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Abstract

In this dissertation, we study the concept of fuzzy b-metric space which is the

generalization of fuzzy metric spaces and b-metric spaces. The Banach contraction

principle is extended in the setting of fuzzy b-metric spaces and this result has

been illustrated by an example. The notion of g-orbitally upper semi continuous

function is also introduced in fuzzy metric space and the fixed point result of Hicks

and Rhoads is generalized in the setting of fuzzy b-metric space. Some fixed point

results are also proved by introducing a novel and rational contraction and using

a control function in fuzzy b-metric spaces. Some applications are also highlighted

as consequences of our results. This idea is further used to prove some new fixed

point results and some common fixed point results for Geraghty-type contraction in

G-complete fuzzy b-metric spaces. Further, the notion of generalized fuzzy metric

space is introduced. Many topological spaces like fuzzy metric spaces, fuzzy b-

metric spaces and dislocated fuzzy metric spaces have been generalized by this new

generalized fuzzy metric space. It is also proved that the class of generalized fuzzy

metric spaces contains the classes of fuzzy metric spaces, fuzzy b-metric spaces

and dislocated fuzzy metric spaces as proper sub-classes. The Banach contraction

principle and Ćirić’s quasi-contraction theorem are demonstrated in the setting of

generalized fuzzy metric space. As consequences of our results, we obtain Jleli and

Samet’s and many other author’s recent results as corollaries. We also present an

application related to our main result for nonlinear integral equation.



Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract x

List of Figures xiii

Abbreviations xiv

1 Introduction 1

1.1 Metric Fixed Point Theory . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fuzzy Fixed Point Theory . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 11

2.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 b-Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Dislocated Metric Space . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Generalized Metric Space . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Fuzzy Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Fuzzy b-Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Fixed point Theorems in Fuzzy Metric Space . . . . . . . . . . . . . 36

3 Fixed Point Theorems in Fuzzy b-metric Spaces 39

3.1 Fixed Point Results in FbMS . . . . . . . . . . . . . . . . . . . . 39

3.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Geraghty Type Contractions in Fuzzy b-metric Spaces 64

xi



xii

4.1 Geraghty Type Contraction . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Some Common Fixed Point Results in Fuzzy b-Metric Spaces . . . . 84

4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Fixed Point Results in Generalized Fuzzy Metric Spaces 103

5.1 Generalized Fuzzy Metric Spaces . . . . . . . . . . . . . . . . . . . 103

5.2 Application: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Conclusion and Future Work 125

Bibliography 128



List of Figures

2.1 A graph having no fixed point. . . . . . . . . . . . . . . . . . . . . . 16

2.2 A graph having one fixed point. . . . . . . . . . . . . . . . . . . . . 16

2.3 A graph having two fixed points. . . . . . . . . . . . . . . . . . . . 17

2.4 A graph having three fixed points. . . . . . . . . . . . . . . . . . . . 17

2.5 Membership function of “Cheap”. . . . . . . . . . . . . . . . . . . . 25

xiii



Abbreviations

Acronym What (it) Stands For

BCP Banach Contraction Principle

bMS b-Metric Space

DMS Dislocated Metric Space

FbMS Fuzzy b-Metric Space

FDMS Fuzzy Dislocated Metric Space

FMS Fuzzy Metric Space

GFMS Generalized Fuzzy Metric Space

GMS Generalized Metric Space

MS Metric Space

xiv



Chapter 1

Introduction

Mathematics is an important branch of science and is further divided into many

branches, each of which has its own significance according to its applications. One

of the most significant field of mathematics is referred as functional analysis. It

can be used to solve a variety of problems including both linear and non-linear

differential equations. It has numerous applications in the field of numerical anal-

ysis, error estimation of polynomial interpolation and finite difference method, see

for instance [1–5].

Fixed point theory is an important and valuable concept in functional analysis.

This certainly enhances the importance and significance of functional analysis due

to its wide use in solving the different types of linear and non-linear problems. The

concept of fixed point has a wide variety of applications in different scientific fields

such as mathematical economics, game theory, optimization theory, approximation

theory etc, for instance [6–9].

Poincare [10] was the first to work on fixed point theory in 1886. After that, the

equation f(%) = % was taken into consideration by Brouwer [11] and he found the

solution of this equation by proving a fixed point theorem in 1912. He also con-

tributed to prove fixed point results for the shapes like a square and a sphere etc.

This work was further extended and generalized by Kuktani [12] for n-dimensional

counter parts of a sphere and a square.

1
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1.1 Metric Fixed Point Theory

In 1906, Fréchet [13] presented the concept of metric spaces. Throughout the

analysis of a variety of mathematical disciplines like functional analysis, topology

and non-linear analysis, the theory of metric spaces is applied as a basic tool. In

the same time, an important concept was appeared in the field of fixed point theory

that is, Banach Contraction Principle (BCP) which played very important role in

solving non-linear problems. This famous and well known result was introduced

in 1922 by Banach [14]. He demonstrated that on a complete metric space, every

contraction mapping has a unique fixed point. That is,

If (S, d) is a complete metric space and T : S −→ S is a self map on S. Then

there exists an α ∈ [0, 1), such that

d(T%, Tη) ≤ αd(%, η)

for all %, η ∈ S, then T has a unique fixed point.

Picard [15] introduced the iterative process that was used to prove the Banach

Contraction theorem. One can observe that the successive approximation method

for finding the existence and uniqueness of differential equation solutions is infact

the start and origin of fixed point theory and contraction principle. The frequent

use of BCP in this domain by various researchers has resulted in significant ad-

vancement in fixed point theory. An important reason behind this development is

the keen interest of the mathematicians as it provides a guarantee for the existence

of solution of non-linear problems but it also gives the guarantee of uniqueness of

solution. In the recent few decades, the field of fixed point has seen many ad-

vances and generalisations of metric spaces. The work in this direction is further

subdivided into two categories.

In first category, the fixed point theorems are obtained by extending the contrac-

tion conditions and hence generalizing the BCP.

In the second category, researchers established fixed point theorems by changing

the underlying space.
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Many authors worked on different generalized metric spaces and proved Banach

Contraction Principle by using different contractions. See for instance [16–22].

In 1989, Bakhtin [23] proposed the novel idea of b-metric space (bMS). This ex-

tension may rightly be called first generalization of metric space. Czerwik [24],

further explored the notion of bMS by using the contraction conditions in b-metric

space and generalized Banach contraction principle in this space. Many mathe-

maticians played a leading role for the strong foundation of fixed point theory in

bMS, proving a number of interesting fixed point results in b-metric space and its

several extensions, as in [25–28].

In 1998, Czerwik [29] demonstrated a result in b-metric spaces for nonlinear single-

value contraction maps. For set-value quasi-contraction maps, Aydi et al. [30]

established a fixed point result in 2012. They also provided a common fixed point

theorem [31] satisfying a weak φ-contraction for single and multi-valued maps in

bMS that generalizes many well known fixed point results in the current literature.

Alghamdi et al. [26] presented the concept of a b-metric-like space in 2013 and

represented the fixed point’s existence and uniqueness in both b-metric-like spaces

and a partially ordered b-metric-like spaces. Shukla [32] introduced the definition

of a partial b-metric space in 2014 as a generalisation of a partial metric space and

a bMS and proved the Banach contraction principle and Kannan-type fixed point

result in the setting of partial bMS. Recently, Faraji et al. [33] generalized the

BCP and proved some common fixed point theorems in complete bMS by using

Geraghty type contractive mappings [34].

Dislocated metric space (DMS) is another interesting notion and generalization of

metric space. In 2000, the idea of dislocated metric space was presented by Hitzler

and Seda [35], which was further investigated by various researchers, see [36–38].

The fascinating aspect of Hitzler and Seda’s concept of DMS is that a point’s self

distance does not have to be zero. The well-known Banach contraction theorem

[14] was also expanded in this new framework. A fascinating element of dislocated

metric space is that it is employed in topology, logical programming, and electrical

engineering, see [36, 39, 40].
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Jleli and Samet [41] defined generalised metric space in 2015 as a new generalisa-

tion of metric spaces. It includes MS, bMS and DMS as examples of topological

spaces. They defined k-contraction for a self mapping S in generalized metric

space

D(f%, fη) ≤ kD(%, η),

for every (%, η) ∈ S × S and also defined k-quasi contraction for a self mapping S

in generalized metric space as

D(f%, fη) ≤ kmax
{
D(%, η), D(%, T%), D(η, Tη), D(%, Tη), D(η, T%)

}
,

for k ∈ (0, 1) and for every (%, η) ∈ S × S.

The authors also expanded some famous fixed point theorems such as BCP [14],

Ćirić’s fixed point theorem [16] and a fixed point result for Ran and Reurings [42].

Due to the work of Jleli and Samet [41], Senapati et al. [43] studied the interesting

generalization of standard MS, bMS and DMS in 2016. They modified the result

for Ćirić quasi contraction type mappings and also used D-admissible mappings to

prove the same result. Moreover, their work establishes two fixed point results for

Wardowski type contraction and rational contraction mappings. Further, Tanusri

Senapati and Lakshmi Kanta [43] investigated coupled fixed point results in newly

discovered JS-metric spaces in 2016. They provided a broader edition of several

coupled fixed point results. In the context of JS-metric spaces proposed by Jleli

and Samet, Karapinar et al. [44] introduced two classes of Meir–Keeler type

contractions in 2018 and established a fixed-point result for each class. In 2019,

Senapati et al. [45] developed a few non unique fixed point or periodic point

results in the setting of JS-metric spaces involving ZD-contraction and generalized

Meir–Keeler contraction.

1.2 Fuzzy Fixed Point Theory

With the introduction of fuzzy sets in 1965, Zadeh [46] set the groundwork for fuzzy

mathematics. A fuzzy set is a collection of items that has a range of membership
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grades. A membership function, which assigns a grade of membership to each

object ranging from 0 to 1, characterises such a set. In the sense of fuzzy sets,

the notions of inclusion, union, intersection, complement, relation, convexity, and

their various properties are defined.

In recent studies of the logical and set-theoretical foundations of mathematics,

the adjective “fuzzy” appears to be a common and frequently used one. The key

explanation for this rapid growth, in our view, is simple to comprehend. The

world around us is filled with uncertainty, the information we gather from the

atmosphere, the concepts we employ, and the data derived from our observations

or measurements are all, in general, ambiguous and incorrect. As a result, each

formal representation of the real world or any part of it is merely an approxima-

tion and idealization of the actual state in any case. Fuzzy sets, fuzzy languages

and other related concepts make it possible to manage and research the above-

mentioned degree of uncertainty in a strictly mathematical and formal manner. A

brief overview of the most important findings and implementations relating to the

concept of fuzzy set and related concepts is given in [47].

Kramosil and Michálek [48] presented the idea of FMS in 1975 in order to describe

it in a natural and intuitively justifiable way. After that, the definition is compared

to statistical metric space, and both are shown to be similar in certain sense. The

goal of this concept is to apply the idea of fuzziness to traditional notions of

metric and metric spaces and compare the results with those obtained from other,

probabilistic statistical generalisations of metric spaces.

The BCP was extended in FMS in the context of Kramosil and Michálek by

Grabiec [49] in 1998, as

Let (S,M, ∗) be a complete fuzzy metric space such that

lim
t→∞

F (%, η, t) = 1 for all %, η ∈ S.

Let T : S → S be a mapping satisfying

M(T%, Tη, kt) ≥M(%, η, t)
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for all %, η ∈ S and k ∈ (0, 1). Then T has a unique fixed point.

Grabiec [49] also established Edelstein contraction theorem in FMS as

Let (S,M, ∗) be a compact fuzzy metric space with M(%, η, .) continuous for all

%, η,∈ S. Let T : S → S be a mapping satisfying

M(T%, Tη, t) ≥ F (%, η, t)

for all % 6= η and t > 0. Then T has a unique fixed point.

With the support of continuous t-norms, George and Veeramani [50] updated the

definition of FMS in 1994. The authors also proved some well-known metric space

results, such as Baire’s theorem for fuzzy metric spaces and established a Hausdorff

topology.

Grogri and Sapena [51] developed a fuzzy contractive mapping in 2002 and proved

fixed point theorems for complete FMS in George and Veeramani’s context as

well as Kramosil and Michálek’s FMS that are complete in the sense of Grabiec

[49]. Sushil Sharma [52] developed few common fixed point results in FMS for six

mappings in 2002. Their key results in fuzzy metric spaces, probabilistic metric

spaces and uniform spaces expanded, generalised and fuzzified some previously

known results. In 2005, Razani [53] described fuzzy ε-contractive mapping and

demonstrated some fixed point results. In 2007, Mihet [54] used the mapping given

by Razani [53] and proved some results. The author also affirmatively responded to

an open question posed by Razani in 2005. The separation axiom in the description

of a FMS defined as George and Veeramani, plays a crucial role in the proofs of

theorems.

Abbas et al. [55] presented the concept of Ψ-weak contraction in FMS in 2011

and demonstrated some effects. The result of this article generalized the result of

Gregori and Sapena [51]. Gopal et al. [56] introduced cyclic weak φ contractions

in FMS in 2012 and used them to prove some results on fixed point existence and

uniqueness in fuzzy metric spaces. In addition to presenting examples, several

related results are also illustrated. Gupta et al. [57] proved two FP results using
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rational inequality and provide an integral application in 2013. Dey and Saha [58]

define T -contraction in FMS in 2014. The existence of a fixed point of mapping

satisfying a general contractive condition in a complete fuzzy metric space was

defined in this article by the author. In particular, T -Banach contraction prin-

ciple by Beiranvand et al. [2] in FMS is an analogue of this result. Many more

contractions and fixed point results are proved by many authors in different ways,

for instance, see [56, 59–83]

In 2015, Hussain et al. [84] established a significant relationship between paramet-

ric b-metric and fuzzy b-metric and deduced some fixed point theorem in triangular

partially ordered FbMS. In computer science, metric spaces and their numerous

generalisations are widely used. This is why, in 2016, Nǎdǎban [85] presented and

researched the definition of FbMS, generalising both the concept of FMS intro-

duced by Kramosil and Michálek [48] as well as the concept of bMS. While on the

other hand, Nǎdǎban [85] defined fuzzy quasi b-metric space, which builds on Gre-

gori and Romaguera’s idea of fuzzy quasi-metric space [86] and also established a

decomposition theorem in this space. Abbas et al. [87] introduced ψ-contraction

and monotone ψ-contraction correspondences in FbMS and for these contractive

mappings, few fixed point results were obtained. Some current results in FMS and

FbMS are generalised by these results. Mehmood et al. [88] presented the idea of

extended FbMS as a generalisation of FbMS and in the context of this more general

class of FbMS, they proved BCP. The results of this article are the extension and

generalization of the existing results in literature.

1.3 Thesis Contribution

Nădăban [85] explored the concepts of FbMS and a fuzzy-quasi pseudo metric

space, developing some interesting findings in these spaces and concluding his

work by proposing to extend the BCP to FbMS, which could be useful in solving

fixed point problems in mathematics, engineering, and computer science. As a

result, he laid the groundwork for establishing some fixed point results in these
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areas.

The aim of this research is to look into potential work and issues suggested by

Nădăban [85] at the end of his work. For fuzzy metric spaces, Grabiec [49] proved

the Banach fixed point theorem [14]. As inspired by Grabiec, we develope BCP in

the setting of FbMS. The Hicks and Rhoades fixed point theorem [21] is established

in the setting of FbMS by defining g-orbitally upper semi continuous function. We

also use a control function to prove some fixed point results, analogous to [57,

Theorem 1] for G-complete FbMS and illustrated the theorems by providing an

example. At the end, several applications are made based on our results.

Faraji [33], recently used Geraghty type contractions [34] to prove a few fixed

point theorems in bMS. We prove some new fixed point results for Geraghty-type

contraction in G-complete FbMS. Particularly, the extension of main result of

Grabiec [49] is established in our first theorem. Second result is the extention of

the main result of Faraji et al. [33] and other results are the generlization of the

results of Alsulami et al. [89] in the setting of G-complete FbMS. We establish

some common fixed point results for Geraghty-type contraction in the setting of

G-complete FbMS. Our first two results are the extensions of the main results of

Faraji [33] and third result is the generalization of the results of Gupta et. al.

[57] in the setting of G-complete FbMS. We also establish some common fixed

point results for Geraghty-type contraction which are generalization of the results

of Faraji [33] and the results of Gupta et. al. [57] in the setting of G-complete

FbMS. We furnish an example to illustrate our main result and also present an

application of the results obtained.

In addition, the definition of a generalised fuzzy metric space (GFMS) is introduced

and an example of a GFMS has been provided to demonstrate its description. We

also show that the classes of FMS, FbMS, and DFMS are proper sub-classes of the

class of GFMS. In the context of GFMS, we have also proven the BCP [14] and

Ćirić’s quasi-contraction theorem [16]. As consequences of our results, we obtain

many author’s recent results as corollaries. In the end, we give an example which

illustrates our main result. Some fixed point theorems are also proved by applying

our results.
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1.4 Organization of Thesis

The rest of the thesis is arranged in the following way.

• In Chapter 2, the basic concepts, outcomes and examples are updated on

which other chapters are based. In the first section, we discuss various kinds

of metric spaces, such as bMS, DMS and GMS. The FMS and FbMS were

covered in the second section. The final section includes several fixed point

results defined on FMS.

• In Chapter 3, we investigate the definition of FbMS and demonstrate the

BCP [14] in the context of FbMS using an example. In addition, we introduce

the definition of a g-orbitally upper semi continuous function in FMS and

prove Hicks and Rhoades’s fixed point theorem [21] in FbMS. A control

function in FbMS is used to prove certain fixed point results using a novel

and logical contraction. As a result of our observations, some applications

are highlighted as well. A brief conclusion to our work is provided at the

end of the chapter.

• In Chapter 4, Geraghty-type contraction in G-complete FbMS is used to

prove some new fixed point theorems, using the concept of FbMS. In par-

ticular, our first theorem establishes the extension of Grabiec’s main result

[49]. The second result is an extension of Faraji et al [33] key’s result and

the other results are the generalization of results of Alsulami et al. [89] in

the setting of G-complete FbMS. There is also a demonstration of how our

main result for the existence of solutions to non linear integral equations can

be implemented. This work is published in the following journal article.

M. S. Ashraf, R. Ali and N. Hussain, “Geraghty type contractions in fuzzy

b-metric spaces with application to integral equations,” Filomat, vol. 34, no.

9 , pp.3083-3098, 2020.

In rest of chapter, some common fixed point theorems for Geraghty-type

contraction in the setting ofG-complete FbMS are presented. Our two results
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are the extensions of the main results of Faraji [33] and third result is the

generalization of the results of Gupta et. al. [57] in the setting of G-complete

FbMS. We furnish an example to illustrate our main result and also present

an application of the results obtained. This work is submitted for possible

publication.

“Some Common Fixed Point Results in Fuzzy b-Metric Spaces Using Ger-

aghty Type Contraction,” Submitted, 2021.

• In Chapter 5, the notion of generalized fuzzy metric space GFMS is defined.

This new GFMS has generalised a wide variety of topological spaces, includ-

ing FMS, FbMS, and DFMS. An example of a GFMS has been provided to

demonstrate its description. We also showed that the classes of FMS, FbMS,

and DFMS are proper sub-classes of the class of GFMS. The BCP [14] and

Ćirić’s quasi-contraction theorem [16] have also proved in the context of

GFMS . As a consequence of our observations, we receive several author’s

recent findings as corollaries.

Finally, we include an example that illustrates our main result. Our results

are also used to prove certain fixed point theorems in existing literature. The

work of this chapter is published in the following journal article.

M. S. Ashraf, R. Ali and N. Hussain, “New Fuzzy Fixed Point Results in

Generalized Fuzzy Metric Spaces With Application to Integral Equations,”

IEEE Access, vol. 8, pp. 91653-91660, 2020.



Chapter 2

Preliminaries

The aim of this chapter is to update the basic concepts, outcomes and examples

on which other chapters are based. We start with the concepts of different types

of metric spaces i.e, spaces equipped with a b-metric, dislocated metric and gen-

eralized metric etc. In the second section, fuzzy metric spaces (FMS) and fuzzy

b-metric spaces (FbMS) are discussed. The last section consists of some fixed

point theorems for mappings defined on FbMS.

2.1 Metric Spaces

In this section, we shall concern with the basic definitions and examples of metric

spaces along with the elementary concepts. Metric space (MS) is one of the most

important topic in pure mathematics. It is the generalization of usual concept of

distance between two points in Euclidean spaces. It has certain properties and

some very interesting concepts. In fact, metric spaces and topological spaces are

frequently used in scientific researches now a days. In 1906, Fréchet [13] gave the

notion of MS as follows:

Definition 2.1.1.

