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Abstract

The motive behind current dissertation is to explore the heat and mass transfer

analysis of incompressible laminar non-Newtonian fluids flow across a stretching

sheet with the inclusion of distinguished physical parameters appear during the

numerical simulation of the problem. Initially the Reiner-Philippoff fluid past a

stretching sheet under the effects like variable thermal conductivity and nonlinear

thermal radiation is analyzed. To amplify the thermophysical properties of the

fluids specially in the case of hyperbolic tangent fluid and Maxwell fluid, the idea

of nanofluid is employed. Nanofluids along with variable thermal conductivity and

nonlinear thermal radiation increase the heat transfer rate of the fluids. Magnetic

field is applied normal to the fluid and induced magnetic field is neglected by

the assumption of small Reynold’s number. Furthermore, the impact of viscous

dissipation, Ohmic dissipation, heat generation/absorption, velocity slip, temper-

ature slip, gyrotactic microorganisms and homogeneous/heterogenous reactions

on non-Newtonian fluids are also scrutinized in detail. The governing nonlinear

partial differential equations (PDEs) along with boundary conditions are first con-

verted into the nonlinear ordinary differential equations (ODEs) by utilizing the

similarity variables, and then the resulting nonlinear ODEs have been tackled nu-

merically using nonlinear shooting method and finite difference method (Keller

box). The numerical results are obtained with the utilization of MATLAB com-

putational software. The physical quantities of interest such as skin friction co-

efficient, heat transfer analysis (Nusselt) and mass transfer analysis (Sherwood

number) for sundry parameters appear during numerical simulation are computed

numerically and discussed in the form of tables and figures. A comparison with

previously available literature in limiting cases is also performed in order to check

the reliability of the code.
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Chapter 1

Introduction

The present chapter presents the brief theoretical background of different types

of non-Newtonian fluids past a stretching sheet. Moreover literature regarding

different effects like thermal radiation, thermal conductivity, Joules heating, mag-

netohydrodynamics (MHD) and boundary layer flow over stretching sheet has also

been presented and discussed in detail. At the end, motivation behind the current

study and thesis layout has been given.

1.1 Research Background

The fundamental and historical achievements in the field of fluid mechanics took

place in eighteenth and nineteenth centuries. Sir Isaac Newton (1642-1727) pre-

sented his law of viscosity termed as Newton’s law of viscosity for frictionless /per-

fect fluid. Later on different scientists like Bernoulli, Leonard Euler and Pierre

Simon Laplace achieved many beautiful results regarding frictionless fluids. The

Swiss mathematician and physicist Daniel Bernoulli (1700-1782) in 1738 presented

a principle called Bernoulli principle stated that a decremental change in potential

energy amplifies the fluid speed. Leonard Euler (1707-1783) derived Bernoulli’s

equation in 1752. Later on an additional equation, termed as adiabatic condition,

1
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was supplied by Pierre Simon Laplace (1749-1827) in 1816. William Fourde (1810-

1879) and his son Robert (1864-1924) developed laws regarding resistance offered

by water to ships. In 1870 James Clark Maxwell introduced a viscoelastic type

model called the Maxwell fluid model. Claude Navier (1785-1836) and Gabriel

Stokes (1819-1903) provided tremendous contribution to viscous flow theory by

the addition of Newtonian viscous terms to the governing equations of motion.

Later on Osborne Reynold (1842-1912) in 1883 published his famous work on fluid

flow through a pipe which demonstrated the Reynold’s number after him. Lud-

wig Prandtl (1875-1953) in 1904 delivered a lecture on boundary layer flow theory.

Prandtl introduced two sub-regions of a flow based on the fluids viscosity: a region

inside the boundary layer where viscosity has the substantial effect but effect is

ignorable outside the boundary layer region.

1.1.1 Reiner-Philippoff Fluid

Reiner and Philippoff in 1962 proposed a model called Reiner-Philippoff model

which was basically a viscoelastic type model. The behaviour of Reiner-Philippoff

fluid past a channel was deliberated by Kapur and Gupta [1]. Ghosal [2] investi-

gated the dispersion of solutes in non-Newtonian Ellis and Reiner-Philippoff fluid

flow through a circular tube. Na et al. [3] studied the impact of Reiner-Philippoff

fluid past an expandable surface. Yam et al. [4] deliberated Reiner-Philippoff

fluid past a wedge and observed that the velocity field depreciates by the virtue of

an incremental change in the fluid parameter. The behaviour of Reiner-Philippoff

fluid flow across a riga plate was deliberated by Ahmad [5]. Reddy et al. [6] ex-

plored the influence of thermal radiation on magneto Reiner-Philippoff fluid and

observed that a positive variation in magnetic number lessens the velocity field.

Kumar et al. [7] pondered the consequences of Cattaneo-Christov heat flux on

Reiner-Philippoff fluid moving along an extendible elastic surface. Reddy et al.

