

hierarchy process (ahp) in multi-criteria analysis of the selection of cranes,”

vol. 4, pp. 567–578, 04 2009.

https://github.com/kdzwinel/DOMListenerExtension
https://chrome.google.com/webstore/detail/html-dom-navigation/eimpgjcahblfpdgiknmbmglcafegimil?hl=en
https://chrome.google.com/webstore/detail/html-dom-navigation/eimpgjcahblfpdgiknmbmglcafegimil?hl=en

Bibliography 145

[206] F. Hujainah, R. B. A. Bakar, B. Al-Haimi, and M. A. Abdulgabber, “In-

vestigation of stakeholder analysis in requirement prioritization techniques,”

Advanced Science Letters, vol. 24, no. 10, pp. 7227–7231, 2018.

[207] F. Hujainah, R. B. A. Bakar, M. A. Abdulgabber, and K. Z. Zamli, “Software

requirements prioritisation: a systematic literature review on significance,

stakeholders, techniques and challenges,” IEEE Access, vol. 6, pp. 71 497–

71 523, 2018.

[208] F. Hujainah, R. B. A. Bakar, B. Al-Haimi, and M. A. Abdulgabber, “Stake-

holder quantification and prioritisation research: A systematic literature

review,” Information and Software Technology, vol. 102, pp. 85–99, 2018.

[209] M. Sadiq and V. S. Devi, “A rough-set based approach for the prioritization

of software requirements,” International Journal of Information Technology,

vol. 14, no. 1, pp. 447–457, 2022.

[210] M. S. Jahan, F. Azam, M. W. Anwar, A. Amjad, and K. Ayub, “A novel

approach for software requirement prioritization,” in 2019 7th International

Conference in Software Engineering Research and Innovation (CONISOFT).

IEEE Computer Society, 2019, pp. 1–7.

[211] M. Yaseen, A. Mustapha, and N. Ibrahim, “An approach for managing large-

sized software requirements during prioritization,” in 2018 IEEE Conference

on Open Systems (ICOS). IEEE, 2018, pp. 98–103.

[212] I. Ibriwesh, S.-B. Ho, and I. Chai, “Overcoming scalability issues in ana-

lytic hierarchy process with redccahp: An empirical investigation,” Arabian

Journal for Science and Engineering, vol. 43, 04 2018.

[213] A. Perini, A. Susi, F. Ricca, and C. Bazzanella, “An empirical study to com-

pare the accuracy of ahp and cbranking techniques for requirements priori-

tization,” in 2007 Fifth International Workshop on Comparative Evaluation

in Requirements Engineering, 2007, pp. 23–35.

[214] M. Ramzan, M. A. Jaffar, and A. A. Shahid, “Value based intelligent re-

quirement prioritization (virp): expert driven fuzzy logic based prioritization

Bibliography 146

technique,” International Journal Of Innovative Computing, Information

And Control, vol. 7, no. 3, pp. 1017–1038, 2011.

[215] M. I. Babar, M. Ghazali, D. N. Jawawi, S. M. Shamsuddin, and N. Ibrahim,

“Phandler: an expert system for a scalable software requirements prioriti-

zation process,” Knowledge-Based Systems, vol. 84, pp. 179–202, 2015.

[216] M. I. Babar, M. GHAZALI, and D. N. JAWAWI, “Software quality enhance-

ment for value based systems through stakeholders quantification.” Journal

of Theoretical & Applied Information Technology, vol. 55, no. 3, 2013.

[217] T. Tanaka, H. Niibori, L. Shiyingxue, S. Nomura, T. Nakao, and K. Tsuda,

“Selenium based testing systems for analytical data generation of website

user behavior,” in 2020 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW). IEEE, 2020, pp. 216–221.

[218] R. Teodoro, “Evaluating selenium for automated testing.” Sandia National

Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2017.

[219] A. Holmes and M. Kellogg, “Automating functional tests using selenium,”

in AGILE 2006 (AGILE’06). IEEE, 2006, pp. 6–pp.

[220] J. D. Musa, “The operational profile,” in Reliability and Maintenance of

Complex Systems. Springer, 1996, pp. 333–344.

[221] R. Suganya and R. Shanthi, “Fuzzy c-means algorithm-a review,” Interna-

tional Journal of Scientific and Research Publications, vol. 2, no. 11, p. 1,

2012.

[222] O. M. Jafar and R. Sivakumar, “A comparative study of hard and fuzzy

data clustering algorithms with cluster validity indices,” in Proceedings of

international conference on emerging research in computing, information,

communication and applications, 2013, pp. 775–782.

[223] N. Grover, “A study of various fuzzy clustering algorithms,” International

Journal of Engineering Research, vol. 3, no. 3, pp. 177–181, 2014.