“Let S be a nonempty set. A function d : S × S −→ R is called a metric on S if

it satisfies the following conditions for all %, η, ζ ∈ S,

11
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M1: d(%, η) ≥ 0,

M2: d(%, η) = 0 if and only if % = η,

M3: d(%, η) = d(η, %),

M4: d(%, η) ≤ d(%, ζ) + d(ζ, η).

The pair (S, d) is called a metric space” [13].

Example 2.1.2.

Let S = R. A mapping d : S × S −→ R defined by

d(%, η) =
|%− η|

1 + |%− η|
∀ %, η ∈ S,

is a metric on S and the pair (S, d) is a metric space.

Example 2.1.3.

Let S = C[a, b] represents the collection of all real-valued continuous functions

defined on [a, b]. The function d : S × S → R given by

d(g, h) = max
t∈[a,b]

|g(t)− h(t)|, g, h ∈ C[a, b],

is a metric on S and (S, d) is a metric space.

Example 2.1.4.

Let S represents the collection of all real-valued continuous functions specified on

[0, 1]. The function d : S × S → R given by

d(g, h) =

∫ 1

0

|g(t)− h(t)|dt ∀ g(t), h(t) ∈ S,

is a metric on S and (S, d) is a metric space.

In the following, we state the Archimedean property of R, which is frequently used

in the convergence problems.

Archimedean Property

If ε > 0 is any real number then for any real number %, there is a positive integer

n0 such that n0ε > %.



Preliminaries 13

Definition 2.1.5.

“A sequence {%n} in a metric space S is said to be convergent to a point % ∈ S

if for every ε > 0 there a positive integer an N = N(ε) such that,

d(%n, %) < ε for all n ≥ N.

% is called the limit of sequence {%n} and we write

lim
n−→∞

d(%n, %) = 0”[90].

Example 2.1.6.

Consider S = R with usual metric and a sequence {%n} =

{
1

n

}
. For any real

number ε > 0 and n ∈ N,

d(%n, 0) = |%n − 0|

=
∣∣∣ 1
n
− 0
∣∣∣

=
1

n
. (2.1)

By Archimedean Property, there exists a positive integer n0 for any ε > 0 such

that

n0 ε > 1

⇒ 1

n0

< ε

⇒ 1

n
≤ 1

n0

< ε ∀ n ≥ n0. (2.2)

Combining (2.1) and (2.2), we have

d(%n, 0) < ε ∀ n ≥ n0.

This shows that the given sequence {%n} =

{
1

n

}
converges to 0.

Definition 2.1.7.

“A sequence {%n} in a metric space S is said to be a Cauchy sequence if for
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every ε > 0, there is positive integer N = N(ε) such that

d(%m, %n) < ε,

for every m,n ≥ N” [90].

Definition 2.1.8.

“A metric space (S, d) is said to be complete if every Cauchy sequence in S has

a limit in S” [90].

Remark 2.1.9.

Any convergent sequence is a Cauchy sequence in a metric space but the converse

is not valid. In other words, every Cauchy sequence in a metric space need not to

be convergent.

Definition 2.1.10.

“Let (S, d) be a metric space. A mapping T : S → S is called contraction if

there exists 0 ≤ α < 1 such that

d(T%, Tη) ≤ αd(%, η),

for %, η ∈ S” [90].

Example 2.1.11.

Consider S = R and the usual metric space (R, d) defined by

d(%, η) = |%− η|.

Then a mapping T : R→ R defined by

T (%) =
%

a
+ b,

is a contraction for all a > 1.

In fact,

d(T%, Tη) = d
(%
a

+ b,
η

a
+ b
)
,
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which implies

d(T%, Tη) =
∣∣∣%
a

+ b− η

a
− b
∣∣∣

=
∣∣∣%
a
− η

a

∣∣∣
=

1

a

∣∣∣%− η∣∣∣
=

1

a
d(%, η). (2.3)

From (2.3), it is clear that α =
1

a
such that 0 < α < 1 for all a > 1. Hence T is a

contraction.

Definition 2.1.12.

Consider a metric space (S, d) and T : S → S a self map. A point % ∈ S is called

a fixed point of T if

T% = %.

Generally a point that does not move by a given transformation is a fixed point

of that transformation.

Geometrically, if η = T% is a real valued function in R2 then by fixed point of T,

it means that the points where the graph of T intersect with line T% = %. Thus

a mapping T may or may not have fixed point. Further, fixed point may not be

unique, see Figure 2.3 and Figure 2.4.

Following are the examples of fixed points.

Example 2.1.13.

1. Let S = R. A mapping T : S → S defined by

T% = %+ 1,

has no fixed point.

Geometrically, it means that the graph of T% = % + 1 never intersects the graph

of T% = %, as shown in Figure 2.1 .
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Figure 2.1: A graph having no fixed point.

2. Let S = R. A mapping T : S → S defined by

T% = 2%+ 1,

has exactly one fixed point, as shown in Figure 2.2.

Figure 2.2: A graph having one fixed point.

3. Let S = R. A mapping T : S → S defined by

T% = %2 − 2,

has exactly two fixed points, that is −1 and 2, as shown in Figure 2.3.
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Figure 2.3: A graph having two fixed points.

4. Let S = R. A mapping T : S → S defined by

T% = %3 − 3%,

has exactly three fixed points, that is −2, 0 and 2, as shown in Figure 2.4.

Figure 2.4: A graph having three fixed points.



Preliminaries 18

2.2 b-Metric Spaces

Bakhtin [23] introduced the notion of b-metric spaces (bMS) in 1989 by using

the real number b ≥ 1 in triangular inequality. Later on, the concept of bMS

was further investigated by Czerwik [24] by generalizing the the well-known BCP

and also presented various fixed point results in bMS. The extension of fixed

point theorems in bMS was explored by a several researchers, including Aydi [30],

Boriceanu [91], Bota [92], Kir [93], Pǎcurar [94].

The definition of bMS is as follows:

Definition 2.2.1.

“Let S be a non-empty set. For any real number b ≥ 1, a function db : S×S −→ R

is called b-metric if it satisfies the following properties for all %, η, ζ ∈ S.

BM1: db(%, η) ≥ 0,

BM2: db(%, η) = 0 if and only if % = η,

BM3: db(%, η) = db(η, %) for all %, η ∈ S,

BM4: db(%, η) ≤ b
[
db(%, ζ) + db(ζ, %)

]
.

The pair (S, db) is called a b-metric space”[23].

Remark 2.2.2.

Note that, by setting b = 1 in Definition 2.2.1, it coincides with the concept of

metric spaces (Definition 2.1.1). Therefore, the class of bMS is larger than that

of MS.

Following example shows that every b-metric space need not to be metric space.

Example 2.2.3.

Let S = R. A mapping db : S × S −→ R defined by

db(%, η) = (%− η)2 ∀ %, η ∈ X,

is a b-metric on R. The pair (S, db) is a bMS.
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The properties BM1, BM2, BM3 of Definition 2.2.1 are obvious. Here we prove

only BM4. For all %, η, ζ ∈ S,

db(%, η) = (%− η)2

= (%− ζ + ζ − η)2

≤ 2
[
(%− ζ)2 + (ζ − η)2

]
= 2 [db(%, ζ) + db(ζ, η)] .

Hence db is a b-metric with b = 2 but not a metric.

Example 2.2.4.

Let S = {0, 1, 2} and a b-metric db on S is defined by

db(2, 0) = db(0, 2) = λ ≥ 2

db(1, 0) = db(0, 1) = db(1, 2) = db(2, 1) = 1.

db(0, 0) = db(1, 1) = db(2, 2) = 0.

Then,

db(%, η) ≤ λ

2

[
db(%, ζ) + db(ζ, η)

]
∀ %, η, ζ ∈ S.

Thus (S, db) is a bMS and for λ > 2, it is not a metric space.

2.3 Dislocated Metric Space

Hitzler and Seda [35] first proposed the definition of dislocated metric space DMS

in 2000 as follows:

Definition 2.3.1.

“Let S be a nonempty set and D : S ×S → [0,+∞) be a given mapping. We say

that D is a dislocated metric on S, if it satisfies the following conditions:

DM1: D(%, η) = 0 ⇒ % = η,
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DM2: D(%, η) = D(η, %) for all %, η ∈ S,

DM3: D(%, η) ≤ D(%, ζ) +D(ζ, η).

The pair (S, D) is called a dislocated metric space.”

2.4 Generalized Metric Space

Jleli and Samet [41] proposed a fascinating generalisation of metric spaces in 2015

which is known as generalized metric space (GMS), from which various well-known

structures such as standard MS, bMS and DMS etc. can easily be derived. The

definition of a GMS is as follows:

Definition 2.4.1.

“Consider a nonempty set S and a mapping D : S × S → [0,∞) . For all % ∈ S,

define a set

C(D,S, %) =
{
{%n} ⊂ S : lim

n→∞
D(%n, %) = 0

}
,

then D is said to be a generalized metric on S if for every (%1, %2) ∈ S × S, the

following conditions hold:

GM1: D(%1, %2) = 0 ⇒ %1 = %2,

GM2: D(%1, %2) = D(%2, %1),

GM3: there exists c > 0 so that if {%n} ∈ C(D,S, %1), then

D(%1, %2) ≤ c lim sup
n→∞

D(%n, %2),

then the pair (S,D) is called a GMS” [41].

Remark 2.4.2.

In case, if C(D,S, %) is empty for each % ∈ S then (S,D) is a GMS if and only if

GM1 and GM2 are satisfied [41].
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Proposition 2.4.3.

C(D,S, %) is a non-empty if and only if D(%, %) = 0 [95].

Proof.

If C(D,S, %) is a non-empty i.e, C(D,S, %) 6= φ, then there is a sequence {%n} in

S such as

lim
n→∞
D(%n, %) = 0.

Using GM3, we get

D(%, %) ≤ c lim sup
n→∞

D(%n, %) = 0.

Conversely, suppose that D(%, %) = 0, then a sequence {%n} in S defined by %n = %

∀ n ∈ N converges to %. Thus

C(D,S, %) 6= φ.

Following example demonstrates that GMS need not to be a metric space.

Example 2.4.4.

Let S = [0, 1]. Define a mapping D : S × S → [0,+∞] as :


D(%1, %2) = %1 + %2 if %1 6= 0 and %2 6= 0

D(0, %1) = D(%1, 0) =
%1
2

for all %1 ∈ S.
(2.4)

With this D, the pair (S,D) is a GMS as shown below.

The Conditions GM1 and GM2 are trivially satisfied. We need to verify GM3

only for those elements of S such that

D(%1, %1) = 0 ⇒ %1 = 0 ∀ %1 ∈ S.

Define the set

C(S,D, 0) =
{
{%n} ⊂ S : lim

n→∞
D(%n, 0) = 0

}
.
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Using %n and %2 in (2.4), we get

D(%n, %2) =


%n + %2 if %n 6= 0 ∀ n ∈ N
%2
2

if %n = 0.

Clearly,
%2
2
≤ %n + %2 = D(%n, %2)

⇒ D(0, %2) =
%2
2
≤ D(%n, %2)

⇒ D(0, %2) ≤ lim sup
n→∞

D(%n, %2).

Thus (S,D) is a GMS. But it is not a metric space because there is an absurdity

in triangular-inequality.

If %1, %2 ∈ S \ {0}, then we get,

D(%1, %2) = %1 + %2

⇒ D(%1, 0) +D(0, %2) =
%1
2

+
%2
2

=
%1 + %2

2
.

Hence

%1 + %2 >
%1 + %2

2

⇒ D(%1, %2) > D(%1, 0) +D(0, %2).

Hence every GMS is not a metric space.

Definition 2.4.5.

“Let (S,D) be a GMS. A sequence {%n} in S is D-convergent to an element %

in S if {%n} ∈ C(S,D, %)” [41].

Definition 2.4.6.

Let (S,D) be a GMS and {%n} is a sequence in S. Then for % ∈ S, {%n} is called

D-Cauchy sequence if lim
m,n→∞

D(%n, %n+m) = 0.
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Definition 2.4.7.

A GMS (S,D) is called D-complete if each D-Cauchy sequence in S is D-

convergent to an element % ∈ S.

Remark 2.4.8.

In a GMS, it is possible that a D-convergent sequence is not necessarily a D-

Cauchy sequence.

We demonstrate in the following example that a D-convergent sequence in a GMS

might not be a D-Cauchy sequence.

Example 2.4.9.

Let S = R+ ∪ {0,∞}. Define D : S × S → [0,∞] by

D(%, η) =

%+ η either % or η is 0

1 + %+ η otherwise,

then (S,D) is a GMS.

We now prove that any D-convergent sequence is not necessarily a D-Cauchy

sequence in a GMS.

Consider a sequence {%n} as

%n =
1

n
∀ n ∈ N.

Now

lim
n→∞

D(%n, 0) = lim
n→∞

(
1

n
+ 0

)
= lim

n→∞

(
1

n

)
= 0.

⇒ {%n} is D-convergent to 0.

Note that

lim
n,m→∞

D(%n, %n+m) = lim
n,m→∞

(1 + %n + %n+m)
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= lim
n,m→∞

(
1 +

1

n
+

1

n+m

)
= 1 + 0 + 0

= 1 6= 0.

Hence {%n} is not a D-Cauchy sequence.

Proposition 2.4.10.

Consider a GMS (S, D) and {%n} is a sequence in S. For each (%1, %2) ∈ S × S,

if {%n} D-converges to %1 and {%n} D-converges to %2, then

%1 = %2.

Proof.

Using the Condition GM3, we have

D(%1, %2) ≤ c lim sup
n→∞

D(%n, %2) = 0,

which implies that

%1 = %2.

Proposition 2.4.11.

Every b-metric space is a GMS [41].

Proof.

Let db be a b-metric on S. We have just to proof that db satisfies the property

GM3.

Let %1 ∈ S and {%n} ∈ C(D,S, %1). For every %2 ∈ S and by using the Condition

BM4, we have

D(%1, %2) ≤ b
[
D(%1, %n) +D(%n, %2)

]
,

D(%1, %2) ≤ bD(%1, %n) + bD(%n, %2).

Thus we have

D(%1, %2) ≤ b lim sup
n→∞

D(%n, %2).
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The Condition GM3 then satisfied with c = b.

2.5 Fuzzy Metric Spaces

Zadeh [46] was the first to present the idea of a fuzzy set in 1965.

Definition 2.5.1.

“A fuzzy set A in S is characterized by a membership(characteristic) function

fA(s) which associates a real number in the interval [0, 1] to each point in S.”

The grade of membership of s in A is represented by the value of fA(s). As a

result, the value of fA(s) closer to unity means the membership grade of s in A

is higher, and fA(s) = 0 indicates that s is not in A. When a set A is in the

conventional sense, its membership function has only two possible values, 0 and 1

with fA(s) = 1 or 0, indicating whether s belongs to A or not. Fuzzy sets enable

one to work in uncertain and ambiguous situations and solve ill-posed problems

with incomplete information.

Example 2.5.2.

It is assumed that a person wants to purchase a cheap car. By the aggregate of

prices, “Cheap” is taken as a fuzzy set which depends on the condition, model and

the purchasing power of the buyer. The interpretation of the fuzzy membership

function of “Cheap” car can be seen from the following figure.

Figure 2.5: Membership function of “Cheap”.
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1. The cost of car less than Rs. 300, 000 can be assumed as cheap and there is

no significant difference in the prices for purchaser.

2. If the prices vary from Rs. 300,000 to Rs. 400,000, then there is a weak

preference for the car.

3. If the prices vary from Rs. 400,000 to Rs. 600,000, then there is a more

weak preference for the car.

4. If the cost of car is above than Rs. 600,000, then it is considered as out of

the range.

Definition 2.5.3.

“A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a continuous t-norm if it

satisfies the following conditions:

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. % ∗ 1 = % for all % ∈ [0, 1], and

4. % ∗ η ≤ ζ ∗ δ wherever % ≤ ζ and η ≤ δ

for all %, η, ζ, δ ∈ [0, 1]” [96].

Example 2.5.4.

Define a mapping ∗ : [0, 1]× [0, 1]→ [0, 1] by

1. % ∗ η = %η for %, η ∈ [0, 1].

It is then obvious that ∗ is a continuous t-norm, known as product norm.

2. % ∗ η = % ∧ η = min {%, η} for all %, η ∈ [0, 1].

Then ∧ satisfies all conditions of Definition 2.5.3 and hence it is a t-norm,

known as minimum t-norm.

3. % ∗ η = % ∗L η = max {%+ η − 1, 0} for %, η ∈ [0, 1].

It is also continuous t-norm and known as maximum t-norm.
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Kramosil and Michálek [48] combined the idea of fuzzy set and t-norm, in 1975 to

define fuzzy metric spaces (FMS).

Definition 2.5.5.

“A 3-tuple (S,M, ∗) is said to be a fuzzy metric space if S is an arbitrary set,

∗ is a continuous t-norm and M is a fuzzy set on S × S × [0,∞) satisfying the

following conditions:

FM1: M(%, η, 0) = 0

FM2: M(%, η, t) = 1, ∀ t > 0 if and only if % = η

FM3: M(%, η, t) = M(η, %, t)

FM4: M(%, ζ, t+ s) ≥M(%, η, t) ∗M(η, ζ, s) ∀ t, s ≥ 0

FM5: If M(%, η, .) : [0,∞)→ [0, 1] is left continuous.

for all %, η, ζ ∈ S and t, s > 0”[48].

Example 2.5.6.

If (S, d) is a metric space and a function g : R+ → R+, which is increasing and

continuous. A function M : S × S × [0,∞)→ [0, 1] defined by

M(%, η, t) = e
−
d(%, η)

g(t) . (2.5)

Then (S,M, ∗) is a FMS, where ∗ is taken as product norm i.e, % ∗ η = %.η.

If g is taken as an identity function as a special case, i.e, g(t) = t,

then 2.5 becomes

M(%, η, t) = e
−
d(%, η)

t .

In this particular case, (M, .) and (M,∧) are a fuzzy metrics on S.

However, by letting g to be a constant function, i.e, g(t) = k > 0, 2.5 becomes

M(%, η, t) = e
−
d(%, η)

k .
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In this case, (S,M, .) is a FMS.

Example 2.5.7.

Consider a metric space (S, d) and a function M : S × S × [0,∞)→ [0, 1] defined

by

M(%, η, t) =
t

t+ d(%, η)
,

then (S,M, ∗) is a FMS, where ∗ is taken as product norm i.e, % ∗ η = %.η. The

metric d on S induces M , that is referred to as standard fuzzy metric on S.

Example 2.5.8.

Consider a bounded metric space (S, d) and suppose d(%, η) < k ∀ %, η ∈ S. Let

M : S × S × [0,∞)→ [0, 1] be a function defined by

M(%, η, t) = 1− d(%, η)

g(t)
,

where g : R+ −→]k,+∞[ be an increasing continuous function. Then (S,M, ∗) is

a FMS.

In 1994, to define a Hausdorff topology on FMS, George and Veeramani [50]

modified the idea of the FMS given in Definition 2.5.5. The reason for a modified

definition of FMS follows from the remark given by George and Veeramani.

Remark 2.5.9.

“M(%, η, t) can be thought of as the degree of nearness between % and η with respect

to t. We identify % = η with M(%, η, t) = 1, for t > 0 and M(%, η, t) = 0 with

∞. In this context, above definition is modified in order to introduce a Hausdorff

topology on the fuzzy metric space”[50].

Definition 2.5.10.

“A 3-tuple (S,M, ∗) is said to be a fuzzy metric space if S is an arbitrary set,

∗ is a continuous t-norm and M is a fuzzy set on S × S × (0,∞) satisfying the

following conditions:

GvFM1: M(%, η, t) > 0;

GvFM2: M(%, η, t) = 1 if and only if % = η for all t > 0;
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GvFM3: M(%, η, t) = M(η, %, t);

GvFM4: M(%, ζ, t+ s) ≥M(%, η, t) ∗M(η, ζ, s);

GvFM5: M(%, η, .) : (0,∞)→ [0, 1] is continuous,

for all %, η, ζ ∈ S and t, s > 0.”[50]

Example 2.5.11.

Consider (S, d) is a metric space and a function g : R+ → R+ is increasing and

continuous. Define M : S × S × (0,∞)→ [0, 1] by

M(%, η, t) =
g(t)

g(t) + λd(%, η)
, (2.6)

for all %, η ∈ S , λ ∈ R+. Then (S,M, ∗) is a FMS, where t-norm ∗ is the product

norm.

Particularly, if we consider g(t) = tn for n ∈ N and λ = 1 in (2.6), then we

have

M(%, η, t) =
tn

tn + d(%, η)
.

In this case (S,M, ∗) is a FMS.