[8] contemplated Darcy-Forchheimer flow of radiative Reiner-Philippoff fluid flow

across a porous elastic sheet and found that the heat transfer rate amplifies as a

result of an augmentation in the thermal radiation parameter. Ullah et al. [9]
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comprehended Reiner-Phillipof fluid flow over an unstable stretching using Buon-

griono nanofluid model and observed that temperature field escalates owing to a

magnification in the Brownian parameter. Ishaq et al. [10] numerically studied the

stability analysis of the Reiner-Philippoff fluid past an expandable surface. The

dilatant and pseudoplastic impact of peristaltic flow of Reiner-Phillipoff fluid were

discussed by Tahir and Ahmad [11] and found that the velocity of the dilatant fluid

diminishes as a result of an amplification in the shear stress phenomenon. The

entropy generation analysis of Darcy-Forcheimer flow of Reiner-Philippoff fluid

were deeply scrutinized by Xiong et al. [12]. The influence of heat source/sink,

Ohmic dissipations, thermal radiation and Fourier heat flux on Reiner-Philippoff

flow moving over an extendable surface were deliberated by Khan et al. [13]

Thermal conductivity is defined as the capability of any material to conduct heat.

Thermal conductivity is very vital in heat transport phenomenon due to its im-

mense utilization in industry such as electrolytes, steam generators, concrete heat-

ing, laminating, catalysis, molding blow etc. The frequent collision of molecules

inside the liquid drives to an improvement in the energy exchange between the

molecules and as a result more heat energy is transported through the medium.

When the molecules collide randomly, it causes the transfer of heat energy in a

specific direction. Researchers across the world investigated thermal conductivity

phenomenon in terms of heat transmission through various materials. Megahed

[14] discussed the conduct of thermal conductivity on Powell-Eyring fluid imping-

ing on porous stretching sheet. Reddy et al. [15] modeled the Williamson fluid

past a stretchable surface accompanied with MHD and nanoparticles. Ramzan

et al. [16] investigated the Eyring-Powell nanofluid moving along a stretchable

surface accompanied with thermal conductivity and chemical reaction. Shah et

al. [17] examined the performance of Carreau fluid along with temperature vary-

ing conductivity moving across an expandable surface. Shokouhmand et al. [18]

investigated thermal conductivity impact on two dimensional porous fin. Kumar

et al. [19] examined the behaviour of incompressible nanofluid over a horizontally

expandable surface embedded with thermal conductivity and molecular diffusivity.
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Marinca and Marinca [20] achieved the exact solution of magneto radiative second

grade fluid along with thermal conductivity moving across a stretching surface.

Ferdows and Bangalee [21] studied the performance of thermal conductivity on an

electrically conducting fluid. Lahmar et al. [22] utilized the differential transform

scheme to achieve the numerical solution of squeezed magneto nanofluid flow over

an inclined stretching medium and observed that the velocity field lessens by the

virtue of a magnification in Lorentz force.

1.1.2 Tangent Hyperbolic Fluid

The idea of hyperbolic tangent fluid was introduced by Pop and Ingham [23] in

2001. The stress tensor expression of tangent hyperbolic nanofluid is deduced

from the well known kinetic theory of liquids. This model describes shear thin-

ning/thickening phenomenon. Blood is the perfect example of tangent hyperbolic

model. Nadeem and Akram [24] numerically achieved the solution of tangent hy-

perbolic model based fluid past an axisymmetric channel with the utilization of

perturbation technique and observed that the pressure gradient depreciates owing

to a magnification in the Weissenberg number. Akbar et al. [25] numerically ob-

tained the solution of tangent hyperbolic fluid past an expandable surface under

the effect of Lorentz force and noted that the velocity field diminishes by the virtue

of a magnification in the magnetic parameter. Akram and Nadeem [26] deliberated

magnetic field impact on the tangent hyperbolic fluid moving across an asymmet-

ric channel. Prbhakar et al. [27] investigated inclined magnetic field impact on

tangent hyperbolic nanofluid moving over an elastic surface and found that the

velocity field debacles owing to an abatement in magnetic number. Saidulu et

al. [28] scrutinized thermal radiation effect on tangent hyperbolic fluid moving

towards an elastic medium and found that the temperature field augments as a

result of a magnification in thermal radiation parameter. Al-Khaled et al. [29]

inspected the effect of microorganisms and nonlinear thermal radiation on tan-

gent hyperbolic nanofluid moving towards a stretchable surface and observed that

temperature amplifies as a result of magnification in the nonlinear phenomenon.
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Double-diffusion phenomena explain the convection phenomenon lead by two dif-

ferent density gradients having different diffusion rates. Double-diffusive convec-

tion has distinguished utilization in various disciplines like oceanography, biology,

astrophysics, geology, crystal growth and chemical reactions etc. Gaikwad et al.

