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Siirt Üniversitesi, Turkey

(Foreign Evaluator 2 )

Dr. Rashid Ali

(Thesis Supervisor)

Dr. Muhammad Sagheer

(Head, Department of Mathematics)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF MATHEMATICS

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2022



ii

Copyright c© 2022 by Faisar Mehmood

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



iii

DEDICATED

TO

My loving and caring

Parents & Supervisor.









vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. F. Mehmood, R. Ali, and N. Hussain, “Contractions in fuzzy rectangular

b-metric spaces with application”, Journal of Intelligent & Fuzzy Systems,

vol. 37, no. 1, pp.1275–1285, 2019.

2. F. Mehmood, R. Ali, C. Ionescu, and T. Kamran. “Extended fuzzy b-

metric spaces.” Journal of Mathematical Analysis, vol. 8, pp. 124–131,

2017.

Faisar Mehmood

(DMT-143006)



viii

Acknowledgement

All thanks and praise to Almighty Allah, the most merciful and compassionate,

who gave me the courage and guidance to finish this work. The humblest and

the deepest obligations are also paid, with great honour and esteem to the Holy

Prophet Muhammad (PUBH), whose moral and spiritual teachings enlightened

my heart, mind and boomed my thoughts towards attaining high ideals of life.

My deepest gratitude to my supervisors Dr. Rashid Ali whose constant en-

couragement and guidance was certainly instrumental in the completion of this

work.

I am thankful to Head of Department of Mathematics Dr. Muhammad Sagheer, for

providing, conducive environment for studies, guidance, inspiration in the scholas-

tic pursuits and helpful suggestions during the course of study.

I am thankful to my friends M. Sohail Ashraf, Rizwan Haider , Tanzil ur Rehman

for their sincere help and cooperation.

In the end, I would like to thank to my parents for their continuous blessings. Their

special prayers and unlimited love has been a constant source of guidance for me.

I cannot forget to thank to my wife whose moral support and encouragement

enabled me to complete this task.

Faisar Mehmood



ix

Abstract

In this dissertation, the notion of fuzzy rectangular-b-metric space is introduced,

which generalizes the notions of a fuzzy metric space and a fuzzy b-metric space.

Well known fixed point theorems are established in the setting of fuzzy rectangular

b-metric spaces and illustrated by an example. Also by introducing the concept of

extended fuzzy b-metric space, a Banach-type fixed point theorem in the setting of

this more general class of fuzzy metric spaces is proved. The notion of Hausdorff

extended fuzzy b-metric space is also studied and certain fixed point results for

some multivalued contractions in the setting of G-complete extended fuzzy b-

metric space are also established. Some examples are furnished which illustrate

main results. As applications of main results, fixed point results involving fuzzy

integral inequalities and fuzzy integral inclusion are established. These results

extend and generalize many existing results in literature.
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Chapter 1

Introduction

The study of fixed point and its existence has a remarkable contribution in many

branches of applied and pure mathematics and provides very valuable and effec-

tive tools in mathematics to solve problems in linear and non linear analysis. In

addition this theory is a nice fusion of topology, geometry and analysis which

has significant importance in various branches of mathematics and other applied

sciences. In particular, fixed point theorems are used to find the successive ap-

proximations for the presence and uniqueness of all equation solution and the same

notions are associated with many famous mathematicians like Banach, Lipschitz,

Fredrick, Picard, Peano, Fredholm and Cauchy.

1.1 Background

In 1886, the first step was taken in fixed point theory by Poincare [1]. Afterwards

in 1911, the solution of the equation f(ξ) = ξ was obtained by Brouwer [2] in his

result stated as; any continuous function on compact convex set to itself has a

fixed point ζ0 such that, f(ξ0) = ξ0. Later on Kakutani [3] generalized Brouwer

fixed point theorem on set valued function and also extended and generalized work

of [3] for n-dimensional counter parts of a sphere and a square.

1



Introduction 2

Fréchet [4] was the first mathemation who gave the concept of a metric space in

1906. The study of metric fixed point theory was initiated in 1922 by the remark-

able work of a Polish mathematician Stefan Banach [5]. The work of Banach is

considered as one of the most valuable and adaptable consequence in the literature

of this theory. His famous result is known as the Banach Contraction Principle

(BCP) [5]. It is stated as:

A self mapping Γ : W −→ W on a complete metric space (W,d) has a unique

fixed point, if for k ∈ [0, 1), we have

d(Γξ,Γ%) ≤ kd(ξ, %) for all ξ, % ∈ W. (1.1)

Later on, the BCP has been prolonged and widespread in different ways by chang-

ing the structure of contraction mapping or by changing the structure of under-

lying space for instance Rakotch [6] introduced a contractive condition, in which

a monotonic decreasing function α : [0,∞) −→ [0, 1] replaces the constant k, of

inequality (1.1) as

d(Γξ,Γ%) ≤ α(t)d(ξ, %) for all ξ, % ∈ W.

The above contractive condition coincides with (1.1) if α(t) has a constant value

in (0, 1) for all t. We refer the work presented in [7–13] for studying different con-

tractive conditions and related fixed point results. A comprehensive comparison

of various contractive conditions is done by Rhoades [14].

On the other hand, to establish BCP in a more general structure, the notion of

metric space was generalized by Bakhtin [15] in 1989 by presenting the concept

of b-metric space (BMS). Later on, the same concept was further investigated by

Czerwick [16] to establish different results in BMS. The study of BMS holds a

prominent place in fixed point theory with multiple aspects. Many mathemati-

cians led the foundation to improve fixed point theory in BMS [17–24].

An other prominent generalization of metric space is the idea of rectangular metric

spaces (RMS). This generalization was given by Branciari [25] in 2000 and proved

some related results. Similarly in 2015, George et. al [26] introduced the notion
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of rectangular b-metric spaces (RBMS) and constructed some fixed point results.

Later on, the theory was further developed by many mathematicians by proving

a number of fixed point results in RBMS. For instance see [27–29].

Another milestone was achieved by Kamran et al. [30] in 2017 by introducing

the concept of extended b-metric space (EBMS) which is a generalization of BMS.

Authors changed the triangular inequality of b-metric by introducing a function

α : W ×W −→ [1,∞) as follows

dα(ξ, ϑ) ≤ α(ξ, ϑ)
[
dα(ξ, %) + dα(%, ϑ)

]
∀ ξ, %, ϑ ∈ W,

where dα is the extended b-metric on W as defined in Definition 2.1.2. The study

of EBMS became an exciting subject for many authors [31–36].

1.2 Fuzzy Fixed Point Theory

The foundation of fuzzy mathematics was laid by Zadeh [37] in 1965 with the

introduction of notion of a fuzzy set to extend the classical notion of a set. Unlike

the ordinary set, the element of a fuzzy set are as a degree of membership which is

assigned with the help of a membership function with values in the closed interval

[0, 1]. Fuzziness is a completely different notion than probability. Probability

defines the objective uncertainty derived from a huge number of observations.

Fuzziness explains the subjective sense of the uncertainty. The success of fuzzy

set theory in solving control problems derives from its ability to manage certain

conditions that the classical control theory has trouble dealing with, but undefined,

complex, non-linear structures are managed by fuzzy sets [38–40]. In the current

rapidly evolving fields of artificial intelligence and neural networks, fuzzy set theory

is becoming an ever more important tool [41, 42]. This provides entirely new

opportunities in chemical engineering for application of fuzzy sets [43].

The significant applications in various fields such as remote sensing, data mining,

pattern recognition have made distance measures important [44]. But because of

the presence of vagueness, a logical problem emerges when the distance is measured
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in an imprecise context. In order to make a global decision [45], there are many

cases where understanding, experience and expertise [46] need to be combined with

the information available. The crisp number is converted into a fuzzy number in

these situations. Although vagueness in a fuzzy number is unavoidable, it is more

insightful than a precise number.

Later on, many ideas of mathematics are extended by using the idea of fuzzy

sets and membership function [47, 48]. In this context, in 1975, Kramosil and

Michálek [49] introduced the concept of fuzzy metric spaces (FMS) which could

be considered as a reformulation, in the fuzzy context, of the notion metric space.

Later on, a new idea was presented by George and Veeramani [50] in the form of

GV -FMS (Definition 2.2.4), which strengthen the notion of KM -FMS (Definition

2.2.3). The concepts of both notions have no close relation with each other but to

some extent their characteristics have links, for example, the GV -FMS properties

can be defined for KM -FMS and vice versa. The above relation leads the term

FMS to anyone of them and we can relate it with anyone of them.

In 1988, Grabiec [51] extended BCP to FMS in the sense of KM -FMS and initiated

the fuzzy fixed point theory. The author stated the famous BCP in fuzzy setting

as; Let (W,F, ∗) be a complete FMS such that

lim
t→∞

F (ξ, %, t) = 1.

If Γ : W → W is a self mapping satisfying

F (Γξ,Γ%, kt) ≥ F (ξ, %, t) (1.2)

for all ξ, % ∈ W and k ∈ (0, 1), then Γ has a unique fixed point.

In 2002, Gregori and Sapena [52] introduced a fuzzy contractive mapping in FMS

and established a fixed point result as:

Let (W,F, ∗) be a complete FMS in which fuzzy contractive sequences are Cauchy

and Γ : W → W be a fuzzy contractive mapping such that
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1

F (Γ(ξ),Γ(%), t)
− 1 ≤ k

(
1

F (ξ, %, t)
− 1

)
(1.3)

for all ξ, % ∈ W and k ∈ (0, 1), then Γ has a unique fixed point.

Gupta et al. [53] proved two fixed point results using rational inequality and

proved the existence of of fixed point by integral equation in 2013. Many more

contractions and fixed point results, in fuzzy context, are proved by many authors

in different ways for instance see [54–76].

In 2015, Hussain et al. [77] related the parametric b-metric and fuzzy b- metric

spaces and proved some results. In 2016, Nǎdǎban [78] studied the concept of

FBMS and proved some results. In 2017 Shahzad et al. [79] proved some fixed

point results for multivalued mapping in Hausdorff fuzzy metric space (HFMS)

using rational inequality and to strengthen the results they established an ap-

plication for the existence of solution of integral equation. For more interesting

results for multivalued mapping in HFMS see [80–84].

1.3 Thesis Contribution

In 2015, George et al. [26] introduced the concept of RBMS which generalized

the concepts of RMS, BMS and metric space. Inspired by the concept of RBMS,

the idea of Fuzzy rectangular b-metric spaces is presented and BCP is established

in this new defined space. By defining the notion of Γ-orbitally upper semi con-

tinuous function in FRBMS, the result of Hicks and Rhoads [85] is proved. By

sudying the notion of Geraghty-type contraction the result of Roshan et al. [28]

is proved in this new space. To strengthen the main result an application for the

existence of solution of integral equation is also established. These results are the

generalization of many existing results in the literature [26, 28, 51]. The published

form of these results is available in [86] as;

“ Contractions in fuzzy rectangular b-metric spaces with application”

In 2017, Kamran et al. [30] defined the notion of extended b-metric spaces (EBMS)
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and established some fixed point results. In this dissertation, motivated by Kam-

ran et al. [30], the concept of extended fuzzy b-metric spaces is introduced (EF-

BMS) and established some fixed point results which are extension of many previ-

ous results in the literature of FMS, for instance see [51–53]. Also some results in

EFBMS for Geraghty-type contraction and for multivalued mappings are estab-

lished which generalize the results of [79]. All these results are illustrated by an

example and an application of integral inclusion. The published form of some of

these results can be seen in [87] as “ Extended fuzzy b-metric spaces.”

1.4 Organization of Thesis

The rest of the thesis is organized as follows.

• In Chapter 2, some basic definitions of abstract spaces and examples are

stated.

• In Chapter 3, the notion of FRBMS is introduced and some examples are es-

tablished and by extending the results of Banach [5], Hicks [85] and Roshan

et. al [28] some results are established in FRBMS. To strengthen the re-

sults, an application of integral equation is established. Last part of chapter

comprises a brief conclusion of our work. All the work of this chapter is

published in [86]

• In Chapter 4, the notion of EFBMS is introduced, and illustrated by an

example. The well known BCP [5] is established in this new space and an

example illustrated the theorem. Moreover the results of [28, 53, 87, 88] are

extended in the setting of EFBMS using Geraghty-type Contraction. The

work of this chapter is published in [87].

• In Chapter 5, the notions of Hausdorff fuzzy b- metric space (HFBMS) and

Hausdorff extended fuzzy b- metric spaces (HEFBMS) are introduced and

affirmed by some examples. Also by extending the results of Banach [5] ,
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Gupta et al. [53] and Roshan et. al [28] some fixed point results are estab-

lished. Similarly the study is strengthened by providing some applications

of the obtained results. All the findings of this chapter are submitted for

possible publication.



Chapter 2

Preliminaries

The purpose of this chapter is to review the fundamental concepts, results and

examples which are the basis for other chapters. In the first section, various types

of metric spaces are discussed. The second section consists of various types of

FMS.

2.1 Generalization of Metric Space

In Euclidean spaces, the concept of the distance between the points generalises to a

more general notion of a distance between two points of an arbitrary nonempty set

W , known as a metric on W . With this more general notion, Fréchet [4] was the

first mathematician who presented the concept of a metric space in 1906. Many

authors have generalized the notion of metric space in different ways. In 1989,

Bakhtin [15] used the real number b ≥ 1 in triangular inequality and introduced

the concept of a BMS.

Definition 2.1.1.

“Let W be a non-empty set and ‘b’ be any real number such that b ≥ 1. A function

db : W ×W −→ R is called b-metric space if it satisfies the following properties for

all ξ, %, ϑ ∈ W .

8



Literature Review 9

bM1 db(ξ, %) ≥ 0,

bM2 db(ξ, %) = 0 if and only if ξ = %,

bM3 db(ξ, %) = db(%, ξ) for all ξ, % ∈ W ,

bM4 db(ξ, %) ≤ b
[
db(ξ, ϑ) + db(ϑ, %)

]
.

The pair (W,db) is called a b-metric space (BMS) [15] .”

Example 2.1.1. Let W = {0, 1, 2}. Consider a mapping db : W ×W −→ [0,∞)

defined as

db(ξ, η) = (ξ − η)2.

Then (W,db) is a BMS with coefficient b = 2.

Example 2.1.2.

Let (W, d) be a metric space. Define d1 : W ×W → R by

d1(ξ, %) = η1d(ξ, %) + ad(ξ, %)η2 .

For some η2 > 1, η1 ≥ 0, a > 0 and for ξ, % ∈ W.

Hence d1 is not a metric on W but (W,d1) is a BMS with b = 2η2−1.

Let ϑ be any arbitrary element of W then we have

d1(ξ, %) = η1d(ξ, %) + ad(ξ, %)η2

≤ η1[d(ξ, ϑ) + d(ϑ, %] + a[d(ξ, ϑ) + d(ϑ, %)]η2

≤ η1[d(ξ, ϑ) + d(ϑ, %)] + 2η2−1a[d(ξ, ϑ)η2 + d(ϑ, %)η2 ]

≤ 2η2−1[d1(ξ, ϑ) + d1(ξ, %)]

d1(ξ, %) ≤ 2η2−1[d1(ξ, ϑ) + d1(ξ, %)].

If a, b ∈ R+ and η2 > 1 then the above inequality follows by

(
ξ + %

2

)η2
≤ ξη2 + %η2

2
.
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To generalize the notion of BMS, Kamran et al. [30] came with the notion of an

extended b-metric space. They use a function α(ξ, %) depending upon the values

of ξ and % in the triangular inequality.

Definition 2.1.2.

“Let W be a non-empty set and α : W ×W −→ [1,∞) be a mapping. A function

dα : W × W −→ R is called an extended b-metric if for all ξ, %, ϑ ∈ W , it

satisfies the following conditions

EBM1 dα(ξ, %) ≥ 0,

EBM2 dα(ξ, %) = 0, if and only if ξ = %,

EBM3 dα(ξ, %) = dα(%, ξ),

EBM4 dα(ξ, ϑ) ≤ α(ξ, ϑ)
[
dθ(ξ, %) + dα(ξ, ϑ)

]
.

The pair (W,dα) is called an Extended b-metric Space(EBMS) [30].”

Remark 2.1.3.

Class of EBMS is larger than the classes of BMS and metric spaces as by setting

α(ξ, %) = b, the above definition coincides with the definition of BMS and by

setting α(ξ, %) = 1, the above definition coincides with the definition of metric

spaces.

Hence every metric space is a BMS and every BMS is EBMS but converse is not

true.

Example 2.1.3.

Consider W = {1, 2, 3}. Define mappings dα : W ×W −→ [0,∞) by

dα(ξ, %) = (ξ − %)2

and α : W ×W −→ [1,∞) as

α(ξ, %) = ξ + %+ 2,
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then (W,dα) is an EBMS.

EBM1 and EBM2 are trivial. We need to prove only EBM3, which follows from

the fact that

(ξ − %)2 = (%− ξ)2

for all ξ, % ∈ W .

To verify EBM4, note that

1 = dα(1, 2) ≤ α(1, 2)[dα(1, 3) + dα(3, 2)]

≤ (1 + 2 + 2)[4 + 1]

≤ (5)[5]

= 25.

Similarly we have,

1 = dα(2, 3) ≤ α(2, 3)[dα(2, 1) + dα(1, 3)]

≤ (2 + 3 + 2)[1 + 4]

≤ (7)[5]

= 35.

and

4 = dα(3, 1) ≤ α(3, 1)[dα(3, 2) + dα(2, 1)]

≤ (3 + 1 + 2)[1 + 1]

≤ (6)[2]

= 12.

Therefore, for all ξ, %, ϑ ∈ W,

dα(ξ, ϑ) ≤ α(ξ, ϑ)[dα(ξ, %) + dα(ξ, ϑ)].

Since all the conditions are satisfied. Thus (W,dα) is an EBMS.
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Example 2.1.4.

Consider W = {1, 2, 3}. Define α : W ×W −→ [1,∞) and dα : W ×W −→ [0,∞)

as

α(ξ, %) = ξ + %+ 1,

Now

dα(1, 1) = dα(2, 2) = dα(3, 3) = 0,

dα(1, 2) = dα(2, 1) = 80,

dα(1, 3) = dα(3, 1) = 1000,

dα(2, 3) = dα(3, 2) = 600,

dα(1, 1) = dα(2, 2) = dα(3, 3) = 0.

EBM1 and EBM2 are trivial. We need to prove only EBM4, for all ξ, % ∈ W , note

that

80 = dα(1, 2) ≤ α(1, 2)[dα(1, 3) + dα(3, 2)]

= (4)[1000 + 600]

= (4)[1600] = 6400.

Similarly we have,

1000 = dα(1, 3) ≤ α(1, 3)[dα(1, 2) + dα(2, 3)]

= (5)[80 + 600]

= (5)[680] = 3400.

And

600 = dα(2, 3) ≤ α(2, 3)[dα(2, 1) + dα(1, 3)]

= (6)[80 + 1000]

= (6)[1080] = 6480.
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Therefore, for all ξ, %, ϑ ∈ W,

dα(ξ, ϑ) ≤ α(ξ, ϑ)[dα(ξ, %) + dα(ξ, ϑ)]

Since all the conditions are satisfied, and (W,dα) is an EBMS but it is not a metric

space. Further, note that, taking b = 7, (W,dα) becomes a BMS.

The class of EBMS is larger than that of BMS, as shown in the following example.

Example 2.1.5.

Let W = [0,+∞). Define a mapping dα : W ×W −→ [0,∞) as

dα(ξ, %) =

(ξ + %), if ξ 6= %

0 if ξ = %

Define α : W ×W −→ [1,∞) as α(ξ, %) = 1 + ξ + %, then (W,dα) is an EBMS

which is not a BMS.

EBM1 and EBM2 are trivial. We need to prove only EBM3.

(i) If ξ = % then EBM3 is clear.

(ii) If ξ 6= %, ξ = η, then

α(ξ, %)[dα(ξ, η) + dα(η, %)] = (1 + ξ + %)[0 + (η + %)]

= (1 + ξ + %)(ξ + %)

≥ (ξ + %)

= dα(ξ, %).

(iii) If ξ 6= %, % = η, then

α(ξ, %)[dα(ξ, η) + dα(η, %)] = (1 + ξ + %)[(ξ + η) + 0]

= (1 + ξ + %)(ξ + %)

≥ (ξ + %) = dα(ξ, %).
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(iv) If ξ 6= %, % 6= η, ξ 6= η, then

α(ξ, %)[dα(ξ, η) + dα(η, %)] = (1 + ξ + %)[(ξ + η) + (η + %)]

≥ (ξ + 2η + %)

≥ (ξ + %) = dα(ξ, %).

It follows from above all cases that (W,dα) is an EBMS which is not a BMS.

Definition 2.1.4.

“Let (W,dα) be an extended b-metric space. A sequence {ξn} in W is said to be

Convergent Sequence if for every ε > 0 there exists an N = N(ε) ∈ N such

that,

dα(ξn, ξ) < ε for all n ≥ N.

In this case, we write

lim
n−→∞

ξn = ξ” [30].

Definition 2.1.5.

“A sequence {ξn} W is said to be a (Cauchy Sequence), if for every ε > 0 there

exists N = N(ε) ∈ N such that,

dα(ξm, ξn) < ε for every m,n ≥ N.

An extended b-metric space (W,dα) [30] is complete if every Cauchy sequence

in W is convergent.”

An other wellknown generalization of metric space is the notion of rectangular

metric space (RMS) introduced by Branciari [25] in 2000. By generalizing both the

notions of BMS and RMS, George et al. [26] presented the concept of rectangular

b-metric space in 2015 as follows.