If we take n = 1 in above equation, then we get standard fuzzy metric space as

stated in Example 2.5.7, that is,

M(%, η, t) =
t

t+ d(%, η)
.

Grabiec [49], in 1988, introduced the ideas of convergent sequence and Cauchy

sequence in order to prove the BCP [14] in the setting of FMS as follows:

Definition 2.5.12.

“Let (S,M, ∗) be a fuzzy metric space. A sequence {%n} in S is said to be con-

vergent (or converges to % ∈ S) if lim
n→∞

M(%n, %, t) = 1 for each t > 0”[49].

Definition 2.5.13.

“A sequence {%n} in S is Cauchy sequence if lim
n→∞

M(%n, %n+m, t) = 1 for each

t > 0 and m > 0”[49].
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“If every Cauchy sequence is convergent then it is called complete FMS” [49].

Remark 2.5.14.

The convergent sequence, Cauchy sequence and the completeness given by Gra-

biec [49] in Definition 2.5.12 and Definition 2.5.13 will be called as G-convergent

sequence, G-Cauchy sequence and G-completeness in the rest of the thesis.

2.6 Fuzzy b-Metric Spaces

As a generalization of metric space, FMS have been introduced by Kramosil

and Michálek [48] in 1975 by using continuous t-norms. After that, many authors

generalized FMS in different forms. To extend the notion of bMS in fuzzy settings,

Nǎdǎban [85] presented the definition of fuzzy b-metric spaces (FbMS) in 2016.

As extended b-metric space is more general form of metric space and bMS, like

wise extended FbMS generalizes FMS and FbMS which was given by Mehmood

et al. [88] in 2017.

In this section we recall the notion of FbMS introduced by Nǎdǎban [85]. We

illustrate the definition by an example and also show that FbMS needs not to be

FMS. The concept of convergence sequence, Cauchy sequence and completeness

in FbMS in the sense of Grabiec is also included in this section.

Following Kramosil and Michálek [48], Nǎdǎban [85] defined FbMS as follows:

Definition 2.6.1.

“Let S be a non empty set, let b ≥ 1 be a given real number and ∗ be a continuous

t-norm. A fuzzy set Mb on S × S × [0,∞) is called fuzzy b-metric if for all

%, η, ζ ∈ S, the following conditions hold:

FBM1: Mb(%, η, 0) = 0;

FBM2: Mb(%, η, t) = 1,∀ t > 0 if and only if % = η ;

FBM3: Mb(%, η, t) = Mb(η, %, t), ∀ t ≥ 0;
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FBM4: Mb(%, ζ, b(t+ s)) ≥Mb(%, η, t) ∗Mb(η, ζ, s), ∀ t, s ≥ 0;

FBM5: Mb(%, η, .) : [0,∞)→ [0, 1] is left continuous and lim
t→∞

Mb(%, η, t) = 1”.

Remark 2.6.2.

The class of FbMS is larger than that of FMS. Setting b = 1, the above definition

coincides with FMS.

Example 2.6.3.

Let S = R. For a real number b ≥ 1, define a function Mb : S ×S × [0,∞)→ [0, 1]

by

Mb(%, η, t) = e
−

(%− η)2

t ∀ %, η ∈ R.

Then (S,Mb, ∗) is a FbMS with the product norm ∗.

We only prove property FBM4 of Definition 2.6.1 because other properties are

obvious.

For %, η, ζ ∈ S and t1, t2 > 0, we have

Mb(%, ζ, t1 + t2) = e
−

(%− ζ)2

t1 + t2

≥ e
−

2((%− η)2 + (η − ζ)2)

t1 + t2

= e
−

2(%− η)2

t1 + t2 .e
−

2(η − ζ)2

t1 + t2

≥ e
−

2(%− η)2

t1 .e
−

2(η − ζ)2

t2

= e
−

(%− η)2

t1
2 .e

−
(η − ζ)2

t2
2

= Mb

(
%, η,

t1
2

)
∗Mb

(
η, ζ,

t2
2

)
.

Thus

Mb(%, ζ, t1 + t2) ≥Mb

(
%, η,

t1
2

)
∗Mb

(
η, ζ,

t2
2

)
.

Hence (S,Mb, ∗) is a FbMS.

The example below demonstrates that every FbMS needs not to be a FMS.
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Example 2.6.4.

Let S = R. For a real number b ≥ 1, a function Mb : S × S × [0,∞) → [0, 1]

defined by

Mb(%, η, t) = e
−
db(%, η)

t ∀ %, η ∈ R.

Then (S,Mb, ∗) is a FbMS with the product norm ∗.

We prove the property FBM4 only of Definition 2.6.1, because other properties

are obvious.

For %, η, ζ ∈ S and t1, t2 > 0, we have

Mb(%, ζ, t1 + t2) = e
−
db(%, ζ)

t1 + t2

≥ e
−
b(db(%, η) + db(η, ζ))

t1 + t2

= e
−
b(db(%, η))

t1 + t2 .e
−
b(db(η, ζ))

t1 + t2

≥ e
−
b(db(%, η))

t1 .e
−
b(db(η, ζ))

t2

≥ e
−
db(%, η)

t1
b .e

−
db(η, ζ)

t2
b

= Mb

(
%, η,

t1
b

)
∗Mb

(
η, ζ,

t2
b

)
.

⇒ (S,Mb, ∗) is a FbMS.

The following are the definitions of G-convergence sequence, G-Cauchy sequence,

and G-completeness in FbMS.

Definition 2.6.5.

Let (S,Mb, ∗) be a FbMS. A sequence {%n} in S is G-convergent to % ∈ S if

lim
n→∞

Mb(%n, %, t) = 1,

for each t > 0.
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Example 2.6.6.

Let S = [0, 1] and a mapping Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) =

e
−

(%− η)2

t if t > 0

0 if t = 0.

Then (S,Mb, ∗) is a FbMS with b = 2.

Consider a sequence {%n} in S such that

%n =
1

n
∀ n ∈ N,

then clearly {%n} G-converges to 0, which is as follows:

lim
n→∞

Mb(%n, 0, t) = lim
n→∞

e
−

(%n − 0)2

t

= lim
n→∞

e
−

(%n)2

t

= lim
n→∞

e
−

1

n2

t

= lim
n→∞

e
−

1

n2t = 1.

Thus the sequence {%n} is G-convergent.

Definition 2.6.7.

A sequence {%n} in S is G-Cauchy if

lim
n→∞

Mb(%n, %n+m, t) = 1,

for each t > 0 and m > 0.

Example 2.6.8.

Consider the fuzzy b-metric space given in Example 2.6.6 and a sequence {%n}

with

%n =
1

n
∀ n ∈ N.
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Now for all m ∈ N, we have

lim
n→∞

Mb(%n, %n+m, t) = lim
n→∞

e
−

(%n − %n+m)2

t

= lim
n→∞

e
−

(
1

n
− 1

n+m

)2

t

= 1.

Hence {%n} is a G-Cauchy sequence.

A G-complete FbMS is one where every G-Cauchy sequence is G-convergent.

Definition 2.6.9.

Let (S,Mb, ∗) be a FbMS. Mb is said to be continuous on S × S × [0,∞) if

lim
n→∞

Mb(%n, ηn, tn) = Mb(%, η, t),

whenever {%n} converges to %, {ηn} converges to η and {tn} converges to t, that

is

lim
n→∞

Mb(%n, %, t) = 1,

lim
n→∞

Mb(ηn, η, t) = 1,

lim
n→∞

Mb(%, η, tn) = Mb(%, η, t).

In general, every fuzzy b-metric is not continuous as demonstrated by the following

example.

Example 2.6.10.

Let S = [0,∞). A function Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) = e
−
db(%, η)

t ∀ %, η ∈ S,

taking product norm i.e % ∗ η = %η, where the b-metric db is taken as



Preliminaries 35

db(%, η) =


0 if % = η,

2|%− η| if %, η ∈ [0, 1),

1

2
|%− η| otherwise.

We prove the property FBM4 only of Definition 2.6.1, because other properties

are obvious. For all %, η, ζ ∈ S and t1, t2 > 0,

Mb(%, ζ, t1 + t2) = e
−
db(%, ζ)

t1 + t2

≥ e
−
b(db(%, η) + db(η, ζ))

t1 + t2

= e
−
b(db(%, η))

t1 + t2 .e
−
b(db(η, ζ))

t1 + t2

≥ e
−
b(db(%, η))

t1 .e
−
b(db(η, ζ))

t2

≥ e
−
db(%, η)

t1
b .e

−
db(η, ζ)

t2
b

= Mb

(
%, η,

t1
b

)
∗Mb

(
η, ζ,

t2
b

)
.

⇒ (S,Mb, ∗) is a FbMS.

It is important to note that Mb is not continuous.

Consider

lim
n→∞

Mb

(
1, 1− 1

n
, t

)
= lim

n→∞
e
−

1

2

∣∣∣1− 1 +
1

n

∣∣∣
t

= lim
n→∞

e
−

1

2nt

= 1 = Mb(1, 1, t).

This implies that

lim
n→∞

Mb

(
1, 1− 1

n
, t

)
= Mb(1, 1, t).
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Also, as

lim
n→∞

Mb

(
0, 1− 1

n
, t

)
= lim

n→∞
e
−

2
∣∣∣0− 1 +

1

n

∣∣∣
t

= e
−

2

t

6= e

1

2t = Mb(0, 1, t).

⇒ lim
n→∞

Mb

(
0, 1− 1

n
, t

)
6= Mb(0, 1, t).

Hence fuzzy b-metric Mb is not continuous.

2.7 Fixed point Theorems in Fuzzy Metric Space

Gupta et.al [57] developed two fixed point results using rational inequality and

presented an integral application of their results in 2013. Here, we state the

results of [57] in the sense of G-Cauchy sequence which we reformulate in FbMS

in Chapter 3.

Theorem 2.7.1.

Consider (S,M, ∗) is a complete FMS. A mapping T : S → S satisfying

lim
t→∞

M(%, η, t) = 1

and

M(T%,Tη, kt) ≥ λ(%, η, t),

where

λ(%, η, t) = min

{
M(η,Tη, t) [1 +M(%,T%, t)]

1 +M(%, η, t)
,M(%, η, t)

}
,

for all %, η ∈ S and k ∈ (0, 1). Then T has a unique fixed point [57].

Definition 2.7.1.

Consider a set Φ which consists of all continuous functions φ : [0, 1]→ [0, 1] such
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that

φ(0) = 0, φ(1) = 1, and φ(α) > α,

for all α ∈ (0, 1) [57].

Theorem 2.7.2.

Consider (S,M, ∗) is a complete FMS. A mapping T : S → S satisfying

lim
t→∞

M(%, η, t) = 1,

and

M(T%,Tη, kt) ≥ φ(λ(%, η, t)),

where

λ(%, η, t) = min

{
M(η,Tη, t) [1 +M(%,T%, t)]

1 +M(%, η, t)
,M(%, η, t)

}
for all %, η ∈ S , k ∈ (0, 1), φ ∈ Φ. Then T has a unique fixed point [57].

To provide integral application of the result, they first defined the following notion.

Definition 2.7.2.

“ Define Ψ : [0,∞)→ [0,∞), as

Ψ(t) =

∫ t

0

φ(t)dt ∀ t > 0

be a non-decreasing and continuous function. Moreover for each ε > 0, φ(ε) > 0.

Also implies that φ(t) = 0 if and only if t = 0” [57].

Theorem 2.7.3.

Consider (S,M, ∗) is a complete FMS. A mapping T : S → S satisfying

lim
t→∞

M(%, η, t) = 1,

and ∫ M(T%,Tη,kt)

0

ϕ(t)dt ≥
∫ λ(%,η,t)

0

ϕ(t)dt,
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where

λ(%, η, t) = min

{
M(η,Tη, t) [1 +M(%,T%, t)]

1 +M(%, η, t)
,M(%, η, t)

}
,

for all %, η ∈ S, k ∈ (0, 1) and ϕ ∈ Ψ. Then T has a unique fixed point [57].

Theorem 2.7.4.

Consider (S,M, ∗) is a complete FMS. A mapping T : S → S satisfying

lim
t→∞

M(%, η, t) = 1

and ∫ M(T%,Tη,kt)

0

ϕ(t)dt ≥ φ

{∫ λ(%,η,t)

0

ϕ(t)dt

}
,

where

λ(%, η, t) = min

{
M(η,Tη, t) [1 +M(%,T%, t)]

1 +M(%, η, t)
,M(%, η, t)

}
for all %, η ∈ S , ϕ ∈ Ψ , k ∈ (0, 1) andφ ∈ Φ. Then T has a unique fixed point

[57].”



Chapter 3

Fixed Point Theorems in Fuzzy

b-metric Spaces

In this chapter, the concept of FbMS is studied which is the generalization of

FMS. The Banach contraction principle is extended in the settings of FbMS

and furnished an example to illustrate the result. A new contraction has been

introduced in FbMS and certain fixed point results by using a control function

are proved. Some applications are also highlighted as consequences of our results.

3.1 Fixed Point Results in FbMS

The BCP for FMS is proved in [49]. This result has been established in the

setting of FbMS as follows:

Theorem 3.1.1.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. A mapping g : S → S satisfies

Mb(g%, gη, kt) ≥Mb(%, η, t), (3.1)

for all %, η ∈ S and k ∈
[
0,

1

b

)
. Then g has a unique fixed point.

39
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Proof.

Let %0 ∈ S. For n ∈ N, define %n = gn%0.

Then, note that, for all n, t > 0,

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

k

)
≥Mb

(
%n−2, %n−1,

t

k2

)
...

≥Mb

(
%0, %1,

t

kn

)
.

For any ` ∈ N,

Mb(%n, %n+`, t)

≥Mb

(
%n, %n+1,

t

2b

)
∗Mb

(
%n+1, %n+2,

t

(2b)2

)
∗ . . . ∗Mb

(
%n+`−1, %n+`,

t

(2b)`

)
≥Mb

(
%0, %1,

t

2bkn

)
∗Mb

(
%0, %1,

t

(2b)2kn+1

)
∗ . . . ∗Mb

(
%0, %1,

t

(2b)`kn+`−1

)
= Mb

(
%0, %1,

t

(2bk)kn−1

)
∗Mb

(
%0, %1,

t

(2bk)2kn−1

)
∗ . . . ∗

Mb

(
%0, %1,

t

(2bk)`kn−1

)
≥ 1 ∗ 1 ∗ . . . ∗ 1 = 1.

So, we have

lim
n→∞

Mb(%n, %n+`, t) = 1.

Hence {%n} is a G-Cauchy sequence.

As (S,Mb, ∗) be a G-complete FbMS, so there is a point % ∈ S such that

lim
n→∞

%n = %.

Now, we like to prove that % is a fixed point of g.

Mb(g%, %, t) ≥Mb

(
g%, g%n,

t

2b

)
∗Mb

(
%n+1, %,

t

2b

)
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≥Mb

(
%, %n,

t

2bk

)
∗Mb

(
%n+1, %,

t

2b

)
−→ 1 ∗ 1 = 1,

which shows that g% = %. Thus % is a fixed point.

Uniqueness

For some ζ ∈ S, assume that gζ = ζ, then

Mb(ζ, %, t) = Mb(gζ, g%, t)

≥Mb

(
ζ, %,

t

k

)
= Mb

(
gζ, g%,

t

k

)
≥Mb

(
ζ, %,

t

k2

)
...

≥Mb

(
ζ, %,

t

kn

)
−→ 1 as n→∞.

Thus % = ζ. This proves that fixed point is unique.

Remark 3.1.1.

The main result of Grabiec [49] becomes the special case of Theorem 3.1.1 by

setting b = 1 .

The following example illustrates Theorem 3.1.1.

Example 3.1.2.

Let S = [0, 1]. A function Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) =


(

1

t

)(%−η)2

for t > 0

0 if t = 0,

(3.2)

for all %, η ∈ S with the product norm ∗ and a real number b ≥ 1. Then (S,Mb, ∗)

is a G-complete FbMS.
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Define a function g : S → S such as g% = 1− %.

Now

Mb(g%, gη, kt) = Mb(1− %, 1− η, kt)

=

(
1

kt

)(1−%−1+η)2

=

(
1

kt

)(η−%)2

=

(
1

kt

)(%−η)2

.

As,

k < 1

⇒ kt < t

⇒ 1

kt
>

1

t

⇒
(

1

kt

)(%−η)2

>

(
1

t

)(%−η)2

.

Thus

Mb(g%, gη, kt) > Mb(%, η, t).

So, the conditions of Theorem 3.1.1 are satisfied.

Note that g% = 1− %,

then g% = % implies that

1− % = %

⇒ % =
1

2
.

Thus % =
1

2
∈ [0, 1] is the unique fixed point.

To establish the fixed point result of Hicks and Rhoades [21] in FbMS, the notion

of a g-orbitally upper semi continuous function is needed.
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Definition 3.1.3.

Consider a self map g : S → S. The orbit of an element %0 ∈ S is given by

O(%0) =
{
%0, g%0, g

2%0, . . .
}
.

A function G : S → [0, 1] is called g-orbitally upper semi continuous at % ∈ S if

{%n} ⊂ O(%0) and {%n} → %,

⇒ G(%) ≥ lim sup
n→∞

G(%n).

Example 3.1.4.

Take a set S = [0, 2]. Define a self map g : S → S by

g% =
1

2
%2.

Choose an element %0 = 1
2

in S, then we have

O(%0) = O
(

1

2

)
=

{
1

2
,

1

23
,

1

27
· · ·
}
.

Then for any sequence {%n} in O
(

1

2

)
, we have %n → 0.

Define a function G : S → [0, 1] by

G(%) =

1 if % = 0√
2%− %2 if 0 < % ≤ 2.

It is clear that G(0) = 1 and %n → % = 0, so we have

G(0) = 1 > 0 = lim sup
n→∞

G(%n)

= lim sup
n→∞

√
2%n − %2n

= lim sup
n→∞

√
1

2n−1
− 1

22n
.

Hence G is g-orbitally upper semi continuous at % = 0.
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Theorem 3.1.2.

Let (S,Mb, ∗) be a G-complete FbMS and for some %0 ∈ S, a self map g : S → S

satisfies

Mb(g%, g
2%, kt) ≥Mb(%, g%, t), (3.3)

for each % ∈ O(%0) and k ∈ [0,
1

b
). If %n = gn%0 (n ∈ N) then gn%0 → % ∈ S.

Furthermore, g has a fixed point % if and only if G(%) = Mb(%, g%, t) is g-orbitally

upper semi continuous at %.

Proof.

For %0 ∈ S, establish an iterative procedure {%n} as

%0, g%0 = %1, g2%0 = g%1 = %2, . . . , gn%0 = %n.

Applying (3.3) successively, we get

Mb(g
n%0, g

n+1%0, kt) = Mb(%n, %n+1, kt) ≥Mb

(
%0, %1,

t

kn

)
.

For any ` ∈ N,

Mb(g
n%0, g

n+`%0, t) = Mb(%n, %n+`, t)

≥Mb

(
%n, %n+1,

t

2b

)
∗Mb

(
%n+1, %n+2,

t

(2b)2

)
∗ . . . ∗Mb

(
%n+`−1, %n+`,

t

(2b)`

)
≥Mb

(
%0, %1,

t

2bkn

)
∗Mb

(
%0, %1,

t

(2b)2kn+1

)
∗ . . . ∗Mb

(
%0, %1,

t

(2b)`kn+`−1

)
= Mb

(
%0, %1,

t

(2bk)kn−1

)
∗Mb

(
%0, %1,

t

(2bk)2kn−1

)
∗ . . . ∗

Mb

(
%0, %1,

t

(2bk)`kn−1

)
≥ 1 ∗ 1 ∗ . . . ∗ 1 = 1.

⇒ lim
n→∞

Mb(g
n%0, g

n+`%0, t) = 1.

Hence {%n} is G-Cauchy sequence. As (S,Mb, ∗) is a G-complete FbMS so there

is an element % ∈ S such as

%n = gn%0 → % ∈ S.
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Let G be upper semi continuous at % ∈ S, then

Mb(%, g%, t) ≥ lim
n→∞

supMb(g
n%0, g

n+1%0, t)

≥ lim sup
n→∞

Mb

(
%0, %1,

t

kn

)
= 1.

So, we have

% = g%.

Suppose, on the other hand, % = g% and % ∈ O(%) with %n → %, then

G(%) = Mb(%, g%, t)

= 1 ≥ lim sup
n→∞

G(%n)

= Mb(g
n%0, g

n+1%0, t).

Theorem 3.1.2 is illustrated by the following example .

Example 3.1.5.

Let S = [0, 1]. A function Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) =


(

1

t

)(%−η)2

for t > 0

0 if t = 0,

(3.4)

for all %, η ∈ S with the product norm ∗ and a real number b ≥ 1. Then (S,Mb, ∗)

is a G-complete FbMS. Define a self map g : S → S by

g% = 1− %.