[30] analyzed the effect of double-diffusive convection on fluid flow towards an

expandable surface and noted that Nusselt number amplifies by the virtue of an

augmentation in the Dufour parameter. Nield and Kuznetsov [31] implemented

double-diffusive convection phenomenon on fluid moving across a porous expand-

able surface. The influence of double-diffusion convection on fluid moving across

a square cavity is investigated in detail by Mahapatra et al. [32]. Rana and

Chand [33] explored viscoelastic fluid past an expandable surface under the effect

of double-diffusive convection. Kumar et al. [34] investigated nanoparticles and

double diffusion impact on viscoelastic fluid and found that a magnification in ve-

locity field occurs by amplifying the Dufour Lewis parameter. Gireesha et al. [35]

pondered the influence of double-diffusive convection and nanoparticles on Casson

fluid past an elastic surface under the effect of Lorentz force and found that the

velocity depreciates by amplifies Lorentz force.

The idea of nanofluid was introduced by Choi in 1995. The addition of nanopar-

ticles in the base fluid enhances thermal conductivity as well as heat transfer rate

of the fluid having distinguished applications in the biomedical, electronics, drug

delivery, food products, ceramic industry, computer chips etc. Nonlinear thermal

radiation is effective where temperature difference is large. Nonlinear thermal

radiation has extensive application in industry especially in nuclear and combus-

tion reactors, polymer production, space crafts, nuclear fusions etc. The influence

of nonlinear radiative heat flux along with internal heat generation on tangent

hyperbolic fluid moving towards an elastic medium was scrutinized in detail by

Mahanthesh et al. [36]. Khan et al. [37] investigated nanoparticles and MHD

effect on tangent hyperbolic fluid moving subjected to an expandable medium.

The impact of MHD and on tangent hyperbolic nanofluid fluid flow subjected to

an elastic sheet was observed by Qayyum et al. [38]. Nagendramma et al. [39]
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pondered the effect of nanoparticles and double stratification on fluid past a cylin-

der and noted that an amplification in power law index reduces the fluid flow.

Khan et al. [40] scrutinized tangent hyperbolic nanofluid past a stretchable sur-

face under the effect of nonlinear thermal radiation as well as activation energy

and observed that the temperature field amplifies by the virtue of an amplification

in thermal radiation parameter. Ali et al. [41] investigated MHD and temperature

varying conductivity impact on tangent hyperbolic fluid confined by an expand-

able medium. Ullah et al. [42] studied Lorentz force impact on tangent hyperbolic

nanofluid past an extendable sheet.

Bioconvection phenomenon takes place when microorganisms having density greater

than water, swim upwards. The direction in which gyrotatic microorganisms swim

totally rely on the balance between gravitational and viscous torques [43, 44].

Oyelakin et al. [45] pondered the impact of bioconvection and motile gyrotac-

tic microorganisms on the Casson fluid and noted that the microorganism profile

depreciates owing to an escalation in Peclet number. Wang et al. [46] explored

the effects of bioconvection and gyrotactic microorganisms on tangent hyperbolic

nanofluid past a slppery expandable surface. Al-Khaled et al. [47] investigated the

influence of gyrotatic microorganisms and nonlinear temperature based radiation

on chemically reactive bioconvective tangent hyperbolic fluid flow over an expand-

able surface. Shafiq et al. [48] numerically investigated the tangent hyperbolic

nanofluid accompanied with gyrotactic microorganisms.

Magnetohydrodynamics (MHD) is actually the study of fluid passing through a

magnetic field in the presence of electric current. Magnetohydrodynamics is a

subcategory of fluids in which the behaviour of electrically conducting fluids is

discussed. Hannes Alfvin [49] was the first who introduced the concept of MHD

fluid and later on received Noble prize for his revolutionary work on MHD in 1970.

In the last few decades, researchers have worked on various aspects of MHD due to

its tremendous involvement in processes like plasmas, X-ray radiation, electrolysis,

planetary science and etc. Tian et al. [50] pondered the performance of MHD on

non-Newtownian nanofluid moving over a convectively heated surface.
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Fagbade et al. [51] scrutinized the electrically conducting viscoelastic fluid moving

towards a stretching sheet embedded with thermal radiation. Jafarimoghaddam

[52] found the analytical and numerical solutions of electrically conducting Eyring-

Powell fluid embedded with thermal radiation and found that a positive variation

in radiation parameter amplifies the temperature field. Jaffer et al. [53] studied

viscoelastic fluid moving along a stretchable surface under the effect of MHD.

Rabbi et al. [54] scrutinized the impact of chemical reaction and MHD on Casson

nanofluid and observed that a positive variation in Brownian motion parameter

amplifies the temperature field.

1.1.3 Maxwell Fluid

Maxwell fluid belongs to a category of viscoelastic fluid having the properties of

both elasticity and viscosity. This model is capable of predicting relaxation time

characteristics. Relaxation time is the time taken by the to return from the de-

formed state to its initial equilibrium state. Examples of Maxwell fluid are paints,

polymers, glycerine, dashpot.