Definition 2.1.6.

“Let W be a non-empty set and b be any real number such that b ≥ 1. A function

db : W × W −→ [0,∞) is called a rectangular b-metric on W if it satisfies the

following conditions for all ξ, %, η, ϑ ∈ W .
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RbM1 db(ξ, %) ≥ 0,

RbM2 db(ξ, %) = 0 if and only if ξ = %,

RbM3 db(ξ, %) = db(%, ξ),

RbM4 db(ξ, ϑ) ≤ b(db(ξ, %) + db(%, η) + db(η, ϑ)).

The pair (W,db) is called rectangular b-metric space”[26].

Example 2.1.6.

Let W = N and a function db : W ×W → W be defined by

db(ξ, %) =


0, if ξ = %

η, if ξ or % /∈ {1, 2} , ξ 6= %

4η, if ξ, % ∈ {1, 2} , ξ 6= %

where η > 0 is a constant. Then (W,db) is a RBMS with coefficient b = 2 and is

not a RMS as,

db(1, 2) = 4η > 3η

= db(1, 3) + db(3, 4) + db(4, 2).

Definition 2.1.7.

Let Γ : W → W be self mapping an element ξ ∈ W is called fixed point of Γ if

Γξ = ξ.

Example 2.1.7.

Following are the examples of fixed points.

1. The mapping Γ : W → W defined by

Γ(ξ) = ξ2 + 2

has no fixed point in W = R.

Geometrically it means that the graph of I(ξ) = ξ never intersects the graph of

Γ(ξ) = ξ2 + 2 (see figure 2.1) .
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Figure 2.1: A mappig having no fixed point.

2. Let W = R and defined Γ : W → W by

Γξ = ξ2 ∀ ξ ∈ R.

It is clear from Figure 2.2 that 0 and 1 are two fixed points.

Geometrically it means that the graph of I(ξ) = ξ intersects the graph of Γ(ξ) = ξ2

at two points 0 and 1.

Figure 2.2: A mapping having two fixed points.
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3. Γ : W → W given by

Γ(ξ) = ξ3

has three fixed points i.e; ξ = −1, 0, 1 (see Figure 2.2).

Figure 2.3: A mapping having three fixed points.

2.2 Fuzzy Metric Space

In 1965, the concept of fuzzy set was introduced by L.A. Zadeh [37].

Definition 2.2.1.

Let W be any set. A fuzzy set fA on W is a function from domain W and values

in [0, 1].

Example 2.2.1.

Consider W = {a, b, c, d} and fA : W → [0, 1] defined as

fA(a) = 0,

fA(b) = 0.5,

fA(c) = 0.2,

fA(d) = 1.
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Then fA is a fuzzy set on W .

This fuzzy set can also be written as follows:

fA = {(a, 0), (b, 0.5), (c, 0.2), (d, 1)}

To define FMS, the notion of t-norm is required. Triangular norms are important

methods in fuzzy logic [89] for understanding the conjunction and, consequently,

for the intersection of fuzzy sets [37]. However, they are fascinating mathematical

objects on their own. Based on some ideas proposed in [90], triangular norms,

as we use them today, were first implemented in the sense of probabilistic metric

spaces [91, 92]. They also play an important role in decision-making [93, 94], both

in statistics [95] and in non-additive measures [96] and cooperative games theories.

Some parameterized families of t-norms [97] turn out to be solutions of well-known

functional equations.

Definition 2.2.2.

“A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous t-norm [91],

if it satisfies the following conditions:

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. ξ ∗ 1 = ξ for all ξ ∈ [0, 1] and

4. ξ ∗ % ≤ ϑ ∗ η wherever ξ ≤ ϑ and % ≤ η for all ξ, %, ϑ, η ∈ [0, 1].”

Example 2.2.2.

Define ∗ : [0, 1]× [0, 1]→ [0, 1] by

1. ξ ∗ % = ξ% for ξ, % ∈ [0, 1], then ∗ is a continuous t-norm which is known

as product norm.

2. ξ∗% = ξ∧% = min {ξ, %} for all ξ, % ∈ [0, 1], then ∧ satisfies all conditions

of Definition 2.2.2 and hence it is a t-norm known as minimum t-norm.
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3. ξ ∗ % = ξ ∗L % = max {ξ + %− 1, 0} is also a continuous t-norm.

In 1975 Kramosil and Michálek [49] combined the idea of fuzzy set and t-norm to

define FMS.

Definition 2.2.3.

“A 3-tuple (W,F, ∗) is said to be a fuzzy metric space (FMS), if W is an

arbitrary set, ∗ is a continuous t-norm and F is a fuzzy set on W ×W × [0,∞)

satisfying the following conditions:

KFM1: F (ξ, %, 0) = 0

KFM2: F (ξ, %, t) = 1,∀ t > 0 if and only if ξ = %

KFM3: F (ξ, %, t) = F (%, ξ, t)

KFM4: F (ξ, ϑ, t+ s) ≥ F (ξ, %, t) ∗ F (%, ϑ, s) ∀ t, s ≥ 0

KFM5: If F (ξ, %, .) : [0,∞) → [0, 1] is left continuous, ξ, %, ϑ ∈ W and t, s > 0”

[49].

Example 2.2.3.

Let (W, d) be a metric space. We define

ξ ∗ % = ξ%

for all ξ, % ∈ [0, 1]. Let F be fuzzy set on W ×W × (0,∞) defined as follows:

F (ξ, %, t) =
t

t+ d(ξ, %)
,

then (W,F, ∗) is a FMS. This F is known as standard fuzzy metric on W induced

by the metric d on W .

In [50], George and Veeramani notice that F (ξ, %, t) = 1 means ξ and % are exactly

same, that is, ξ = % and F (ξ, %, t) = 0 is identified with ∞. This understanding

allows George and Veeramani to modify Definition 2.2.3 as below
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Definition 2.2.4.

“A 3-tuple (W,F, ∗) is said to be a fuzzy metric space, if W is an arbitrary set,

∗ is a continuous t-norm and F is a fuzzy set on W ×W × (0,∞) satisfying the

following conditions:

GFM1: F (ξ, %, t) > 0;

GFM2: F (ξ, %, t) = 1 if and only if ξ = % for all t > 0;

GFM3: F (ξ, %, t) = F (%, ξ, t);

GFM4: F (ξ, ϑ, t+ s) ≥ F (ξ, %, t) ∗ F (%, ϑ, s);

GFM5: F (ξ, %, .) : (0,∞)→ [0, 1] is continuous , ξ, %, ϑ ∈ W and t, s > 0”[50].

The property (GFM1) is justified as in the case of a metric space (W,d), as d does

not take the value ∞, in the same way in FMS, F cannot take the value 0. The

property (GFM2) gives the concept that the degree of nearness of ξ and % is 1,

only when ξ = %, and then F (ξ, ξ, t) = 1 for each t > 0 and for each ξ ∈ W . That

is, in this fuzzy theory, values 0 and ∞ are associated with 1 and 0 respectively

in the traditional theory of metric spaces. Properties (GFM3) and (GFM4) are

fuzzy forms of both symmetry and triangular inequality respectively.

Finally, the function t 7→ F (ξ, %, t) in (GFM5), for fixed ξ and %, is continuous

without any restriction for F as t→∞.

Example 2.2.4.

Let (W,d) be a metric space and t-norm ∗ be the product norm. For k,m, n ∈ R+,

define F : W ×W × (0,∞)→ [0, 1] by

F (ξ, %, t) =
ktn

ktn +md(ξ, %)

for all ξ, % ∈ W and t > 0. Then (W,F, ∗) is a FMS.

Example 2.2.5.

Let (W,d) be a metric space and t-norm ∗ be the product norm. Define a mapping
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F : W ×W × (0,∞)→ [0, 1] by

F (ξ, %, t) = e
−
|ξ − %|
t ,

then it is simple to demonstrate that (W,F, ∗) is a FMS.

In fact, all other properties are obvious. To prove GFM4, notice that,

F (ξ, ϑ, t+ s) = e
−
|ξ − ϑ|
t+ s

= e
−
|ξ − %+ %− ϑ|

t+ s

> e
−
|ξ − %|+ |%− ϑ|

t+ s

= e
−
|ξ − %|
t+ s .e

−
|%− ϑ|
t+ s

≥ e
−
|ξ − %|
t .e

−
|%− ϑ|
s

= F (ξ, %, t) ∗ F (%, ϑ, s).

To prove the BCP [5] and Edelstien [8] results FMS, Grabiec [51] introduced

the notion of convergent sequence, Cauchy sequence and completeness in FMS as

follows:

Definition 2.2.5.

“Let (W,F, ∗) be a fuzzy metric space. A sequence {ξn} in W is convergent to

ξ ∈ W if

lim
n→∞

F (ξn, ξ, t) = 1 for each t > 0.

A sequence {ξn} in W is Cauchy if

lim
n→∞

F (ξn, ξn+m, t) = 1

for each t > 0 and m > 0.

A fuzzy metric space in which every Cauchy sequence is convergent is called
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complete”[51].

Remark 2.2.6.

Throughout the thesis, the convergent sequence, the Cauchy sequence and the

completeness in the sense of by Grabiec [51](Definition 2.2.5) will respectively be

termed as G-convergent sequence, G-Cauchy sequence and G-completeness.

In 1988, Grabiec [51] proved the BCP and Edelstien fixed point theorem in FMS

which are are stated below.

Theorem 2.2.7.

“Let (W,F, ∗) be a complete fuzzy metric space such that lim
t→∞

F (ξ, %, t) = 1

for all ξ, % ∈ W. Let Γ : W → W be a mapping satisfying

F (Γξ,Γ%, kt) ≥ F (ξ, %, t)

∀ ξ, % ∈ W where k ∈ (0, 1). Then Γ has a unique fixed point.”

Theorem 2.2.8.

“Let (W,F, ∗) be a compact fuzzy metric space with F (ξ, %, .) continuous for all

ξ, % ∈ W. Let Γ : W → W be a mapping satisfying

F (Γξ,Γ%, t) > F (ξ, %, t)

for all ξ 6= % and t > 0. Then Γ has a unique fixed point.”

In [50], George and Veeramani noted that the set of real number R failed to be

complete in the setting of Definition 2.2.5 by Grabiec. This is illustrated by the

following example.

Example 2.2.6.

Let W = R. Define

F (ξ, %, t) =


t

t+ db(ξ, %)
if t > 0

0 if t = 0

,
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for ξ, % ∈ W, t ≥ 0, then F is a fuzzy metric on R.

Let

Sn = 1 +
1

2
+

1

3
+ . . .+

1

n
for n ∈ N,

then

F (Sn+p, Sn, t) =
t

t+ 1
n+1

+ . . .+ 1
n+p

→ 1 as n→∞ for p > 0.

Hence {Sn} is G-Cauchy sequence in FMS.

If R is fuzzy complete then there exists ξ ∈ R such that

F (Sn, ξ, t)→ 1 as n→∞.

From this it follows that

t

t+ |Sn − ξ|
→ 1 as n→∞

⇒ |Sn − ξ| → 0 as n→∞

and so Sn → ξ ∈ R which is not true.

Hence for R to be a complete FMS, George and Veeramani [50] redefined the

Cauchy sequence as follows.

Definition 2.2.9.

“Let (W,F, ∗) be a fuzzy metric space and {ξn} be a sequence in W . Then {ξn}

is called a Cauchy sequence if there exists n0 ∈ N such that

F (ξn, ξm, t) > 1− ε, ∀ m,n ≥ n0, ε ∈ (0, 1) and t > 0.

The sequence {ξn} is called convergent and converges to ξ if there exists n0 ∈ N

such that

F (ξn, ξ, t) > 1− ε, ∀ n ≥ n0 and ε ∈ (0, 1), t > 0.
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We say that the space (W,F, ∗) is complete if every Cauchy sequence in W is

convergent to some ξ ∈ W”[50].

In literature, the convergent sequence, Cauchy sequence and completeness defined

in Definition 2.2.9 are termed as M -convergent sequence, M -Cauchy sequence and

M -completeness respectively. Both the sequences G-Cauchy sequence and M -

Cauchy sequence are not equivalent because the notion of G-Cauchy sequence is

weaker than M -Cauchy sequence.

Song [98] noted that, due to Vasuki [99] and Grabiec [51], the criteria of certain

fixed point theorems are incomplete and the proof of the theorems is incorrect.

To justify this, Song emphasized that the Definition 2.2.5 and Definition 2.2.9 are

similar. Song said that in a FMS {ξn} is a Cauchy sequence if and only if

F (ξn, ξn+q, t)→ 1(∀t > 0) as n→∞

uniformly on q ∈ N, where N is the set of all positive integers, otherwise Cauchy

sequence defined in [51] is incorrect. This can easily be seen in the illustration

below.

In fact, if {ξn} is a convergent sequence in FMS, we can assume ξn → ξ0 (n →

+∞), without the loss of the generality, then we have

F (ξn+p, ξn, t) ≥ F (ξn+p, ξ0,
t

2
) ∗ F (ξ0, ξn,

t

2
)→ 1, (n→∞)

for any t > 0. Thus, with respect to q ∈ N, lim
n→∞

F (ξn+q, ξn, t) = 1 (t > 0),

uniformly, where N is the set of all natural numbers. This implies that if we con-

sider the Cauchy sequence in FMS in accordance with Vasuki ’s views, there is

no complete FMS. Vasuki in [55] reported that Song in [98] assumed the concept

of the Cauchy sequence in FMS should be specified in a particular way. It is

true that Grabiec’s definition of Cauchy sequence for FMS is weaker than Song’s

one. George and Veeramani noted that the description of the Cauchy sequence by

Grabiec is weaker and therefore it is necessary to change that definition to obtain
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better results in FMS. In [50] some results are obtained in this connection. Defi-

nitions 2.2.5 and 2.2.9 are obviously not equivalent. Example 2.2.6 demonstrates

the statement given above.

Some results in [51] and [99] are proved for complete FMS, in the sense of Definition

2.2.5 . Let us call this complete FMS as a G-complete FMS (refer [52]). Grabiec

should used world weak Cauchy sequence and weak FMS instead of Cauchy se-

quence and FMS. Perhaps because of this usage, Song [98] feels it is appropriate

to correct the sense of the Cauchy sequence as given in Grabiec [51]. It is clear

from the definitions that every complete FMS need not be a G-complete FMS.

Some how Song [98] skipped this argument in his article. Once we understand

that the Cauchy sequences given in Definitions 2.2.5 and 2.2.9 are distinct, then

it is easy to see that fixed point theorems proved are different for complete FMS

and G-complete FMS.

2.2.1 Some Generalization of Fuzzy Metric Space

To generalize the idea of BMS in fuzzy settings, Nǎdǎban [78] introduced the

notion of FBMS in 2016. As EBMS is more general form of metric space and

BMS, like wise EFBMS generalizes FMS and FBMS. In [87] the notion of EFBMS

is introduced in 2017. Chugh and Kumar [100] generalized the notion RMS in

fuzzy settings by introducing the idea of fuzzy rectangular metric spaces(FRMS)

in 2002.

In this section we recall the notion of FBMS introduced by Nǎdǎban [78]. We

illustrate the definition by an example and also show that FBMS need not to be

FMS. The concept of convergence sequence, Cauchy sequence and completeness in

FBMS in the sense of Grabiec is also included in this section. Following Kramosil

and Michálek [49], Nǎdǎban [78] defined FBMS as follows.

Definition 2.2.10.

“Let W be a non empty set, let b ≥ 1 be a given real number and ∗ be a continuous

t-norm. A fuzzy set Fb on W × W × [0,∞) is called fuzzy b-metric if for all

ξ, %, ϑ ∈ W , the following conditions hold:
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FBM1: Fb(ξ, %, 0) = 0

FBM2: Fb(ξ, %, t) = 1, ∀ t > 0 if and only if ξ = %

FBM3: Fb(ξ, %, t) = Fb(%, ξ, t), ∀ t ≥ 0

FBM4: Fb(ξ, ϑ, b(t+ s)) ≥ Fb(ξ, %, t) ∗ Fb(%, ϑ, s), ∀ t, s ≥ 0

FBM5: If Fb(ξ, %, .) : [0,∞)→ [0, 1] is left continuous and lim
t→∞

Fb(ξ, %, t) = 1.

Then the triplet W,Fb, ∗ is called fuzzy b-metric space (FBMS)”[78].

Remark 2.2.11.

The class of FBMS is larger than that of FMS. Setting b = 1, the above definition

coincides with Definition 2.2.3 of FMS.

The following example shows that FBMS is not a FMS.

Example 2.2.7.

Let W = R. Consider a function Fb : W ×W × [0,∞)→ [0, 1] defined by

Fb(ξ, %, t) = e
−
|ξ − %|m

t

for all ξ, % ∈ R and for a real number m ≥ 1. Then (W,Fb, ∗) is a FBMS with the

product norm ∗.

The properties from FBM1 to FBM3 and FBM5 are obvious. We only prove

FBM4.

Now define a function

f(x) = xm for x > 0

for ξ, %, ϑ ∈ W , we have

(
ξ + %

2

)m
≤ ξm + %m

2

(ξ + %)m

2m
≤ ξm + %m

2

(ξ + %)m ≤ 2m−1(ξm + %m)
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Now for ξ, %, ϑ ∈ X and t1, t2 > 0, we have

|ξ − ϑ|m

t1 + t2
=
|ξ − %+ %− ϑ|m

t1 + t2

≤ 2m−1

[
|ξ − %|m

t1 + t2

]
+ 2m−1

[
|%− ϑ|m

t1 + t2

]
≤ 2m−1

[
|ξ − %|m

t1

]
+ 2m−1

[
|%− ϑ|m

t2

]

=

 |ξ − %|mt1
2m−1

+

 |%− ϑ|mt2
2m−1

 .
Now,

Fb(ξ, ϑ, t1 + t2) = e
−
|ξ − ϑ|m

t1 + t2

≥ e
−

 |ξ − %|m
t1

2m−1

+
|%− ϑ|m

t2
2m−1



≥ e
−

 |ξ − %|m
t1

2m−1


.e
−

 |%− ϑ|m
t2

2m−1



= Fb

(
ξ, %,

t1
2m−1

)
∗ Fb

(
%, ϑ,

t2
2m−1

)

⇒ (W,Fb, ∗) is a FBMS with b = 2m−1.

In the above example, if we take m = 2, then (W,Fb, ∗) is not a FMS.

For the generalization of FMS, Chugh and Kumar [100] gave the idea of fuzzy

rectangular metric spaces(FRMS) in 2002 as follows.

Definition 2.2.12.

“A 3-tuple (W,Fr, ∗) is said to be a fuzzy rectangular metric space (FRMS)

if W is a non empty set, ∗ is a continuous t-norm and Fr is a fuzzy set on W ×

W × [0,∞) satisfying the following conditions for all ξ, %, ϑ ∈ W and t, s > 0

FRM-1 Fr(ξ, %, t) > 0

FRM-2 Fr(ξ, %, t) = 1 if and only if ξ = %

FRM-3 Fr(ξ, %, t) = Fr(ξ, %, t)
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FRM-4 Fr(ξ, ϑ, t + s + w) ≥ Fr(ξ, %, t) ∗ Fr(%, η, s) ∗ Fr(η, ϑ, w) ∀ distinct %, η ∈

W \ {ξ, ϑ}.

FRM-5 Fr(ξ, %, .) : [0,∞)→ [0, 1] is left continuous, and lim
t→∞

Fr(ξ, %, t) = 1.”

In [101], FRMS is also called as fuzzy generalized metric space.

Example 2.2.8.

Let W = R. A function Fr : W ×W × [0,∞)→ [0, 1] defined by

Fr(ξ, %, t) =

e
−|ξ − %|

t if t > 0

0 if t = 0.

for all ξ, % ∈ R. Then (W,Fr, ∗) is a FRMS.

In fact, all other properties are obvious. To prove FRM-4, notice that

Fr(ξ, ϑ, t+ s+ w) = e
−
|ξ − ϑ|
t+ s+ w

= e
−
|ξ − %+ %− η + η − ϑ|

t+ s+ w

> e
−
|ξ − %|+ |%− η|+ |η − ϑ|

t+ s+ w

= e
−
|ξ − %|
t+ s+ w .e

−
|%− η|
t+ s+ w .e

−
|η − ϑ|
t+ s+ w

≥ e
−
|ξ − %|
t .e

−
|%− η|
s .e

−
|η − ϑ|
w

= Fr(ξ, %, t) ∗ Fr(%, η, s) ∗ Fr(η, ϑ, w).



Chapter 3

Fuzzy Rectangular b-Metric Space

Motivated by the notion of FRMS and FBMS, first the notion of fuzzy rectangular

b-metric space (FRBMS) is introduced in Section 3.1. A counter example shows

that FRBMS need not be a FRMS. In Section 3.2, BCP is established in FRBMS.

Fixed point theorem of Hicks and Rhoads [85] in the setting of FRBMS is establised

in Section 3.2. At the end of this section, an example is established that illustrates

Theorem 3.2.2. In Section 3.2.2, a fixed point result analogue to [28, Theorem 1]

is established in the setting of G-complete FRBMS. In Section 3.3, an application

related to main result is established and in the last section, a brief conclusion of

chapter is given.

3.1 Fuzzy Rectangular b-Metric Space

Following the notion of FBMS [78], we now generalize Definition 2.2.12 by intro-

ducing the idea of FRBMS:

Definition 3.1.1.