Choose an element %0 =
1

2
in S, then we have

O(%0) = O
(

1

2

)
=

{
1

2
,
1

2
,
1

2
· · ·
}
.
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Then for any sequence {%n} in O
(

1

2

)
, we have %n →

1

2
.

Define a function G : S → [0, 1] by

G(%) =


1 if % =

1

2
,

1

2
− % otherwise.

It is clear that G

(
1

2

)
= 1 and %n → % =

1

2
, so we have

G

(
1

2

)
= 1

> 0 = lim sup
n→∞

G(%n)

= lim sup
n→∞

(
1

2
− %n

)
.

Hence G is g-orbitally upper semi continuous at % =
1

2
.

Now,

Mb(g%, g
2%, kt) = Mb (1− %, %, kt)

=

(
1

kt

)(2%−1)2

>

(
1

t

)(2%−1)2

= Mb(%, g%, t).

So, the conditions of Theorem 3.1.1 are satisfied.

Note that g(%) = 1− %. Thus % =
1

2
∈ [0, 1] is the fixed point.

Lemma 3.1.6.

Let (S,Mb, ∗) be a complete FbMS. If

Mb(%, η, kt) ≥Mb (%, η, t) ,

∀ %, η ∈ S ,t > 0 and k ∈ (0, 1), then % = η.
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Proof.

It follows from FBM5 that

lim
t→∞

Mb(%, η, t) = 1, ⇒Mb(%, η, kt) = 1.

It follows from FBM2 that % = η.

Now, we establish some fixed point results, analogue to [57, Theorem 1] for G-

complete FbMS.

Theorem 3.1.3.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Let a mapping g : S → S

satisfies

Mb(g%, gη, kt) ≥ min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}
,

(3.5)

∀ %, η ∈ S, k ∈ [0,
1

b
). Then g has a unique fixed point.

Proof.

For %0 ∈ S, choose a sequence {%n} in S such as g%n = %n+1.

We, now show that the sequence {%n} is a Cauchy sequence. Consider

Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥ min

{Mb

(
%n, g%n,

t

k

)[
1 +Mb

(
%n−1, g%n−1,

t

k

)
+Mb

(
%n, g%n−1,

t

k

)]
2 +Mb

(
%n−1, %n,

t

k

) ,

Mb

(
%n−1, %n,

t

k

)}

= min

{Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n−1, %n,

t

k

)
+Mb

(
%n, %n,

t

k

)]
2 +Mb

(
%n−1, %n,

t

k

) ,

Mb

(
%n−1, %n,

t

k

)}
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= min

{Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n−1, %n,

t

k

)
+ 1

]
2 +Mb

(
%n−1, %n,

t

k

) , Mb

(
%n−1, %n,

t

k

)}

= min

{
Mb

(
%n, %n+1,

t

k

)
, Mb

(
%n−1, %n,

t

k

)}
.

So, we have

Mb(%n, %n+1, t) ≥ min

{
Mb

(
%n, %n+1,

t

k

)
, Mb

(
%n−1, %n,

t

k

)}
. (3.6)

Here arises the following two cases:

Case-1:

If

min

{
Mb

(
%n, %n+1,

t

k

)
, Mb

(
%n−1, %n,

t

k

)}
= Mb

(
%n, %n+1,

t

k

)
,

then from (3.6),

Mb(%n, %n+1, t) ≥Mb

(
%n, %n+1,

t

k

)
,

which is proved by Lemma 3.1.6.

Case-2:

If

min

{
Mb

(
%n, %n+1,

t

k

)
, Mb

(
%n−1, %n,

t

k

)}
= Mb

(
%n−1, %n,

t

k

)
,

then from (3.6),

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

k

)
= Mb

(
g%n−2, g%n−1,

t

k

)
≥Mb

(
%n−2, %n−1,

t

k2

)
≥Mb

(
%n−3, %n−2,

t

k3

)
...

≥Mb

(
%0, %1,

t

kn

)
.
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So, we get

Mb(%n, %n+1, t) ≥Mb

(
%0, %1,

t

kn

)
. (3.7)

For any q ∈ N,

Mb(%n, %n+q, t)

≥Mb

(
%n, %n+1,

t

2b

)
∗Mb

(
%n+1, %n+2,

t

(2b)2

)
∗ . . . ∗Mb

(
%n+q−1, %n+q,

t

(2b)q

)
≥Mb

(
%0, %1,

t

2bkn

)
∗Mb

(
%0, %1,

t

(2b)2kn+1

)
∗ . . . ∗Mb

(
%0, %1,

t

(2b)qkn+q−1

)
= Mb

(
%0, %1,

t

(2bk)kn−1

)
∗Mb

(
%0, %1,

t

(2bk)2kn−1

)
∗ . . . ∗

Mb

(
%0, %1,

t

(2bk)qkn−1

)
,

when n→∞ then we get

lim
n→∞

Mb(%n, %n+q, t) = 1.

Hence {%n} is a G-Cauchy sequence.

Since (S,Mb, ∗) is a G-complete FbMS, so there is an element % ∈ S such as

lim
n→∞

%n = %.

Now, we prove that % is fixed point of g.

Mb(g%, %, t) ≥Mb (g%, %n+1, t) ∗Mb (%n+1, %, t)

= Mb(g%, g%n, t) ∗Mb(%n+1, %n, t). (3.8)

Consider,

Mb(g%, g%n, t) ≥ min

{Mb

(
%n, g%n,

t

k

)[
1 +Mb

(
%n, g%n,

t

k

)
+Mb

(
%n, g%,

t

k

)]
2 +Mb

(
%, %n,

t

k

) ,

Mb

(
%, %n,

t

k

)}
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= min

{Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n, %n+1,

t

k

)
+Mb

(
%n, g%n,

t

k

)]
2 +Mb

(
%n, %n,

t

k

) ,

Mb

(
%n, %n,

t

k

)}

= min

{Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n, %n+1,

t

k

)
+Mb

(
%n, %n+1,

t

k

)]
2 + 1

, 1

}

= min

{Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n, %n+1,

t

k

)
+Mb

(
%n, %n+1,

t

k

)]
3

, 1

}
.

So, from (3.8), we get

Mb(g%, %, t)

≥ min

{Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n, %n+1,

t

k

)
+Mb

(
%n, %n+1,

t

k

)]
3

, 1

}
∗Mb(%n+1, %n, t).

Letting n→∞, we get

Mb(g%, %, t) = min

{
1[1 + 1 + 1]

2 + 1
, 1

}
∗ 1

= min{1, 1} ∗ 1

= 1 ∗ 1

= 1.

Thus

g% = %.

Hence g has a fixed point %.
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Uniqueness

For some ζ ∈ S, assume gζ = ζ, then

Mb(ζ, %, t) = Mb(gζ, g%, t)

≥ min

{Mb

(
%, g%,

t

k

)[
1 +Mb

(
ζ, gζ,

t

k

)
+Mb

(
%, gζ,

t

k

)]
2 +Mb

(
ζ, u,

t

k

) ,Mb

(
ζ, %,

t

k

)}

= min

{Mb

(
%, %,

t

k

)[
1 +Mb

(
ζ, ζ,

t

k

)
+Mb

(
%, ζ,

t

k

)]
2 +Mb

(
ζ, %,

t

k

) ,Mb

(
ζ, %,

t

k

)}

= min

{1

[
1 + 1 +Mb

(
ζ, %,

t

k

)]
2 +Mb

(
ζ, %,

t

k

) ,Mb

(
ζ, %,

t

k

)}

= min

{
1,Mb

(
ζ, %,

t

k

)}
.

If

min

{
1,Mb

(
ζ, %,

t

k

)}
= 1,

then

Mb(ζ, %, t) = 1.

Thus

% = ζ.

If

min

{
1,Mb

(
ζ, %,

t

k

)}
= Mb

(
ζ, %,

t

k

)
,

then

Mb(ζ, %, t) ≥Mb

(
ζ, %,

t

k

)
.

So, from Lemma 3.1.6,

% = ζ.

Hence fixed point is unique.
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Remark 3.1.7.

Taking

min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}
= Mb(%, η, t)

in Theorem 3.1.3, then we get Theorem 3.1.1.

Following is the consequence of Theorem 3.1.3.

Corollary 3.1.8.

Let (S,M, ∗) be a G-complete FMS. Let a mapping g : S → S such as

M(g%, gη, kt) ≥ min

{
M(η, gη, t) [1 +M(%, g%, t) +M(η, g%, t)]

2 +M(%, η, t)
,M(%, η, t)

}
,

∀ %, η ∈ S , k ∈ (0, 1). Then g has a unique fixed point.

Following example is furnished to illustrate Theorem 3.1.3.

Example 3.1.9.

Let S = {0, 1, 2}. A function Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) =
t

t+ (%− η)2
, ∀ %, η ∈ S.

Then (S,Mb, ∗) is a G-complete FbMS. Define a mapping g : S → S such as

g% =
√
k %.

Now, for all t > 0 , we have

Mb(g%, gη, kt) ≥ min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}

Mb(
√
k%,
√
kη, kt) ≥ min

{
Mb(η,

√
kη, t)

[
1 +Mb(%,

√
k%, t) +Mb(η,

√
k%, t)

]
2 +Mb(%, η, t)

,

Mb(%, η, t)

}
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kt

kt+ (
√
k%−

√
kη)2

≥ min

{ t

t+ (η −
√
kη)2

[
1 +

t

t+ (%−
√
k%)2

+
t

t+ (η −
√
k%)2

]
2 +

t

t+ (%− η)2

,
t

t+ (%− η)2

}

t

t+ (%− η)2
≥ min

{ t

t+ η2(1−
√
k)2

[
1 +

t

t+ %2(1−
√
k)2

+
t

t+ (η −
√
k%)2

]
2 +

t

t+ (%− η)2

,

t

t+ (%− η)2

}
.

(3.9)

If

min

{ t

t+ η2(1−
√
k)2

[
1 +

t

t+ %2(1−
√
k)2

+
t

t+ (η −
√
k%)2

]
2 +

t

t+ (%− η)2

,
t

t+ (%− η)2

}

=

t

t+ η2(1−
√
k)2

[
1 +

t

t+ %2(1−
√
k)2

+
t

t+ (η −
√
k%)2

]
2 +

t

t+ (%− η)2

,

then from (3.9)

t

t+ (%− η)2
≥

t

t+ η2(1−
√
k)2

[
1 +

t

t+ %2(1−
√
k)2

+
t

t+ (η −
√
k%)2

]
2 +

t

t+ (%− η)2

.

This implies that

Mb(g%,gη, kt)

≥ min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}
.
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If

min

{ t

t+ η2(1−
√
k)2

[
1 +

t

t+ %2(1−
√
k)2

+
t

t+ (η −
√
k%)2

]
2 +

t

t+ (%− η)2

,
t

t+ (%− η)2

}

=
t

t+ (%− η)2
,

then from (3.9)
t

t+ (%− η)2
≥ t

t+ (%− η)2
.

This implies that

Mb(g%, gη, kt) ≥ min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}
.

Thus all the conditions of Theorem 3.1.3 are satisfied. As

g% =
√
k % ⇒ g0 = 0.

Thus g has a unique fixed point % = 0.

To prove the following theorem, we use a control function ϑ : [0, 1]→ [0, 1] which

is continuous and non-decreasing such as

1. ϑ(0) = 0, ϑ(1) = 1.

2. ϑ(a) > a for 0 < a < 1.

Theorem 3.1.4.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Consider a continuous function

ϑ : [0, 1]→ [0, 1] and a mapping g : S → S satisfying

Mb(g%, gη, kt)

≥ ϑ

{
min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}}
(3.10)

∀ %, η ∈ S, k ∈ (0,
1

b
). Then g has a unique fixed point.
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Proof.

Since ϑ is a continuous function and ϑ(a) > a for 0 < a < 1, then from (3.10), we

get

Mb(g%, gη, kt)

≥ ϑ

{
min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}}
≥ min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}
.

Now, by using Theorem 3.1.3, we get our required result.

Following is the consequence of Theorem 3.1.4.

Corollary 3.1.10.

Let (X,M, ∗) be a G-complete FMS and a continuous function ϑ : [0, 1]→ [0, 1].

A self map g : S → S satisfies

M(g%, gη,kt)

≥ ϑ

{
min

{
M(η, gη, t) [1 +M(%, g%, t) +M(η, g%, t)]

2 +M(%, η, t)
,M(%, η, t)

}}
,

∀ %, η ∈ S, k ∈ (0, 1). Then g has a unique fixed point.

Theorem 3.1.5.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Let a mapping g : S → S

satisfies

Mb(g%,gη, kt)

≥ min

{
Mb(%, g%, t) [1 +Mb(η, gη, t)]

1 +Mb(g%, gη, t)
,
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,

Mb(%, g%, t) [2 +Mb(%, gη, t)]

1 +Mb(%, gη, t) +Mb(η, g%, t)
,Mb(%, η, t)

}
, (3.11)

for all %, η ∈ S and for some k ∈ (0,
1

b
). Then g has a unique fixed point.
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Proof.

For any %0 ∈ S, choose an iterative sequence {%n} in S such as

%n+1 = g%n.

Now,

Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥ min

{Mb

(
%n−1, T%n−1,

t

k

)[
1 +Mb

(
%n, T%n,

t

k

)]
1 +Mb

(
T%n−1, T%n,

t

k

) ,

Mb

(
%n, T%n,

t

k

)[
1 +Mb

(
%n−1, T%n−1,

t

k

)]
1 +Mb

(
%n−1, %n,

t

k

) ,

Mb

(
%n−1, T%n−1,

t

k

)[
2 +Mb

(
%n−1, T%n,

t

k

)]
1 +Mb

(
%n−1, T%n,

t

k

)
+Mb

(
%n, T%n−1,

t

k

) ,Mb

(
%n−1, %n,

t

k

)}

= min

{Mb

(
%n−1, %n,

t

k

)[
1 +Mb

(
%n, %n+1,

t

k

)]
1 +Mb

(
%n, %n+1,

t

k

) ,

Mb

(
%n, %n+1,

t

k

)[
1 +Mb

(
%n−1, %n,

t

k

)]
1 +Mb

(
%n−1, %n,

t

k

) ,

Mb

(
%n−1, %n,

t

k

)[
2 +Mb

(
%n−1, %n+1,

t

k

)]
1 +Mb

(
%n−1, %n+1,

t

k

)
+Mb

(
%n, %n,

t

k

) ,Mb

(
%n−1, %n,

t

k

)}

= min

{
Mb

(
%n−1, %n,

t

k

)
,Mb

(
%n, %n+1,

t

k

)
,

Mb

(
%n−1, %n,

t

k

)[
2 +Mb

(
%n−1, %n+1,

t

k

)]
1 +Mb

(
%n−1, %n+1,

t

k

)
+ 1

,Mb

(
%n−1, %n,

t

k

)}
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= min

{
Mb

(
%n−1, %n,

t

k

)
,Mb

(
%n, %n+1,

t

k

)
,Mb

(
%n−1, %n,

t

k

)
,

Mb

(
%n−1, %n,

t

k

)}

= min

{
Mb

(
%n−1, %n,

t

k

)
,Mb

(
%n, %n+1,

t

k

)}
.

So, we have

Mb(%n, %n+1, t) ≥ min

{
Mb

(
%n−1, %n,

t

k

)
,Mb

(
%n, %n+1,

t

k

)}
. (3.12)

Following two cases arise: Case-1:

If

min

{
Mb

(
%n−1, %n,

t

k

)
,Mb

(
%n, %n+1,

t

k

)}
= Mb

(
%n, %n+1,

t

k

)
,

then from (3.12),

Mb(%n, %n+1, t) ≥Mb

(
%n, %n+1,

t

k

)
.

So, there is nothing to prove by Lemma 3.1.6.

Case-2:

If

min

{
Mb

(
%n−1, %n,

t

k

)
,Mb

(
%n, %n+1,

t

k

)}
= Mb

(
%n−1, %n,

t

k

)
,

then from (3.12),

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

k

)
.

Continuing in this way, we have

Mb(%n, %n+1, t) ≥Mb

(
%0, %1,

t

kn

)
.

One can complete the proof using the same procedure after inequality (3.7) as in

Theorem 3.1.3.
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Corollary 3.1.11.

Let (S,M, ∗) be a G-complete FMS. Let a mapping g : S → S satisfies

M(g%, gη, kt) ≥ min

{
M(%, g%, t) [1 +M(η, gη, t)]

1 +M(g%, gη, t)
,
M(η, gη, t) [1 +M(%, g%, t)]

1 +M(%, η, t)
,

M(%, g%, t) [2 +M(%, gη, t)]

1 +M(%, gη, t) +M(η, g%, t)
,M(%, η, t)

}
,

for all %, η ∈ S and for some k ∈ (0, 1). Then g has a unique fixed point.

Theorem 3.1.6.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Consider a continuous function

ϑ : [0, 1]→ [0, 1] and a mapping g : S → S satisfying

Mb(g%, gη, kt)

≥ ϑ

{
min

{
Mb(%, g%, t) [1 +Mb(η, gη, t)]

1 +Mb(g%, gη, t)
,
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,

Mb(%, g%, t) [2 +Mb(%, gη, t)]

1 +Mb(%, gη, t) +Mb(η, g%, t)
,Mb(%, η, t)

}}
, (3.13)

for all %, η ∈ S, k ∈ (0,
1

b
). Then g has a unique fixed point.

Proof.

Since ϑ is a continuous function and ϑ(a) > a for 0 < a < 1, then from (3.13), we

get

Mb(g%,gη, kt)

≥ ϑ

{
min

{
Mb(%, g%, t) [1 +Mb(η, gη, t)]

1 +Mb(g%, gη, t)
,
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,

Mb(%, g%, t) [2 +Mb(%, gη, t)]

1 +Mb(%, gη, t) +Mb(η, g%, t)
, Mb(%, η, t)

}}
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≥ min

{
Mb(%, g%, t) [1 +Mb(η, gη, t)]

1 +Mb(g%, gη, t)
,
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,

Mb(%, g%, t) [2 +Mb(%, gη, t)]

1 +Mb(%, gη, t) +Mb(η, g%, t)
,Mb(%, η, t)

}
.

Now, by using Theorem 3.1.5, we get our required result.

Following is the consequence of Theorem 3.1.6.

Corollary 3.1.12.

Let (S,M, ∗) be a G-complete FMS and a continuous function ϑ : [0, 1] → [0, 1].

A self mapping g : S → S satisfies

M(g%,gη, kt) ≥ ϑ

{
min

{
M(%, g%, t) [1 +M(η, gη, t)]

1 +M(g%, gη, t)
,
M(η, gη, t) [1 +M(%, g%, t)]

1 +M(%, η, t)
,

M(%, g%, t) [2 +M(%, gη, t)]

1 +M(%, gη, t) +M(η, g%, t)
,M(%, η, t)

}}
,

for all %, η ∈ S, k ∈ (0, 1). Then g has a unique fixed point.

3.2 Application
In this section, some applications are given regarding to our results. Define a

function Ω: [0,∞)→ [0,∞) by

Ω(t) =

∫ t

0

ψ(t)dt ∀ t > 0, (3.14)

where ψ(t) is a continuous and non-decreasing function. Moreover, ψ(0) = 0 and

ψ(ε) > 0 for all ε > 0 .

Theorem 3.2.1.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Let a mapping g : S → S

satisfies

∫ Mb(g%,gη,kt)

0

ψ(t)dt ≥
∫ α(%,η,t)

0

ψ(t)dt, (3.15)
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where,

α(%, η, t) = min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}
,

for all %, η ∈ S, k ∈
(

0,
1

b

)
. Then g has a unique fixed point.

Proof.

In account of (3.14), (3.15) implies

Ω(Mb(g%, gη, kt)) ≥ Ω(α(%, η, t)).

Since Ω is non-decreasing and continuous, so it follows that

Mb(g%, gη, kt) ≥ α(%, η, t).

Hence, the rest of the proof follows from Theoerem 3.1.3.

Theorem 3.2.2.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Let a mapping g : S → S

satisfies

∫ Mb(g%,gη,kt)

0

ψ(t)dt ≥ ϑ

{∫ α(%,η,t)

0

ψ(t)dt

}
, (3.16)

where,

α(%, η, t) = min

{
Mb(η, gη, t) [1 +Mb(%, g%, t) +Mb(η, g%, t)]

2 +Mb(%, η, t)
,Mb(%, η, t)

}

for all %, η ∈ S, k ∈ (0,
1

b
), ψ ∈ Ω. Then g has a unique fixed point.

Proof.