Darcy’s law is not effective at higher flow rate. Forchheimer removed the short-

coming occurred in Darcy’s law by introducing a velocity expression of order two

in Darcian velocity expression in order to study the impact of inertia at higher

flow rate. Dary-Forchheimer expression [55] is very effective in the case of high

Reynold’s number. Muhammad et al. [55] studied the Darcy-Frchheimer Maxwell

fluid flow towards an expandable medium. The impact of stratification and con-

vective heat transfer on Darcy-Forchheimer Maxwell nanofluid were deeply inves-

tigated by Hayat et al. [56]. Waqas et al. [57] contemplated Maxwell fluid flow

towards an expandable surface accompanied with effects like multiple convective

boundary conditions, thermal radiation and nonlinear Forchheimer velocity ex-

pression. The impact of multiple convective boundary conditions and nonlinear

Darcy-Forchheimer velocity expression on Maxwell fluid were scrutinized by Sadiq

et al. [58]. Thermal radiation is used where high temperature difference is required

having immense utilization in nuclear reactors, space aircrafts, combustion
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reactors, polymer production etc. Hsiao [59] studied both MHD and viscous dis-

sipation on radiative Maxwell fluid flow subjected to an elastic medium. Ibrahim

et al. [60] examined the impact of thermal radiation, chemical reaction and slip

boundary condition on Maxwell fluid flow towards an elastic surface. The impact

of nonlinear temperature based radiation on Maxwell fluid flow subjected to an

expandable surface was studied in detail by Ghaffari et al. [61].

The suspension of metallic nanoparticles like aluminium, silver and copper in the

base fluid like engine oil and ethylene glycol amplifies temperature of the fluid.

The idea of nanofluid was coined by Choi [62] with enormous utilizations in medi-

cal, polymer production, ceramic industry, refrigerator, chiller and engine cooling.

It is well established that the insertion of nanometer sized particles in the base

fluid amplifies heat transfer phenomenon. Convective transport in nanofluids was

coined by Buongiorno [63] and it was proposed that the nanofluids possess a high

thermal conductivity in contrast to simple fluids. He presented the seven slip

mechanisms comprising of inertia, thermophoresis, magnus impact, gravity , fluid

drainage, Brownian diffusion and diffusiophoresis to generate a base fluid velocity

and relative velocity. Murshed et al. [64] pondered the impact of nanoparticles on

a fluid past a stretching sheet and found that both viscosity and thermal conduc-

tivity escalate owing to an amplification in nanoparticle volume fraction. Usri et

al. [65] observed that an insertion of nanoparticles in the base fluid enhances the

ability of fluid to conduct heat. The impact of nanoparticles, chemical reaction

and MHD on Maxwell fluid moving along a stretching sheet was discussed in detail

by Afify and Algazery [66] with a conclusion that the temperature field escalates

by virtue of an increment in thermophoresis parameter. Macha and Kishan [67]

pondered the effect of buoyancy forces on viscoelastic nanofluid past a stretch-

ing wedge and came up with the conclusion that the temperature field improves

because of an enhancement in Brownian diffusion coefficient. Eid and Mahny

[68] studied Sisko nanofluid accompanied with heat generation/absorption past

a stretchable surface and found that the temperature field improves owing to an

augmentation in the Brownian motion parameter. The influence of nanoparticles
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along with buoyancy effects on Carreau fluid was discussed in detail by Koriko et

al. [69]. Shaw et al. [70] discussed the performance of nonlinear convection on

Sisko nanofluid moving across an inclined permeable medium accompanied with

MHD.

Swante Arrhenius in 1889 introduced the concept of activation energy. The mini-

mum energy that must be provided for compounds to undergo a chemical reaction

can be termed as activation energy having immense utilizations in various areas

like oil reservoir engineering, water and oil emulsions etc. Shafique et al. [71] con-

templated the influence of activation energy on rotating Maxwell fluid flow across

an elastic surface. The impact of chemical reaction and activation energy on mag-

neto viscoelastic fluid moving subjected to an expandable surface were debated in

detail by Mustafa et al. [72]. Gulzar et al. [73] adopted the OHAM scheme to

achieved the numerical solution of Maxwell fluid embedded with viscous dissipa-

tion, activation energy and entropy generation. Ramiah et al. [74] scrutinized the

impact of Fourier heat flux and activation energy on rotating Maxwell fluid mov-

ing towards an extendable surface under the effect of Lorentz force. The effect of

activation energy and thermal radiation on Maxwell past a stretching sheet were

debated in detail by Rafiq et al. [75].

Stretching sheet has achieved the attention of researchers because of its distin-

guished applications in industry like polymers, glass blowing, paper, hot rolling,

extraction of polymer sheet from a die, crystal growing, manufacturing foods,

drawing of plastic films etc. The boundary layer flow phenomenon over continu-

ously solid surface was coined by Sakiadis [76] and furthermore Crane [77] extended

the work of Sakiadis by presenting the idea of viscous fluid flow across a smooth

stretching medium. Wang [78] found the asymptotic as well as numerical solution

of viscous fluid film moving over a stretchable surface. Cortell [79] developed a

model regarding power-law fluid moving across an extendable surface under the

application of magnetic field and noted that a positive change in power-law index

guides to an abatement in the velocity field. Shaker et al. [80] pondered Maxwell
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fluid moving along a flat sheet accompanied with variable thermal conductivity.