Let W be a nonempty set, ∗ be a continuous t-norm and Frb be a fuzzy set on

W ×W × [0,∞). A triplet (W,Frb, ∗) is said to be a FRBMS if there is b ≥ 1

and the fuzzy set Frb satisfies the following conditions for all ϑ, %, ϑ ∈ W and

t, s, w > 0,

29
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FRBM-1 Frb(ϑ, %, 0) = 0

FRBM-2 Frb(ξ, %, t) = 1 if and only if ξ = %

FRBM-3 Frb(ξ, %, t) = Frb(%, ξ, t)

FRBM-4 Frb(ξ, ϑ, b(t + s + w)) ≥ Frb(ξ, %, t) ∗ Frb(%, η, s) ∗ Frb(η, ϑ, w) for all

distinct %, η ∈ X \ {ξ, ϑ}

FRBM-5 Frb(ξ, %, .) : [0,∞)→ [0, 1] is left continuous and lim
t→∞

Frb(ξ, %, t) = 1.

Remark 3.1.2.

Taking b = 1, the above definition coincides with Definition 2.2.12 of FRMS.

A FRBMS can be induced by RBMS as shown in the following example.

Example 3.1.1.

Let (W,db) be a RBMS and define Frb : W ×W × [0,∞)→ [0, 1] by

Frb(ξ, %, t) =


t

t+ db(ξ, %)
if t > 0

0 if t = 0.

(3.1)

Choose continuous t-norm ∗ as a ∗ b = min{a, b}. Then Frb satisfies all the condi-

tions given in Definition 3.1.1. Infact, all properties follow immediately from (3.1)

and to prove FRBM-4, we proceed as follows:

Let ξ, %, ϑ ∈ W and t, s, w > 0. Without restraining the generality, assume that

Frb(ξ, %, t) ≤ Frb(%, η, s),

and

Frb(ξ, %, t) ≤ Frb(η, ϑ, w),

which implies that
t

t+ db(ξ, %)
≤ s

s+ db(%, η)

and
t

t+ db(ξ, %)
≤ w

w + db(η, ϑ)
.
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Hence we have

tdb(%, η) ≤ sdb(ξ, %),

and

tdb(η, ϑ) ≤ wdb(ξ, %)

⇒ (s+ w)db(ξ, %) ≥ t(db(%, η) + db(η, ϑ)). (3.2)

Note that

Frb(ξ, ϑ, b(t+ s+ w)) ≥ Frb(ξ, %, t)

⇔ b(t+ s+ w)

b(t+ s+ w) + db(ξ, ϑ)
≥ t

t+ db(ξ, %)

⇔ b(t+ s+ w)

b(t+ s+ w) + b[db(ξ, %) + db(%, η) + db(η, ϑ)]
≥ t

t+ db(ξ, %)

⇔ t+ s+ w

t+ s+ w + db(ξ, %) + db(%, η) + db(η, ϑ)
≥ t

t+ db(ξ, %)

⇔ (s+ w)db(ξ, %) ≥ t(db(%, η) + db(η, ϑ)),

which is the same as (3.2). Hence it follows that

Frb(ξ, ϑ, b(t+ s+ w)) ≥ Frb(ξ, %, t) ∗ Frb(%, η, s) ∗ Frb(η, ϑ, w).

Therefore, (W,Frb, ∗) is a FRBMS.

The following example shows that a FRBMS need not be a FRMS.

Example 3.1.2.

Let W = N and choose t-norm ∗ as a ∗ b = ab. Define a mapping Frb on W ×W ×

[0,∞) by

Frb(ξ, %, t) = e
−

(ξ − %)2

t

for all ξ, % ∈ W and t > 0. Then (W,Frb, ∗) is a FRBMS with coefficient b = 3

but it is not a FRMS.

The properties FRBM-1 to FRBM-3 and FRBM-5 of Definition 3.1 are obvious.

We prove only FRBM-4.
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Note that for all ξ, %, ϑ, η ∈ W , we have

(ξ − ϑ)2 = (ξ − %+ %− η + η − ϑ)2

⇒ (ξ − ϑ)2 ≤ 3
{

(ξ − %)2 + (%− η)2 + (η − ϑ)2
}
.

∀ t, s, w > 0, it follows that

Frb(ξ, ϑ, t+ s+ w) = e
−

(ξ − ϑ)2

t+ s+ w

≥ e
−

3 {(ξ − %)2 + (%− η)2 + (η − ϑ)2}
t+ s+ w

= e
−

3 {(ξ − %)2}
t+ s+ w .e

−
3 {(%− η)2}
t+ s+ w .e

−
3 {(η − ϑ)2}
t+ s+ w

≥ e
−

3 {(ξ − %)2}
t .e

−
3 {(%− η)2}

s .e
−

3 {(η − ϑ)2}
w

= e

−
{(ξ − %)2}

t

3 .e

−
{(%− η)2}

s

3 .e

−
{(η − ϑ)2}

w

3

= Frb

(
ξ, %,

t

3

)
∗ Frb

(
%, η,

s

3

)
∗ Frb

(
η, ϑ,

w

3

)
.

Hence (W,Frb, ∗) is a FRBMS and not a FRMS.

Remark 3.1.3.

It follows from the above example that the class of FRBMS is larger than the class

of FRMS.

Following Grabiec [94], the notion of G-convergent sequence, G-Cauchy sequence

and G-completeness in FRBMS naturally as follows:

Definition 3.1.4.

Let (W,Frb, ∗) be a FRBMS and let {ξn} in W be any sequence. Then

1. {ξn} is G-convergent sequence if there exits ξ ∈ W such that

lim
n→∞

Frb(ξn, ξ, t) = 1, ∀ t > 0.
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2. {ξn} in W is a G-Cauchy sequence if

lim
n→∞

Frb(ξn, ξn+q, t) = 1.

Following are the examples of Definition 3.1.4.

Example 3.1.3.

Let W = R. Define

Frb(ξ, %, t) =


t

t+ (ξ − %)2
if t > 0

0 if t = 0

∀ ξ, % ∈ W , then Frb is a G-complete FRBMS.

Let {ξn} =
1

n2
∀ n ∈ N be a sequence in W , then {ξn} converges to 0.

Now

lim
n→∞

Frb(ξn, 0, t) = lim
n→∞

t

t+ 1
n2

= 1.

Hence {ξn} is a G-convergent sequence

Example 3.1.4.

Consider again the FRBMS given in Example 3.1.3. Let the sequence {ξn} be

given by

ξn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
∀ n ∈ N.

Now for all q ∈ N, we have

Frb(ξn+q, ξn, t) =
t

t+ 1
(n+1)2

+ · · ·+ 1
(n+q)2

→ 1 as n→∞.

Hence {ξn} is a G-Cauchy sequence.
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3.2 Fixed Point Results in FRBMS

Before establishing the BCP in the setting of FRBMS, following [53], we need the

following useful property of a FRBMS.

Lemma 3.2.1.

Let (W,Frb, ∗) be a G-complete FRBMS and

Frb(ξ, %, kt) ≥ Frb (ξ, %, t)

for all ξ, % ∈ W, k ∈ (0, 1) and t > 0 then ξ = %.

The famous BCP [5] was established for FMS by Grabeic [94], following Grabeic,

we established this result in the setting of FRBMS as follows.

Theorem 3.2.2.

Let (W,Frb, ∗) be a G-complete FRBMS with b ≥ 1 and let Γ: W → W be a

mapping satisfying

Frb(Γξ,Γ%, kt) ≥ Frb(ξ, %, t) (3.3)

for all ξ, % ∈ W, k ∈
(

0,
1

b

)
. Then Γ has a unique fixed point.

Proof.

Fix an arbitrary point a0 ∈ W and for n = 0, 1, 2, · · · , start an iterative process

ar+1 = Γar.

Successively applying Inequality (3.3), we get for all n, t > 0,

Frb(ar, ar+1, t) ≥ Frb

(
a0, a1,

t

kr

)
. (3.4)

Since (W,Frb, ∗) is a FRBMS, so for the sequence {ar}, writing t =
t

3
+
t

3
+
t

3
and using the rectangular inequality given in FRBM-4 on Frb(ar, ar+p, t), one can

prove that

lim
r→∞

Frb(ar, ar+p, t) = 1 for all t > 0.
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In fact, the proof follows from the following two cases:

Case-1:

If p is odd say p = 2m+ 1 where m ∈ N, we have

Frb(ar,ar+2m+1, t)

≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+2m+1,

t

3b

)
≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+2m+1,

t

(3b)2

)
≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗

Frb

(
ar+5, ar+2m+1,

t

(3b)3

)
≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ · · · ∗ Frb

(
ar+2m, ar+2m+1,

t

(3b)m

)
.

Using the contraction (3.4) on the above inequality we get

Frb(ar, ar+2m+1, t)

≥ Frb

(
a0, a1,

t

3bkr

)
∗ Frb

(
a0, a1,

t

3bkr+1

)
∗ Frb

(
a0, a1,

t

(3b)2kr+2

)
∗

Frb

(
a0, a1,

t

(3b)2kr+3

)
∗ Frb

(
a0, a1,

t

(3b)3kr+4

)
∗ Frb

(
a0, a1,

t

(3b)3kr+5

)
∗ · · · ∗ Frb

(
a0, a1,

t

(3b)mkr+2m

)
≥ Frb

(
a0, a1,

t

(3b)kr

)
∗ Frb

(
a0, a1,

t

(3bk)kr

)
∗ Frb

(
a0, a1,

t

(3bk)2kr

)
∗ Frb

(
a0, a1,

t

(3bk)2kr+1

)
∗ Frb

(
a0, a1,

t

(3bk)3kr+1

)
∗ Frb

(
a0, a1,

t

(3bk)3kr+2

)
∗ · · · ∗ Frb

(
a0, a1,

t

(3bk)mkr+m

)
.
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Case-2:

If p is even say p = 2m; m ∈ N, then we have

Frb(ar, ar+2m, t)

≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+2m,

t

3b

)
≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗ Frb

(
ar+3, ar+4,

t

(3b)2

)
≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+2m,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ Frb

(
ar+5, ar+2m,

t

(3b)3

)

Frb(ar, ar+2m, t)

≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+2m,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ Frb

(
ar+5, ar+6,

t

(3b)3

)
∗ Frb

(
ar+6, ar+7,

t

(3b)4

)
∗ Frb

(
ar+7, ar+2m,

t

(3b)4

)

Frb(ar, ar+2m, t)

≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ Frb

(
ar+5, ar+6,

t

(3b)3

)
∗ Frb

(
ar+6, ar+7,

t

(3b)4

)
∗ Frb

(
ar+7, ar+8,

t

(3b)4

)
∗ · · · ∗

Frb

(
ar+2m−4, ar+2m−3,

t

(3b)m−1

)
∗ Frb

(
ar+2m−3, ar+2m−2,

t

(3b)m−1

)
∗

Frb

(
ar+2m−2, ar+2m,

t

(3b)m−1

)
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Frb(ar, ar+2m, t)

≥ Frb

(
a0, a1,

t

3bkr

)
∗ Frb

(
a0, a1,

t

3bkr+1

)
∗ Frb

(
a0, a1,

t

(3b)2kr+2

)
∗

Frb

(
a0, a1,

t

(3b)2kr+3

)
∗ Frb

(
a0, a1,

t

(3b)3kr+4

)
∗ Frb

(
a0, a1,

t

(3b)3kr+5

)
∗ Frb

(
a0, a1,

t

(3b)4kr+6

)
∗ Frb

(
a0, a1,

t

(3b)4kr+7

)
∗ · · · ∗

Frb

(
a0, a2,

t

(3b)m−1kn+2m−2

)
≥ Frb

(
a0, a1,

t

(3b)kr

)
∗ Frb

(
a0, a1,

t

(3bk)kr

)
∗ Frb

(
a0, a1,

t

(3bk)2kr

)
∗

Frb

(
a0, a1,

t

(3bk)2kr+1

)
∗ Frb

(
a0, a1,

t

(3bk)3kr+1

)
∗ Frb

(
a0, a1,

t

(3bk)3kr+2

)
∗ · · · ∗ Frb

(
a0, a2,

t

(3bk)m−1kr+m−1

)

Therefore, from Case 1 and Case 2, together with FRBM-5 it follows that for all

p ∈ N, we have

lim
r→∞

Frb(ar, ar+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1

= 1.

So {ar} is a G-Cauchy sequence and by the G-completeness of (W,Frb, ∗), {ar} is

also convergent sequence. That is, there exists ϑ ∈ W such that

lim
r→∞

ar = ϑ.

We now show that ϑ is a fixed point of Γ.

Frb(ϑ,Γϑ, t) ≥ Frb

(
ϑ, ar,

t

3b

)
∗ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1,Γϑ,

t

3b

)
≥ Frb

(
ϑ, ar,

t

3b

)
∗ Frb

(
Γar−1,Γar,

t

3b

)
∗ Frb

(
Γar,Γϑ,

t

3b

)
≥ Frb

(
ϑ, ar,

t

3b

)
∗ Frb

(
ar−1, ar,

t

3bk

)
∗ Frb

(
ar, ϑ,

t

3bk

)
−→ 1 ∗ 1 ∗ 1 = 1 as r →∞,
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which shows that Γϑ = ϑ is a fixed point.

Uniqueness:

To prove the uniqueness, take another fixed point η of Γ i.e; Γη = η.

Now

Frb(η, ϑ, t) = Frb(Γη,Γϑ, t)

≥ Frb

(
η, ϑ,

t

k

)
= Frb

(
Γη,Γϑ,

t

k

)
≥ Frb

(
η, ϑ,

t

k2

)
≥ Frb

(
η, ϑ,

t

k3

)
...

≥ Frb

(
η, ϑ,

t

kr−1

)
≥ Frb

(
η, ϑ,

t

kr

)
−→ 1 as r −→∞.

Thus ϑ = η. Hence the fixed point is unique.

Corollary 3.2.3. (Banach Contraction Theorem in FRMS)

Let (W,Fr, ∗) be a G-complete FRMS. Let Γ: W → W be a mapping satisfying

Fr(Γξ,Γ%, kt) ≥ Fr(ξ, %, t)

for all ξ, % ∈ W, 0 < k < 1. Then Γ has a unique fixed point.

Proof.

The result can be proved by taking b = 1 in Theorem 3.2.2.

Remark 3.2.4.

As every FMS is also FRBMS so the result of [51] follows from Theorem 3.2.2.

Theorem 3.2.2 is illustrated by the following example.
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Example 3.2.1.

Let W = [0, 1] and define Frb : W ×W × [0,∞)→ [0, 1] by

Frb(ξ, %, t) =

e
− (ξ−%)2

t if t > 0

0 if t = 0.

Same as in Example 3.1.2, (W,Frb, ∗) is a G-complete FRBMS with the coefficient

b = 3. Let k ∈ (0, 1) and define Γ : W → W by

Γ(ξ) =
√
kξ.

Now for all t > 0 we have

Frb(Γξ,Γ%, kt) = Frb(
√
kξ,
√
k%, kt)

= e
−

(
√
kξ −

√
k%)2

kt

= e
−

(ξ − %)2

t

= Frb(ξ, %, t).

Since all the requirements of Theorem 3.2.2 are met so ξ = 0 ∈ [0, 1] is a unique

fixed point of Γ.

3.2.1 Contractive Type Mapping in FRBMS

In this section, the notion of Γ-orbitally upper semi continuous function in FRBMS

is introduced and established the fixed point theorem of Hicks and Rhoades [85]

in the setting of FRBMS.

The following definitions are useful for the construction of the main result.

Definition 3.2.5.

Let Γ: W → W a mapping and ξ ∈ W , the orbit of ξ with respect to Γ is defined

as the following sequence of points OΓ(ξ) = {ξ,Γξ,Γ2ξ, . . .} .
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Example 3.2.2.

Take W = [−2, 2]× [−2, 2] and define Γ: W → W by

Γa = Γ(ξ, %) =


(
ξ

2
,
%

2

)
if ξ, % ≥ 0

(2, 0) otherwise .

Clearly Γ is discontinuous at (0, 0) ∈ W .

Taking a = (ξ, %) ∈ W such that 0 < ξ, % < 1,

Γ(a) =

(
ξ

2
,
%

2

)
=
a

2

Γ2(a) = Γ(Γ(a))

= Γ

(
ξ

2
,
%

2

)
=

(
ξ

4
,
%

4

)
=
a

4

Γ3(a) = Γ(Γ2(a))

= Γ

(
ξ

4
,
%

4

)
=

(
ξ

8
,
%

8

)
=
a

8

Similarly

Γ4(a) =
a

16

then

OΓ(a) =
{
a,
a

2
,
a

4
, . . .

}
.
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Definition 3.2.6.

Let Γ: W → W be a self mapping and for ξ0 ∈ W,

OΓ(ξ0) = {ξ0, Γξ0, Γ2ξ0, · · · }

be the orbit of ξ0. A function F : W → [0, 1] is said to be Γ-orbitally upper semi

continuous at % ∈ W if for any {ξn} ⊂ OΓ(ξ0) and ξn → %,

⇒ F (%) ≥ lim sup
n→∞

F (ξn).

The next example demonstrate the above definition.

Example 3.2.3.

Consider the set W = [0, 2]. Let the self map Γ defined on W by

Γξ =
1

2
ξ2.

Choose an element ξ0 =
1

2
in W , then we have

OΓ(ξ0) = OΓ

(
1

2

)
=

{
1

2
,

1

23
,

1

27
, . . .

}
.

Clearly, for any sequence {ξn} ⊂ OΓ(1
2
), we have ξn → 0.

Consider a function F : W → [0, 1] given by

F (ξ) =

1 if ξ = 0√
2ξ − ξ2 if 0 < ξ ≤ 2.

Now F (0) = 1 and ξn → % = 0,

implies that

F (0) = 1 > 0 = lim sup
n→∞

F (ξn)

= lim sup
n→∞

√
2ξn − ξ2

n.
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It follows that F is Γ-orbitally upper semi-continuous at % = 0.

Below is the fixed point theorem of Hicks and Rhoads [85] in the setting of FRBMS.

Theorem 3.2.7.

Let (W,Frb, ∗) be a G-complete FRBMS. Let Γ: W → W be a mapping and there

exists a0 ∈ W such that

Frb(Γξ,Γ
2ξ, kt) ≥ Frb(ξ,Γξ, t) (3.5)

for each ξ ∈ OΓ(a0), where k ∈ (0,
1

3b
). Then Γra0 → a ∈ W .

Furthermore a will be fixed point of Γ if and only if

F (ξ) = Frb(ξ,Γξ, t)

is Γ-orbitally upper semi continuous at a0.

Proof.

For a0 ∈ W , we define an iterative scheme {ar} by

ar = Γra0.

With a1 = Γa0 and successive application of (3.5) we get

Frb(Γ
ra0,Γ

r+1a0, kt) = Frb(ar, ar+1, kt)

≥ Frb

(
ar−1, ar,

t

k

)
.

...

≥ Frb

(
a0, a1,

t

kr

)
(3.6)

For any p ∈ N, we have

Frb(Γ
ra0,Γ

r+pa0, t) = Frb(ar, ar+p, t).
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As in the proof of Theorem 3.2.2, starting with Frb(ar, ar+p, t) together with (3.6)

we get for all p ∈ N

lim
r→∞

Frb(Γ
ra0,Γ

r+pa0, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1

= 1.

So {Γra0} is G-Cauchy sequence and by the G-completeness of (W,Frb, ∗), {Γra0}

is also convergent sequence. That is, there is a point a ∈ W such that

ar = Γra0 → a ∈ W.

Suppose that that F is upper semi continuous at a ∈ W then

Frb(a,Γa, t) ≥ lim
r→∞

supFrb(Γ
ra0,Γ

r+1a0, t)

≥ lim
r→∞

supFrb

(
Γr−1a0,Γ

ra0,
t

k

)
...

≥ lim
r→∞

supFrb

(
a0, a1,

t

kr

)
→ 1.

So, we have

a = Γa.

Conversely, suppose a = Γa and ξ ∈ OΓ(ξ) with ar → a, then

F (a) =Frb(a,Γa, t)

= 1

≥ lim
r→∞

supF (ar)

= Frb(Γ
ra0,Γ

r+1a0, t).

The following corollary becomes an immediate consequence of Theorem 3.2.7 by

setting b = 1.
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Corollary 3.2.8.

Let (W,Fr, ∗) be a G-complete FRMS. Let Γ: W → W be a mapping satisfying

Fr(Γξ,Γ
2ξ, kt) ≥ Fr(ξ,Γξ, t) (3.7)

for each ξ ∈ OΓ(a0) for a0 ∈ W and 0 < k < 1. Here ar = Γra0 (r ∈ N), then

Γra0 → ξ ∈ W .

Furthermore ξ will be fixed point of Γ if and only if F (ξ) = Fr(ξ,Γξ, t) is Γ-orbitally

upper semi continuous at ξ.

3.2.2 Geraghty Type Contraction

Following [28], for a real number b > 1, let Fb denotes the class of all functions

β : [0,∞)→ [0, 1
b
) satisfying the following condition:

lim sup
n→∞

β(tn) =
1

b
implies lim

n→∞
tn = 0

In the fuzzy setting, the class of Geraghty-type contraction is modified as follows:

Fb =

{
β : [0,∞)→ [0,

1

b
); lim sup

n→∞
β(tn) =

1

b
implies lim

n→∞
tn = 1

}
(3.8)

A fixed point result, analogue to [28, Theorem 1], is established in the setting of

G-complete FRBMS.

Theorem 3.2.9.