In account of (3.14), (3.16) implies

Ω(Mb(g%, gη, kt)) ≥ ϑ(Ω(α(%, η, t))).
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As we have defined in Theorem 3.1.4 that for 0 < a < 1 , ϑ(a) > a.

So, we have

Ω(Mb(g%, gη, kt)) ≥ ϑ(Ω(α(%, η, t)))

≥ Ω(α(%, η, t)).

Since Ω is non-decreasing and continuous, so, we have

Mb(g%, gη, kt) ≥ α(%, η, t).

The rest of proof follows immediately from Theorem 3.1.3.

Theorem 3.2.3.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Let a mapping g : S → S

satisfies

∫ Mb(g%,gη,kt)

0

ψ(t)dt ≥
∫ α(%,η,t)

0

ψ(t)dt, (3.17)

where,

α(%, η, t) = min

{
Mb(%, g%, t) [1 +Mb(η, gη, t)]

1 +Mb(g%, gη, t)
,
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,

Mb(%, g%, t) [2 +Mb(%, gη, t)]

1 +Mb(%, gη, t) +Mb(η, g%, t)
,Mb(%, η, t)

}
,

for all %, η ∈ S, k ∈ (0,
1

b
). Then g has a unique fixed point.

Proof.

In account of (3.14), (3.17) implies

Ω(Mb(g%, gη, kt)) ≥ Ω(α(%, η, t)).

Since Ω is non-decreasing and continuous, so we have

Mb(g%, gη, kt) ≥ α(%, η, t).
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By using Theorem 3.1.5, we get the required result.

Theorem 3.2.4.

Let (S,Mb, ∗) be a G-complete FbMS with b ≥ 1. Let a mapping g : S → S

satisfies

∫ Mb(g%,gη,kt)

0

ψ(t)dt ≥ ϑ

{∫ α(%,η,t)

0

ψ(t)dt

}
, (3.18)

where

α(%, η, t) = min

{
Mb(%, g%, t) [1 +Mb(η, gη, t)]

1 +Mb(g%, gη, t)
,
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,

Mb(%, g%, t) [2 +Mb(%, gη, t)]

1 +Mb(%, gη, t) +Mb(η, g%, t)
,Mb(%, η, t)

}
,

for all %, η ∈ S, k ∈ (0,
1

b
), ψ ∈ Ω. Then g has a unique fixed point.

Proof.

The proof follows immediately from Theorem 3.1.6.

3.3 Conclusion

Recently, Nădăban [85] highlighted the properties and usefulness of fuzzy Eu-

clidean normed spaces and FbMS in solving problems in various sciences. The

author has prepared a ground to extend the theory of fixed points in these spaces.

In the conclusion of [85], the author suggested to establish certain fixed point

theorem in FbMS. In this chapter, the version of BCP in the setting of FbMS

has been established and an example is provided to demonstrate our main result.

The main Grabiec’s result [49] has been generalised in this way. Furthermore, an

analogue of Hicks and Rhoad’s fixed-point theorem [21] in the setting of FbMS

has been proved by restricting the contraction mapping to the elements in the

orbit of a point in FbMS. Our results may be of interest for the readers/re-

searchers in some specialized area of computer science and information technology
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like computational intelligence method and advance decision support systems to

solve problems with fixed points involving some kind of distance between pro-

grammes in order to assess the complexity of an algorithm.



Chapter 4

Geraghty Type Contractions in

Fuzzy b-metric Spaces

In 1973, Banach contraction principle was generalized by Geraghty [34]. After that

various authors proved many fixed point results by using Geraghty type contractive

mappings. Recently, Faraji [33] provided certain fixed point results in b-metric

spaces by using Geraghty type contractions.

In Section 4.1 of this chapter, some interesting fixed point results for Geraghty-

type contraction in G-complete FbMS are established. Particularly, the extension

of main result of Grabiec [49] is established in the first theorem. Second result

is the extention of the main result of Faraji et.al [33] and other results are the

generlization of the results of Alsulami et.al [89] in the setting of G-complete fuzzy

b-metric space. These results are illustrated by examples. Finally the Section 4.1

is concluded by an application of these results.

Section 4.3 consists some common fixed point results for Geraghty-type contraction

in G-complete FbMS. The first two results are the extensions of the main results

of Faraji [33] and third result is the generalization of the results of Gupta et. al.

[57] in the setting of G-complete FbMS. An example is provided to illustrate our

main result and an application is also presented of the results obtained.

64
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4.1 Geraghty Type Contraction

Following [84], let the class of all functions β : [0,∞)→ [0,
1

b
), for b > 1 be denoted

by Fb and satisfying the condition

β(%n)→ 1

b
as n→∞ ⇒ %n → 0 as n→∞.

That is,

Fb =

{
β : [0,∞)→ [0,

1

b
)
∣∣∣ lim
n→∞

β(%n) =
1

b
⇒ lim

n→∞
%n = 0

}
.

For example, the function β : [0,∞)→ [0,
1

b
), for b > 1 defined by

β(%n) =
1

b
− %n,

where the sequence {%n} is taken as

%n =
1

bn
.

Note that

lim
n→∞

β(%n) = lim
n→∞

(
1

b
− 1

bn

)
=

1

b
.

Also

lim
n→∞

%n = lim
n→∞

1

bn
= 0.

Lemma 4.1.1.

Let (S,Mb, ∗) be a G-complete FbMS and

Mb (%, η, β(M(%, η, t))t) ≥Mb (%, η, t) ,

for all %, η ∈ S, t > 0 and β ∈ Fb, then % = η.
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Proof.

The proof follows from Lemma 3.1.6.

In the context of G-complete FbMS, we now develop the following fixed point

result, analogous to [49, Theorem 1].

Theorem 4.1.1.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(Mb(%, η, t))t) ≥Mb(%, η, t), (4.1)

for all %, η ∈ S and β ∈ Fb. Then g has a unique fixed point.

Proof.

Let %0 ∈ S and choose an iterative sequence {%n}; (n ∈ N) such as

%n = gn%0.

To begin, keep in mind that the contractive condition (4.1) is applied repeatedly,

we have for all n ∈ N and t > 0,

Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
≥Mb

(
%n−2, %n−1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t))

)
...

≥Mb

(
%0, %1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)). . . . β(Mb(%0, %1, t))

)

So, we have

Mb(%n, %n+1, t)

≥Mb

(
%0, %1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)) . . . β(Mb(%0, %1, t))

)
. (4.2)
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For any q ∈ N, letting t =
t

q
+
t

q
+ . . .+

t

q
and using FBM4 repeatedly,

Mb(%n, %n+p, t)

≥Mb

(
%n, %n+1,

t

qb

)
∗Mb

(
%n+1, %n+2,

t

qb2

)
∗ . . . ∗Mb

(
%n+p−1, %n+p,

t

qbn+p

)
.

Using (4.2) in above equation to get,

Mb(%n, %n+p, t)

≥Mb

(
%0, %1,

t

qbβ(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)) . . . β(Mb(%0, %1, t))

)
∗Mb

(
%0, %1,

t

qb2β(Mb(%n, %n+1, t)).β(Mb(%n−1, %n, t)) . . . β(Mb(%0, %1, t))

)
∗ . . . ∗Mb

(
%0, %1,

t

qbn+pβ(Mb(%n+q, %n+q−1, t)) . . . β(Mb(%0, %1, t))

)
≥Mb

(
%0, %1,

bn−1t

q

)
∗Mb

(
%0, %1,

bn−1t

q

)
∗ . . . ∗Mb

(
%0, %1,

bn−1t

q

)
.

Taking limit as n→∞, we get

lim
n→∞

Mb(%n, %n+p, t) = 1 ∗ 1 ∗ . . . ∗ 1 = 1.

This shows that {%n} is a G-Cauchy sequence. So, by G-completeness of the space

(S,Mb, ∗), there is an element % ∈ S such as

lim
n→∞

%n = %.

We continue as follows to prove that % is a fixed point of g.

Mb(g%, %, t) ≥Mb

(
g%, g%n,

t

2b

)
∗Mb

(
g%n, %,

t

2b

)
≥Mb

(
%, %n,

t

2bβ((Mb(%, %n, t))

)
∗Mb

(
%n+1, %n,

t

2b

)
= 1 ∗ 1 = 1.

That is,

Mb(g%, %, t) = 1.
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This proves that

g% = %.

Thus % is a fixed point.

Uniqueness:

Suppose that g has another fixed point ζ ∈ S. That is, gζ = ζ, then

Mb(ζ, %, t) = Mb(gζ, g%, t)

≥Mb

(
ζ, %,

t

β(Mb(ζ, %, t))

)
= Mb

(
gζ, g%,

t

β(Mb(ζ, %, t))

)
≥Mb

(
ζ, %,

t

β(Mb(ζ, %, t))2

)
...

≥Mb

(
ζ, %,

t

β(Mb(ζ, %, t))n

)
= Mb (ζ, %, bnt)

−→ 1 asn→∞.

Thus % = ζ.

Hence g has unique fixed point.

Theorem 4.1.1 is illustrated with the following example.

Example 4.1.2.

Let S = [0, 1] . Define a function Mb : S × S × [0,∞)→ [0, 1] by

Mb(%, η, t) =
t

t+ (%− η)2
.

One can easily show that (S,Mb, ∗) is a G-complete FbMS with b = 2.

Consider a mapping g : S → S defined by

g(%) =
%

2(1 + %)
.
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Moreover, set the map β : [0, 1]→ [0,
1

2
) as β(%) =

1

4
. Clearly β ∈ F2.

Now, for all %, η ∈ S and t > 0, we have

Mb(g%, gη, β(Mb(%, η, t))t) =
β(Mb(%, η, t))t

β(Mb(%, η, t))t+

(
%

4(1 + %)
− η

4(1 + η)

)2

=

1

4
t

1

4
t+

(
%

4(1 + %)
− η

4(1 + η)

)2

=

1

4
t

1

4
t+

1

4

(
%

1 + %
− η

1 + η

)2

=
t

t+
(%− η)2

(1 + %)2(1 + η)2

.

Since

(%− η)2

(1 + %)2(1 + η)2
≤ (%− η)2

t+
(%− η)2

(1 + %)2(1 + η)2
≤ t+ (%− η)2

1

t+
(%− η)2

(1 + %)2(1 + η)2

≥ 1

t+ (%− η)2

t

t+
(%− η)2

(1 + %)2(1 + η)2

≥ t

t+ (%− η)2
.

This implies that

Mb(g%, gη, β(%, η, t)t) ≥Mb(%, η, t).

Hence all the conditions of Theorem 4.1.1 are satisfied and g0 = 0 is unique fixed

point of g.

Remark 4.1.3.

1. Taking β(%) = k ∀ % ∈ [0, 1] for some k ∈ [0,
1

b
), then Theorem 4.1.1 becomes

the well-known BCP for FbMS established in Theorem 3.1.1.
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2. Similarly, by setting b = 1 and β(%) = k in Theorem 4.1.1, the main result

of Grabiec [49, Theorem 5] is obtained.

Now, we extend the main result of Faraji et al. [33] in our setting as follows;

Theorem 4.1.2.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(Mb(%, η, t))t) ≥ min

{
Mb(%, η, t),Mb(%, g%, t),Mb(η, gη, t),

(
Mb(%, gη, 2bt) ∗Mb(η, g%, 2bt)

)}
, (4.3)

for all %, η ∈ S and β ∈ Fb. Then g has a unique fixed point.

Proof.

Starting the same way as in Theorem 4.1.1, we have

Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥ min

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)
,(

Mb

(
%n−1, g%n,

2bt

β(Mb(%n−1, %n, t))

)
∗Mb

(
%n, g%n−1,

2bt

β(Mb(%n−1, %n, t))

))}

≥ min

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,(

Mb

(
%n−1, %n+1,

2bt

β(Mb(%n−1, %n, t))

)
∗Mb

(
%n, %n,

2bt

β(Mb(%n−1, %n, t))

))}

≥ min

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

(
Mb

(
%n−1, %n+1,

2bt

β(Mb(%n−1, %n, t))

)
∗ 1

)}
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≥ min

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n+1,

2bt

β(Mb(%n−1, %n, t))

)}

≥ min

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

(
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
∗

Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

))}
.

So, we have

Mb(%n, %n+1, t)

≥ min

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,(

Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
∗Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

))}
.

(4.4)

If

min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
= Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

then (4.4) implies that

Mb(%n, %n+1, t) ≥Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

and hence there is nothing to prove by Lemma 4.1.1.

If

min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
= Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,
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then from (4.4), we have

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
≥Mb

(
%n−2, %n−1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t))

)
≥Mb

(
%n−3, %n−2,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)).β(Mb(%n−3, %n−2, t))

)

In a similar way, we can get

Mb(%n, %n+1, t)

≥Mb

(
%0, %1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)) . . . β(Mb(%0, %1, t))

)
.

(4.5)

One can now complete the proof by following the same procedure as used after

inequality (4.2) of Theorem 4.1.1.

An immediate consequence of Theorem 4.1.2 is given below.

Corollary 4.1.4.

Let (S,M, ∗) be a G-complete FMS and a mapping g : S → S satisfies

M(g%, gη, β(M(%, η, t))t)

≥ min

{
M(%, η, t),M(%, g%, t),M(η, gη, t),

(
M(%, gη, 2t) ∗M(η, g%, 2t)

)}
,

for all %, η ∈ S and β ∈ F1. Then g has a unique fixed point.

Theorem 4.1.3.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(Mb(%, η, t))t)

≥ min

{
Mb(g%, gη, t),Mb(%, g%, t),Mb(η, gη, t),Mb(%, η, t)

}
(4.6)

for all %, η ∈ S and β ∈ Fb. Then g has a unique fixed point.
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Proof.

Starting in the same way as in Theorem 4.1.1, we have

Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥ min

{
Mb

(
g%n−1, g%n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

≥ min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

≥ min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
.

(4.7)

By adopting the same procedure as in Theorem 4.1.2 after inequality (4.4), we can

complete the proof.

Remark 4.1.5.

If we take

min

{
Mb(g%, gη, t),Mb(%, g%, t),Mb(η, gη, t),Mb(%, η, t)

}
= Mb(%, η, t)

in Theorem 4.1.3, then it reduces to Theorem 4.1.1.

The immediate consequence of Theorem 4.1.3 is as follows:

Corollary 4.1.6.

Let (S,M, ∗) be a G-complete FMS . Let g be a self map on S satisfying the

condition

M(g%, gη, β(M(%, η, t))t) ≥ min

{
M(g%, gη, t),M(%, g%, t),M(η, gη, t),M(%, η, t)

}
,

for all %, η ∈ S and β ∈ F1. Then T has a unique fixed point.
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Theorem 4.1.4.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(Mb(%, η, t))t) ≥
α(%, η, t)

max
{
Mb(%, g%, t),Mb(η, gη, t)

} , (4.8)

where

α(%, η, t) = min

{
Mb(g%, gη, t).Mb(%, η, t),Mb(%, g%, t).Mb(η, gη, t)

}
,

for all %, η ∈ S and β ∈ Fb. Then g has a unique fixed point.

Proof.

Starting in same way as in Theorem 4.1.1, we have

Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥
α

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
max

{
Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)} .
(4.9)

Now,

α
(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
= min

{
Mb

(
g%n−1, g%n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)}

= min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)}

= Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n, %n+1,

t

β(%n−1, %n, t)

)
. (4.10)
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Using (4.10) in (4.9), we get

Mb(%n, %n+1, t)

≥
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
max

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)} .
(4.11)

If

max

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

= Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

then (4.11) implies

Mb(%n, %n+1, t) ≥Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.

So, there is nothing to prove by Lemma 4.1.1.

If

max

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

= Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

then from (4.11), we have

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
≥Mb

(
%n−2, %n−1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t))

)
≥Mb

(
%n−3, %n−2,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)).β(Mb(%n−3, %n−2, t))

)
...

≥Mb

(
%0, %1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)) . . . β(Mb(%0, %1, t))

)
.
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By following the same procedure as in Theorem 4.1.1 after inequality (4.2), we

can complete the proof.

The immediate consequence of Theorem 4.1.4 is as follows.

Corollary 4.1.7.

Let (S,M, ∗) be a G-complete FMS . Let g be a self map on X satisfying the

condition

M(g%, gη, β(M(%, η, t))t) ≥ α(%, η, t)

max
{
M(%, g%, t),M(η, gη, t)

} ,
where

α(%, η, t) = min

{
M(g%, gη, t).M(%, η, t),M(%, g%, t).M(η, gη, t)

}
,

for all %, η ∈ S and β ∈ F1. Then g has a unique fixed point.

Following result is the generalization of Theorem 2.3 of Alsulami et al. [89] in the

setting of FbMS.

Theorem 4.1.5.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(Mb(%, η, t))t) ≥ λ(%, η, t) ∗ γ(%, η, t), (4.12)

where,
λ(%, η, t) = min

{
Mb(g%, gη, t),Mb(%, g%, t),Mb(η, gη, t),Mb(%, η, t)

}

γ(%, η, t) = max
{
Mb(%, gη, t),Mb(g%, η, t)

}


(4.13)

for all %, η ∈ S and β ∈ Fb. Then g has a unique fixed point, where a∗b = min(a, b).

Proof.

Starting in same way as in Theorem 4.1.1, we have
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Mb(%n, %n+1, t) = Mb(g%n−1, g%n, t)

≥ λ

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
∗ γ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.

(4.14)

Now,

λ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
= min

{
Mb

(
g%n−1, g%n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

= min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t)
)

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

= min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
.

(4.15)

Also

γ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
= max

{
Mb

(
%n−1, g%n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
g%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}

= max

{
Mb

(
%n−1, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n,

t

β(Mb(%n−1, %n, t))

)}

= max

{
Mb

(
%n−1, %n+1,

t

β(Mb(%n−1, %n, t))

)
, 1

}
= 1.

⇒ γ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t)

)
= 1. (4.16)



Geraghty type contractions in fuzzy b-metric spaces 78

Using (4.15) and (4.16) in (4.14), we have

Mb(%n, %n+1, t)

≥ min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
∗ 1

≥ min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
.

(4.17)

By using the the same procedure as in Theorem 4.1.2 after inequality (4.4), we

can complete the proof.

Following is the immediate consequence of Theorem 4.1.5.

Corollary 4.1.8.

Let (S,M, ∗) be a G-complete FMS. Let g be a self map on X satisfying the

condition

M(g%, gη, β(M(%, η, t))t) ≥ λ(%, η, t) ∗ γ(%, η, t),

where
λ(%, η, t) = min

{
M(g%, gη, t),M(%, g%, t),M(η, gη, t),M(%, η, t)

}

γ(%, η, t) = max
{
M(%, gη, t),M(g%, η, t)

}
,


for all %, η ∈ S and β ∈ F1. Then g has a unique fixed point, where a∗b = min(a, b).

Now, we establish Theorem 2.10 of Alsulami et al. [89] in the setting of FbMS.

Theorem 4.1.6.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(Mb(%, η, t))t) ≥
λ(%, η, t) ∗ γ(%, η, t)

α(%, η, t)
, (4.18)
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where
λ(%, η, t) = min

{
Mb(g%, gη, t).Mb(%, η, t),Mb(%, g%, t).Mb(η, gη, t)

}
,

γ(%, η, t) = max
{
Mb(%, g%, t).Mb(%, gη, t), (Mb(η, g%, t))

2
}
,

α(%, η, t) = max
{
Mb(%, g%, t),Mb(η, gη, t)

}
,


(4.19)

for all %, η ∈ S and β ∈ Fb. Then g has a unique fixed point.

Proof.

In the same way as in Theorem 4.1.1, we have

Mb(%n,%n+1, t) = Mb(g%n−1, g%n, t)

≥
λ

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
∗ γ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
α

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

) .

(4.20)

Now,

λ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
= min

{
Mb

(
g%n−1, g%n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)}

= min

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)}

= Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)

= Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
(4.21)
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and

γ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
= max

{
Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, g%n,

t

β(Mb(%n−1, %n, t))

)
,

(
Mb

(
%n, g%n−1,

t

β(Mb(%n−1, %n, t))

))2
}

= max

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

(
Mb

(
%n, %n,

t

β(Mb(%n−1, %n, t))

))2
}

= max

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n+1,

t

β(Mb(%n−1, %n, t))

)
, 1

}
= 1.

⇒ γ
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
= 1. (4.22)

Also

α
(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
= max

{
Mb

(
%n−1, g%n−1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, g%n,

t

β(Mb(%n−1, %n, t))

)}
= max

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)}

= max

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)}
.

(4.23)

Using (4.21), (4.22) and (4.23) in (4.20), we have

Mb(%n, %n+1, t)

≥
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
.Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
max

{
Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)} .
(4.24)
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If

max

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
= Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
,

then (4.24) implies

Mb(%n, %n+1, t) ≥Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

there is nothing to prove by Lemma 4.1.1.