Bai et al. [81] studied Maxwell fluid accompanied with thermophoresis effect

past an elastic surface and observed that the heat transfer rate amplifies by the

virtue of an amplification in the Brownian motion parameter. Boundary layer

impact on Maxwell fluid past an extendable medium having variable thickness

were scrutinized by Liu and Liu [82]. Maxwell nanofluid flow subjected to an

elastic surface under the effect of boundary layer theory were investigated by Xu

and Xu [83].

1.1.4 Carreau Fluid

Carreau fluid is the combination of both Newtonian and power law models. This

model has the ability to describe both shear thinning, shear thickening and Newto-

nian phenomena as a result of a variation in power law index. Blood flow through

small and large arteries is the example of Carreau fluid. In some diseased con-

ditions, blood exhibits non-Newtonian properties. Researchers across the world

have been interested in Carreau fluid in terms of heat and mass transfer analysis

with the inclusion of various effects.

Slip condition occurs when the velocity of the fluid at its boundary is not equal to

the one of the boundary. Azam [84] contemplated the impact of partial slip con-

ditions on magneto Carreau fluid flow subjected to a radially expandable sheet.

Masood and Hashim [85] studied the effect of multiple slips and chemically re-

active species on magneto Carreau fluid past a wedge. Raju et al. [86] studied

the performance of Carreau fluid moving towards a slendeing sheet accompanied

with slip effects and gyrotactic microorganisms and noted that a positive deviation

in slip parameter depreciates the velocity profile. Kumar et al. [87] scrutinized

the impact of slip conditions and nonlinear thermal radiation on magneto Carreau

fluid flow towards an elastic surface. A numerical solution of a Carreau fluid model

along with slip conditions, Cattaeneo-Christov heat flux and microorganisms was

obtained by Parsad et al. [88]. Carreau fluid moving over an elastic surface
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embedded with slip boundary conditions, chemical reaction and activation energy

was studied in detail by Khan et al. [89]. Muhammad et al. [90] elucidated the

effect of slip conditions and gyrotactic microorganisms on Carreu fluid moving

over a stretching wedge.

In certain objects when electron jumps from higher to lower orbit, it emits energy

in the form of radiation. The expression regarding linear thermal radiation was

achieved by linearizing the Rosseland radiative heat flux having unique Prandtl

number [91] by means of Taylor’s series in the case when temperature difference

is small enough. Nonlinear thermal radiation is applicable where high tempera-

ture is required like utilization in nuclear reactors, thermal furnaces, space crafts,

polymer preparation etc. Pantokratoras scrutinized the behaviour of linear and

nonlinear Rosseland approximation on fluid past a vertical isothermal plate [92].

Carreau fluid accompanied with nonlinear thermal radiation and MHD was de-

bated in detail by Babu et al. [93]. Mahanthesha et al. [94] studied radiative

nanofluid moving along a stretchable surface and canvassed that the temperature

field amplifies under the effect of nonlinear thermal radiation rather than linear

thermal radiation. Kho et al. [95] deliberated Williamson nanofluid moving to-

wards an stretchable medium embedded with radiation effect. Zaib et al. [96]

numerically achieved the solution of a Carreau fluid model along with chemical

reaction and thermal radiation past an extendable surface and found that the

temperature profile enhances by virtue of an augmentation in the radiation pa-

rameter. Koriko et al. [97] scrutinized three dimensional stratified Eyring-Powell

nanofluid accompanied with nonlinear thermal radiation. Hosseinzadeh et al. [98]

studied Maxwell fluid moving over a permeable extendable surface under the effect

of nonlinear radiative heat flux. Mondal et al. [99] scrutinized viscous fluid past

an expandable surface under the effect of internal heat generation and nonlinear

thermal radiation.

The procedure where the work done by a fluid on the adjoining layer under the

activity of shear forces is changed into heat is called viscous dissipation. Joule
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heating occurs when conducting electrons transfer energy to conductor atoms

through the collision procedure. In the occurrence of Ohmic dissipation, exces-

sive heat is generated within the fluid either via direct current or magnetic field.

Viscous-Ohmic dissipation has extensive applications in industry like making of in-

dustrial electric ovens, induction stoves, incandescent light bulbs, polymerization,

food processing, chemical reactors etc. The viscous dissipation has many applica-

tions: cooling of reactors, polymer processing, condensation procedure of metallic

plate, aerodynamic extrusion of plastic sheets. Pal and Mondal [100] studied the

effect of viscous-Ohmic dissipation, double diffusive convection, thermal radiation

and MHD on incompressible fluid past a nonlinear stretching surface. Daniel et

al. [101] deliberated nanofluid flow accompanied with viscous-Ohmic dissipation.