Let (W,Frb, ∗) be a G-complete FRBMS with b ≥ 1 and Γ: W → W be a mapping

satisfying Frb(Γξ,Γ%, β(Frb(ξ, %, t))t) ≥ δ(ξ, %, t) ∀ ξ, % ∈ W and for some β ∈ Fb,

where

δ(ξ, %, t) = min

{
Frb(ξ,Γ%, t) [1 + Frb(%,Γ%, t)]

1 + Frb(Tξ,Γ%, t)
,
Frb(%,Γ%, t) [1 + Frb(ξ,Γξ, t)]

1 + Frb(ξ, %, t)
,

Frb(ξ,Γξ, t) [2 + Frb(ξ,Γ%, t)]

1 + Frb(ξ,Γ%, t) + Frb(%,Γξ, t)
, Frb(ξ, %, t)

}
.

Then Γ has a unique fixed point.
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Proof.

For any arbitrary point a0 ∈ W , we choose a sequence {ar} in W .

Start with iterative process ar+1 = Γar.

For all r, t > 0, we have

Frb(ar, ar+1, t) = Frb(Γar−1,Γar, t) ≥ δ

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)
. (3.9)

Now,

δ

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)

= min

{Frb(ar−1,Γar−1,
t

β(Frb(ar−1, ar, t))
)

[
1 + Frb(ar,Γar,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(Γar−1,Γar,

t

β(Frb(ar−1, ar, t))
)

,

Frb(ar,Γar,
t

β(Frb(ar−1, ar, t))
)

[
1 + Frb(ar−1,Γar−1,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar−1, ar,

t

β(Frb(ar−1, ar, t))
)

,

Frb(ar−1,Γar−1,
t

β(Frb(ar−1, ar, t))
)

[
2 + Frb(ar−1,Γar,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar−1,Γar,

t

β(Frb(ar−1, ar, t))
) + Frb(ar,Γar−1,

t

β(Frb(ar−1, ar, t))
)
,

Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

}
.

= min

{Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

[
1 + Frb(ar, ar+1,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar, ar+1,

t

β(Frb(ar−1, ar, t))
)

,

Frb(ar, ar+1,
t

β(Frb(ar−1, ar, t))
)

[
1 + Frb(ar−1, ar,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar−1, ar,

t

β(Frb(ar−1, ar, t))
)

,

Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

[
2 + Frb(ar−1, ar+1,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar−1, ar+1,

t

β(Frb(ar−1, ar, t))
) + Frb(ar, ar,

t

β(Frb(ar−1, ar, t))
)
,

Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

}
.
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δ

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)

= min

{Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

[
1 + Frb(ar, ar+1,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar, ar+1,

t

β(Frb(ar−1, ar, t))
)

,

Frb(ar, ar+1,
t

β(Frb(ar−1, ar, t))
)

[
1 + Frb(ar−1, ar,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar−1, ar,

t

β(Frb(ar−1, ar, t))
)

,

Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

[
2 + Frb(ar−1, ar+1,

t

β(Frb(ar−1, ar, t))
)

]
1 + Frb(ar−1, ar+1,

t

β(Frb(ar−1, ar, t))
) + 1

,

Frb(ar−1, ar,
t

β(Frb(ar−1, ar, t))
)

}
.

= min

{
Frb

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)
, Frb

(
ar, ar+1,

t

β(Frb(ar−1, ar, t))

)}
(3.10)

If

min

{
Frb

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)
, Frb

(
ar, ar+1,

t

β(Frb(ar, ar+1, t))

)}

= Frb

(
ar, ar+1,

t

β(Frb(ar−1, ar, t))

)
,

then from (3.10),

Frb(ar, ar+1, t) ≥ Frb

(
ar, ar+1,

t

β(Frb(ar−1, ar, t))

)
.

Since β ∈ Fb, so by Lemma 3.2.1, there is nothing to prove .

If

min

{
Frb

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)
,Frb

(
ar, ar+1,

t

β(Frb(ar−1, ar, t))

)}

= Frb

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)
,
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then from (3.10),

Frb(ar, ar+1, t) ≥ Frb

(
ar−1, ar,

t

β(Frb(ar−1, ar, t))

)
.

Continuing in this way, it follows that

Frb(ar,ar+1, t)

≥ Frb

(
a0, a1,

t

β(Frb(ar−1, ar, t). · · · β(Frb(a0, a1, t)

)
. (3.11)

Since (X,Frb, ∗) is a FRBMS, for the sequence {ar}, writing

t =
t

3
+
t

3
+
t

3

and using the rectangular inequality given in FRBM-4, on Frb(ar, ar+p, t) in the

following two cases.

Case-1:

If p is odd say p = 2m+ 1 where m ∈ N, we have

Frb(ar, ar+2m+1, t)

≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗ Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ Frb

(
ar+5, ar+6,

t

(3b)3

)
∗ Frb

(
ar+6, ar+7,

t

(3b)4

)
∗ Frb

(
ar+7, ar+8,

t

(3b)4

)
∗ Frb

(
ar+8, ar+9,

t

(3b)5

)
∗ Frb

(
ar+9, ar+10,

t

(3b)5

)
∗ Frb

(
ar+10, ar+11,

t

(3b)6

)
∗ Frb

(
ar+11, ar+12,

t

(3b)6

)
...

∗ Frb
(
ar+2m−1, ar+2m,

t

(3b)m

)
∗ Frb

(
ar+2m, ar+2m+1,

t

(3b)m

)
.
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Using the contraction (3.11) on the above inequality the following will be obtained.

Frb(ar,ar+2m+1, t)

≥ Frb

(
a0, a1,

t

3bβ(Frb(ar−1, ar, t) · · · β(Frb(a0, a1, t)

)
∗ Frb

(
a0, a1,

t

3bβ(Frb(ar, ar+1, t) · · · β(Frb(a0, a1, t)

)
∗ Frb

(
a0, a1,

t

(3b)2β(Frb(ar+1, ar+2, t) · · · β(Frb(a0, a1, t)

)
∗ Frb

(
a0, a1,

t

(3b)2β(Frb(ar+2, ar+3, t) · · · β(Frb(a0, a1, t)

)
∗ Frb

(
a0, a1,

t

(3b)3β(Frb(ar+3, ar+4, t) · · · β(Frb(a0, a1, t)

)
∗ Frb

(
a0, a1,

t

(3b)3β(Frb(ar+4, ar+5, t) · · · β(Frb(a0, a1, t)

)
∗ Frb

(
a0, a1,

t

(3b)4β(Frb(ar+5, ar+6, t) · · · β(Frb(a0, a1, t)

)
∗ · · · ∗ Frb

(
a0, a1,

t

(3b)mβ(Frb(ar+2m−1, ar+2m, t) · · · β(Frb(a0, a1, t)

)
≥ Frb

(
a0, a1,

t

(3b) 1
br

)
∗ Frb

(
a0, a1,

t

(3b) 1
br+1

)
∗ Frb

(
a0, a1,

t

(3b)2 1
br+2

)
∗ Frb

(
a0, a1,

t

(3b)2 1
br+3

)
∗ Frb

(
a0, a1,

t

(3b)3 1
br+4

)
∗ Frb

(
a0, a1,

t

(3b)3 1
br+5

)
∗ Frb

(
a0, a1,

t

(3b)4 1
br+6

)
∗ Frb

(
a0, a1,

t

(3b)4 1
br+7

)

∗ Frb

a0, a1,
t

(3b)5
1

br+8

 ∗ · · · ∗ Frb

a0, a1,
t

(3b)m
1

br+2m−1

 .

≥ Frb

(
a0, a1,

brt

(3b)

)
∗ Frb

(
a0, a1,

br+1t

(3b)

)
∗ Frb

(
a0, a1,

br+2t

(3b)2

)
∗

Frb

(
a0, a1,

br+3t

(3b)2

)
∗ Frb

(
a0, a1,

br+4t

(3b)3

)
∗ Frb

(
a0, a1,

br+5t

(3b)3

)
Frb

(
a0, a1,

br+3t

(3b)4

)
∗ Frb

(
a0, a1,

br+6t

(3b)4

)
∗ Frb

(
a0, a1,

br+7t

(3b)5

)
Frb

(
a0, a1,

br+8t

(3b)5

)
∗ Frb

(
a0, a1,

br+9t

(3b)6

)
∗ Frb

(
a0, a1,

br+10t

(3b)6

)
∗ Frb

(
a0, a1,

br+11t

(3b)7

)
∗ · · · ∗ Frb

(
a0, a1,

br+2m−1t

(3b)m

)
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Frb(ar, ar+2m+1, t) ≥ Frb

(
a0, a1,

br−1t

3

)
∗ Frb

(
a0, a1,

brt

3

)
∗ Frb

(
a0, a1,

brt

(3)2

)
∗

Frb

(
a0, a1,

br+1t

(3)2

)
∗ Frb

(
a0, a1,

br+1t

(3)3

)
∗ Frb

(
a0, a1,

br+2t

(3)3

)
∗ Frb

(
a0, a1,

br+2t

(3)4

)
∗ · · · ∗ Frb

(
a0, a1,

br+m−1t

(3)m

)
.

Case-2:

If p is even say p = 2m; m ∈ N, then we have

Frb(ar, ar+2m, t)

≥ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, ar+2,

t

3b

)
∗ Frb

(
ar+2, ar+3,

t

(3b)2

)
∗

Frb

(
ar+3, ar+4,

t

(3b)2

)
∗ Frb

(
ar+4, ar+5,

t

(3b)3

)
∗ Frb

(
ar+5, ar+6,

t

(3b)3

)
∗

Frb

(
ar+6, ar+7,

t

(3b)4

)
∗ · · · ∗ Frb

(
ar+2m−4, ar+2m−3,

t

(3b)m−1

)
∗

Frb

(
ar+2m−3, ar+2m−1,

t

(3b)m−1

)
∗ Frb

(
ar+2m−2, ar+2m,

t

(3b)m−1

)
≥ Frb

(
a0, a1,

t

3bβ(Frb(ar−1, ar, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

3bβ(Frb(ar, ar+1, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)2β(Frb(ar+1, ar+2, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)2β(Frb(ar+2, ar+3, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)3β(Frb(ar+3, ar+4, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)3β(Frb(ar+4, ar+5, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)4β(Frb(ar+5, ar+6, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)4β(Frb(ar+6, ar+7, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)5β(Frb(ar+7, ar+8, t) · · · β(Frb(a0, a1, t)

)
∗

Frb

(
a0, a1,

t

(3b)5β(Frb(ar+8, ar+9, t) · · · β(Frb(a0, a1, t)

)
∗ · · · ∗

Frb

(
a0, a2,

t

(3b)m−1β(Frb(ar+2m−1, ar+2m−3, t) · · · β(Frb(a0, a1, t)

)
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Frb(ar, ar+2m, t)

≥ Frb

a0, a1,
t

3b
1

br−1

 ∗ Frb
a0, a1,

t

3b
1

br

 ∗ Frb
a0, a1,

t

(3b)2
1

br+1


∗ Frb

a0, a1,
t

(3b)2
1

br+2

 ∗ Frb
a0, a1,

t

(3b)3
1

br+3

 ∗ Frb
a0, a1,

t

(3b)3
1

br+4


∗ · · · ∗ Frb

a0, a2,
t

(3b)m−1
1

br+m−3


≥ Frb

(
a0, a1,

br−1t

(3b)

)
∗ Frb

(
a0, a1,

brt

(3b)

)
∗ Frb

(
a0, a1,

br+1t

(3b)2

)
∗ Frb

(
a0, a1,

br+2t

(3b)2

)
∗ Frb

(
a0, a1,

br+3t

(3b)3

)
∗ · · · ∗ Frb

(
a0, a2,

bn+2m−2t

(3b)m−1

)
≥ Frb

(
a0, a1,

br−2t

3

)
∗ Frb

(
a0, a1,

br−1t

3

)
∗ Frb

(
a0, a1,

br−1t

(3)2

)
∗ Frb

(
a0, a1,

brt

(3)2

)
∗ Frb

(
a0, a1,

brt

(3)3

)
∗ Frb

(
a0, a1,

br+1t

(3)3

)
∗ · · · ∗ Frb

(
a0, a2,

bn+m−3t

(3)m−1

)
.

Therefore, from Case-1 and Case-2 together with FRBM-5, it follows that for all

p ∈ N, we have

lim
r→∞

Frb(ar, ar+p, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1

= 1.

This shows that {ar} is G-Cauchy sequence. Since (W,Frb, ∗) is a G-complete

FRBMS so there exists ϑ ∈ W such that

lim
r→∞

ar = ϑ.

We now show that ϑ is fixed point of Γ.

Frb(ϑ,Γϑ, t) ≥ Frb

(
ϑ, ar,

t

3b

)
∗ Frb

(
ar, ar+1,

t

3b

)
∗ Frb

(
ar+1, Tϑ,

t

3b

)
.
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Using ar = Γar−1, we get

Frb(ϑ,Γϑ, t)

≥ Frb

(
ϑ, ar,

t

3b

)
∗ Frb

(
Γar−1,Γar,

t

3b

)
∗ Frb

(
Γar,Tu,

t

3b

)
≥ Frb

(
u, ar,

t

3b

)
∗ Frb

(
ar−1, ar,

t

3bβ(Frb(ar−1, ar, t)

)
∗

Frb

(
ar, ϑ,

t

3bβ(Frb(ar, ϑ, t)

)
−→ 1 ∗ 1 ∗ 1 = 1 as r →∞.

Which shows that Γϑ = ϑ is a fixed point.

Uniqueness:

Let η be another fixed point of Γ such that

Γη = η

for some η ∈ W , then

Frb(η, ϑ, t) = Frb(Γη,Γϑ, t)

≥ Frb

(
η, ϑ,

t

β(Frb(η, ϑ, t)

)
= Frb

(
Γη,Γϑ,

t

β(Frb(η, ϑ, t)

)
≥ Frb

(
η, ϑ,

t

(β(Frb(η, ϑ, t)))2

)
...

≥ Frb

(
η, ϑ,

t

(β(Frb(η, ϑ, t)))r

)
= Frb (η, ϑ, brt)

−→ 1 as r −→∞

Thus ϑ = η. Hence the fixed point is unique.

Following is the immediate consequence of the Theorem 3.2.9.
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Corollary 3.2.10.

Let (W,Fr, ∗) be a G-complete FRMS and let Γ: W → W be a mapping satisfying

Fr(Γξ,Γ%, β(Fr(ξ, %, t))t) ≥ δ(ξ, %, t),

for all ξ, % ∈ W and for some β ∈ Fb,

where

δ(ξ, %, t) = min

{
Fr(ξ,Γξ, t) [1 + Fr(%,Γ%, t)]

1 + Fr(Γξ,Γ%, t)
,
Fr(%,Γ%, t) [1 + Fr(ξ,Γξ, t)]

1 + Fr(ξ, %, t)
,

Fr(ξ,Γξ, t) [2 + Fr(ξ,Γ%, t)]

1 + Fr(ξ,Γ%, t) + Fr(%,Γξ, t)
, Fr(ξ, %, t)

}
.

Then Γ has a unique fixed point.

Proof. The result follows from Theorem 3.2.10 by taking b = 1.

Remark 3.2.11.

The same result can be obtained in FRMS by taking b = 1 in Theorem 3.2.10.

3.3 Application

Fixed point theorems for operators in (ordered) metric spaces are widely inves-

tigated and have found various applications in differential and integral equations

(see [102, 103] and references therein). Inspired by Mishra et al. [104], an appli-

cation of main fixed point result stated in Theorem 3.2.2 is presented here.

In particular, we show the existence of the solution of an integral equation of the

form

ξ(s) = g(s) +

∫ s

0

F (s, r, ξ(r))dr, (3.12)

∀ s ∈ [0, a] where a > 0.

Let the space of all continuous functions defined on [0, a] is C([0, a],R) equipped

with the product t-norm a ∗ b = ab for all a, b ∈ [0, 1] and define the G-complete
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fuzzy rectangular b-metric on C([0, a],R) by

Frb(ξ, %, t) = e
−

sup
s∈[0,a]

|ξ(s)− %(s)|2

t ,

for all t > 0 and ξ, % ∈ C([0, a],R).

The following theorem proves the existence of a solution of the integral equation

(3.12).

Theorem 3.3.1.

Let Γ : C([0, a],R)→ C([0, a],R) be the integral operator given by

Γ(ξ(s)) = g(s) +

∫ s

0

F (s, r, ξ(r))dr, g ∈ C([0, a],R),

where F ∈ C([0, a]× [0, a]× R, R) satisfies the following condition:

(i) there exists f : [0, a]× [0, a]→ [0,+∞] such that

for all r, s ∈ [0, a], f(s, r) ∈ L1([0, a],R)

(ii) ∀ ξ, % ∈ C([0, a],R), we have

|F (s, r, ξ(r))− F (s, r, %(r))|2 ≤ f 2(s, r)|ξ(r)− %(r)|2,

where

sup
s∈[0,a]

∫ s

0

f 2(s, r)dr ≤ k < 1.

Then the integral equation has the solution ξ∗ ∈ C([0, a],R).

Proof.

For all ξ, % ∈ C([0, a],R), we have

Frb(Γ(ξ(s)),Γ(%(s)), kt) = e
−

sup
s∈[0,a]

|Γ(ξ(s))− Γ(%(s))|2

kt
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Frb(Γ(ξ(s)),Γ(%(s)), kt) ≥ e
−

sup
s∈[0,a]

∫ s

0

|F (s, r, ξ(r))− F (s, r, %(r))|2dr

kt

≥ e
−

sup
s∈[0,a]

∫ s

0

f 2(s, r)|ξ(r)− %(r)|2dr

kt

≥ e
−

|ξ(r)− %(r)|2 sup
s∈[0,a]

∫ s

0

f 2(s, r)dr

kt

≥ e
−
k|ξ(r)− %(r)|2

kt

= e
−
|ξ(r)− %(r)|2

t

≥ e
−

sup
r∈[0,a]

|ξ(r)− %(r)|2

t

= Frb(ξ, %, t).

Hence ξ∗ ∈ C([0, a],R) is a fixed point of Γ, which is the solution of integral

equation (3.12).

3.4 Conclusion

In the present Chapter, the famous BCP for FRBMS have been proved and illus-

trated by an example. In this way, the main result of Grabeic [51] becomes the

special case of Theorem 3.2.2. Moreover, by restricting the contraction mapping

to the elements in the orbit of a point in FRBMS, an analogue of the fixed point

theorem of Hicks and Rhoads [85] have also been proved in the setting of FRBMS.

By studying the Geragthy-type contraction in FRBMS, the result of [28] is also

established. To support these results an application is presented in the end of

the chapter. Thus these results are more general than the existing results in the

fuzzy set theory. Fuzzy set theory has been found to be useful not only in decision

making problems arising in physical and social sciences but also has application

in multi-attribute decision making. For a combined study of fuzzy set theory and
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rough set theory and its application in making an optimal decision see the recent

work presented in [105–108] and the references therein. The structure of a FMS

might also be useful to solve fixed point problems related to some sort of distance

between the programs to measure, for instance, the complexity of an algorithm.

The results of this chapter are published in [86].



Chapter 4

Extended Fuzzy b-Metric Space

The work presented is infact an extension of the ideas of EBMS (Definition 2.1.2)

and FBMS (Definition 2.2.10 ) and related results. In this chapter, the notion of

EFBMS was introduced and illustrated by an example. The well known BCP and

the fixed point results of [52] are proved in the setting of EFBMS. The main result

of this chapter is illustrated by an example. Moreover the results of [28, 53, 87, 88]

are extended in the setting of EFBMS in Section 4.2. For the published form of

this chapter see [87].

4.1 Extended Fuzzy b-Metric Space

Using the idea of Kamran et al. [30], the notion of EFBMS is defined as follows:

Definition 4.1.1.

Let W be a non empty set, α is a mapping on W ×W in to [1,∞) and ∗ be a

continuous t-norm. A fuzzy set Fα on W ×W × [0,∞) is called extended fuzzy

b-metric on W if for all ξ, %, ϑ ∈ W , the following conditions hold.

EFBM1 : Fα(ξ, %, 0) = 0

EFBM2 : Fα(ξ, %, t) = 1,∀ t > 0 ⇐⇒ ξ = %

EFBM3 : Fα(ξ, %, t) = Fα(%, ξ, t)

56
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EFBM4 : Fα(ξ, ϑ, α(ξ, ϑ)(t+ s)) ≥ Fα(ξ, %, t) ∗ Fα(%, ϑ, s) ∀ t, s ≥ 0

EFBM5 : Fα(ξ, %, .) : [0,∞)→ [0, 1] is left continuous, and lim
t→∞

Fα(ξ, %, t) = 1.

Then (W,Fα, ∗) is an EFBMS.

Remark 4.1.2.

Setting α(ξ, %) = b for some b ≥ 1 then Definition 2.2.10 becomes a special case of

the above definition of EFBMS. That is, every EFBMS is a FBMS with α(ξ, %) = b

and is a FMS when α(ξ, %) = 1 for all ξ, % in W ×W.

The following example illustrates Definition 4.1.1.

Example 4.1.1.

Let W = {1, 2, 3} and define dα : W ×W → R by

dα(ξ, %) = (ξ − %)2.

Then (X, dα) is an EBMS.

Define a mapping α : W ×W → [1,∞) by

α(ξ, %) = 1 + ξ + %

Let Fα : W ×W × [0,∞)→ [0, 1] be defined by

Fα(ξ, %, t) =


t

t+ dα(ξ, %)
if t > 0

0 if t = 0,

and take the continuous t-norm ∗ = ∧, that is, t1 ∗ t2 = t1 ∧ t2 = min{t1, t2}.