If

max

{
Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)}
= Mb

(
%n, %n+1,

t

β(Mb(%n−1, %n, t))

)
,

then from (4.24), we have

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
.

In the similar way, we get

Mb(%n, %n+1, t) ≥Mb

(
%n−1, %n,

t

β(Mb(%n−1, %n, t))

)
≥Mb

(
%n−2, %n−1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t))

)
≥Mb

(
%n−3, %n−2,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)).β(Mb(%n−3, %n−2, t))

)
...

≥Mb

(
%0, %1,

t

β(Mb(%n−1, %n, t)).β(Mb(%n−2, %n−1, t)) . . . β(Mb(%0, %1, t))

)
.

Continuing the same way as in Theorem 4.1.1 after inequality (4.2), one can com-

plete the proof.

The immediate consequence of Theorem 4.1.6 is as follows:
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Corollary 4.1.9.

Consider (S,M, ∗) is a G-complete FMS . Let g be a self map on S satisfies the

condition

M(g%, gη, β(M(%, η, t))t) ≥ λ(%, η, t) ∗ γ(%, η, t)

α(%, η, t)
,

where
λ(%, η, t) = min

{
M(g%, gη, t).M(%, η, t),M(%, g%, t).M(η, gη, t)

}
,

γ(%, η, t) = max
{
M(%, g%, t).M(%, gη, t), (M(η, g%, t))2

}
,

α(%, η, t) = max
{
M(%, g%, t),M(η, gη, t)

}
,


for all %, η ∈ S and β ∈ F1. Then g has a unique fixed point.

4.2 Application

Fixed point theory turns out to be an important tool for studying the existence and

uniqueness problems for the soloution of various types of of integral and differential

equations, for instance see [33, 97, 98].

In this section, a particular non-linear integral equation has been studied for the

existence of the solution as an application of fixed point results established in the

previous section.

Let S denote the set of real-valued continuous functions on [0, J ] i.e, S = C[0, J ].

Define Mb : S × S × [0,∞)→ [0, 1] by

Mb(%, η, t) =


e
−

sup
s∈[0,I]

|%(s)− η(s)|2

t if t > 0,

0 if t = 0.

Obviously, (S,Mb, ∗) a G-complete FbMS.
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Consider the following equation

%(t) = λ(t) +

∫ J

0

ς(t, s)ω(t, s, %(s))ds, (4.25)

where J > 0 and λ : [0, J ]→ R, ς : [0, J ]× [0, J ]→ R and ω : [0, J ]× [0, J ]×R→ R

are continuous functions.

Theorem 4.2.1.

Suppose that the following conditions hold:

(i) for all t, s ∈ [0, J ], %, η ∈ S and β ∈ Fb, where

Fb =

{
β : [0,∞)→ [0,

1

b
)
∣∣∣ lim
n→∞

β(tn) =
1

b
⇒ lim

n→∞
tn = 0

}
,

we have

∣∣∣ω(t, s, %(s))− ω(t, s, η(s))
∣∣∣ <√β(Mb(%, η, t))

∣∣∣%(s)− η(s)
∣∣∣.

(ii) for all t, s ∈ [0, J ] ,

sup
s∈[0,I]

∫ J

0

(ς(t, s))2ds ≤ 1

J
.

Then the integeral equation (4.25) has a solution in S.

Proof.

Let a mapping g : S → S defined by

g%(t) = λ(t) +

∫ J

0

ς(t, s)ω(t, s, %(s))ds,

for all % ∈ S, and t, s ∈ [0, J ].

From (i) and (ii), we may write, for all %, η ∈ S

Mb(g%, gη, β(Mb(%, η, t))t) = e
−

sup
s∈[0,J ]

∣∣∣g%(t)− gη(t)
∣∣∣2

β(Mb(%, η, t))t
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Mb(g%, gη,β(Mb(%, η, t))t)

= e
−

sup
s∈[0,J ]

∣∣∣∣∣
∫ J

0

ς(t, s)ω(t, s, %(s))ds−
∫ J

0

ς(t, s)ω(t, s, η(s))ds

∣∣∣∣∣
2

β(Mb(%, η, t))t

= e
−

sup
s∈[0,J ]

∣∣∣∣∣
∫ J

0

ς(t, s){ω(t, s, %(s))− ω(t, s, η(s)}ds

∣∣∣∣∣
2

β(Mb(%, η, t))t

≥ e
−

sup
s∈[0,J ]

∣∣∣∣∣
∫ J

0

(ς(t, s))2ds

∣∣∣∣∣
∫ J

0

∣∣∣∣∣ω(t, s, %(s))− ω(t, s, η(s)

∣∣∣∣∣
2

ds

β(Mb(%, η, t))t

≥ e
−

sup
s∈[0,J ]

1

I

∫ J

0

{√
β(Mb(%, η, t))

∣∣∣%(s)− η(s)
∣∣∣}2

ds

β(Mb(%, η, t))t

≥ e
−

sup
s∈[0,J ]

β(Mb(%, η, t))
∣∣∣%(s)− η(s)

∣∣∣2
β(Mb(%, η, t))t

= e
−

sup
s∈[0,J ]

∣∣∣%(s)− η(s)
∣∣∣2

t

= Mb(%, η, t)

⇒ Mb(g%, gη,β(Mb(%, η, t))t) ≥Mb(%, η, t).

Thus, the conditions of Theorem 4.1.1 are fulfilled therefore g has a fixed point.

As a result, there is a solution to the integral equation (4.25).

4.3 Some Common Fixed Point Results in Fuzzy

b-Metric Spaces

In this section, some common fixed point results are proved for Geraghty-type

contraction in G-complete FbMS. The first two results are the extensions of the

main results of Faraji [33] and the third result is the generalization of the results
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of Gupta et al. [57] in the setting of G-complete FbMS. In addition, an example

is provided to demonstrate our main result. Furthermore, an application of the

acquired results is presented.

Now, we established a common fixed point result for Geraghty type contraction in

FbMS.

Theorem 4.3.1.

Let (S,Mb, ∗) be a G-complete FbMS. Let g, h : S → S be mappings satisfying

Mb(g%, hη, β(λ(%, η, t))t) ≥ λ(%, η, t), (4.26)

where

λ(%, η, t) = min

{
Mb(%, g%, t),Mb(η, hη, t)

}
,

for all %, η ∈ S and β ∈ Fb. If g or h is continuous then g and h has a unique

common fixed point.

Proof.

Let %0 ∈ S and start with iterative sequences %2n+1 = g%2n and %2n+2 = h%2n+1.

Mb(%2n+1, %2n+2, t) = Mb(g%2n, h%2n+1, t)

≥ λ

(
%2n, %2n+1,

t

β(λ(%2n, %2n+1, t))

)
. (4.27)

Now,

λ(%2n, %2n+1, t) = min

{
Mb(%2n, g%2n, t),Mb(%2n+1, h%2n+1, t)

}

= min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
.

If

min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
= Mb(%2n+1, %2n+2, t),

then

λ(%2n, %2n+1, t) = Mb(%2n+1, %2n+2, t).



Geraghty type contractions in fuzzy b-metric spaces 86

(4.27) implies

Mb(%2n+1, %2n+2, t) ≥Mb

(
%2n+1, %2n+2,

t

β(Mb(%2n, %2n+1, t))

)
,

there is nothing to prove by Lemma 4.1.1.

If

min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
= Mb(%2n, %2n+1, t),

then

λ(%2n, %2n+1, t) = Mb(%2n, %2n+1, t).

(4.27) implies

Mb(%2n+1, %2n+2, t)

≥Mb

(
%2n, %2n+1,

t

β(M(%2n, %2n+1, t))

)
≥Mb

(
%2n−1, %2n,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t))

)
...

≥Mb

(
%0, %1,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)) . . . β(M(%0, %1, t))

)
.

(4.28)

For any q ∈ N and using FBM4 repeatedly, we get

Mb(%2n, %2n+p, t)

≥Mb

(
%2n, %2n+1,

t

qb

)
∗Mb

(
%2n+1, %2n+2,

t

qb2

)
∗ . . . ∗Mb

(
%2n+p−1, %2n+p,

t

qbp

)
.

Using (4.28), we get

Mb(%2n, %2n+p, t)

≥Mb

(
%0, %1,

t

qb.β(M(%2n−1, %2n, t)).β(M(%2n−2, %2n−1, t)) . . . β(M(%0, %1, t))

)
∗

Mb

(
%0, %1,

t

qb2.β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)) . . . β(M(%0, %1, t))

)
∗ . . . ∗

Mb

(
%0, %1,

t

qbp.β(M(%2n+p−1, %2n+p, t)).β(M(%2n+p−2, %2n+p−1, t)) . . . β(M(%0, %1, t))

)
.
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Mb(%2n, %2n+p, t)

≥Mb

(
%0, %1,

b2n−1t

q

)
∗Mb

(
%0, %1,

b2n−1t

q

)
∗ . . . ∗Mb

(
%0, %1,

b2n−1t

q

)
,

when n→∞ then we get

lim
n→∞

Mb(%2n, %2n+p, t) = 1.

Thus {%n} is a G-Cauchy sequence. Since (S,Mb, ∗) is G-complete FbMS so there

is some % ∈ S such as

lim
n→∞

%n = %.

Now, we prove that % is fixed point of g.

If g is continuous then

Mb(g%, %, t) ≥Mb

(
g%, g%n,

t

2b

)
∗Mb

(
g%n, %,

t

2b

)
≥Mb

(
g%, g%,

t

2b

)
∗Mb

(
%n+1, %n,

t

2b

)
= 1 ∗ 1 = 1 as n→∞.

This implies that g% = %.

So, % is a fixed point of g.

Now, from (4.26),

Mb(%, h%, β(λ(%, %, t))t) = Mb(g%, h%, β(λ(%, %, t))t) ≥ λ (%, %, t) , (4.29)

where

λ(%, %, t) = min
{
Mb(%, g%, t),Mb(%, h%, t)

}
= min

{
1,Mb(%, h%, t)

}
= Mb(%, h%, t).

(4.29) implies

Mb(%, h%, β(λ(%, %, t))t) ≥Mb (%, h%, t) .
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So, by Lemma 4.1.1, h% = %, thus % is fixed point of h.

Now, if h is continuous then one can show that g and h have a common fixed point

using the above procedure.

Uniqueness

Assume that δ be any other common fixed point of g and h i.e, δ = gδ = hδ, then

from (4.26),

Mb(%, δ, β(λ(%, δ, t))t) = Mb(g%, hδ, β(λ(%, δ, t))t) ≥ λ(%, δ, t), (4.30)

where

λ(%, δ, t) = min

{
Mb(%, g%, t),Mb(δ, hδ, t)

}
= min

{
1, 1
}

= 1.

Thus % = δ. Hence g and h have unique common fixed point.

Following are immediate consequences of Theorem 4.3.1.

Corollary 4.3.1.

Let (S,M, ∗) be a G-complete FMS. Let the mappings g, h : S → S satisfy

M(g%, hη, β(λ(%, η, t))t) ≥ λ(%, η, t),

where

λ(%, η, t) = min

{
M(%, η, t),M(%, g%, t),M(η, hη, t)

}
,

for all %, η ∈ S and β ∈ F1. If g or h is continuous then g and h have a unique

common fixed point.

By taking g = h in Theorem 4.3.1, the following result can be obtained.

Corollary 4.3.2.

Let (S,Mb, ∗) be a G-complete FbMS. Let g : S → S be a mapping satisfying

Mb(g%, gη, β(λ(%, η, t))t) ≥ λ(%, η, t),
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where

λ(%, η, t) = min

{
Mb(%, g%, t),Mb(η, gη, t)

}
,

for all %, η ∈ S and β ∈ Fb. If g is continuous then g has a fixed point.

Analogous to [33, Theorem 4], we now establish the following common fixed point

theorem for G-complete FbMS.

Theorem 4.3.2.

Let (S,Mb, ∗) be a G-complete FbMS. Let g, h : S → S be maps satisfying the

condition

Mb(g%, hη, β(λ(%, η, t))t) ≥ λ(%, η, t), (4.31)

where

λ(%, η, t) = min

{
Mb(%, η, t),Mb(%, g%, t),Mb(η, hη, t)

}
,

for all %, η ∈ S and β ∈ Fb. If g or h is continuous then g and h have only one

common fixed point.

Proof.

Let %0 ∈ S. Starting with iterative sequences %2n+1 = g%2n and %2n+2 = h%2n+1.

Mb(%2n+1, %2n+2, t) = Mb(g%2n, h%2n+1, t) ≥ λ

(
%2n, %2n+1,

t

β(λ(%2n, %2n+1, t))

)
.

(4.32)

As

λ(%2n, %2n+1, t) = min

{
Mb(%2n, %2n+1, t),Mb(%2n, g%2n, t),Mb(%2n+1, h%2n+1, t)

}

= min

{
Mb(%2n, %2n+1, t),Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}

= min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
.

If

min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
= Mb(%2n+1, %2n+2, t),
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then λ(%2n, %2n+1, t) = Mb(%2n+1, %2n+2, t).

(4.32) implies

Mb(%2n+1, %2n+2, t) ≥Mb

(
%2n+1, %2n+2,

t

β(Mb(%2n, %2n+1, t))

)
,

there is nothing to prove by Lemma 4.1.1.

If

min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
= Mb(%2n, %2n+1, t),

then λ(%2n, %2n+1, t) = Mb(%2n, %2n+1, t).

(4.32) implies

Mb(%2n+1, %2n+2, t) ≥Mb

(
%2n, %2n+1,

t

β(M(%2n, %2n+1, t))

)
≥Mb

(
%2n−1, %2n,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t))

)
...

≥Mb

(
%0, %1,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)) . . . β(M(%0, %1, t))

)
.

(4.33)

For any q ∈ N, and using FBM4 repeatedly,

Mb(%2n, %2n+p, t)

≥Mb

(
%2n, %2n+1,

t

qb

)
∗Mb

(
%2n+1, %2n+2,

t

qb2

)
∗ . . . ∗Mb

(
%2n+p−1, %2n+p,

t

qbp

)
.

Using (4.33), we get

Mb(%2n, %2n+p, t)

≥Mb

(
%0, %1,

t

qb.β(M(%2n−1, %2n, t)).β(M(%2n−2, %2n−1, t)) . . . β(M(%0, %1, t))

)
∗Mb

(
%0, %1,

t

qb2.β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)) . . . β(M(%0, %1, t))

)
...

∗Mb

(
%0, %1,

t

qbp.β(M(%2n+p−1, %2n+p, t)).β(M(%2n+p−2, %2n+p−1, t)) . . . β(M(%0, %1, t))

)
.
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Mb(%2n, %2n+p, t)

≥Mb

(
%0, %1,

b2n−1t

q

)
∗Mb

(
%0, %1,

b2n−1t

q

)
∗ . . . ∗Mb

(
%0, %1,

b2n−1t

q

)
,

when n→∞ then we get

lim
n→∞

Mb(%2n, %2n+p, t) = 1.

Thus {%n} is a G-Cauchy sequence. Since (S,Mb, ∗) is a G-complete FbMS, so,

there is some % ∈ S such that

lim
n→∞

%n = %.

Now, we show that % is fixed point of g.

If g is continuous then

Mb(g%, %, t) ≥Mb

(
g%, g%n,

t

2b

)
∗Mb

(
g%n, %,

t

2b

)
≥Mb

(
g%, g%,

t

2b

)
∗Mb

(
%n+1, %n,

t

2b

)
= 1 ∗ 1 = 1 as n→∞.

This implies that g% = %, thus % is a fixed point of g.

Now, from (4.31)

Mb(%, h%, β(λ(%, %, t))t) = Mb(g%, h%, β(λ(%, %, t))t) ≥ λ (%, %, t) , (4.34)

where

λ(%, %, t) = min

{
Mb(%, %, t),Mb(%, g%, t),Mb(%, h%, t)

}
= min

{
1, 1,Mb(%, h%, t)

}
= Mb(%, h%, t).

(4.34) implies

Mb(%, h%, β(λ(%, %, t))t) ≥Mb (%, h%, t) .
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So, by Lemma 4.1.1, h% = %. Thus % is fixed point of h.

Now, if h is continuous then one can show that g and h have a common fixed point

using the same above procedure.

Uniqueness

Let δ = gδ = hδ be any other common fixed point of g and h, then from (4.31),

Mb(%, δ, β(λ(%, δ, t))t) = Mb(g%, hδ, β(λ(%, δ, t))t) ≥ λ(%, δ, t), (4.35)

where

λ(%, δ, t) = min

{
Mb(%, δ, t),Mb(%, g%, t),Mb(δ, hδ, t)

}
= min

{
Mb(%, δ, t), 1, 1

}
= Mb(%, δ, t).

(4.35) implies that

Mb(%, δ, β(λ(%, δ, t))t) ≥Mb(%, δ, t).

So, by Lemma 3.1.6, % = δ.

Hence g and h have unique common fixed point.

Following are immediate consequences of Theorem 4.3.1.

Corollary 4.3.3.

Let (S,M, ∗) be a G-complete FMS. Let g, h : S → S be mappings satisfying

M(g%, hη, β(λ(%, η, t))t) ≥ λ(%, η, t),

where

λ(%, η, t) = min

{
M(%, η, t),M(%, g%, t),M(η, hη, t)

}
,

for all %, η ∈ S and β ∈ F1. If g or h is continuous then g and h have a unique

common fixed point.
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By taking g = h in Theorem 3.1.2, the following result can be obtained.

Corollary 4.3.4.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(λ(%, η, t))t) ≥ λ(%, η, t),

where

λ(%, η, t) = min

{
Mb(%, η, t),Mb(%, g%, t),Mb(η, gη, t)

}
,

for all %, η ∈ S, and β ∈ Fb. If g is continuous then g has a unique fixed point.

Now, we prove a common fixed point result that is analogous to [57, Theorem 1]

for G-complete FbMS using Geraghty type contraction.

Theorem 4.3.3.

Let (S,Mb, ∗) be a G-complete FbMS. Let g, h : S → S be mappings satisfying

the condition

Mb(g%, hη, β(λ(%, η, t))t) ≥ λ(%, η, t), (4.36)

where

λ(%, η, t) = min

{
Mb(η, hη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,Mb(%, η, t)

}
,

for all %, η ∈ S, t > 0 and β ∈ Fb. If g or h is continuous then g and h have a

common fixed point.

Proof.

Let %0 ∈ S. Starting with iterative sequences

%2n+1 = g%2n and %2n+2 = h%2n+1.

Mb(%2n+1, %2n+2, t) = Mb(g%2n, h%2n+1, t)

≥ λ

(
%2n, %2n+1,

t

β(λ(%2n, %2n+1, t))

)
. (4.37)
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As

λ(%2n, %2n+1, t)

= min

{
Mb(%2n+1, h%2n+1, t) [1 +Mb(%2n, g%2n, t)]

1 +Mb(%2n, %2n+1, t)
,Mb(%2n, %2n+1, t)

}

= min

{
Mb(%2n+1, %2n+2, t) [1 +Mb(%2n, %2n+1, t)]

1 +Mb(%2n, %2n+1, t)
,Mb(%2n, %2n+1, t)

}
= min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
.

If

min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
= Mb(%2n+1, %2n+2, t),

then λ(%2n, %2n+1, t) = Mb(%2n+1, %2n+2, t).

(4.37) implies

Mb(%2n+1, %2n+2, t) ≥Mb

(
%2n+1, %2n+2,

t

β(Mb(%2n, %2n+1, t))

)
,

then there is nothing to prove by Lemma 4.1.1.

If

min

{
Mb(%2n, %2n+1, t),Mb(%2n+1, %2n+2, t)

}
= Mb(%2n, %2n+1, t),

then λ(%2n, %2n+1, t) = Mb(%2n, %2n+1, t).

(4.37) implies

Mb(%2n+1, %2n+2, t) ≥Mb

(
%2n, %2n+1,

t

β(M(%2n, %2n+1, t))

)
≥Mb

(
%2n−1, %2n,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t))

)
≥Mb

(
%2n−2, %2n−1,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)).β(M(%2n−2, %2n−1, t))

)
...

≥Mb

(
%0, %1,

t

β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)) . . . β(M(%0, %1, t))

)
. (4.38)
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For any q ∈ N, and using FBM4 repeatedly,

Mb(%2n, %2n+p, t)

≥Mb

(
%2n, %2n+1,

t

qb

)
∗Mb

(
%2n+1, %2n+2,

t

qb2

)
∗ . . . ∗Mb

(
%2n+p−1, %2n+p,

t

qbp

)
.

Using (4.38), we get

Mb(%2n, %2n+p, t)

≥Mb

(
%0, %1,

t

qb.β(M(%2n−1, %2n, t)).β(M(%2n−2, %2n−1, t)) . . . β(M(%0, %1, t))

)
∗Mb

(
%0, %1,

t

qb2.β(M(%2n, %2n+1, t)).β(M(%2n−1, %2n, t)) . . . β(M(%0, %1, t))

)
...