Anjali and Kumari [102] studied viscous-Ohmic dissipation effect on the fluid mov-

ing over an expandable medium and observed that the temperature amplifies by

amplifying Brownian number. The consequences of viscous and Ohmic dissipation

along with heat source/sink on magneto nanofluid was scrutinized in detail by Up-

reti et al. [103]. Pal [104] analyzed the influence of viscous and Ohmic dissipations

on unsteady ferromagnetic fluid and found that the temperature field amplifies as

a result of an augmentation in the Eckert parameter. Impact of viscous dissipa-

tion on Casson fluid flow over an extendable surface was discussed by Gireesha et

al.[105] and it was noted that temperature field escalates owing to an amplification

in the Eckert number. Srinivasacharya and Jagadeeshwar [106] pondered the effect

of slip boundary condition and Ohmic dissipation on magneto fluid past a stretch-

ing sheet nd found that the slip phenomenon produces a decremental change in

fluid velocity.

1.2 Problem Statement

In the light of literature mentioned above there is still a room available for the

study of various types of non-Newtonian fluids with the inclusion of various effects

for the study of heat and mass transfer analysis. The detail of different problems

presented in this thesis has been given below.



Introduction 13

1. Two dimensional Reiner-Philippoff fluid comprising of both dilatant and

viscoelastic nature past a stretching sheet is to be studied. Heat transfer as-

pect of the modeled problem is analyzed with the inclusion of various effects

like heat source/sink, nonlinear thermal radiation and variable conductivity

whereas mass transfer profile is investigated by considering variable molec-

ular diffusivity.

2. Impact of diffusive convection on the tangent hyperbolic nanofluid moving

subjected to an elastic surface is studied. The fluid behaviour is scrutinized in

the case of Lorentz force and mixed convection effects. Heat transfer aspect

is studied in the case of Buongiorno nanofluid and moreover mass transfer

analysis is carried out by including gyrotactic microorganisms suspended in

the base fluid.

3. Maxwell fluid flow under the effect of Darcy-Forchheimer flow past a con-

vectively heated porous stretching medium is studied extensively. The be-

haviour of Darcy-Forchheimer phenomenon on the fluid velocity is studied in

the modeled problem. Heat transfer phenomenon is studied deeply by consid-

ering the effects like nonlinear based thermal radiation, thermal conductivity

and nanofluid respectively whereas mass transport analysis is carried out by

considering activation energy in the mass transport equation.

4. The Carreau fluid moving over a bi-directional expandable sheet under the ef-

fect of Lorentz force is investigated in detail. The energy as well as concentra-

tion aspects of the fluid is investigated with the addition of effects like nonlin-

ear based thermal radiation, viscous dissipation and homogeneous/heteroge-

nous reactions. The Maxwell velocity and Smoluchowski temperature slip

boundary conditions are imposed on the non-Newtonian Carreau fluid mov-

ing towards an expandable surface..

1.3 Research Objectives

Research objectives of the present thesis have been given below.
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1. Researchers across the world have tried to investigate Reiner-Philippoff past

an elastic surface with the inclusion of various effects. Reddy et al. [6]

studied transverse magnetic field effect on radiative Reiner-Philippoff fluid

past an expandable sheet.

Kumar et al. [7] investigated Cattaneo-Christov heat flux impact on Reiner-

Philippoff model moving towards an elastic surface. Reddy et al. [8] contem-

plated Darcy-Forchheimer flow of radiative Reiner-Philippoff fluid flow across

a porous elastic sheet. Ullah et al. [9] comprehended Reiner-Phillipof fluid

flow over an unstable stretching using Buongriono nanofluid model. Ishaq

et al. [10] numerically studied the stability analysis of the Reiner-Philippoff

fluid past an expandable surface. In available literature no attention has

been paid to study the mass transfer aspect of the Reiner-Philippoff fluid.

The present model aims to fill such gap by considering variable molecular

diffusivity in order to analyze the mass transfer aspect. The heat trans-

fer analysis is aimed to be carried out by considering the effects like heat

source/sink and variable thermal not addressed before.

2. Tangent hyperbolic model is a viscoelastic model which is investigated in

the last few decades by considering various physical effects. Qayyum et al.

[38] pondered the influence of heat generation/absorption and Lorentz force

on tangent hyperbolic nanofluid fluid flow subjected to an elastic sheet. Na-

gendramma et al. [39] studied tangent hyperbolic nanofluid past a cylinder

by considering the effects like inclined magnetic field and double stratifi-

cation. Khan et al. [40] scrutinized tangent hyperbolic nanofluid flow to-

wards an extendable medium accompanied with nonlinear based thermal

radiation and activation energy effect. Ali et al. [41] studied tangent hyper-

bolic fluid moving over an expandable sheet accompanied with MHD and

temperature varying conductivity. The impact of Lorentz force on tangent

hyperbolic nanofluid past an extendable sheet was studied by Ullah et al.