To show that (X,Fα,∧) is a EFBMS. Note that,

dα(1, 1) = dα(2, 2) = dα(3, 3) = 0

dα(1, 2) = dα(2, 1) = 1,
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dα(2, 3) = d(3, 2) = 1,

dα(1, 3) = dα(3, 1) = 4.

Also

α(1, 1) = 3, α(2, 2) = 5, α(3, 3) = 7

α(1, 2) = α(2, 1) = 4,

α(2, 3) = α(3, 2) = 6,

α(1, 3) = α(3, 1) = 5.

To prove that (W,Fα,∧) is an EFBMS, the conditions EFBM1, EFBM2, EFBM3

and EFBM5 of Definition 4.1.1 are trivially true. To prove the property EFBM4

for all ξ, % ∈ W , first note that

Fα(ξ, ϑ, α(ξ, ϑ)(t+ s)) =
α(ξ, ϑ)(t+ s)

α(ξ, ϑ)(t+ s) + d(ξ, ϑ)
.

For ξ = 1, ϑ = 2

Fα(1, 2, α(1, 2)(t+ s)) =
α(1, 2)(t+ s)

α(1, 2)(t+ s) + d(1, 2)

=
4(t+ s)

4(t+ s) + 1

= 1− 1

4(t+ s) + 1

Fα(1, 3, t) =
t

t+ d(1, 3)

=
t

t+ 4
= 1− 4

t+ 4

and

Fα(3, 2, s) =
s

s+ d(3, 2)

=
s

s+ 1
= 1− 1

s+ 1
.
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We have, for all t, s > 0,

16(t+ s) + 4 > t+ 4

1

16(t+ s) + 4
<

1

t+ 4
4

16(t+ s) + 4
<

4

t+ 4
−1

4(t+ s) + 1
>
−4

t+ 4

1− 1

4(t+ s) + 1
> 1− 4

t+ 4

and

4(t+ s) + 1 > s+ 1

1

4(t+ s) + 1
<

1

s+ 1

− 1

4(t+ s) + 1
> − 1

s+ 1

1− 1

4(t+ s) + 1
> 1− 1

s+ 1
.

It, therefore, follows that

Fα(1, 2, α(1, 2)(t+ s)) ≥ min{Fα(1, 3, t), Fα(3, 2, s)}

⇒ Fα(1, 2, α(1, 2)(t+ s)) ≥ Fα(1, 3, t) ∗ Fα(3, 2, s).

For ξ = 2, ϑ = 3

Fα(2, 3, α(2, 3)(t+ s)) =
α(2, 3)(t+ s)

α(2, 3)(t+ s) + d(2, 3)

=
6(t+ s)

6(t+ s) + 1

= 1− 1

6(t+ s) + 1

Fα(2, 1, t) =
t

t+ d(2, 1)

Fα(2, 1, t) =
t

t+ 1
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Fα(2, 1, t) = 1− 1

t+ 1
,

and

Fα(1, 3, s) =
s

s+ d(1, 3)

=
s

s+ 4
= 1− 4

s+ 4
.

Again for all t, s > 0,

24(t+ s) + 4 > s+ 4

1

24(t+ s) + 4
<

1

s+ 4
4

24(t+ s) + 4
<

4

s+ 4
−1

6(t+ s) + 1
>
−4

t+ 4

1− 1

6(t+ s) + 1
> 1− 4

t+ 4

and

6(t+ s) + 1 > t+ 1

1

6(t+ s) + 1
<

1

t+ 1

− 1

6(t+ s) + 1
> − 1

t+ 1

1− 1

6(t+ s) + 1
> 1− 1

t+ 1
.

Hence

Fα(2, 3, α(2, 3)(t+ s)) ≥ min{Fα(2, 1, t), Fα(1, 3, s)}

⇒ Fα(2, 3, α(2, 3)(t+ s)) ≥ Fα(2, 1, t) ∗ Fα(1, 3, s).

For ξ = 1, ϑ = 3

Fα(1, 3, α(1, 3)(t+ s)) =
α(1, 3)(t+ s)

α(1, 3)(t+ s) + d(1, 3)
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Fα(1, 3, α(1, 3)(t+ s)) =
5(t+ s)

5(t+ s) + 4

= 1− 4

5(t+ s) + 4

Fα(1, 2, t) =
t

t+ d(1, 2)

=
t

t+ 1

= 1− 1

t+ 1
,

and

Fα(2, 3, s) =
s

s+ d(2, 3)

=
s

s+ 1
= 1− 1

s+ 1
.

As before, for all t, s > 0, one can show that

1− 4

5(t+ s) + 4
> 1− 1

s+ 1

1− 4

5(t+ s) + 4
> 1− 1

t+ 1
.

Therefore, we get

Fα(2, 3, α(2, 3)(t+ s)) ≥ min{Fα(2, 1, t), Fα(1, 3, s)}

⇒ Fα(2, 3, α(2, 3)(t+ s)) ≥ Fα(2, 1, t) ∗ Fα(1, 3, s).

Hence for all ξ, %, ϑ ∈ W

Fα(ξ, ϑ, α(ξ, ϑ)(t+ s)) ≥ Fα(ξ, %, t) ∗ Fα(%, ϑ, s).

Therefore (W,Fα, ∗) is an EFBMS.

The concept of G-convergent sequence, G-Cauchy sequence and G-completeness
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can be generalized naturally in the setting of EFBMS as follows:

Definition 4.1.3. Let (W,Fα, ∗) be an EFBMS.

1. A sequence {ξn} in W will be G-convergent if there exits ξ ∈ W such that

lim
r→∞

Fα(ξn, ξ, t) = 1,

for all t > 0.

2. A sequence {ξn} in W is said to be a G-Cauchy sequence if ∀ t > 0, we have

lim
r→∞

Fα(ξn, ξn+q, t) = 1

for t > 0 and q > 0.

The work of Grabiec[51] can now be established for EFBMS as follows:

Theorem 4.1.4. (Banach Contraction Theorem for EFBMS)

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying

Fα(Γξ,Γ%, kt) ≥ Fα(ξ, %, t). (4.1)

for all ξ, % ∈ W and k ∈ (0, 1). Further, for an arbitrary a0 ∈ W , and r, q ∈ N, we

have

α(ar, ar+q) ≤
1

k
,

where ar = Γra0. Then Γ has a unique fixed point.

Proof.

Let a0 ∈ W and generate {ar} by ar = Γra0 (r ∈ N).

First, note that for all r, t > 0, by the application of (4.1), it follows that,

Fα(ar, ar+1, kt) = Fα(Γar−1,Γar, kt)
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Fα(ar, ar+1, kt) ≥ Fα(ar−1, ar, t)

≥ Fα

(
ar−2, ar−1,

t

k

)
≥ Fα

(
ar−3, ar−2,

t

k2

)
...

≥ Fα

(
a0, a1,

t

kr−1

)
.

So

Fα(ar, ar+1, kt) ≥ Fα

(
a0, a1,

t

kr−1

)
. (4.2)

For any q ∈ N, writing t =
t

2
+
t

2
and using EFBM4 repeatedly,

Fα(ar, ar+q, t)

≥ Fα

(
ar, ar+1,

t

2α(ar, ar+q)

)
∗ Fα

(
ar+1, ar+2,

t

22α(ar, ar+q)α(ar+1, ar+q)

)
∗ Fα

(
ar+2, ar+3,

t

23α(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)

)
∗ Fα

(
ar+2, ar+3,

t

24α(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)α(ar+3, ar+q)

)
∗ . . . ∗

Fα

(
ar+q−1, ar+q,

t

2qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−1, ar+q)

)
.

Using the contraction (4.4) and EFBM5, it follows that

Fα(ar, ar+q, t)

≥ Fα

(
a0, a1,

t

2α(ar, ar+q)kr

)
∗ Fα

(
a0, a1,

t

22α(ar, ar+q)α(ar+1, ar+q)kr+1

)
∗ Fα

(
a0, a1,

t

23α(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)kr+3

)
∗ . . . ∗

Fα

(
a0, a1,

t

2qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−1, ar+q)kr+q

)
.

Since for all r, q ∈ N, we have

1

α(ar, ar+q)
≤ k < 1.
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Taking limit as r →∞, we get

lim
r→∞

Fα(ar, ar+q, t) = 1 ∗ 1 ∗ . . . ∗ 1 = 1.

Hence {ar} is G-Cauchy sequence. Since (W,Fα, ∗) be a complete EFBMS so there

exists p1 ∈ W such that

lim
r→∞

ar = p1.

We want to show that p is fixed point of Γ.

Fα(Γp1, p1, t) ≥ Fα

(
Γp1,Γar,

t

2α(Γp1, p1)

)
∗ Fα

(
Γar, p1,

t

2α(Γp1, p1)

)
≥ Fα

(
p1, ar,

t

2kα(Γp1, p1)

)
∗ Fα

(
ar+1, ar,

t

2α(ar+1, ar)

)
−→ 1 ∗ 1 = 1,

which shows that Γp1 = p1 is a fixed point.

Uniqueness:

Let p2 be the an other fixed point of Γ such that Γp2 = p2 for some p2 ∈ W , then

Fα(p2, p1, t) = Fα(Γp2,Γp1, t)

≥ Fα

(
p2, p1,

t

k

)
= Fα

(
Γp2,Γp1,

t

k

)
≥ Fα

(
p2, p1,

t

k2

)
...

≥ Fα

(
p2, p1,

t

kr

)
−→ 1 as r →∞

Thus p1 = p2. Hence fixed point is unique.

Remark 4.1.5.

The special cases of Theorem 5.3.1 can be obtained for FBMS and FMS by setting

α(ξ, %) = b ≥ 1 and α(ξ, %) = 1 respectively.
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The following example illustrates the above theorem.

Example 4.1.2.

Let W = [0, 1] and define a mapping α : W ×W → [1,∞) by

α(ξ, %) = 1 + ξ + %.

Let

Fα(ξ, %, t) =


(

1

t

)(ξ−%)2

if t 6= 0

0 if t = 0.

One can easily prove that (W,Fα, ∗) is a G-complete EFBMS.

To prove that EFBMS is G-complete, let {ξn} be any G-Cauchy sequence in W ,

then ∀ t > 0, we have

lim
p→∞

Fα(ξp, ξp+q, t) = 1 ∀ p, q > 0,

⇒ lim
p→∞

(
1

t

)(ξp−ξp+q)2

= 1

⇒ lim
p→∞

(ξp − ξp+q) = 0

⇒ ξp = ξp+q

= ξ

Thus {ξp} = ξ1, ξ2, ξ3, , ξp−1, ξ, ξ, . . .

This shows that the Cauchy sequence {ξp} tends to a definite point ξ as p → ∞

i.e, {ξp} converges to ξ ∈ W . This implies that (W,Fα, ∗) is a G-complete.

Let Γ: W → W be a mapping defined by Γ(ξ) = 1− ξ.

Now for all t > 0 and k ∈ (0, 1), we have

Fα(Γξ,Γ%, kt) = Fα(1− ξ, 1− %, kt)
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=

(
1

kt

)(1−ξ−1+%)2

=

(
1

kt

)(%−ξ)2

=

(
1

kt

)(ξ−%)2

.

Since

k < 1

⇒ kt < t

⇒ 1

kt
>

1

t

⇒
(

1

kt

)(ξ−%)2

>

(
1

t

)(ξ−%)2

.

So we have

⇒ Fα(Γξ,Γ%, kt) > Fα(ξ, %, t).

Also ξ =
1

2
is a unique fixed point of Γ and

1

2
∈ [0, 1].

The following result is the extension of the result of Gregori and Sapena [52] in

the setting of EFBMS.

Theorem 4.1.6.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying

1

Fα(Γξ,Γ%, t)
− 1 ≤ k

(
1

Fα(ξ, %, t)
− 1

)
∀ ξ, % ∈ W and k ∈ (0, 1). (4.3)

Further, for an arbitrary a0 ∈ W , and r, q ∈ N, we have α(ar, ar+q) ≤
1

k
, where

ar = Γra0. Then Γ has a unique fixed point.

Proof.

Let a0 ∈ W , generate a sequence {ar} by

ar = Γna0 (r ∈ N).
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First, note that for all n, t > 0, by the contractive condition (4.3), it follows that,

1

Fα(ar, ar+1, t)
− 1 =

1

Fα(Γ(ar−1),Γ(ar), t))
− 1

≤ k

(
1

Fα(ar−1, ar, t)
− 1

)
≤ k2

(
1

Fα(ar−2, ar−1, t)
− 1

)
≤ k3

(
1

Fα(ar−3, ar−2, t)
− 1

)
≤ k4

(
1

Fα(ar−4, ar−3, t)
− 1

)
...

≤ kr
(

1

Fα(a0, a1, t)
− 1

)
.

So
1

Fα(ar, ar+1, t)
− 1 ≤ kr

(
1

Fα(a0, a1, t)
− 1

)
. (4.4)

For any q ∈ N, writing t =
t

2
+
t

2
and using EFBM4 repeatedly,

Fα(ar, ar+q, t)

≥ Fα

(
ar, ar+1,

t

2α(ar, ar+q)

)
∗ Fα

(
ar+1, ar+2,

t

22α(ar, ar+q)α(ar+1, ar+q)

)
∗ Fα

(
ar+2, ar+3,

t

23α(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)

)
∗ . . . ∗

Fα

(
ar+q−1, ar+q,

t

2qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−1, ar+q)

)

1

Fα(ar, ar+q, t)
− 1

≤ 1

Fα

(
ar, ar+1,

t
2α(ar,ar+q)

) − 1 ∗ 1

Fα

(
ar+1, ar+2,

t
22α(ar,ar+q)α(ar+1,ar+q)

) − 1

∗ 1

Fα

(
ar+2, ar+3,

t
23α(ar,ar+q)α(ar+1,ar+q)α(ar+2,ar+q)

) − 1 ∗ . . . ∗

1

Fα

(
ar+q−1, ar+q,

t
2qα(ar,ar+q)α(ar+1,ar+q)α(ar+2,ar+q)...α(ar+q−1,ar+q)

) − 1.
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Using the contraction (4.4) and EFBM5, it follows that

1

Fα(ar, ar+q, t)
− 1

≤ kr
 1

Fα

(
a0, a1,

t
2α(ar,ar+q)

) − 1

 ∗ kr+1

 1

Fα

(
a0, a1,

t
22α(ar,ar+q)α(ar+1,ar+q)

) − 1


∗ kr+2

 1

Fα

(
a0, a0,

t
23α(ar,ar+q)α(ar+1,ar+q)α(ar+2,ar+q)

) − 1


∗ kr+3

 1

Fα

(
a0, a0,

t
24α(ar,ar+q)α(ar+1,ar+q)α(ar+2,ar+q)α(ar+3,ar+q)

) − 1


...

∗ kr+q−1

 1

Fα

(
a0, a1,

t
2qα(ar,ar+q)α(ar+1,ar+q)α(ar+2,ar+q)...α(ar+q−1,ar+q)

) − 1

 .

Since 0 < k < 1. Taking limit as r →∞, we get

lim
r→∞

(
1

Fα(ar, ar+q, t)
− 1

)
= 0 ∗ 0 ∗ . . . ∗ 0

lim
r→∞

Fα(ar, ar+q, t) = 1

Hence {ar} is G-Cauchy sequence. Since (W,Fα, ∗) be a complete EFBMS so there

exists p1 ∈ W such that

lim
r→∞

ar = p1.

We want to show that p is fixed point of Γ.

1

Fα(Γp1,Γar, t)
− 1 6 k

[
1

Fα(p1, ar, t)
− 1

]
→ 0 as r →∞

lim
r→∞

Fα(Γp1,Γar, t) = 1

lim
r→∞

(Γar) = Γp1

lim
r→∞

(ar+1) = Γp1

Γp1 = p1,

which shows that p1 is a fixed point.
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Uniqueness:

Let p2 be the an other fixed point of Γ such that Γp2 = p2 for some p2 ∈ W , then

1

Fα(p2, p1, t)
− 1 =

1

Fα(Γp2,Γp1, t)
− 1

6 k

(
1

Fα(p2, p1, t)
− 1

)
= k

(
1

Fα(Γp2,Γp1, t)
− 1

)
6 k2

(
1

Fα(p2, p1, t)
− 1

)
6 kr−1

(
1

Fα(p2, p1, t)
− 1

)
6 kr

(
1

Fα(p2, p1, t)
− 1

)
−→ 0 as r →∞.

Thus Fα(p2, p1, t) = 1 and p1 = p2.

Hence fixed point is unique.

Corollary 4.1.7.

Let (W,Fb, ∗) be a G-complete FBMS and b ≥ 1. Let Γ: W → W be a mapping

satisfying
1

Fb(Γξ,Γ%, t)
− 1 ≤ k

(
1

Fb(ξ, %, t)
− 1

)
∀ ξ, % ∈ W. Further, for an arbitrary a0 ∈ W and r ∈ N, we have bk < 1, where

ar = Γra0. Then Γ has a unique fixed point.

Remark 4.1.8.

By taking α(ξ, %) = 1 in Theorem 4.1.6, the result of [52] is obtained in FMS.

4.2 Geraghty-type Contraction in Extended

Fuzzy b-Metric Space

In this Section, certain fixed point results for Geraghty-type contraction are estab-

lished in the setting of G-complete EFBMS. An application of the results obtained
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is also presented. These results are the extension and generalization of the existing

results in literature.

Following lemma will be used in upcoming results

Lemma 4.2.1.

Let (W,Fα, ∗) be a G-complete EFBMS and

Fα(ξ, %, kt) ≥ Fα (ξ, %, t)

for all ξ, % ∈ X, k ∈ (0, 1) and t > 0 then ξ = %.

Recall that

Fb =

{
β : [0,∞)→ [0,

1

b
); lim sup

r→∞
β(tr) =

1

b
implies lim

r→∞
tr = 0

}
(4.5)

In the fuzzy setting, the class of Geraghty-type contraction is modified as follows:

Fb =

{
β : [0,∞)→ [0,

1

b
); lim sup

r→∞
β(tr) =

1

b
implies lim

r→∞
tr = 1

}
(4.6)

We now establish a fixed point result, analogue to [87, Theorem 1], in the setting

of G-complete EFBMS, as follows:

Theorem 4.2.2.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying

Fα(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ Fα(ξ, %, t) (4.7)

∀ ξ, % ∈ W, β ∈ Fb and β(ξ, %, t)α(ξ, %) < 1. Then Γ has a unique fixed point.

Proof.

Let a0 ∈ W , generate a sequence {ar} by

ar = Γra0 (r ∈ N).
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First, note that for all r, t > 0, by (4.7), we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥ Fα(ar−1, ar,
t

β(Fα(ar−1, ar, t))
)

≥ Fα

(
ar−2, ar−1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t))

)
≥ Fα

(
ar−3, ar−2,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)).β(Fα(ar−3, ar−2, t)

)
≥ . . . ≥ Fα

(
a1, a2,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a1, a2, t))

)
≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)
.

So, we have

Fα(ar, ar+1, t)

≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)
(4.8)

For any q ∈ N, writing t =
t

q
+
t

q
+ . . .+

t

q
and using [EFBM4] repeatedly,

Fα(ar, ar+q, t)

≥ Fα

(
ar, ar+1,

t

qα(ar, ar+q)

)
∗ Fα

(
ar+1, ar+2,

t

qα(ar, ar+q)α(ar+1, ar+q)

)
∗ Fα

(
ar+2, ar+3,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)

)
Fα

(
ar+3, ar+4,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)α(ar+3, ar+q)

)
Fα

(
ar+4, ar+5,

t

qα(ar, ar+q)α(ar+1, ar+q) . . . α(ar+4, ar+q)

)
Fα

(
ar+5, ar+6,

t

qα(ar, ar+q)α(ar+1, ar+q) . . . α(ar+5, ar+q)

)
∗ Fα

(
ar+6, ar+7,

t

qα(ar, ar+q)α(ar+1, ar+q) . . . α(ar+6, ar+q)

)
∗ . . . ∗

Fα

(
ar+q−2, ar+q−1,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−2, ar+q)

)
∗ Fα

(
ar+q−1, ar+q,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−1, ar+q)

)
.
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Using (4.8) and [EFBM5] , we get

Fα(ar, ar+q, t)

≥ Fα

(
a0, a1,

t

qα(ar, ar+q)β(Fα(ar−1, ar, t)) . . . β(Fα(a0, a1, t))

)
∗ Fα

(
a0, a1,

t

qα(ar, ar+q)α(ar+1, ar+q)β(ar, ar+1, t). . . . β(Fα(a0, a1, t))

)
∗ . . . ∗ Fα

(
a0, a1,

t

qα(ar, ar+q) . . . α(ar+q−1, ar+q) . . . β(Fα(a0, a1, t))

)

Fα(ar, ar+q, t)

≥ Fα

(
a0, a1,

br−1t

qα(ar, ar+q)β(Fα(ar−1, ar, t))

)
∗ Fα

(
a0, a1,

br−1t

qα(ar, ar+q)α(ar+1, ar+q)β(Fα(ar, ar+1, t)).β(Fα(ar−1, ar, t))

)
∗ . . . ∗ Fα

(
a0, a1,

br−1t

qα(ar, ar+q) . . . α(ar+q−1, ar+q) . . . β(Fα(ar−1, ar, t))

)
.

Since for all r, q ∈ N, we have

α(ar, ar+q)β(Fα(ar−1, ar, t)) < 1,

taking limit as r →∞, we get

lim
r→∞

Fα(ar, ar+q, t) = 1 ∗ 1 ∗ . . . ∗ 1

= 1.

Hence {ar} is G-Cauchy sequence. Since (W,Fα, ∗) be a G-complete EFBMS so

there exists p1 ∈ W such that

lim
r→∞

ar = p1.