Bibliography 147

[224] T. Singh and M. Mahajan, “Performance comparison of fuzzy c means with

respect to other clustering algorithm,” International Journal of Advanced

Research in Computer Science and Software Engineering, vol. 4, no. 5, pp.

89–93, 2014.

[225] J. Nayak, B. Naik, and H. Behera, “Fuzzy c-means (fcm) clustering algo-

rithm: a decade review from 2000 to 2014,” Computational intelligence in

data mining-volume 2, pp. 133–149, 2015.

[226] R. L. Cannon, J. V. Dave, and J. C. Bezdek, “Efficient implementation

of the fuzzy c-means clustering algorithms,” IEEE transactions on pattern

analysis and machine intelligence, no. 2, pp. 248–255, 1986.

[227] S. Park and G. Kwon, “Avoidance of state explosion using dependency anal-

ysis in model checking control flow model,” in International Conference on

Computational Science and Its Applications. Springer, 2006, pp. 905–911.

[228] A. Valmari, “The state explosion problem, lectures on petri nets i: Basic

models, lncs tutorials, lncs 1491,” 1998.

[229] E. Clarke, O. Grumberg, and D. Peled, “Model checking the mit press,”

Cambridge, Massachusetts, London, UK, 1999.

[230] R. Zhao, C. Chen, W. Wang, and J. Guo, “Automatic model completion

for web applications,” in International Conference on Web Engineering.

Springer, 2020, pp. 207–227.

[231] B. McLaughlin, G. Pollice, and D. West, Head First Object-Oriented Anal-

ysis and Design: A Brain Friendly Guide to OOA&D. ” O’Reilly Media,

Inc.”, 2006.

[232] M. Pozdeev, “myTinyTodo,” https://www.mytinytodo.net/, 2019, [Online;

accessed 29-Nov-2021].

[233] A. Arora and M. Sinha, “Applying variable chromosome length genetic al-

gorithm for testing dynamism of web application,” in 2013 International

Conference on Recent Trends in Information Technology (ICRTIT). IEEE,

2013, pp. 539–545.

https://www.mytinytodo.net/

Bibliography 148

[234] ——, “Dynamic content testing of web application using user session based

state testing,” 2013.

[235] A. Marchetto, P. Tonella, and F. Ricca, “Reajax: a reverse engineering tool

for ajax web applications,” IET software, vol. 6, no. 1, pp. 33–49, 2012.

[236] R. Pars, L. Moroney, and J. Grieb, “Using server controls in asp. net ajax,”

Foundations of ASP. NET AJAX, pp. 109–129, 2007.

[237] S. L. Pfleeger and J. M. Atlee, Software engineering: theory and practice.

Pearson Education India, 1998.

[238] M. R. Lyu et al., Handbook of software reliability engineering. IEEE com-

puter society press CA, 1996, vol. 222.

[239] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with

test suite effectiveness,” in Proceedings of the 36th international conference

on software engineering, 2014, pp. 435–445.

[240] P. S. Kochhar, F. Thung, and D. Lo, “Code coverage and test suite effective-

ness: Empirical study with real bugs in large systems,” in 2015 IEEE 22nd

international conference on software analysis, evolution, and reengineering

(SANER). IEEE, 2015, pp. 560–564.

[241] M. Staats, G. Gay, M. Whalen, and M. Heimdahl, “On the danger of cov-

erage directed test case generation,” in International Conference on Funda-

mental Approaches to Software Engineering. Springer, 2012, pp. 409–424.

[242] Y. Wei, B. Meyer, and M. Oriol, “Is branch coverage a good measure of

testing effectiveness?” in Empirical Software Engineering and Verification.

Springer, 2010, pp. 194–212.

[243] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set

size and block coverage on the fault detection effectiveness,” in Proceedings

of 1994 IEEE International Symposium on Software Reliability Engineering.

IEEE, 1994, pp. 230–238.

Appendix A: Metric suite having coupling metrics 149

[244] J. D. Musa, “Operational profiles in software-reliability engineering,” IEEE

software, vol. 10, no. 2, pp. 14–32, 1993.

[245] W. E. Howden, “Reliability of the path analysis testing strategy,” IEEE

Transactions on Software Engineering, no. 3, pp. 208–215, 1976.

[246] F. Grigorjev, N. Lascano, and J. L. Staude, “A fault seeding experience,”

in Simposio Argentino de Ingenieria de Software (ASSE 2003). Citeseer,

2003.

[247] A. J. Offutt and J. H. Hayes, “A semantic model of program faults,” ACM

SIGSOFT Software Engineering Notes, vol. 21, no. 3, pp. 195–200, 1996.

[248] K. H. T. Wah, “Fault coupling in finite bijective functions,” Software Test-

ing, Verification and Reliability, vol. 5, no. 1, pp. 3–47, 1995.