[42] . There is still a room in literature to study the tangent hyperbolic

fluid by considering the double diffusive convection, motile microorganisms,

homogeneous/heterogeneous reactions past an expandable sheet.
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3. The behaviour of Maxwell fluid past an expandable sheet has been inves-

tigated by researchers across the world for the purpose of heat and mass

transfer analysis with the inclusion of various effects like nanoparticles, ther-

mal radiation, MHD etc. Muhammad et al. [55] elucidated the influence of

nonlinear Darcy-Forchheimer velocity effect on Maxwell fluid flow subjected

to an expandable surface. The impact of stratification, convective heat

transfer and Darcy-Forchheimer effects on Maxwell nanofluid were deeply

investigated by Hayat et al. [56]. Waqas et al. [57] contemplated Maxwell

fluid flow across an expandable medium accompanied with quadratic Forch-

heimer velocity and heat generation. Sadiq et al. [58] studied the Darcy-

Forchheimer flow of Maxwell nanofluid by considering the effect like mixed

convection. Hsiao [59] studied the impact of both MHD and thermal radi-

ation on Maxwell fluid flow towards a stretchable surface. Plenty of room

is available in the existing literature for the study of Maxwell fluid flow

subjected to an expandable sheet accompanied with various effects for the

purpose of heat and mass transfer analysis. In the light of available literature

mathematical model is developed for Maxwell fluid flow towards a convec-

tively heated stretching sheet accompanied with activation energy for the

purpose of mass transfer analysis and moreover nonlinear thermal radiation

and variable thermal conductivity for the purpose of heat transfer analysis.

Sheet surface is convectively heated and zero mass flux boundary condition

will be considered at the surface.

4. Carreau fluid has been studied by the number of researchers in order to study

its limitations at minimum and maximum shear rates with the inclusion of

various effects for heat and mass transfer analysis. Masood and Hashim

[85] pondered chemically reactive species impact on the magneto Carreau

fluid flow subjected to a slippery expandable wedge. Raju et al. [86] pon-

dered Carreau fluid moving towards a slandering sheet by taking slip effects

and gyrotactic microorganisms. The impact of slip conditions and nonlinear

based thermal radiation on magneto Carreau fluid flow across an elastic sur-

face were scrutinized by Kumar et al. [87]. Carreau fluid accompanied with



Introduction 16

nonlinear thermal radiation and MHD was debated in detail by Babu et al.

[93]. Zaib et al. [96] numerically achieved the solution of a Carreau fluid

model accompanied with chemical reaction and thermal radiation past an

extendable surface. There is still a space available in the existing literature

regarding Carreau fluid by considering various types of slip conditions like

Wu’s slip, Navier slip and mass transfer by considering various effects like

activation energy, catalytic chemical reactions, motile microorganisms etc.

In the light of deficiencies available in the literature a mathematical model

is designed regarding Carreau fluid past an extendable surface by consid-

ering slip boundary conditions at the sheet surface. Maxwell velocity slip

and Smoluchowski temperature jump boundary conditions are never utilized

before as slip boundary conditions. Heat and mass transfer analysis will be

carried out by considering nonlinear thermal radiation, viscous and Ohmic

dissipations, homogeneous/heterogeneous chemical reactions.

1.4 Scope of Research

The motive behind the present research is to investigate non-Newtonian fluids like

Reiner-Philippoff fluid, tangent hyperbolic fluid, Maxwell fluid, Carreau fluid past

a stretching sheet with the consideration of various effects for the analysis of heat

and mass transfer. The work presented in Chapter 3 can be extended in terms of

Reiner-Philippoff fluid flow over different geometries like wedge, cylinder, sphere,

cone etc. The literature mentioned in Chapter 4 can be extended in the direction

of hyperbolic tangent fluid flow through parallel stretching disks, converging/di-

verging channels, inclined stretching sheet with the inclusion of effects like hybrid

nanoparticles, carbon nanotubes, activation energy etc. This study presented in

Chapter 5 can be extended in the direction of Maxwell nanofluid past an oscilla-

tory stretching sheet, needle, peristaltic flow, sensor surface, nonlinear stretching

sheet etc with the inclusion of effects like gyrotactic microorganisms, melting sur-

face, convective heat and mass transfers, variable molecular diffusivity etc. The

momentum and temperature slip boundary conditions presented in Chapter 6 for
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the case of Carreau fluid can be further utilized in other viscoelastic type non-

Newtonian fluids flow over different geometries like channel, sphere, cone, wedge,

pipe etc.

1.5 Research Methodology

The modeled partial differential equations of the proposed models are converted

into ordinary differential equation with the utilization of similarity transforma-

tions and furthermore tackled these equations numerically with the help of non-

linear shooting method and Keller-box scheme. Shooting method is the ability

to integrate the differential equations as an initial value problem with guesses for

the unknown initial values. This ability is not required with the finite difference

method, for the unknowns are considered to be the values of the true solution at

the number of interior mesh points. The keller-box method is an implicit numeri-

cal scheme which is second order accurate in both space and time for the standard

diffusion equations. All the simulations of the modeled problems has been done in

Matlab 2016a software [107]. Matlab is a programming and numeric computing

platform used by millions of engineering and researchers working in fluid dynamics

area to analyze data, develop algorithms, and create models.