We want to show that p is fixed point of Γ.

Fα(Γp1, p1, t) ≥ Fα

(
Γp1,Γar,

t

2α(Γp1, p1)

)
∗ Fα

(
Γar, p1,

t

2α(Γp1, p1)

)
≥ Fα

(
p1, ar,

t

2β(p1, ar, t)α(Γp1, p1)

)
∗ Fα

(
ar+1, ar,

t

2α(ar+1, ar)

)
−→ 1 ∗ 1 = 1.
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Which shows that Γp1 = p1 is a fixed point.

Uniqueness:

Assume Γp2 = p2 for some p2 ∈ W , then

Fα(p2, p1, t) = Fα(Γp2,Γp1, t)

≥ Fα

(
p2, p1,

t

β(Fα(p2, p1, t))

)
= Fα

(
Γp2,Γp1,

t

β(Fα(p2, p1, t))

)
≥ Fα

(
p2, p1,

t

β(Fα(p2, p1, t))2

)
= Fα

(
Γp2,Γp1,

t

β(Fα(p2, p1, t))2

)
≥ Fα

(
p2, p1,

t

β(Fα(p2, p1, t))3

)
...

≥ Fα

(
p2, p1,

t

β(Fα(p2, p1, t))r

)
= Fα (p2, p1, b

rt)

−→ 1 as r →∞

Thus p1 = p2.

Hence fixed point is unique.

Following example illustrates Theorem 4.2.2.

Example 4.2.1. Let W = {0, 1, 2} and define a mapping α : W ×W → [1,∞) by

α(ξ, %) = 1 + ξ + %

and let

Fα(ξ, %, t) =
t

t+ (ξ − %)2
.

Then it is easy to verify that (W,Fα, ∗) is a G-complete EFBMS.

Define a mapping Γ: W → W such that

Γ(ξ) =

√
β(Fα(ξ, %, t))ξ

1 + ξ
.
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Where β(Fα(ξ, %, t) is defined in eq (4.6). Now for all t > 0 , we have

Fα(Γξ,Γ%,β(Fα(ξ, %, t))t)

=
β(Fα(ξ, %, t))t

β(Fα(ξ, %, t))t+

(√
β(Fα(ξ, %, t))ξ

1 + ξ
−
√
β(Fα(ξ, %, t))%

1 + %

)2

=
β(Fα(ξ, %, t))t

β(Fα(ξ, %, t))t+ β(Fα(ξ, %, t))

(
ξ

1 + ξ
− %

1 + %

)2

=
t

t+
(ξ − %)2

(1 + ξ)2(1 + ξ)2

.

Since

(ξ − %)2

(1 + ξ)2(1 + ξ)2
≤ (ξ − %)2

t+
(ξ − %)2

(1 + ξ)2(1 + ξ)2
≤ t+ (ξ − %)2

1

t+
(ξ − %)2

(1 + ξ)2(1 + ξ)2

≥ 1

t+ (ξ − %)2

t

t+
(ξ − %)2

(1 + ξ)2(1 + ξ)2

≥ t

t+ (ξ − %)2
.

This implies that

Fα(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ Fα(ξ, %, t).

Also ξ = 0 is a unique fixed point of Γ.

Following are the immediate consequences of Theorem 4.2.2.

Corollary 4.2.3.

Let (W,Fb, ∗) be a G-complete FBMS with b > 1. Let Γ: W → W be a mapping

satisfying

Fb(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ Fb(ξ, %, t)

∀ ξ, % ∈ W, β ∈ Fb and β(Fb(ξ, %, t))b < 1. Then Γ has a unique fixed point.
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Corollary 4.2.4.

Let (W,F, ∗) be a G-complete FMS. Let Γ: W → W be a mapping satisfying

F (Γξ,Γ%, β(F (ξ, %, t))t) ≥ F (ξ, %, t)

∀ ξ, % ∈ W and β ∈ Fb with b = 1. Then Γ has a unique fixed point.

Theorem 4.2.5.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying the condition

Fα(Γξ,Γ%,β(Fα(ξ, %, t))t)

≥ min
{
Fα(Γξ,Γ%, t), Fα(ξ,Γξ, t), Fα(%,Γ%, t), Fα(ξ, %, t)

}
(4.9)

for all ξ, % ∈ W, β ∈ Fb and α(ξ, %)β(Fα(ξ, %, t)) < 1. Then T has a unique fixed

point.

Proof.

Starting in the same way as in Theorem 4.2.2, we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥ min

{
Fα

(
Γar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)
,

Fα

(
ar,Γar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

≥ min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
,

Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
.

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
.

(4.10)
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If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
= Fα(ar, ar+1, t),

then (4.10) implies

Fα(ar, ar+1, t) ≥ Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)

Therefore, there is nothing to prove by Lemma 4.2.1.

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
,

then from (4.10), we have

Fα(ar, ar+1, t) ≥ Fα

(
ar−1, ξn,

t

β(Fα(ar−1, ar, t))

)
≥ . . . ≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)
.

By adopting the same procedure after Inequality (4.8) as in Theorem 4.2.2 we can

complete the proof.

Following are the immediate consequences of Theorem 4.2.5.

Corollary 4.2.6.

Let (W,Fb, ∗) be a G-complete FBMS with b ≥ 1. Let Γ: W → W be a mapping

satisfying the condition

Fb(Γξ,Γ%,β(Fb(ξ, %, t))t)

≥ min

{
Fb(Γξ,Γ%, t), Fb(ξ,Γξ, t), Fb(%,Γ%, t), Fb(ξ, %, t)

}
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for all ξ, % ∈ W, β ∈ Fb and β(Fb(ξ, %, t))b < 1. Then Γ has a unique fixed point.

Corollary 4.2.7.

Let (W,F, ∗) be a G-complete FMS. Let Γ: W → W be a mapping satisfying the

condition

F (Γξ,Γ%,β(F (ξ, %, t))t)

≥ min

{
F (Γξ,Γ%, t), F (ξ,Γξ, t), F (%,Γ%, t), F (ξ, %, t)

}

for all ξ, % ∈ W and β ∈ Fb with b = 1. Then Γ has a unique fixed point.

Following result is an extention of the main result of Gupta et al. [53].

Theorem 4.2.8.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying

Fα(Γξ,Γ%,β(Fα(ξ, %, t))t)

≥ min

{
Fα(%,Γ%, t) [1 + Fα(ξ,Γξ, t)]

1 + Fα(ξ, %, t)
, Fα(ξ, %, t)

}
(4.11)

∀ ξ, % ∈ W, β ∈ Fb and β(Fα(ξ, %, t))α(ξ, %) < 1. Then Γ has a unique fixed point.

Proof.

Starting in the same way as in Theorem 4.2.2 we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥ min

{Fα(ar,Γar , t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1,Γar−1 ,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
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Fα(ar, ar+1, t)

≥ min

{Fα(ar, ar+1,
t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

Fα(ar, ar+1, t)

≥ min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
.

(4.12)

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.

Then (4.12) implies

Fα(ar, ar+1, t)

≥ Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.

Then nothing to prove by lemma 4.2.1.

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

Then from (4.12) we have

Fα(ar, ar+1, t) ≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
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Continuing in this way we have,

Fα(ar, ar+1, t)

≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t).β(Fα(ar−2, ar−1, t) . . . β(Fα(a0, a1, t)

)

By adopting the same procedure after Inequality (4.8) as in Theorem 4.2.2 we can

complete the proof.

Following are the immediate consequences of theorem 4.2.8.

Corollary 4.2.9.

Let (W,Fb, ∗) be a G-complete FBMS with b ≥ 1. Let Γ: W → W be a mapping

satisfying

Fb(Γξ,Γ%,β(Fb(ξ, %, t))t)

≥ min

{
Fb(%,Γ%, t) [1 + Fb(ξ,Γξ, t)]

1 + Fb(ξ, %, t)
, Fb(ξ, %, t)

}

∀ ξ, % ∈ W, β ∈ Fb and β(Fb(ξ, %, t))b < 1. Then Γ has a unique fixed point.

Corollary 4.2.10.

Let (W,F, ∗) be a G-complete FMS. Let Γ: W → W be a mapping satisfying

F (Γξ,Γ%,β(F (ξ, %, t)t)

≥ min

{
F (%,Γ%, t) [1 + F (ξ,Γξ, t)]

1 + F (ξ, %, t)
, F (ξ, %, t)

}

∀ ξ, % ∈ W, and β ∈ Fb with b = 1. Then Γ has a unique fixed point.

Theorem 4.2.11.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying

Fα(Γξ,Γ%,β(Fα(ξ, %, t))t)

≥ min

{
Fα(%,Γ%, t) [1 + Fα(ξ,Γξ, t) + Fα(%,Γξ, t)]

2 + Fα(ξ, %, t)
, Fα(ξ, %, t)

}
(4.13)
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∀ ξ, % ∈ W, β ∈ Fb and β(Fα(ξ, %, t))α(ξ, %) < 1. Then Γ has a unique fixed point.

Proof.

For any arbitrary point a0 ∈ W , we choose a sequence {ar} in W and start with

iterative process

ar+1 = Γar.

For all r, t > 0, we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥ min

{Fα
(
ar, gar,

t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1, gar−1,

t

β(Fα(ar−1, ar, t))

)
+ Fα

(
ar, gar−1,

t

β(Fα(ar−1, ar, t))

)]

2 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= min

{Fα
(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
+ Fα

(
ar, ar,

t

β(Fα(ar−1, ar, t))

)]

2 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

k

)}

= min

{Fα(ar, ar+1,
t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
+ 1

]
2 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
(4.14)

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,
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then from (4.14),

Fα(ar, ar+1, t) ≥ Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)

so there is nothing to prove by Lemma 4.2.1.

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

then from (4.14),

Fα(ar, ar+1, t) ≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

Continuing in this way we get,

Fα(ar, ar+1, t)

≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)
(4.15)

By adopting the same procedure after inequality (4.8) of Theorem 4.2.2 we can

complete the proof.

Following are immediate consequences of Theorem 4.2.11.

Corollary 4.2.12.

Let (W,Fb, ∗) be a G-complete FBMS with b ≥ 1. Let Γ: W → W be a mapping

satisfying

Fb(Γξ,Γ%,β(Fb(ξ, %, t)t))

≥ min

{
Fb(%,Γ%, t) [1 + Fb(ξ,Γξ, t) + Fb(%,Γξ, t)]

2 + Fb(ξ, %, t)
, Fb(ξ, %, t)

}
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∀ ξ, % ∈ W, β ∈ Fb and β(Fb(ξ, %, t))b < 1. Then Γ has a unique fixed point.

Corollary 4.2.13.

Let (W,F, ∗) be a G-complete FMS. Let Γ: W → W be a mapping satisfying

F (Γξ,Γ%,β(F (ξ, %, t))t)

≥ min

{
F (%,Γ%, t) [1 + F (ξ,Γξ, t) + F (%,Γξ, t)]

2 + F (ξ, %, t)
, F (ξ, %, t)

}

∀ ξ, % ∈ W, and β ∈ Fb with b = 1 Then Γ has a unique fixed point.

The following result is the extention of the main result of Roshan et.al [28].

Theorem 4.2.14.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying

Fα(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ δ(ξ, %, t) (4.16)

∀ ξ, % ∈ W, β ∈ Fb and β(Fα(ξ, %, t))α(ξ, %) < 1,

where

δ(ξ, %, t) = min

{
Fα(ξ,Γξ, t) [1 + Fα(%,Γ%, t)]

1 + Fα(Γξ,Γ%, t)
,
Fα(%,Γ%, t) [1 + Fα(ξ,Γξ, t)]

1 + Fα(ξ, %, t)
,

Fα(ξ,Γξ, t) [2 + Fα(ξ,Γ%, t)]

1 + Fα(ξ,Γ%, t) + Fα(%,Γξ, t)
, Fα(ξ, %, t)

}
.

Then Γ has a unique fixed point.

Proof.

For any arbitrary point a0 ∈ W , we choose a sequence {ar} in W and start with

iterative process ar+1 = Γar. For all r, t > 0, we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥ δ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
. (4.17)
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Now

δ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

= min

{Fα(ar−1,Γar−1,
t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar,Γar,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
Γar−1,Γar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar,Γar,

t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)[
2 + Fα

(
ar−1,Γar,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
+ Fα

(
ar,Γar−1,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

δ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

= min

{Fα(ar−1, ar,
t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)[
2 + Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)
+ Fα

(
ar, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
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δ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

= min

{Fα(ar−1, ar,
t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

) ,

Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)[
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

) ,

Fα(ar−1, ar,
t

β(Fα(ar−1, ar, t))
)

[
2 + Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)]
1 + Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)
+ 1

,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
.

So

δ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
= min

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)}
.

If

min

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar, ar+1,

t

β(Fα(ar, ar+1, t))

)}

= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.

then from (4.17),

Mb(ar, ar+1, t) ≥ Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.
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Since β ∈ Fb. Therefore, there is nothing to prove by Lemma 4.2.1.

If

min

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

then from (4.17),

Fα(ar, ar+1, t) ≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

Continuing in this way, we have

Fα(ar, ar+1, t)

≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t).β(Fα(ar−2, ar−1, t) . . . β(Fα(a0, a1, t)

)

By adopting the same procedure after Inequality (4.8) as in Theorem 4.2.2 we can

complete the proof.

Remark 4.2.15.

The special cases of Theorem 4.2.14 can be obtained for FBMS and FMS by setting

α(ξ, %) = b ≥ 1 and α(ξ, %) = 1 respectively.

Theorem 4.2.16.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying the condition

Fα(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ δ(ξ, %, t)

max{Fα(ξ,Γξ, t), Fα(%, T%, t)}
, (4.18)

where

δ(ξ, %, t) = min

{
Fα(Γξ,Γ%, t).Fα(ξ, %, t), Fα(ξ,Γξ, t).Fα(%,Γ%, t)

}

for all ξ, % ∈ W, β ∈ Fb and α(ξ, %)β(Fα(ξ, %, t)) < 1. Then Γ has a unique fixed

point.
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Proof.

Starting in same way as in Theorem 4.2.2 we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥
δ

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
max

{
Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar,Γar,

t

β(Fα(ar−1, ar, t))

)}
(4.19)

Now,

δ

(
ar, ar+1,

t

β(ar−1, ar, t)

)
= min

{
Fα

(
Γar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

, Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar,Γar,

t

β(Fα(ar−1, ar, t))

)}

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
(4.20)

Using (4.20) in (4.19), we get

Fα(ar,ar+1, t)

≥
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
max

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)}
(4.21)
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If

max

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

then (4.21) implies

Fα

(
ar, ar+1, kt) ≥ Fα(ar, ar+1,

t

β(Fα(ar−1, ar, t))

)

Therefore, there is nothing to prove by Lemma 4.2.1.

If

max

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)

then from (4.21), we have

Fα(ar, ar+1, t)

≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
≥ Fα

(
ar−2, ar−1,

t

β(Fα(ar−1, ar, t))β(Fα(ar−2, ar−1, t))

)
...

≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)

By adopting the same procedure used in Theorem (4.2.2) after Inequality (4.8),

we can complete the proof.

Remark 4.2.17.

The same result can be obtained in FBMS and FMS by setting α(ξ, %) = b ≥ 1

and α(ξ, %) = 1 in Theorem 4.2.16 respectively.

Theorem 4.2.18.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.
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Let Γ: W → W mapping satisfying the condition

Fα(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ λ(ξ, %, t) ∗ γ(ξ, %, t), (4.22)

where,λ(ξ, %, t) = min{Fα(Γξ,Γ%, t), Fα(ξ,Γξ, t), Fα(%,Γ%, t), Fα(ξ, %, t)}

γ(ξ, %, t) = max{Fα(ξ,Γ%, t), Fα(Γξ, %, t)}

 (4.23)

for all ξ, % ∈ W, β ∈ Fb and α(ξ, %)β(Fα(ξ, %, t)) < 1. Then Γ has a unique fixed

point, where a ∗ b = min(a, b)

Proof.

Starting in the same way as in Theorem 4.2.2, we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥ λ

(
ar−1, ar,

t

β(ar−1, ar, t)

)
∗ γ
(
ar−1, ar,

t

β(ar−1, ar, t)

)
. (4.24)

Now

λ

(
ar−1, ar,

t

β(ar−1, ar, t)

)
= min

{
Fα

(
Γar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1,Γar−1,

t

β(ar−1, ar, t)

)

, Fα

(
ar,Γar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

, Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
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λ

(
ar−1, ar−1,

t

β(ar−1, ar, t)

)
= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
(4.25)

γ

(
ar−1, ar,

t

β(ar−1, ar, t)

)
= max

{
Fα

(
ar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
Γar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
= max

{
Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar, ar,

t

β(Fα(ar−1, ar, t))

)}
= max

{
Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)
, 1

}

γ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
= 1. (4.26)

Using (4.25) and (4.26) in (4.24) we have

Fα(ar, ar+1, t)

≥ min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
∗ 1

≥ min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}
.

(4.27)

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,

then (4.27) implies

Fα(ar, ar+1, t) ≥ Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.
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Therefore, there is nothing to prove by Lemma 4.2.1.

If

min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

then from (4.27), we have

Fα(ar, ar+1, t) ≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.

Continuing in this way we will get

Fα(ar, ar+1, t)

≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
≥ Fα

(
ar−2, ar−1,

t

β(Fα(ar−1, ar, t))β(Fα(ar−2, ar−1, t))

)
...

≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)
.

By the same procedure used in Theorem (4.2.2) after Inequality (4.8), we can

complete the proof.

Remark 4.2.19.

The special cases of Theorem 4.2.18 can be obtained for FBMS and FMS by setting

α(ξ, %) = b ≥ 1 and α(ξ, %) = 1.

Theorem 4.2.20.

Let (W,Fα, ∗) be a G-complete EFBMS and α : W ×W → [1,∞) be a mapping.

Let Γ: W → W be a mapping satisfying the condition

Fα(Γξ,Γ%, β(Fα(ξ, %, t))t) ≥ λ(ξ, %, t) ∗ γ(ξ, %, t)

δ(ξ, %, t)
, (4.28)
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where
λ(ξ, %, t) = min{Fα(Γξ,Γ%, t).Fα(ξ, %, t), Fα(ξ,Γξ, t).Fα(%,Γ%, t)}

γ(ξ, %, t) = max{Fα(ξ,Γξ, t).Fα(ξ,Γ%, t), (Fα(%,Γξ, t))2}

δ(ξ, %, t) = max{Fα(ξ,Γξ, t), Fα(%,Γ%, t)}


(4.29)

∀ ξ, % ∈ W, β ∈ Fb and α(ξ, %)β(Fα(ξ, %, t)) < 1. Then Γ has a unique fixed point.

Proof.

In the same way as in Theorem 4.2.2, we have

Fα(ar, ar+1, t) = Fα(Γar−1,Γar, t)

≥
λ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
∗ γ
(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
δ

(
ξ, %,

t

β(Fα(ar−1, ar, t))

) .

(4.30)

λ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
= min

{
Fα

(
Γar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
,

Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)
.Fα(ar,Γar,

t

β(Fα(ar−1, ar, t))
)

}

= min

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
,

Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)}

λ
(
ar−1,ar,

t

β(Fα(ar−1, ar, t))

)
= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
(4.31)
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γ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
= max

{
Fα

(
ar−1,Γar−1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1,Γar,

t

β(Fα(ar−1, ar, t))

)
,

(Fα

(
ar,Γar−1,

t

β(Fα(ar−1, ar, t))
)

)2
}

= max

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)
,

(Fα

(
ar, ar,

t

β(Fα(ar−1, ar, t))
)

)2
}

= max

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar+1,

t

β(Fα(ar−1, ar, t))

)
, 1

}
= 1.

So, we have

γ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
= 1. (4.32)

δ

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
= max

{
Fα

(
ar−1, gar−1,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar, gar,

t

β(Fα(ar−1, ar, t))

)}

= max

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)}
(4.33)

Using (4.31), (4.32) and (4.33) in (4.30), we have

Fα

(
ar, ar+1, t

)

≥
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
max

{
Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
, Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)} .
(4.34)
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If

max

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)

then (4.34) implies

Fα(ar, ar+1, t) ≥ Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
.

Therefore, there is nothing to prove by Lemma 4.2.1.

If

max

{
Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)
,Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)}

= Fα

(
ar, ar+1,

t

β(Fα(ar−1, ar, t))

)

then from (4.34), we have

Fα(ar, ar+1, t) ≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
.

Continuing in this way we will get

Fα(ar, ar+1, t)

≥ Fα

(
ar−1, ar,

t

β(Fα(ar−1, ar, t))

)
≥ . . . ≥ Fα

(
a0, a1,

t

β(Fα(ar−1, ar, t)).β(Fα(ar−2, ar−1, t)) . . . β(Fα(a0, a1, t))

)

By adopting the same procedure used in Theorem (4.2.2) after Inequality (4.8),

we can complete the proof.

Remark 4.2.21.

The special cases of Theorem 4.2.20 can be obtained for FBMS and FMS by setting

α(ξ, %) = b ≥ 1 and α(ξ, %) = 1 respectively.
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4.3 Application

Fixed point theory has shown to be an effective method for determining the

presence of solutions to various types of integral and differential equations, (see

[102, 103] and references therein). We now show an application of Theorem 4.2.2.

As an application of the fixed point result, non-linear integral equation has been

explored for the existence of a solution.

Consider W = C[0, I], the set of real valued continuous functions on [0, I] and

define a G-complete EFBM Fα : W ×W × [0,∞)→ [0, 1] by

Fα(a1, a2, t) =


e
−

sup
r∈[0,I]

|a1(r)− a2(r)|2

t if t > 0

0 if t = 0

with

α(a1, a2) = 1 + a1 + a2.