[249] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and

tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[250] G. Kaur and K. Bahl, “Software reliability, metrics, reliability improvement

using agile process,” International Journal of Innovative Science, Engineer-

ing & Technology, vol. 1, no. 3, pp. 143–147, 2014.

[251] G. Viswanathan and J. Prabhu, “Survey of methodologies for quantifying

software reliability,” International Journal of Internet Technology and Se-

cured Transactions, vol. 10, no. 5, pp. 565–575, 2020.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research Aims and Objectives
	1.2 Research Questions
	1.3 Existing Solutions
	1.4 Problem Statement
	1.5 Proposed Solution
	1.6 Research Contribution
	1.7 Thesis Outline

	2 Background
	2.1 Challenges in Constructing FSM for AJAX Based Web Applications
	2.1.1 Reach Difficulty
	2.1.2 Event Triggering
	2.1.3 Result Dissemination
	2.1.4 Asynchronous Behavior
	2.1.5 Statefulness
	2.1.6 Backtracking
	2.1.7 DOM Tree Management
	2.1.8 The Oracle Problem
	2.1.9 DOM Validation
	2.1.10 Invariants
	2.1.11 State Explosion

	2.2 System Stakeholders
	2.3 Requirements Prioritization Techniques
	2.3.1 Software Requirements Prioritization Techniques
	2.3.1.1 Analytical Hierarchy Process
	2.3.1.2 Minimal Spanning Tree
	2.3.1.3 Cost-Value Approach
	2.3.1.4 Hierarchy AHP
	2.3.1.5 Numerical Assignment
	2.3.1.6 Theory W
	2.3.1.7 Top-Ten Requirements
	2.3.1.8 Planning Game
	2.3.1.9 Cumulative Voting or The Hundred Dollar Test
	2.3.1.10 B-Tree Prioritize
	2.3.1.11 Ranking
	2.3.1.12 Bubble Sort
	2.3.1.13 Hierarchical Cumulative Voting
	2.3.1.14 Priority Groups
	2.3.1.15 Value-Based Intelligent Requirement Prioritization (VIRP)
	2.3.1.16 Interactive Genetic Algorithm-Based Prioritization
	2.3.1.17 Case-Based Ranking (CBR)

	2.4 User Sessions
	2.5 Clustering
	2.5.1 Basic Clustering Techniques
	2.5.1.1 Hierarchical Clustering
	2.5.1.2 Agglomerative Algorithms
	2.5.1.3 Divisive Algorithms
	2.5.1.4 Partitional Clustering

	2.6 FSM Based Web Application Modeling
	2.6.1 Finite State-Machine (FSM) Based Verification
	2.6.2 Invariant Based FSM
	2.6.3 Crawl Based AJAX States

	3 Literature Review
	3.1 State Model of AJAX
	3.1.1 Web Application Vs Traditional Application
	3.1.2 Execution Trace Data based State Machine Construction
	3.1.3 Crawler based State Machine Construction
	3.1.3.1 Validated DOM
	3.1.3.2 DOM Error Messages
	3.1.3.3 Other Invariants
	3.1.3.4 No Dead Clickables
	3.1.3.5 Consistent Back Button

	3.1.4 State Machine Construction from Requirements and Design Documents

	3.2 State Explosion
	3.2.1 State Space Reductions
	3.2.1.1 State based Reductions
	3.2.1.2 Path based Reductions
	3.2.1.3 Compositional Methods
	3.2.1.4 Storage Size Reductions
	3.2.1.5 State Compression
	3.2.1.6 Caching and Selective Storing
	3.2.1.7 Randomized Techniques and Heuristics
	3.2.1.8 Heuristic Search
	3.2.1.9 Random Walk and Partial Search
	3.2.1.10 Bitstate Hashing

	3.3 ReactJS - A Modern Web Technology
	3.3.0.1 Advantages of ReactJS
	3.3.0.2 Disadvantages of ReactJS
	3.3.0.3 Modeling ReactJS using Finite State Machines
	3.3.0.4 Issues with Modeling ReactJS using Finite State Machines

	3.4 Conclusion and Research Gaps

	4 StateReduceAjax
	4.1 Stage I
	4.1.1 Requirements Prioritization
	4.1.1.1 AHP
	4.1.1.2 PHandler
	4.1.1.3 Validation Mechanisms

	4.2 Stage II
	4.2.1 User Session Recording and Log File Generation
	4.2.2 Calculation of Use Case Frequency
	4.2.3 Use Case Requirement Mapping
	4.2.4 Application of Fuzzy C Mean Clustering

	4.3 Stage III
	4.3.1 DOM Event Element Mapping
	4.3.2 State Machine Construction

	5 Experimentation and Results
	5.1 Evaluation of the Proposed Solution
	5.2 Comparison with Existing Techniques

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