∗Mb

(
%0, %1,

t

qbp.β(M(%2n+p−1, %2n+p, t)).β(M(%2n+p−2, %2n+p−1, t)) . . . β(M(%0, %1, t))

)

Mb(%2n, %2n+p, t)

≥Mb

(
%0, %1,

b2n−1t

q

)
∗Mb

(
%0, %1,

b2n−1t

q

)
∗ . . . ∗Mb

(
%0, %1,

b2n−1t

q

)
,

when n→∞ then we get

lim
n→∞

Mb(%2n, %2n+p, t) = 1.

Thus {%n} is a G-Cauchy sequence. Since (S,Mb, ∗) is a G-complete FbMS, so,

there is some % ∈ S such that

lim
n→∞

%n = %.

We prove that % is fixed point of g.

If g is continuous then

Mb(g%, %, t) ≥Mb

(
g%, g%n,

t

2b

)
∗Mb

(
g%n, %,

t

2b

)
≥Mb

(
g%, g%,

t

2b

)
∗Mb

(
%n+1, %n,

t

2b

)
= 1 ∗ 1 = 1 as n→∞.
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This shows that g% = %, so % is a fixed point of g.

Now, from (4.36),

Mb(%, h%, β(λ(%, %, t))t) = Mb(g%, h%, β(λ(%, %, t))t)

≥ λ(%, %, t), (4.39)

where

λ(%, %, t) = min

{
Mb(%, h%, t) [1 +Mb(%, g%, t)]

1 +Mb(%, %, t)
,Mb(%, %, t)

}
= min

{
Mb(%, h%, t) [1 + 1]

1 + 1
, 1

}
= min

{
Mb(%, h%, t), 1

}
= Mb(%, h%, t).

(4.39) implies

Mb(%, h%, β(λ(%, %, t))t) ≥Mb(%, h%, t).

So, by Lemma 4.1.1, h% = %.

Thus % is fixed point of h.

Following are immediate consequences of Theorem 4.3.3.

Corollary 4.3.5.

Let (S,M, ∗) be a G-complete FMS. Let g, h : S → S be the mappings satisfying

M(g%, hη, β(λ(%, η, t))t) ≥ λ(%, η, t),

where

λ(%, η, t) = min

{
M(η, gη, t) [1 +M(%, g%, t)]

1 +M(%, η, t)
,M(%, η, t)

}
,

for all %, η ∈ S and β ∈ F1. If g or h is continuous then g and h have only one

common fixed point.

By letting g = h in Theorem 4.3.3, we obtain the following result.
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Corollary 4.3.6.

Let (S,Mb, ∗) be a G-complete FbMS. Let a mapping g : S → S satisfies

Mb(g%, gη, β(λ(%, η, t))t) ≥ λ(%, η, t),

where

λ(%, η, t) = min

{
Mb(η, gη, t) [1 +Mb(%, g%, t)]

1 +Mb(%, η, t)
,Mb(%, η, t)

}
,

for all %, η ∈ S and β ∈ Fb. If g is continuous then g has only one fixed point.

The example given below illustrates Theorem 4.3.2.

Example 4.3.7.

Let S = [0, 1]. A mapping Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) =
t

t+ (%− η)2
. (4.40)

Then (S,Mb, ∗) is a G-complete FbMS. Define mappings g, h : S → S such that

g% =
%

2
and hη =

η

3
. Taking β(t) =

1

3
, for all t > 0, we have

Mb(g%, hη, β(λ(%, η, t))t) = Mb

(
%

2
,
η

3
,
t

3

)
=

t

t+
(3%− 2η)2

12

. (4.41)

Now,

Mb(%, g%, t) = Mb

(
%,
%

2
, t
)

=
t

t+
%2

4

, (4.42)

and

Mb(η, hη, t) = Mb

(
η,
η

3
, t
)

=
t

t+
4η2

9

. (4.43)
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If % < η, say % =
1

3
and η =

1

2
,

then from (4.41), we have

Mb(g%, hη, β(λ(%, η, t))t) = 1.

Also from (4.40), (4.42) and (4.43), we have

Mb(%, η, t) =
t

t+ 0.027
,

Mb(%, g%, t) =
t

t+ 0.028
,

and

Mb(η, hη, t) =
t

t+ 0.111
.

Since

1 >
t

t+ 0.111
= min

{
t

t+ 0.027
,

t

t+ 0.028
,

t

t+ 0.111

}
,

so, we have

Mb(g%, hη, β(λ(%, η, t))t) > min

{
Mb(%, η, t),Mb(%, g%, t),Mb(η, hη, t)

}
.

If % > η, say % =
2

3
and η =

1

2
,

then from (4.41), we have

Mb(g%, hη, β(λ(%, η, t))t) =
t

t+ 0.0833
.

Also from (4.40), (4.42) and (4.43), we have

Mb(%, η, t) =
t

t+ 0.111
,

Mb(%, g%, t) =
t

t+ 0.111
,

and

Mb(η, hη, t) =
t

t+ 0.111
.
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Since

t

t+ .0833
>

t

t+ 0.111
= min

{
t

t+ 0.111
,

t

t+ 0.111
,

t

t+ 0.111

}
,

so, we have

Mb(g%, hη, β(λ(%, η, t))t) > min

{
Mb(%, η, t),Mb(%, g%, t),Mb(η, hη, t)

}
.

If % = η, then from (4.41), we have

Mb(g%, hη, β(λ(%, η, t))t) =
t

t+ 0.0833%2
.

Also from (4.40), (4.42) and (4.43), we have

Mb(%, η, t) = 1,

Mb(%, g%, t) =
t

t+ 0.25%2
,

and

Mb(η, hη, t) =
t

t+ 0.444%2
.

Since

t

t+ .0833%2
>

t

t+ 0.25%2
= min

{
1,

t

t+ 0.25%2
,

t

t+ 0.444%2

}
,

so, we have

Mb(g%, hη, β(λ(%, η, t))t) > min

{
Mb(%, η, t),Mb(%, g%, t),Mb(η, hη, t)

}
.

Hence all the axioms of theorem 4.3.2 are fulfilled.

Note that

g0 = 0 and h0 = 0.

So, 0 is the only common fixed point of g and h.
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4.4 Application

Fixed point theory turns out to be a powerful tool for the study of existence of

the solution of various kind of integral and differential equations, for instance see

[27, 84, 98].

In this section, a particular non-linear integral equation has been studied for the

existence of the solution as an application of fixed point results presented in last

section.

Consider all the real valued continuous functions on the interval [0, J ] as S = [0, J ]

and Mb : S × S × [0,∞)→ [0, 1] defined by

Mb(%, η, t) =


0 if t = 0,

e−

sup
s∈[0,J ]

|%(s)− η(s)|2

t if t > 0,

then it is obvious that (S,Mb, ∗) be a G-complete FbMS.

Consider

%(t) = λ(t) +

∫ J

0

ς(t, s)ω(t, s, %(s))ds, (4.44)

where J > 0, λ : [0, J ] → R, ς : [0, J ] × [0, J ] → R andω : [0, J ] × [0, J ] × R → R

are continuous functions.

Theorem 4.4.1.

Suppose that ∀ t, s ∈ [0, J ], %, η ∈ S and β ∈ Fb, the following conditions hold:

(i)
∣∣∣ω(t, s, %(s))− ω(t, s, η(s))

∣∣∣ <√β(λ(%, η, t))
∣∣∣%(s)− η(s)

∣∣∣,
(ii) sups∈[0,J ]

∫ J
0

(ς(t, s))2ds ≤ 1

I
.

Then the equation (4.44) has a solution %∗ ∈ S.

Proof.

Let g, h : S → S be the integral operators defined by

g%(t) = λ(t) +

∫ J

0

ς(t, s)ω(t, s, %(s))ds, % ∈ S, and t, s ∈ [0, J ]
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and

hη(t) = λ(t) +

∫ J

0

ς(t, s)F (t, s, η(s))ds, % ∈ S, and t, s ∈ [0, J ]

For all %, η ∈ S and by using Conditions (i) and (ii), we have

Mb(g%, hη,β(λ(%, η, t))t) = e
−

sup
s∈[0,J ]

∣∣∣g%(t)− hη(t)
∣∣∣2

β(λ(%, η, t))t

= e
−

sup
s∈[0,J ]

∣∣∣ ∫ J

0

ς(t, s)ω(t, s, %(s))ds−
∫ J

0

ς(t, s)ω(t, s, η(s))ds
∣∣∣2

β(λ(%, η, t))t

= e
−

sup
s∈[0,J ]

∣∣∣ ∫ J

0

ς(t, s){ω(t, s, %(s))− ω(t, s, η(s)}ds
∣∣∣2

β(λ(%, η, t))t

≥ e
−

sup
s∈[0,J ]

∣∣∣ ∫ J

0

(ς(t, s))2ds
∣∣∣ ∫ J

0

∣∣∣ω(t, s, %(s))− ω(t, s, η(s)
∣∣∣2ds

β(λ(%, η, t))t

≥ e
−

sup
s∈[0,J ]

1

I

∫ J

0

{√
β(λ(%, η, t))

∣∣∣%(s)− η(s)
∣∣∣}2

ds

β(λ(%, η, t))t

≥ e
−

sup
s∈[0,J ]

β(λ(%, η, t))
∣∣∣%(s)− η(s)

∣∣∣2
β(λ(%, η, t))t

= e
−

sup
s∈[0,J ]

∣∣∣%(s)− η(s)
∣∣∣2

t

= Mb(%, η, t).

So, we have

Mb(T%, Sη, β(λ(%, η, t))t) ≥Mb(%, η, t).

Hence %∗ ∈ S is a common fixed point of g and h, so the equation (4.44)has a

solution.
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4.5 Conclusion

In this chapter, by using Geraphty type contraction, the main result of Grabeic

[49] has been generalized for G-complete FbMS. The result is illustrated by

an example. Moreover, we have also established analogue of the main results of

Faraji et al. [33] and Alsulami et al. [89] in G-complete FbMS. The existence

problem for the solution of a nonlinear integral equation is also presented as an

application of our main result. Further, the presented corollaries indicate that the

theorems established in this work generalize many existing results in the literature.

We have also established common fixed point result, analogue to [33, Theorem

4] for Geraghty type contraction in G-complete FbMS. We have furnished an

example to demonstrate our second result. Moreover, we have established fixed-

point theorems analogous of Gupta et al. [57] in G-complete FbMS. Our results

may be of interest for the readers/researchers in some specialized area of computer

science.



Chapter 5

Fixed Point Results in

Generalized Fuzzy Metric Spaces

In this chapter, the definition of a generalised fuzzy metric space GFMS is in-

troduced. Many topological spaces like FMS, FbMS and DFMS have been

generalized by this new space. An example of a generalised fuzzy metric space

has been provided to demonstrate its definition. It is also proven that the class of

GFMS contains the classes of FMS, FbMS and DFMS as proper sub-classes.

The well known BCP[14] and Ćirić’s quasi-contraction theorem [16] have been es-

tablished in GFMS. As a result of our findings, several authors recent results are

obtained as corollaries. In the end, an example is presented to illustrate the main

result. Some fixed point theorems are also proved by applying our results.

5.1 Generalized Fuzzy Metric Spaces

Motivated by Jleli et al. [41] and following George and Veeramani [50], we now

introduce the notion of a generalized fuzzy metric spaces as follows:

Definition 5.1.1.

Consider a non empty set S and a mapping G : S × S × (0,∞)→ [0, 1]. Define a

103
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set

C(G,S, %) =

{
{%n} ⊂ S : lim

n→∞
G(%n, %, t) = 1 ∀ t > 0

}
,

for every % ∈ S then G is said to be a generalized fuzzy metric if for all %, η ∈ S

and t > 0 , it satisfies the following conditions:

GFM1: G(%, η, t) > 0;

GFM2: G(%, η, t) = 1 ⇒ % = η;

GFM3: G(%, η, t) = G(η, %, t);

GFM4: there exists c ≥ 1 such that if {%n} ∈ C(G,S, %) then

G(%, η, t) ≥ lim sup
n→∞

G
(
%n, η,

t

c

)
;

GFM5: G(%, η, .) : (0,∞)→ [0, 1] is continuous and lim
t→∞
G(%, η, t) = 1.

Then (G,S, ∗) is called a GFMS.

The above definition is illustrated by the following example.

Example 5.1.2.

Consider a generalized metric space (S,D). Define a mapping G : S×S×(0,∞)→

[0, 1] by

G(%, η, t) = e
−
D(%, η)

t (5.1)

and

C(G,S, %) =
{
{%n} ⊂ S : lim

n→∞
G(%n, %, t) = 1

}
,

for every % ∈ S and t > 0. Then (G,S, ∗) is GFMS, where the t-norm “ ∗ ” is

taken as product norm i.e, % ∗ η = %η.

We only prove that G satisfies GFM4 of Definition 5.1.1.

Let %, η ∈ S and {%n} ∈ C(D,S, %). Since D is generalized metric, so, from

condition (D3) of Definition 2.1 and from equation (5.1), it is clear that {%n} also
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belongs to C(G,S, %). It follows that

G(%, η, t) = e
−
D(%, η)

t

≥ e
−

c lim sup
n→∞

D(%n, η)

t

= e
−

lim sup
n→∞

D(%n, η)

t
c

= lim sup
n→∞

e
−
D(%n, η)

t
c

= lim sup
n→∞

G
(
%n, η,

t

c

)
⇒ G(%, η, t) ≥ lim sup

n→∞
G
(
%n, η,

t

c

)
.

Proposition 5.1.3.

The set C(G,S, %) is non empty if and only if G(%, %, t) = 1.

Proof.

If C(G,S, %) 6= φ then there is a sequence {%n} ⊂ S such as

lim
n→∞
G(%n, %, t) = 1 for all t > 0.

Using GFM4 of Definition 5.1.1, we get

G(%, %, t) ≥ lim sup
n→∞

G
(
%n, %,

t

c

)
,

it follows that

G(%, %, t) = 1.

Conversely, if

G(%, %, t) = 1,

then we can take the sequence {%n} ⊂ S such that for all n ∈ N, %n = %, we have

lim
n→∞
G(%n, %, t) = 1.
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Hence

C(G,S, %) 6= φ.

Remark 5.1.4.

It is worth mentioning that the class of GFMS is larger than the class of FMS

which is elaborated in the following example.

Example 5.1.5.

Let S = [0, 1]. Define a set

C(G,S, %) =

{
{%n} ⊂ S : lim

n→∞
G(%n, %, t) = 1

}
,

for every % ∈ S and t > 0, where G : S × S × (0,∞)→ [0, 1] is defined by

G(%, η, t) =



e
−
%+ η

t if % 6= 0 and η 6= 0,

e
−
%

2t if η = 0,

e
−
η

2t if % = 0,

for all %, η ∈ S then (G,S, ∗) is GFMS, where “ ∗ ” is the product t-norm i.e,

% ∗ η = %η.

In view of Proposition 5.1.3, we need to verify GFM4 only for those elements

% ∈ S such that

G(%, %, t) = 1,

which implies that

% = 0.

Let {%n} ⊂ S be a sequence such that

lim
n→∞
G(%n, 0, t) = 1.

For every n ∈ N and η ∈ S, we have:
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G(%n, η, t) =


e
−
%n + η

t if %n 6= 0 and η 6= 0,

e
−
η

2t if %n = 0.

Since

η ≤ %n + η and t > 0,

therefore,

η

2t
<
%n + η

t

− η
2t
> −%n + η

t

e
−
η

2t > e
−
%n + η

t ,

then

G(0, η, t) = e
−
η

2t

≥ lim sup
n→∞

e
−
%n + η

t

= lim sup
n→∞

G(%n, η, t),

which implies that

G(0, η, t) ≥ lim sup
n→∞

G
(
%n, η,

t

c

)
; where c = 1.

Hence (G,S, ∗) is GFMS but it is not a FMS because the condition FM4 of

Definition 2.5.5 does not hold.

Since

G(%, η, t) = e
−
%+ η

t

and

G
(
%, 0,

t

2

)
∗ G
(

0, η,
t

2

)
= e

−
%

4t ∗ e
−
η

4t

= e
−
%+ η

4t .
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Thus

G(%, η, t) ≤ G
(
%, 0,

t

2

)
∗ G
(

0, η,
t

2

)
.

This implies that, FM4 of Definition 2.5.5 is not satisfied. Hence every GFMS

is not a FMS.

The following propositions show that FMS and FbMS are GFMS.

Proposition 5.1.6.

Every fuzzy metric space (M,S, ∗) is a GFMS.

Proof.

We only prove that M satisfies the property GFM4 of Definition 5.1.1.

Now, for %, η ∈ S and {%n} ∈ C(G,S, %), using FM4 of Definition 2.5.5.

M(%, η, t) ≥M

(
%, %n,

t

2

)
∗M

(
%n, η,

t

2

)
= 1 ∗ lim sup

n→∞
M

(
%n, η,

t

2

)
= lim sup

n→∞
M

(
%n, η,

t

2

)
⇒ M(%, η, t) ≥ lim sup

n→∞
M

(
%n, η,

t

c

)
; where c = 2.

Proposition 5.1.7.

Every fuzzy b-metric space (Mb,S, ∗) is a GFMS.

Proof.

We only prove that Mb satisfies the property GFM4 of Definition 5.1.1.

Now, for %, η ∈ S, b ≥ 1 and {%n} ∈ C(G,S, %), using FBM4 of Definition 2.6.1.

Mb(%, η, t) ≥Mb

(
%, %n,

t

2b

)
∗Mb

(
%n, η,

t

2b

)
= 1 ∗ lim sup

n→∞
Mb

(
%n, η,

t

2b

)
= lim sup

n→∞
Mb

(
%n, η,

t

2b

)
.
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Thus

Mb(%, η, t) = lim sup
n→∞

Mb

(
%n, η,

t

c

)
; where c = 2b.

Proposition 5.1.8.

Every dislocated fuzzy metric space (Md, X, ∗) is a GFMS.

Proof.

The proof follows immediately from Proposition 5.1.6.

Definition 5.1.9.

Let (G,S, ∗) be a GFMS. A sequence {%n} in S is called G-convergent sequence

if for % ∈ S,

{%n} ∈ C(G,S, %).

Following Grabiec [49], the notion of a Cauchy sequence in generalized fuzzy metric

spaces can be extended as follows:

Definition 5.1.10.

Let (G,S, ∗) be a GFMS. A sequence {%n} in S is called G-Cauchy sequence if

lim
n,m→∞

G(%n, %n+m, t) = 1,

for all t > 0.

Definition 5.1.11.

A GFMS in which every G-Cauchy sequence is G-convergent is called a G-complete

GFMS.

Remark 5.1.12.

In generalized fuzzy metric space, a G-convergent sequence may not to be a G-

Cauchy sequence.

We now construct an example to show that a G-convergent sequence in GFMS

may not be a G-Cauchy sequence.
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Example 5.1.13.

Let S = R+ ∪ {0}. Define a set

C(G,S, %) =

{
{%n} ⊂ S : lim

n→∞
G(%n, %, t) = 1

}
,

for every % ∈ S and t > 0, where G : S × S × (0,∞)→ [0, 1] is defined by

G(%, η, t) =


e
−
%+ η

t if atleast one of % or η is 0,

e
−

1 + %+ η

t otherwise,

then (G,S, ∗) is GFMS, where ∗ is the product t-norm i.e, % ∗ η = %η.

Consider a sequence {%n} as %n =
1

n
, for all n ∈ N.

lim
n→∞

G(%n, 0, t) = lim
n→∞

e
−
%n
t

= lim
n→∞

e
−

1

nt = 1.

⇒ {%n} is G-convergent to 0.

Note that

lim
n,m→∞

G(%n, %n+m, t) = lim
n,m→∞

e
−

1 + %n + %n+m
t

= lim
n,m→∞

e
−

1 +
1

n
+

1

n+m
t

= lim
n,m→∞

e
−

1

t .e
−

1

nt .e
−

1

(n+m)t

= e
−

1

t .1.1

= e
−

1

t 6= 1.

Hence {%n} is not a G-Cauchy sequence.
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Proposition 5.1.14.

Let (G,S, ∗) be a GFMS, {%n} be a sequence in S and (%, η) ∈ S × S. If {%n}

G-converges to % and {%n} G-converges to η then % = η.

Proof.

Using the property GFM4 of Definition 3.1, we have

G(%, η, t) ≥ lim sup
n→∞

G
(
%n, η,

t

c

)
= 1.

So, we have % = η.

Definition 5.1.15.