Consider the integral equation

a1(s) = f(s) +

∫ I

0

h(s, r)F (s, r, a1(r))dr, (4.35)

where, I > 0, f : [0, I] → R, h : [0, I] × [0, I] → R, and F : [0, I] × [0, I] × R → R

are continuous functions.

Theorem 4.3.1.

Suppose that the following conditions holds:

(i) for all s, r ∈ [0, I], a1, a2 ∈ W and β ∈ Fb, we have

|F (s, r, a1(r))− F (s, r, a2(r))| <
√
β(Fα(a1, a2, t))|a1(r)− a2(r)|

(ii) for all s, r ∈ [0, I] ,

sup
r∈[0,I]

∫ I

0

(h(s, r))2dr ≤ 1

I
.
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Then the integral equation (4.35) has a solution in W.

Proof.

Define Γ : W → W by

Γa1(s) = f(s) +

∫ I

0

h(s, r)F (s, r, a1(r))dr,

∀ a1 ∈ W, and s, r ∈ [0, I].

Now for all a1, a2 ∈ W and by using Conditions (i) and (ii), we have

Fα(Γa1,Γa2,β(Fα(a1, a2, t))t) = e
−

sup
r∈[0,I]

|Γa1(r)− Γa2(r)|2

β(Fα(a1, a2, t))t

= e
−

sup
r∈[0,I]

|
∫ I

0

h(s, r)F (s, r, a1(r))dr −
∫ I

0

h(s, r)F (s, r, a2(r))dr|2

β(Fα(a1, a2, t))t

= e
−

sup
r∈[0,I]

|
∫ I

0

h(s, r){F (s, r, a1(r))− F (s, r, a2(r)}dr|2

β(Fα(a1, a2, t))t

≥ e
−

sup
r∈[0,I]

|
∫ I

0

(h(s, r))2dr|
∫ I

0

|F (s, r, a1(r))− F (s, r, a2(r)|2dr

β(Fα(a1, a2, t))t

≥ e
−

sup
r∈[0,I]

1

I

∫ I

0

{
√
β(Fα(a1, a2, t))|a1(r)− a2(r)|}2dr

β(Fα(a1, a2, t))t

≥ e
−

sup
r∈[0,I]

β(Fα(a1, a2, t))|a1(r)− a2(r)|2

β(Fα(a1, a2, t))t

≥ e
−

sup
r∈[0,I]

|a1(r)− a2(r)|2

t

= Fα(a1, a2, t)

⇒ Fα(Γa1,Γa2, β(Fα(a1, a2, t))t) ≥ Fα(a1, a2, t).

Hence Γ has a fixed point.



Chapter 5

Multivalued Mapping in Fuzzy

Abstract Space

In this chapter, fixed point results for multivalued mappings in fuzzy abstract

spaces are investigated. These results are more general than the existing results in

literature. To support the results, an application for the existence of the solution

of integral inclusion is established.

5.1 Introduction

In 1928, von Neumann in [109] initiated the study of fixed point for multival-

ued mappings. The development of geometric fixed point theory for multivalued

mapping was implimented with the work of Nadler [110]. He combined the ideas

of multivalued mapping and Lipschitz mapping and used the concept of Haus-

dorff metric to establish the multivalued contraction principle, usually referred as

Nadler’s contraction mapping principle. Several researches generalized the concept

of Nadler’s contraction mapping principle [80–84]. The notion of hausdorff fuzzy

metric on compact set is introduced by J. Rodŕıguez-López and S. Romaguera in

[111] and recently studied by Shahzad et.al [79] to established fixed point theorems

for multivalued mappings in complete FMS.

96
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The notions of Hausdorff fuzzy b-metric space(HFBMS) and Hausdorff extended

fuzzy b-metric spaces are defined by using the idea of FBM and EFBM space and

some fixed point results for multivalued mappings in HFBMS and HEFBMS are

proved.

Recall that a mapping Γ is said to be multivalued mapping on W if Γ is a function

from W to the power set of Y , where W and Y are nonempty sets, the multivalued

mapping is denoted by Γ : W −→ P (Y), here P (Y) denote the power set of Y .

Example 5.1.1.

Let W = [0, 1] and P (W) = {B ⊂ W : B 6= ∅} . Define a mapping Γ : W →

P (W) and S :W → P (W) by

Γ(ξ) = [0, ξ]

also

S(ξ) =


{0} if ξ = 0{

0,
ξ

2

}
otherwise

Example 5.1.2.

Let W = [0, 1] and g : [0, 1]→ [0, 1] defined by

g(ξ) =


1

2
ξ +

1

2
if 0 ≤ ξ ≤ 1

2

− 1

2ξ
+ 1 if

1

2
≤ ξ ≤ 1

Define a mapping Γ : W → P (W ) by

Γ(ξ) = {0} ∪ {{g(ξ)}}

for each ξ ∈ W. Then Γ is multivalued mapping.

The fuzzy distance in [79] is defined as

Definition 5.1.1.

Let (W,F, ∗) be a FMS and B be any non empty subset of W then, the fuzzy
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distance F of an element %1 ∈ W and the subset B ⊂ W is defined as

F(%1,B, t) = sup{F (%1, %2, t) : %2 ∈ B} ∀ t > 0.

Note that F(%1,B, t) = F(B, %1, t).

Definition 5.1.2.

Let (W,F, ∗) be a FMS. Define a function HF on Ĉ0(W )× Ĉ0(W )× (0,∞) by,

HF(A,B, t) = min{ inf
%1∈A
F(%1,B, t), inf

%2∈B
F(A, %2, t)}

for all A,B ∈ Ĉ0(W ) and t > 0, where Ĉ0(W ) is the collection of all nonempty

compact subsets of W.

Definition 5.1.3.

Let (W,F, ∗) be a FMS. Then

B(ξ, η, t) = {% ∈ W : F (ξ, %, t) < 1− η}

and

B(ξ, η, t) = {% ∈ W : F (ξ, %, t) ≥ 1− η}

are open and closed balls respectively in FMS with radius η; 0 < η < 1 and

center ξ ∈ W.

5.2 Multivalued Map in Fuzzy b-Metric Space

The Definitions 5.1.1 and 5.1.2 can easily be extended in FBMS as follows

Fb(%1,B, t) = sup

{
Fb(%1, %2, t) : %2 ∈ B ∀ t > 0,

}

and

HFb(A,B, t) = min

{
inf
%1∈A
Fb(%1,B, t), inf

%2∈B
Fb(A, %2, t) ∀ t > 0.

}
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Example 5.2.1.

Let (W,Fb, ∗) be a FBMS and W = {1, 2, 3}. Define a function Fb : W ×W ×

[0,∞)→ [0, 1] by

Fb(ξ, %, t) =
t

t+ (ξ − %)2
.

Take B = {2, 3} and choose %1 = 1 then

Fb(1,B, t) = Fb(1, {2, 3}, t)

= sup{Fb(1, 2, t), Fb(1, 3, t)}

= sup

{
t

t+ 1
,

t

t+ 4

}
=

t

t+ 1
.

Similarly,

Fb(2,B, t) = Fb(3,B, t) = 1

Example 5.2.2.

Let (W,Fb, ∗) be a FBMS and W = {0, 1, 2}. Define a function Fb : W ×W ×

[0,∞)→ [0, 1] by

Fb(ξ, %, t) =
t

t+ (ξ − %)2
.

Let A = {0, 1} and B = {1, 2} be the subsets of W . Now

HFb(A,B, t) = min

{
inf
%1∈A
Fb(%1,B, t), inf

%2∈B
Fb(A, %2, t)

}
(5.1)

For each %1 ∈ A and B = {2, 3}, we have

inf
%1∈A
Fb(%1,B, t) = inf

{
Fb(0, {1, 2}, t),Fb(1, {1, 2}, t)

}
= inf

{
sup{Fb(0, 1, t), Fb(0, 2, t)}, sup{Fb(1, 1, t), Fb(1, 2, t)}

}
= inf

{
sup{ t

t+ 1
,

t

t+ 2
}, sup{1, t

t+ 1
}
}

= inf

{
t

t+ 1
, 1

}
=

t

t+ 1
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Similarly,

inf
%2∈B
Fb(A, %2, t) = inf{Fb({0, 1}, 1, t),Fb({0, 1}, 2, t)}

= inf {sup{Fb(0, 1, t), Fb(1, 1, t)}, sup{Fb(0, 2, t), Fb(1, 2, t)}}

= inf

{
sup{ t

t+ 1
, 1}, sup{ t

t+ 2
,

t

t+ 1
}
}

= inf

{
1,

t

t+ 1

}
=

t

t+ 1

So from (5.1), we conclude that

HFb(A,B, t) = min{ inf
%1∈A
Fb(%1,B, α), inf

%2∈B
Fb(A, %2, t)}

= min

{
t

t+ 1
,

t

t+ 1

}
=

t

t+ 1

The following lemmas will be used in the proof of upcoming theorems.

Lemma 5.2.1.

If A ∈ CB(W ), then ξ ∈ A if and only if

Fb(A, ξ, t) = 1 ∀ t > 0,

where CB(W ) is closed bounded subset of W .

Proof.

Since

Fb(A, ξ, t) = sup{Fb(%, ξ, t) : % ∈ A} = 1,

there exists a sequence {%n} ⊂ A such that

Fb(ξ, %n, t) > 1− 1

n
.

Letting n→∞, we get %n → ξ.

From A ∈ CB(W ), it follows that ξ ∈ A.
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Conversely, if ξ ∈ A, we have

Fb(A, ξ, t) = sup{Fb(ξ, %, t) : % ∈ A}

> Fb(ξ, ξ, t) = 1

Again following [104], the following fact follows from FBM5.

Lemma 5.2.2.

Let (W,Fb, ∗) be a G-complete FBMS. If for two elements ξ ∈ W and for a number

k < 1,

Fb(ξ, %, kt) ≥ Fb (ξ, %, t)

then ξ = %.

Lemma 5.2.3.

Let (W,Fb, ∗) be a G-complete FBMS, such that (Ĉ0,HFb , ∗) is a HFBM on Ĉ0.

Then for all A,B ∈ Ĉ0 and for each ξ ∈ A and for t > 0, there exists an element

%ξ ∈ B satisfying Fb(ξ,B, t) = Fb(ξ, %ξ, t), then

HFb(A,B, t) ≤ Fb(ξ, %ξ, t).

Proof.

If

HFb(A,B, t) = inf
ξ∈A
Fb(ξ,B, t).

then

HFb(A,B, t) ≤ Fb(ξ,B, t).

Since for each ξ ∈ A there exists %ξ ∈ B satisfying

Fb(ξ,B, t) = Fb(t, %ξ, t).

Hence

HFb(A,B, t) ≤ Fb(ξ, %ξ, t).
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Now if

HFb(A,B, t) = inf
%∈B
Fb(A, %, t)

≤ inf
ξ∈A
Fb(ξ,A, t)

≤ Fb(ξ,B, t) = Fb(ξ, %ξ, t)

This implies

HFb(A,B, t) ≤ Fb(ξ, %ξ, t)

for some %ξ ∈ B. Hence in both cases result is proved.

Theorem 5.2.4.

Let (W,Fb, ∗) be a G-complete FBMS with b > 1 and HFb be a HFBM. Let

S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFb(Sξ, S%, kt) ≥ Fb(ξ, %, t) (5.2)

∀ ξ, % ∈ W, k ∈ (0, 1) and bk < 1, then S has a fixed point.

Proof.

For a0 ∈ W , we choose a sequence {ar} in W as follows:

Let a1 ∈ W such that a1 ∈ Sa0 by using Lemma 5.2.3, we can choose a2 ∈ Sa1

such that

Fb(a1, a2, t) > HFb(Sa0, Sa1, t)

for all t > 0.

By induction, we have ar+1 ∈ Sar satisfying

Fb(ar, ar+1, t) > HFb(Sar−1, Sar, t) ∀ r ∈ N.
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Using (5.2) together with Lemma 5.2.3, we have

Fb(ar, ar+1, t) ≥ HFb(Sar−1, Sar, t)

≥ Fb

(
ar−1, ar,

t

k

)
≥ HFb

(
Sar−2, Sar−1,

t

k

)
≥ Fb

(
ar−2, ar−1,

t

k2

)
...

≥ Fb

(
a1, a2,

t

kr−1

)
≥ HFb

(
Sa0, Sa1,

t

kr−1

)
≥ Fb

(
a0, a1,

t

kr

)
. (5.3)

For any q ∈ N, writing

q(
t

q
) =

t

q
+
t

q
+ . . .+

t

q

and using [FBM4] repeatedly,

Fb(ar,ar+q, t)

≥ Fb

(
ar, ar+1,

t

qb

)
∗ Fb

(
ar+1, ar+2,

t

qb2

)
∗ Fb

(
ar+2, ar+3,

t

qb3

)
∗ . . . ∗ Fb

(
ar+q−1, ar+q,

t

qbq

)
.

Using (5.3) and [FBM5], we get

Fb(ar,ar+q, t)

≥ Fb

(
a0, a1,

t

qbkr

)
∗ Fb

(
a0, a1,

t

qb2kr+1

)
∗ Fb

(
a0, a1,

t

qb3kr+2

)
∗ . . . ∗ Fb

(
a0, a1,

t

qbqkr+q−1

)
≥ Fb

(
a0, a1,

t

q(bk)kr−1

)
∗ Fb

(
a0, a1,

t

q(bk)2kr−1

)
∗ Fb

(
a0, a1,

t

q(bk)3kr−1

)
∗ . . . ∗ Fb

(
a0, a1,

t

q(bk)qkr−1

)
.
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As r, q ∈ N and bk < 1, taking limit as r →∞, we get

lim
r→∞

Fb(ar, ar+q, t) = 1 ∗ 1 ∗ . . . ∗ 1

= 1.

Hence {ar} is G-Cauchy sequence. Therefore, G-completeness of W implies that

there exists z ∈ W such that

Fb(z, Sz, t) ≥ Fb

(
z, ar+1,

t

2b

)
∗ Fb

(
ar+1, Sz,

t

2b

)

≥ Fb

(
z, ar+1,

t

2b

)
∗ HFb

(
Sar, Sz,

t

2b

)

≥ Fb

(
z, ar+1,

t

2b

)
∗ Fb

(
ar, z,

t

2bk

)
−→ 1 as r →∞.

By Lemma 5.2.1 z ∈ Sz. Hence z is fixed point for S.

Example 5.2.3.

Let W = [0, 1] and define a mapping Fb : W ×W × (0,∞)→ [0, 1] by

Fb(ξ, %, t) =
t

t+ (ξ − %)2
.

Then (W,Fb, ∗) is a G-complete fuzzy b-metric space with b = 2.

For k ∈ (0, 1), define a mapping S : W → Ĉ0(W ) by

S(ξ) =

{0} if ξ = 0

{0,
√
kξ
2
} otherwise

For ξ = %,

HFb(Sξ, S%, kt) = 1 =Fb(ξ, %, t).

For ξ 6= %, we have the following cases.
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For ξ = 0 and % ∈ (0, 1], we have

HFb(S(0), S(%), kt) = min

{
inf

a∈S(0)
Fb(a, S(%), kt), inf

b∈S(%)
Fb(S(0), b, kt)

}

= min

{
inf

a∈S(0)
Fb

(
a,

{
0,

√
k%

2

}
, kt

)
, inf
b∈S(%)

Fb ({0} , b, kt)

}

= min

{
inf

{
Fb

(
0, {0,

√
k%

2
}, kt

)}
,

inf

{
Fb ({0}, 0, kt) ,Fb

(
{0},

√
k%

2
, kt

)}}

= min

{
inf

{
sup

{
Fb(0, 0, kt),Fb(0,

√
k%

2
, kt)

}}
,

inf

{
Fb(0, 0, kt),Fb(0,

√
ky

2
, kt)

}}

= min

{
inf

{
sup

{
1,

t

t+ %2

4

}}
, inf

{
1,

t

t+ %2

4

}}

= min

{
inf {1} , t

t+ %2

4

}
= min{1, t

α + %2

4

}

=
t

t+ %2

4

.

It follows that

HFb(S(0), S(%), kt) > Fb(0, %, t) =
t

t+ %2
.

For ξ and % ∈ (0, 1], an easy calculation, with either possibility of supremum and

infimum, yields:

HFb(S(ξ), S(%), kt) = min

{
sup

{
t

t+ ξ2

4

,
t

t+ (ξ−%)2

4

}
, sup

{
t

t+ %2

4

,
t

t+ (ξ−%)2

4

}}
≥ t

t+
(ξ − %)2

4

>
t

t+ (ξ − %)2

= Fb(ξ, %, t).
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Thus for all cases, we have

HFb(Sξ, S%, kt) ≥ Fb(ξ, %, t)

Hence all the conditions of Theorem 5.2.4 are satisfied and 0 is a fixed point of S.

Theorem 5.2.5.

Let (W,Fb, ∗) be a G-complete FBMS with b > 1 and HFb be a HFBM space. Let

S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFb(Sξ, S%, kt) ≥ min

{
Fb(%, S%, t) [1 + Fb(ξ, S%, t)]

1 + Fb(ξ, %, t)
, Fb(ξ, %, t)

}
(5.4)

∀ ξ, % ∈ W, k ∈ (0, 1) and bk < 1, then S has a fixed point.

Proof.

In the same way as in Theorem 5.2.4 for a0 ∈ W , we choose a sequence {ar} in

W as follows:

Let a1 ∈ W such that a1 ∈ Sa0. By using Lemma 5.2.3, we can choose a2 ∈ Sa1

such that

Fb(a1, a2, t) > HFb(Sa0, Sa1, t) ∀ t > 0.

By induction, we have ar+1 ∈ Sar satisfying

Fb(ar, ar+1, t) > HFb(Sar−1, Sar, t) ∀ r ∈ N.

Now by (5.4) together with Lemma 5.2.3, we have

Fb(ar, ar+1, t) ≥ HFb(Sar−1, Sar, t)

Fb(ar, ar+1, t) ≥ min

{Fb(ar, Sar, t
k

)[
1 + Fb

(
ar−1, Sar−1,

t

k

)]
1 + Fb

(
ar−1, ar,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)}
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Fb(ar, ar+1, t) ≥ min

{Fb(ar, ar+1,
t

k

)[
1 + Fb

(
ar−1, ar,

t

k

)]
1 + Fb

(
ar−1, ar,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)}

Fb(ar, ar+1, t) ≥ min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
. (5.5)

If

min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
= Fb

(
ar, ar+1,

t

k

)
.

Then (5.5) implies

Fb(ar, ar+1, t) ≥ Fb

(
ar, ar+1,

t

k

)
.

Then nothing to prove by lemma 5.2.2

If

min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
= Fb

(
ar−1, ar,

t

k

)
.

Then from (5.5) we have

Fb(ar, ar+1, t) ≥ Fb

(
ar−1, ar,

t

k

)
≥ Fb

(
ar−2, ar−1,

t

k2

)
≥ Fb

(
ar−3, ar−2,

t

k3

)
...

> Fb

(
a0, a1,

t

kr

)
.

By adopting the same procedure as in Theorem 5.2.4 after inequality (5.3) we can

complete the proof.

Remark 5.2.6.

By taking b = 1 in Theorem 5.2.5, we get the main result of [79].
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Theorem 5.2.7.

Let (W,Fb, ∗) be a G-complete FBMS with b > 1 and HFb be a HFBM. Let

S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFb(Sξ, S%, kt) ≥ min

{
Fb(%, S%, t) [1 + Fb(ξ, Sξ, t) + Fb(%, Sξ, t)]

2 + Fb(ξ, %, t)
, Fb(ξ, %, t)

}
(5.6)

∀ ξ, % ∈ W, k ∈ (0, 1) and bk < 1, then S has a fixed point.

Proof.

Starting same way as in Theorem 5.2.4 we have

Fb(a1, a2, t) > HFb(Sa0, Sa1, t) ∀ t > 0.

By induction, we have ar+1 ∈ Sar satisfying

Fb(ar, ar+1, t) > HFb(Sar−1, Sar, t) ∀ r ∈ N.

Now by (5.6) together with Lemma 5.2.3, we have

Fb(ar, ar+1, t) ≥ HFb(Sar−1, Sar, t)

≥ min

{Fb(ar, Sar, t
k

)[
1 + Fb

(
ar−1, Sar−1,

t

k

)
+ Fb

(
ar, Sar−1,

t

k

)]
2 + Fb

(
ar−1, ar,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)}

≥ min

{Fb(ar, ar+1,
t

k

)[
1 + Fb

(
ar−1, ar,

t

k

)
+ Fb

(
ar, ar,

t

k

)]
2 + Fb

(
ar−1, ar,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)}

≥ min


Fb

(
ar, ar+1,

t

k

)[
1 + Fb

(
ar−1, ar,

t

k

)
+ 1

]
2 + Fb

(
ar−1, ar,

t

k

) , Fb

(
ar−1, ar,

t

k

)
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≥ min


Fb

(
ar, ar+1,

t

k

)[
2 + Fb

(
ar−1, ar,

t

k

)]
2 + Fb

(
ar−1, ar,

t

k

) , Fb

(
ar−1, ar,

t

k

)

≥ min

{
Fb

(
ar, ar+1,

t

k
), Fb(ar−1, ar,

t

k

)}
.

So, we get

Fb(ar, ar+1, t) ≥ min

{
Fb

(
ar, ar+1,

t

k
), Fb(ar−1, ar,

t

k

)}
. (5.7)

If

min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
= Fb

(
ar, ar+1,

t

k

)
.