Let (G,S, ∗) be a GFMS. A self mapping g : S → S is a fuzzy k-contraction if

for all %, η ∈ S and for some k ∈ (0, 1), we have

G(g(%), g(η), kt) ≥ G(%, η, t) ∀ t > 0.

Proposition 5.1.16.

Let (G,S, ∗) be a GFMS and g be a fuzzy k-contraction. If any fixed point % of

g satisfies G(%, %, t) > 0 then G(%, %, t) = 1.

Proof.

Let % ∈ S be a fixed point of g. As g is a fuzzy k-contraction, so

G(%, %, t) = G(g(%), g(%), t))

≥ G
(
%, %,

t

k

)
≥ G

(
%, %,

t

k2

)
...

≥ G
(
%, %,

t

kn

)
= 1 as n→∞.
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So, we have

G(%, %, t) = 1.

We now establish the BCP in the setting of GFMS as follows:

Theorem 5.1.1.

Let (G,S, ∗) be a G-complete GFMS and g be a fuzzy k-contraction. If there

exists %0 ∈ S such that δ(G, g, %0, t) > 0, where

δ(G, g, %0, t) = sup

{
G
(
gi(%0), g

j(%0), t
)

; i, j ∈ N, t > 0

}
.

Then {gn(%0)} is convergent to a unique fixed point of g.

Proof.

Since g is a fuzzy k-contraction. So, ∀ i, j ∈ N,

G
(
gn+i(%0), g

n+j(%0), t
)
≥ G

(
gn−1+i(%0), g

n−1+j(%0),
t

k

)

sup
{
G
(
gn+i(%0), g

n+j(%0), t
)}
≥ sup

{
G
(
gn−1+i(%0), g

n−1+j(%0),
t

k

)}

δ (G, g, gn(%0), t) ≥ δ

(
G, g, gn−1(%0),

t

k

)
.

For every n > 0, we get

δ (G, g, gn(%0), t) ≥ δ

(
G, g, %0,

t

kn

)
. (5.2)

For every m,n ∈ N, we use (5.2) to obtain

G
(
gn(%0), g

n+m(%0), t
)
≥ δ

(
G, g, gn(%0),

t

k

)
...

≥ δ

(
G, g, %0,

t

kn

)
.
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Since

δ

(
G, g, %0,

t

kn

)
> 0 and k ∈ (0, 1),

then

lim
n,m→∞

G
(
gn(%0), g

n+m(%0), t
)

= 1,

which shows that {gn(%0)} is a G-Cauchy sequence.

As (G,S, ∗) is a G-complete GFMS, therefore, there is a point % ∈ S such as

{gn(%0)} converges to %.

G
(
gn+1(%0), g(%), t

)
≥ G

(
gn(%0), %,

t

k

)
...

≥ G
(
g(%0), %,

t

kn

)
.

when n→∞, we get

lim
n→∞
G
(
gn+1(%0), g(%), t

)
= 1,

which shows that gn(%0) converges to g(%).

Using Proposition 3.5, we have

g(%) = %,

that is % is fixed point of g.

Uniqueness:

Let g have another fixed point δ ∈ S such that

M(%, δ, t) > 0.

Since g is a fuzzy k-contraction, so we have

G(%, δ, t) = G(g(%), g(δ), t)

≥ G
(
%, δ,

t

k

)
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= G
(
g(%), g(δ),

t

k

)
≥ G

(
%, δ,

t

k2

)
...

≥ G
(
%, δ,

t

kn

)
= 1 as n→∞,

thus

δ = %.

The main result of [49] is an immediate consequence of Theorem 5.1.1 and Propo-

sition 5.1.6.

Corollary 5.1.17.

Let (M,S, ∗) be a G-complete FMS and the self map g : S → S be such that for

some k ∈ (0, 1),

M(g(%), g(η), kt) ≥M(%, η, t),

for all %, η ∈ S and t > 0. If there is %0 ∈ S such as

sup

{
M
(
gi(%0), g

j(%0), t
)

; i, j ∈ N, t > 0

}
> 0.

Then the sequence {gn(%0)} is g-convergent to a unique fixed point of g.

Similarly, the Banach contraction theorem for fuzzy b-metric space becomes an

immediate consequence of Theorem 5.1.1 by using Proposition 5.1.7.

Corollary 5.1.18.

Let (Mb,S, ∗) be a complete FbMS and the self-map g on S be such that for some

k ∈
(

0,
1

b

)
and t > 0,

Mb(g(%), g(η), kt) ≥Mb(%, η, t),



Fixed Point Results in Generalized Fuzzy Metric Spaces 115

for all %, η ∈ S. If there is %0 ∈ S such as

sup

{
Mb

(
gi(%0), g

j(%0), t
)

; i, j ∈ N, t > 0

}
> 0.

Then {gn(%0)} is g-convergent to a unique fixed point of g.

The next result follows from Theorem 5.1.1 and Proposition 5.1.8.

Corollary 5.1.19.

Let (Md,S, ∗) be a g-complete DFMS and g be a self mapping on S . Suppose

there is k ∈ (0, 1) such that

Md(g(%), g(η), kt) ≥Md(%, η, t),

for all %, η ∈ S. If there is %0 ∈ S such as

sup

{
Md

(
gi(%0), g

j(%0), t
)

; i, j ∈ N, t > 0

}
> 0.

Then {gn(%0)} is g-convergent to a unique fixed point of g.

Theorem 5.1.1 is illustrated in the following example.

Example 5.1.20.

Let S = [0, 1] and define G : S × S × (0,∞)→ [0, 1] by

G(%, η, t) = e
−
|%− η|
t ,

for all %, η ∈ S and t > 0. Then (G,S, ∗) is G-complete GFMS.

For k ∈ (0, 1), we define g : S → S by

g(%) =
k%

n
for n ≥ 1,

we have

G(g%, gη, kt) = G
(
k%

n
,
kη

n
, kt

)
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= e
−

∣∣∣k%
n
− kη

n

∣∣∣
kt

= e
−
k|%− η|
knt

≥ e
−
|%− η|
t = G(%, η, t).

⇒ G(g%, gη, kt) ≥ G(%, η, t).

Thus g is a fuzzy k-contraction.

Further, for % = 0 ∈ S, we have

δ(G, g, 0, t) = sup

{
G
(
gi(0), gj(0), t

)
; i, j ∈ N, t > 0

}

= sup

{
e
−
|gi(0)− gj(0)|

t

}
= 1 > 0.

As a result, all axioms of Theorem 5.1.1 are fulfilled and % = 0 ∈ [0, 1] is a unique

fixed point of g.

To establish Ćirić’s fixed point theorem [16] in GFMS, we introduce the notion

of quasi-contraction type mapping in GFMS as follows:

Definition 5.1.21.

Let (G,S, ∗) be a GFMS. A mapping g : S → S is called a fuzzy k-quasi contrac-

tion if for all %, η ∈ S, t > 0 and for some k ∈ (0, 1), we have

G(g(%), g(η), kt) ≥ min

{
G(%, η, t),G(%, g%, t),G(η, gη, t),G(%, gη, t),G(η, g%, t)

}
.

The next result shows that Proposition 5.1.16 also holds for fuzzy k-quasi contrac-

tion.

Proposition 5.1.22.

Let (G,S, ∗) be a GFMS and g be a fuzzy k-quasi contraction. If any fixed point

% ∈ S of g satisfies G(%, %, t) ≥ 0 then G(%, %, t) = 1.
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Proof.

Let % ∈ S be a fixed point of g. Since g is a fuzzy k-quasi contraction so

G(%, %, t) = G(g(%), g(%), t)

≥ min

{
G
(
%, %,

t

k

)
,G
(
%, g%,

t

k

)
,G
(
%, g%,

t

k

)
,G
(
%, g%,

t

k

)
,

G
(
%, g%,

t

k

)}

= min

{
G
(
%, %,

t

k

)
,G
(
%, %,

t

k

)
,G
(
%, %,

t

k

)
,G
(
%, %,

t

k

)
,

G
(
%, %,

t

k

)}

= G
(
%, %,

t

k

)
≥ G

(
%, %,

t

k2

)
...

≥ G
(
%, %,

t

kn

)
= 1 as n→∞.

So, we have

G(%, %, t) = 1.

Now, we prove one of the main results of [41] in the setting of GFMS.

Theorem 5.1.2.

Let (G,S, ∗) be a G-complete GFMS and g : S → S be a fuzzy k-quasi contraction.

If there exists %0 ∈ S such that

δ(G, g, %0, t) > 0,

then {gn(%0)} is G-convergent to a fixed point % of g. Further, if g has any other

fixed point δ such as G(%, δ, t) > 0 then % = δ.
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Proof.

Since g is a fuzzy k-quasi contraction, so, ∀ i, j ∈ N, we have

G(gn+i(%0), g
n+j(%0), t)

≥ min

{
G
(
gn−1+i(%0), g

n−1+j(%0),
t

k

)
,G
(
gn−1+i(%0), g

n+i(%0),
t

k

)
,

G
(
gn−1+i(%0), g

n+j(%0),
t

k

)
,G
(
gn−1+j(%0), g

n+j(%0),
t

k

)
,

G
(
gn−1+j(%0), g

n+i(%0),
t

k

)}
.

supG
(
gn+i(%0), g

n+j(%0), t
)

≥ min

{
supG

(
gn−1+i(%0), g

n−1+j(%0),
t

k

)
, supG

(
gn−1+i(%0), g

n+i(%0),
t

k

)
,

supG
(
gn−1+i(%0), g

n+j(%0),
t

k

)
, supG

(
gn−1+j(%0), g

n+j(%0),
t

k

)
,

supG
(
gn−1+j(%0), g

n+i(%0),
t

k

)}
.

δ(G, g,gn(%0), t)

≥ min

{
δ

(
G, g, gn−1(%0),

t

k

)
, δ

(
G, g, gn(%0),

t

k

)
, δ

(
G, g, gn(%0),

t

k

)
,

δ

(
G, g, gn(%0),

t

k

)
, δ

(
G, g, gn(%0),

t

k

)}

= min

{
δ

(
G, g, gn−1(%0),

t

k

)
, δ

(
G, g, gn(%0),

t

k

)}
.

This implies that

δ (G, g, gn(%0), t) ≥ δ

(
G, g, gn−1(%0),

t

k

)
.

for all n > 0, it follows that ,

δ (G, g, gn(%0), t) ≥ δ

(
G, g, %0,

t

kn

)
.
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For every n,m ∈ N, using the above inequality, we get

G
(
gn(%0), g

n+m(%0), t
)
≥ δ (G, g, gn(%0), t)

...

≥ δ

(
G, g, %0,

t

kn

)
. (5.3)

As

δ

(
G, g, %0,

t

kn

)
> 0 and k ∈ (0, 1),

so,

lim
n,m→∞

G
(
gn(%0), g

n+m(%0), t
)

= 1,

which implies that {gn(%0)} is aG-Cauchy sequence. Since (G,S, ∗) is a G-complete

GFMS, so, there is some % ∈ S such as {gn(%0)} converges to %.

G(gn+1(%0),g(%), t)

≥ min

{
G
(
gn(%0), %,

t

k

)
,G
(
gn(%0), g

n+1(%0),
t

k

)
,G
(
%, g%,

t

k

)
,

G
(
gn(%0), g%,

t

k

)
,G
(
%, gn+1(%0),

t

k

)}

= G
(
gn(%0), %,

t

k

)
.

So, we have

G
(
gn+1(%0), g(%), t

)
≥ G

(
gn(%0), %,

t

k

)
...

≥ G
(
g(%0), %,

t

kn

)
,

when n→∞, then we get

lim
n→∞
G
(
gn+1(%0), g(%), t

)
= 1,

which shows that g(%) is fixed point of gn(%0).
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By using Proposition 3.5, we have

g(%) = %.

This implies that % is fixed point of g.

Uniqueness

On the other hand, suppose g has any other fixed point δ ∈ S such as

G(%, δ, t) > 0.

Since g is a fuzzy k-quasi contraction, so we have

G(%, δ, t) = G(g(%), g(δ), t)

≥ min

{
G
(
%, δ,

t

k

)
,G
(
%, g%,

t

k

)
,G
(
δ, gδ,

t

k

)
,G
(
%, gδ,

t

k

)
,G
(
δ, g%,

t

k

)}

= min

{
G
(
%, δ,

t

k

)
,G
(
%, %,

t

k

)
,G
(
δ, δ,

t

k

)
,G
(
%, δ,

t

k

)
,G
(
δ, %,

t

k

)}

= min

{
G
(
%, δ,

t

k

)
, 1, 1,G

(
%, δ,

t

k

)
,G
(
δ, %,

t

k

)}

= G
(
%, δ,

t

k

)
.

So,

G(%, δ, t) ≥ G
(
%, δ,

t

k

)
≥ G

(
%, δ,

t

k2

)
...

≥ G
(
%, δ,

t

kn

)
= 1 as n→∞.

So, we have

G(%, δ, t) = 1.
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Thus

δ = %.

Remark 5.1.23.

As consequences of Theorem 5.1.2, as before (see Corollary 5.1.17–5.1.19), one

can obtain fixed point theorems for Ćirić’s quasi-contractions in FMS, FbMS

and DFMS.

5.2 Application:

Fixed point theory turns out to be a powerful tool for the study of existence of

the solution of various kind of integral and differential equations, for instance see

[27, 28, 84, 98]. In this section, a particular non-linear integral equation has been

studied for the existence of the solution as an application of our main result proved

in Theorem 5.1.1. Consider S = C[0, J ], the class of all real valued continuous

functions defined on [0, J ]. Define a G-complete generalized fuzzy metric G : S ×

S × (0,∞)→ [0, 1] by

G(%, η, t) = e
−

sup
s∈[0,J ]

|%(s)− η(s)|

t

for all %, η ∈ S and t > 0. Taking the following integral equation

%(t) = λ(t) +

∫ J

0

ς(t, s)ω(t, s, %(s))ds, (5.4)

where J > 0, λ : [0, J ] → R, ς : [0, J ] × [0, J ] → R, ω : [0, J ] × [0, J ] × R → R are

continuous functions.

Theorem 5.2.1.

Let (G,S, ∗) be a G-complete GFMS defined above. Let g : S → S be the integral



Fixed Point Results in Generalized Fuzzy Metric Spaces 122

operator defined by

g(%(t)) = λ(t) +

∫ J

0

ς(t, s) ω(t, s, %(s))ds

for all % ∈ S, and t, s ∈ [0, J ].

Suppose that the following conditions are satisfied:

(i) For all t, s ∈ [0, J ] and %, η ∈ S, we have

|ω(t, s, %(s))− ω(t, s, η(s))| < |%(s)− η(s)|.

(ii) For all t, s ∈ [0, J ] ,

sup
s∈[0,J ]

∣∣∣ ∫ J

0

(ς(t, s))ds
∣∣∣ ≤ k < 1.

Then the integral equation (5.4) has a solution %∗ ∈ S.

Proof. Note that for %∗ ∈ S, we have

δ(G, g, %∗, t) = sup

{
G
(
gi(%∗), gj(%∗), t

)
; i, j ∈ N, t > 0

}

= sup

{
e
−

sup
s∈[0,J ]

|gi(%∗(s))− gj(%∗(s))|

t

}
> 0.

We only have to show that g is fuzzy k-contraction. For all %, η ∈ S ,

G(g%, gη, kt) = e
−

sup
s∈[0,J ]

|g%(t)− gη(t)|

kt

= e
−

sup
s∈[0,J ]

∣∣∣ ∫ J

0

ς(t, s) ω(t, s, %(s))ds−
∫ J

0

ς(t, s) ω(t, s, η(s))ds
∣∣∣

kt

= e
−

sup
s∈[0,J ]

∣∣∣ ∫ J

0

ς(t, s){ ω(t, s, %(s))− ω(t, s, η(s)}ds
∣∣∣

kt



Fixed Point Results in Generalized Fuzzy Metric Spaces 123

≥ e
−

sup
s∈[0,J ]

∣∣∣ ∫ J

0

(ς(t, s))ds
∣∣∣ ∫ J

0

|ω(t, s, %(s))− ω(t, s, η(s)|ds

kt

≥ e
−
k
∫ J
0
|%(s)− η(s)|ds

kt

≥ e
−

k sup
s∈[0,J ]

|%(s)− η(s)|

kt

= e
−

sup
s∈[0,J ]

|%(s)− η(s)|

t = G(%, η, t).

So, we have

G(g%, gη, kt) ≥ G(%, η, t).

Since all the axioms of Theorem 5.1.1 are fulfilled and hence g has a fixed point.

So, the integral equation (5.4) has a solution.

The following result is an immediate consequence of Theorem 5.2.1 and Corollary

5.1.17.

Corollary 5.2.1.

Let (M,S, ∗) be a G-complete FMS. Let g : S → S be the integral operator

defined by

g(%(t)) = λ(t) +

∫ J

0

ς(t, s) ω(t, s, %(s))ds,

for all % ∈ S, and t, s ∈ [0, J ]. Suppose that the following conditions are satisfied:

(i) For all t, s ∈ [0, J ] and %, η ∈ S, we have

|ω(t, s, %(s))− ω(t, s, η(s))| < |%(s)− η(s)|.

(ii) For all t, s ∈ [0, J ] ,

sup
s∈[0,J ]

∣∣∣ ∫ J

0

(ς(t, s))ds
∣∣∣ ≤ k < 1.
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Then the equation (5.4) has a solution %∗ ∈ S.

Similar results for G-complete FbMS and G-complete DFMS follow immediately

from Theorem 5.2.1.

5.3 Conclusion

In this chapter, the notion of GFMS have been introduced which is a proper

generalization of class of FMS. We have also defined fuzzy k-contraction and

fuzzy k-quasi contraction. Using these contractions, we have established certain

new fixed point results. Various fixed point theorems in other fuzzy abstract

spaces can be seen as immediate consequences of our main results. The work

presented here is likely to provide a ground to the researchers to do work in

different structures by using these contractions and related fixed point results.



Chapter 6

Conclusion and Future Work

The main focus of this research is to study the notion of FbMS and GFMS to

extend the theory of fixed point for these fuzzy abstract spaces. Several fixed point

theorems are presented that generalise and unify a number of related results in the

literature under various contractive assumptions. Some important examples are

presented to demonstrate the main results. Recently, Nădăban [85] highlighted

the properties and usefulness of fuzzy Euclidean normed spaces and FbMS in

solving problems in various sciences. The author has prepared a ground to extend

the theory of fixed points in these spaces. In the conclusion of [85], the author

suggested to prove certain fixed point theorem in FbMS.

• In Chapter 3 of this dissertation, the well known BCP [14] and the main

result of Hicks and Rhoad’s [21] are established in the setting of FbMS by

restricting the contraction mapping to the elements in the orbit of a point

in FbMS and these results are illustrated by an example. These obtained

results generalize and unify the main result of Grabiec [49] as well as the

result of Hicks and Rhoad’s [21] in the literature of fuzzy metric spaces. In

addition, the results of [57] are proven utilising the rational contraction and

the control functions in the FbMS. An example is also presented to illustrate

the theorems. There is also an application for elaborating the validity of the

obtained results.

125
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• In Chapter 4, the concept of Geraghty type contraction is used to generalize

the main result of Grabeic [49] in the setting of G-complete FbMS. An

example is given to validate the obtaiend result. Moreover, analogue of

the main results of Faraji et al. [33] and Alsulami et al. [89] are also

established in G-complete FbMS. The existence problem for the solution

of a non linear integral equation is also presented as an application of our

main result. Further, corollaries indicate that the theorems established in

this work generalize many existing results in the literature.

We have also established some common fixed point results analogues to

[33] using Geraghty type contraction in G-complete FbMS. Moreover, an

analogues of the fixed-point theorems of Gupta et.al [57] are proved in G-

complete FbMS. An application to explore the existence of the solution of

an integral equation is also presented to support the results.

• In Chapter 5, the notion of GFMS is introduced which generalizes FMS,

FbMS and DFMS. The notions of fuzzy k-contraction and fuzzy k-quasi

contraction are also defined. Using these contractions, certain new fixed

point results are established. These results are more general than the existing

results in the literature and generalize many existing results in fuzzy abstract

spaces. The present research provides a ground to the researchers to do work

in different structures by using these contractions and related fixed point

results.

Future Work

In future, in the context of i.e. new notion GFMS, various contraction and

expansion maps presented in this work, can be applied in different abstract spaces

such as Modular FMS, FbMS, Hausdorf FMS etc. as well as for different kinds of

contraction and expansion mappings like weakly commuting mappings, compatible

mappings etc. and hence can be generalized in many ways. Moreover, these new

concepts can provide a wide range for applications in numerous areas such as
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Chemistry, Health Sciences, Economics etc. The study of GFMS presented in

Chapter 5 can also be extended by exploring common coupled fixed point results.
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