Then (5.7) implies

Fb(ar, ar+1, t) ≥ Fb

(
ar, ar+1,

t

k

)
.

Then nothing to prove by Lemma 5.2.2.

If

min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
= Fb

(
ar−1, ar,

t

k

)
.

Then from (5.7) we have

Fb(ar, ar+1, t) ≥ Fb

(
ar−1, ar,

t

k

)
≥ Fb

(
ar−2, ar−1,

t

k2

)
> Fb

(
ar−3, ar−2,

t

k3

)
...

> Fb

(
a0, a1,

t

kr

)
.

By adopting the same procedure as in Theorem 5.2.4 after inequality (5.3) we can

complete the proof.
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Next the corollary of Theorem 5.2.7 is given.

Corollary 5.2.8.

Let (W,F, ∗) be a G-complete FMS and HF be a HFM. Let S : W → Ĉ0(W ) be a

multivalued mapping satisfying

HF(Sξ, S%, kt) ≥ min

{
F(%, S%, t) [1 + F(ξ, Sξ, t) + F(%, Sξ, t)]

2 + F (ξ, %, t)
, F (ξ, %, t)

}

∀ ξ, % ∈ W, k ∈ (0, 1). Then S has a fixed point.

Proof.

Taking b = 1 in Theorem 5.2.7, one can complete the proof.

Theorem 5.2.9.

Let (W,Fb, ∗) be a G-complete FBMS with b > 1 and HFb be a HFBM. Let

S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFb(Sξ, S%, kt)

≥ min

{
Fb(ξ, Sξ, t) [1 + Fb(%, S%, t)]

1 + Fb(Sξ, S%, t)
,
Fb(ξ, S%, t) [1 + Fb(ξ, Sξ, t)]

1 + Fb(ξ, %, t)
,

Fb(ξ, Sξ, t) [2 + Fb(ξ, S%, t)]
1 + Fb(ξ, S%, t) + Fb(%, Sξ, t)

, Fb(ξ, %, t)

}
(5.8)

∀ ξ, % ∈ W, k ∈ (0, 1) and bk < 1. Then S has a fixed point.

Proof.

For a0 ∈ W , we choose a sequence {xn} in W as follows;

Let a1 ∈ W such that a1 ∈ Sa0. By using Lemma 5.2.3, we can choose a2 ∈ Sa1

such that

Fb(a1, a2, t) > HFb(Sa0, Sa1, t) ∀t > 0.

By induction we have ar+1 ∈ Sar satisfying

Fb(ar, ar+1, t) > HFb(Sar−1, Sar, t) ∀ r ∈ N.
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Now by (5.8) together with 5.2.3 we have

Fb(ar, ar+1, t) ≥ HFb(Sar−1, Sar, t)

≥ min

{Fb(ar−1, Sar−1,
t

k

)[
1 + Fb

(
ar, Sar ,

t

k

)]
1 + Fb

(
Sar−1, Sar,

t

k

) ,

Fb
(
ar, Sar,

t

k

)[
1 + Fb

(
ar−1, Sar−1,

t

k

)]
1 + Fb

(
ar−1, ar,

t

k

) ,

Fb
(
ar−1, Sar−1,

t

k

)[
2 + Fb

(
ar−1, Sar,

t

k

)]
1 + Fb

(
ar−1, Sar,

t

k

)
+ Fb

(
ar, Sar−1,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)}

≥ min

{Fb(ar−1, ar,
t

k

)[
1 + Fb

(
ar, ar+1,

t

k

)]
1 + Fb

(
ar, ar+1,

t

k

) ,

Fb

(
ar, ar+1,

t

k

)[
1 + Fb

(
ar−1, ar,

t

k

)]
1 + Fb

(
ar−1, ar,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)[
2 + Fb

(
ar−1, ar+1,

t

k

)]
1 + Fb

(
ar−1, ar+1,

t

k

)
+ Fb

(
ar, ar,

t

k

) ,

Fb

(
ar−1, ar,

t

k

)}

≥ min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
.

So, we have

Fb(ar, ar+1, t) ≥ min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
. (5.9)
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If

min

{
Fb

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
= Fb

(
ar, ar+1,

t

k

)
.

Then (5.9) implies

Fb(ar, ar+1, t) ≥ Fb

(
ar, ar+1,

t

k

)
.

Then nothing to prove by Lemma 5.2.2.

If

min

{
Fb(

(
ar, ar+1,

t

k

)
, Fb

(
ar−1, ar,

t

k

)}
= Fb

(
ar−1, ar,

t

k

)
.

Then from (5.9) we have

Fb(ar, ar+1, t) ≥ Fb

(
ar−1, ar,

t

k

)
≥ Fb

(
ar−2, ar−1,

t

k2

)
...

> Fb

(
a0, a1,

t

kr

)
.

By adopting the same procedure as in Theorem 5.2.4 after inequality (5.3) we can

complete the proof.

An immediate consequence of the above result is stated in the following corollary.

Corollary 5.2.10.

Let (W,F, ∗) be a G-complete FMS and HF be a HFM. Let S : W → Ĉ0(W ) be a

multivalued mapping satisfying

HF(Sξ, S%, kt) ≥ min

{
F(ξ, Sξ, t) [1 + F(%, S%, t)]

1 + F(Sξ, S%, t)
,
F(%, S%, t) [1 + F(ξ, Sξ, t)]

1 + F (ξ, %, t)
,

F(ξ, Sξ, t) [2 + F(ξ, S%, t)]

1 + F(ξ, S%, t) + F(%, Sξ, t)
, F (ξ, %, t)

}

∀ ξ, % ∈ W, k ∈ (0, 1). Then S has a fixed point.

Proof.

Taking b = 1 in Theorem 5.2.9, one can complete the proof.
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5.3 Consequences

In this section, we establish some fixed point theorems involving integral inequal-

ities as consequences of our results. Define a function Ω: [0,∞)→ [0,∞) by

Ω(s) =

∫ s

0

ψ(s)ds ∀ s > 0, (5.10)

where Ω(s) is non-decreasing and continuous function.

Moreover ψ(s) > 0 for s > 0 and ψ(s) = 0 iff s = 0 .

Theorem 5.3.1.

Let (W,Fb, ∗) be a complete FBMS and HFb be a HFBM. Let S : W → Ĉ0(W ) be

a multivalued mapping satisfying

∫ HFb (Sξ,S%,kt)

0

ψ(t)dt ≥
∫ Fb(ξ,%,t)

0

ψ(t)dt (5.11)

∀ ξ, % ∈ W, k ∈ (0, 1) and bk < 1. Then S has a fixed point.

Proof.

Taking (5.10) in account, (5.11) implies that

Ω(HFb(Sξ, S%, kt)) > Ω(Fb(ξ, %, t)).

Since Ω is continuous and non-decreasing, so we have

HFb(Sξ, S%, kt) > Fb(ξ, %, t).

The rest of the proof follows immediately from Theorem 5.2.4.

A more general form of Theorem 5.3.1 can be stated an immediate consequence

of Theorem 5.2.7 as follows

Theorem 5.3.2.

Let (W,Fb, ∗) be a complete FBMS and HFb be a HFBM. Let S : W → Ĉ0(W ) be



Multivalued Mapping in Fuzzy Abstract Spaces 114

a multivalued mapping satisfying

∫ HFb (Sξ,S%,kt)

0

ψ(t)dt ≥
∫ β(ξ,%,t)

0

ψ(t)dt, (5.12)

where

γ(ξ, %, t) = min

{
Fb(%, S%, t) [1 + Fb(ξ, Sξ, t) + Fb(%, Sξ, t)]

2 + Fb(ξ, %, t)
, Fb(ξ, %, t)

}

∀ ξ, % ∈ W, k ∈ (0, 1) and bk < 1, then S has a fixed point.

Proof.

Note that if

γ(ξ, %, t) = Fb(ξ, %, t),

then the above theorem follows from Theorem 5.3.1.

5.4 Application

Nonlinear integral equations in abstract spaces arise in different fields of physical

sciences, engineering, biology, and applied mathematics [112, 113]. The theory

of nonlinear integral equations in abstract spaces is a fast growing field with im-

portant applications to a number of areas of analysis as well as other branches of

science [114]. Fixed point theory is a valuable tool for the analysis of the existence

of the solution of different kinds of inclusions such as [114, 115]. Many authors

provided the solution of different integeral inclusion in this context, for instance

see [116–120].

In this section, Volterra-Type integral inclusion is applied on Theorem 5.2.4.

Consider W = C([0, 1],R) be the space of all real valued continuous functions

defined on [0, 1] and define the G-complete fuzzy b-metric on W by

Fb(ξ, %, t) = e
−

sup
u∈[0,1]

|ξ(u)− %(u)|2

t
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for all t > 0 and ξ, % ∈ W.

First, recall the following definition and theorem, known as Michael’s Selection

Theorem [121].

Definition 5.4.1. “If W and Y are two spaces,and S is a function from W to

the subsets of Y , then a selection for S is a continuous f : W → Y such that

f(x) ∈ S(x) for every x ∈ W”.

Theorem 5.4.2.

“If W is paracompact space, then every lower semi-continuous function S to the

non-empty, closed, convex subsets of a Banach space Y admits a selection.”

Consider the integral inclusion

ξ(u) ∈
∫ u

0

G(u, v, ξ(v))dv + h(u) for all u, v ∈ [0, 1] and h, ξ ∈ C([0, 1]. (5.13)

where G : [0, 1]× [0, 1]× R→ Pcv(R) is multivalued continuous functions.

For the above integral inclusion, we define a multivalued operator S : W → Ĉ0(W )

by

S(ξ(u)) =

{
w ∈ W : w ∈

∫ u

0

G(u, v, ξ(v))dv + h(u), u ∈ [0, 1]

}
The next result proves the existence of a solution of the integral inclusion (5.13).

Theorem 5.4.3.

Let S : W → Ĉ0(W ) be the multivalued integral operator given by

S(ξ(u)) =

{
w ∈ W : w ∈

∫ u

0

G(u, v, ξ(v))dv + h(u), u ∈ [0, 1]

}

Suppose the following conditions are satisfied.

1. G : [0, 1] × [0, 1] × R → Pcv(R) is such that G(u, v, ξ(v)) is lower semi-

continuous in [0, 1]× [0, 1].

2. For all u, v ∈ [0, 1], f(u, v) ∈ W and for all ξ, % ∈ W , we have

|G(u, v, ξ(v))−G(u, v, %(v))|2 ≤ f 2(u, v)|ξ(v)− %(v)|2,



Multivalued Mapping in Fuzzy Abstract Spaces 116

where f : [0, 1]→ [0,∞) is continuous.

3. There exists 0 < k < 1 such that

sup
u∈[0,1]

∫ u

0

f 2(u, v)dv ≤ k.

Then the integral inclusion (5.13) has the solution in W.

Proof.

For

G : [0, 1]× [0, 1]× R→ Pcv(R)

it follows from Michael’s selection theorem that there exists a continuous operator

Gi : [0, 1]× [0, 1]× R→ R

such that Gi(u, v, ξ(v)) ∈ G(u, v, ξ(v)) for all u, v ∈ [0, 1]. It follows that

ξ(u) ∈
∫ u

0

Gi(u, v, ξ(v))dv + h(u)) ∈ S(ξ(u))

hence S(ξ(u)) 6= ∅ and closed. Moreover, since h(u) is continuous on [0, 1], and

G is continuous, their ranges are bounded. This means that S(ξ(u)) is bounded

and S(ξ(u)) ∈ Ĉ0(W ) Let q, r ∈ W there exist q(u) ∈ S(ξ(u)) and r(u) ∈ S(%(u))

such that

q(ξ(u)) =

{
w ∈ W : w ∈

∫ u

0

Gi(u, v, ξ(v))dv + h(u), u ∈ [0, 1]

}

and

r(%(u)) =

{
w ∈ W : w ∈

∫ u

0

Gi(u, v, %(v))dv + h(u), u ∈ [0, 1]

}

It follows from item 2 that

|Gi(u, v, ξ(v))−Gi(u, v, %(v))|2 ≤ f 2(u, v)|ξ(v)− %(v)|2
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Now

e
−

sup
t∈[0,1]

|q(u)− r(u))|2

kt ≥ e
−

sup
u∈[0,1]

∫ u

0

|Gi(u, v, ξ(v))−Gi(u, v, %(v))|2dv

kt

≥ e
−

sup
u∈[0,1]

∫ u

0

f 2(u, v)|ξ(v)− %(v)|2dv

kt

≥ e
−

|ξ(v)− %(v)|2 sup
u∈[0,1]

∫ u

0

f 2(u, v)dv

kt

≥ e
−
k|ξ(v)− %(v)|2

kt

= e
−
|ξ(v)− %(v)|2

t

≥ e
−

sup
v∈[0,1]

|ξ(v)− %(v)|2

t

= Fb(ξ, %, t)

So, we have

Fb(q, r, kt) ≥ Fb(ξ, %, t)

By interchanging the roll of ξ and %, we reach to

HFb(Sξ, S%, kt) ≥ Fb(ξ, %, t)

Hence S has a fixed point inW which is the solution of integral inclusion (5.13).

5.5 Multivalued Mapping in Extended Fuzzy b-

Metric Space

In this section, generalized form of the results of Section 5.2 are presented by using

the idea of Hausdorff fuzzy metric in EFBM. The notion of HFMS in Definition

5.1.2 of [79], can be extended naturally for HEFBM space on Ĉ0 as follows:
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Definition 5.5.1.

Let (W,Fα, ∗) be a EFBMS with α : W ×W → [1,∞). Define a function HFα on

Ĉ0(W )× Ĉ0(W )× (0,∞) by,

HFα(A,B, t) = min

{
inf
ξ∈A
Fα(ξ,B, t), inf

%∈B
Fα(A, %, t)

}

for all A,B ∈ Ĉ0(W ), t > 0 and Ĉ0(W ) is the collection of all nonempty compact

subsets of W , where Fα is defined in the same way as in Definition 5.1.1.

That is,

Fα(ξ,B, t) = sup

{
Fα(ξ, %, t) : % ∈ B

}
.

Lemma 5.2.1 to 5.2.3 extended naturally for EFBMS. That is where ever needed,

these Lemmas will be considered in the setting of EFBMS.

Theorem 5.2.4 can now be stated in more general setting as follows:

Theorem 5.5.2.

Let (W,Fα, ∗) be a G-complete EFBMS with α(ξ, %) > 1 and HFα be a HEFBM.

Let S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFα(Sξ, S%, kt) ≥ Fα(ξ, %, t) (5.14)

∀ ξ, % ∈ W, k ∈ (0, 1) and kα(ξ, %) < 1. Then S has a fixed point.

Proof.

For a0 ∈ W , we choose a sequence {ar} in W as follows:

Let a1 ∈ W such that a1 ∈ Sa0 by using Lemma 5.2.3 we can choose a2 ∈ Sa1

such that

Fα(a1, a2, t) > HFα(Sa0, Sa1, t) ∀ t > 0.

By induction we have ar+1 ∈ Sar satisfying

Fα(ar, ar+1, t) > HFα(Sar−1, Sar, t) ∀ r ∈ N.
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Now by (5.14) together with Lemma 5.2.3, we have

Fα(ar, ar+1, t) ≥ HFα(Sar−1, Sar, t)

≥ HFα(Sar−1, Sar, t)

≥ Fα

(
ar−1, ar,

t

k

)
≥ HFα

(
Sar−2, Sar−1,

t

k

)
≥ Fα

(
ar−2, ar−1,

t

k2

)
≥ HFα

(
Sar−3, Sar−2,

t

k2

)
≥ Fα

(
ar−2, ar−2,

t

k3

)
...

≥ HFα
(
Sa1, Sa2,

t

kr−2

)
≥ Fα

(
a1, a2,

t

kr−1

)
≥ HFα

(
Sa0, Sa1,

t

kr−1

)
≥ Fα

(
a0, a1,

t

kr

)
. (5.15)

For any q ∈ N, writing

q

(
t

q

)
=
t

q
+
t

q
+ . . .+

t

q

and using [EFBM4] repeatedly,

Fα(ar, ar+q, t)

≥ Fα

(
ar, ar+1,

t

qα(ar, ar+q)

)
∗ Fα

(
ar+1, ar+2,

t

qα(ar, ar+q)α(ar+1, ar+q)

)
∗ Fα

(
ar+2, ar+3,

t

qα(ar, ar+q)α(ar+1, ar+q)α(xn+2, xn+q)

)
∗ . . . ∗

Fα

(
ar+q−1, ar+q,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−1, ar+q)

)
.
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Using the contraction (5.15) and [EFBM5], it follows that

Fα(ar, ar+q, t)

≥ Fα

(
a0, a1,

t

qα(ar, ar+q)kr

)
∗ Fα

(
a0, a1,

t

qα(ar, ar+q)α(ar+1, ar+q)kr+1

)
∗ Fα

(
a0, a1,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q)kr+3

)
∗ . . . ∗

Fα

(
a0, a1,

t

qα(ar, ar+q)α(ar+1, ar+q)α(ar+2, ar+q) . . . α(ar+q−1, ar+q)kr+q

)
.

Since for all r, q ∈ N, and α(ar, ar+q)k < 1, we have

lim
r→∞

Fα(ar, ar+q, t) = 1 ∗ 1 ∗ . . . ∗ 1 = 1.

This shows that {ar} is G-Cauchy sequence.

Now it is claimed that z is a fixed point of S

Fα(z, Sz, t) ≥ Fα

(
z, ar+1,

t

2

)
∗ Fα

(
ar+1, Sz,

t

2

)
≥ Fα

(
z, ar+1,

t

2

)
∗ HFα

(
Sar, Sz,

t

2

)
≥ Fα

(
z, ar+1,

t

2

)
∗ Fα

(
ar, z,

t

2k

)
−→ 1 as r →∞.

By Lemma 5.2.1 z ∈ Sz.

Hence z is fixed point for S.

Following are some results which can be proved in similar way as Theorem 5.5.2.

Theorem 5.5.3. Let (W,Fα, ∗) be a G-complete EFBMS with α(x, y) > 1 and

HFα be a HEFBM. Let S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFα(Sξ, S%, kt)

≥ min

{
Fα(%, S%, t) [1 + Fα(ξ, Sξ, t)]

1 + Fα(ξ, %, t)
, Fα(ξ, %, t)

}

∀ ξ, % ∈ W, kα(ξ, %) < 1. Then S has a fixed point.
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Theorem 5.5.4. Let (W,Fα, ∗) be a G-complete EFBMS with α(ξ, %) > 1 and

HFα be a HEFBM. Let S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFα(Sξ, S%, kt)

≥ min

{
Fα(%, S%, t) [1 + Fα(ξ, Sξ, t) + Fα(%, Sξ, t)]

2 + Fα(ξ, %, t)
, Fα(ξ, %, t)

}

∀ ξ, % ∈ W, kα(ξ, %) < 1. Then S has a fixed point.

Theorem 5.5.5.

Let (W,Fα, ∗) be a G-complete EFBM with α(ξ, %) > 1 and HFα be a HEFBM.

Let S : W → Ĉ0(W ) be a multivalued mapping satisfying

HFα(Sξ, S%, kt)

≥ min

{
Fα(ξ, Sξ, t) [1 + Fα(%, S%, t)]

1 + Fα(Sξ, S%, t)
,
Fα(%, S%, t) [1 + Fα(ξ, Sξ, t)]

1 + Fα(ξ, %, t)
,

Fα(ξ, Sξ, t) [2 + Fα(ξ, S%, t)]

1 + Fα(ξ, S%, t) + Fα(%, Sξ, t)
, Fα(ξ, %, t)

}
(5.16)

∀ ξ, % ∈ W, kα(ξ, %) < 1. Then S has a fixed point.



Chapter 6

Conclusion and Future Work

This research deals with function spaces in general and fixed point theory in partic-

ular. This thesis, mainly focused on the generalizations of certain fixed theorems

available in the literature of fixed point theory, which include generalizations of

fixed results in FBMS, FRBMS, EFBMS. The applications of fixed point theory

is to seek unique solution of linear algebraic, differential and integral equations

reduced to functional equations. In Chapter 3, the famous BCP for FRBMS is

established and an example is furnished to illustrate the theorem. In this way, the

main result of Grabiec [51] is generalized. At the same time, by restricting the con-

traction mapping to the elements in the orbit of a point in FRBMS, an analogue

of the fixed point theorem of Hicks and Rhoads [85] in the setting of FRBMS is

proved. By using Geraghty type contraction, the result of [28] is also established.

For authenticity of results an application of integral equation is furnished in the

end of chapter. In Chapter 4, BCP for EFBMS is establised and illustrated by an

example which generalized the main result of Grabiec [51]. In the next section of

this chapter some fixed point results using Geraghty type contraction are proved.

An example demonstrate the result. Further to strengthen the result, an appli-

cation to study the existence of the solution of Voltera type integral equation is

provided.

In Chapter ??, BCP and an analogue of the fixed point theorem of Gupta [53] and

Roshan et. al [28] in the setting of both HFBMS and HEFBMS are established

122
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for multivalued mapping and an example is furnished to illustrate the results. An

application of Voltera type integral inclusion is also presented in the end of this

chapter. Thus these results are more general than the existing literature in the

fuzzy mathematics. Theory of fuzzy mathematics is extended by investigating

the fuzzy distances in the form of FBMS, EFBMS and FRBMS. In future one

can try to generalize many rsults of metric spaces, BMS like [13, 18, 19, 122]

in the setting of EFBMS and FRBMS, and further investigate these results for

multivalued mappings.
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