1.6 Significance of the Study

In this thesis heat and mass transfer analysis of various non-Newtonian fluids has

been carried out. Heat transfer of the fluid increases in the presence of nanopar-

ticles, thermal radiation, Joule heating and variable thermal conductivity. From

the present study, it is observed that the temperature of the fluid escalates ow-

ing to an amplification in the thermal radiation, variable thermal conductivity

and nanoparticles. Nanoparticles enhance heat transfer rate having applications

in biomedical, optical, electronics, ceramic industry, computer chips, car engines,

nuclear reactors etc. Thermal radiation and variable thermal conductivity is used
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where high temperature difference is required like fusion reactors, combustion re-

actors, polymer production, jet engine, gas turbines etc. Mass transfer analysis has

been carried out with the consideration of activation energy, thermal diffusivity,

motile gyrotactic microorganisms and homogeneous-heterogenous reactions. Mi-

croorganisms present in the fluids have different applications in the industry like

production of ethanol, lactic acid, butanol, alcoholic beverages, vinegar, yogurt,

bio-fuels etc. Homogeneous-heterogenous reactions have immense applications like

cooling towers, fog dispersion, polymer production and hydrometallurgical indus-

try. The present research opens a pathway for the researchers to analyze the heat

and mass transfer analysis of the non-Newtonian fluids by considering various ef-

fects that amplifies the heat and mass transfer analysis of the fluid.

Today’s era is about the study of different procedures to enhance the heat trans-

fer rate. Solar energy is the great source of heat and utilized in solar collectors

present in solar aircrafts, solar ships, solar panels present in the homes. Solar col-

lector is a device that collects solar radiation from the sun. Nanoparticles based

direct solar collectors are solar thermal collectors where nanoparticles in a liquid

medium can scatter and absorb solar radiation. Researches across the world have

tried to enhance the performance of solar collectors by considering various types of

nanoparticles, hybrid nanoparticles etc. This dissertation provides a platform for

the researchers to study and enhance heat transfer analysis of solar thermal collec-

tors with the consideration of nanofluids, thermal radiation, viscous dissipation,

nonlinear thermal radiation and Joule heating.

1.7 Thesis Layout

The layout of the rest of the thesis has been presented below

Chapter 2 comprises of derivations of some governing laws regarding continuity,

mass, momentum, energy, concentration. The idea of fluids and dimensionless

numbers are also given in this chapter.

Chapter 3 discusses two dimensional radiative Reiner-Philippoff fluid flow towards
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a stretchable surface accompanied with thermal conductivity, molecular diffusiv-

ity and heat source/sink has been studied extensively. The governing modelled

equations are handled numerically with the help of nonlinear shooting technique.

Chapter 4 discusses the flow of mixed convective tangent hyperbolic nanofluid

moving over a stretching sheet under the effect of double diffusive convection,

MHD and motile gyrotactic microorganisms. The numerical solution is achieved

by Keller box method.

Chapter 5 scrutinizes the Maxwell nanofluid moving across a porous convectively

heated stretchable surface under the effect of thermal radiation, thermal con-

ductivity and magnetohydrodynamics. To achieve the solution of the modelled

equations numerically, shooting scheme has been employed.

Chapter 6 is all about the study of 3D Carreau fluid past a bidirectional slippery

stretching medium accompanied with magnetohydrodynamics, viscous dissipation,

Ohmic dissipation and nonlinear thermal radiation.

Chapter 7 comprises of the conclusion and the future work.



Chapter 2

Preliminaries

The primary goal of this chapter is to study the concept of fluid and its catego-

rization based on shear stress behaviour. The relevant definitions and concepts

regarding the next chapters have been incorporated in this chapter. The governing

equations of motion regarding mass, momentum, temperature and concentration of

fluid flow over stretching sheet accompanied with healthy discussion on bioconvec-

tion, catalysis and double diffusive convection are included within. A description

of the relevant dimensionless parameters emerges during numerical simulation of

the modeled problems is also given.

2.1 Fluid

Fluids typically comprises of liquids, gases and plasmas. In fluids, the applied

stress is directly related to strain. In the case of a constant applied shear force,

a solid ultimately stops flowing at certain fixed strain angle. A fluid is keep

flowing and continuously deforming and reaches a constant rate of strain. Flu-

ids can be organized into various types on the basis of properties like viscosity,

conductivity and compressibility. The Navier–Stokes equations may be used to

describe the behaviour of fluids. Further classification of fluids has been presented

underneath.[108]

20
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2.2 Classification of Fluids

Fluids on the basis of their physical properties like viscosity, shear stress, strain

can be divided into main categories presented below:

2.2.1 Newtonian Fluids

Fluids for which the applied shear stress and the rate of deformation are linearly

proportional to each other termed as Newtonian fluids.

Fig. 2.1 represents various examples of Newtonian fluids that are utilized in ev-

eryday life, such as water, mineral oil, ethyl alcohol and gasoline. In the case of

Newtonian fluids, mathematical expression of τxy is given by expression enumer-

ated underneath

τxy = µ
du

dy
, (2.1)

where µ represents dynamic viscosity and
du

dy
is the rate of deformation. The SI

unit of shear stress τxy is N·s.m−2.[108]

2.2.2 Non-Newtonian Fluids

In the case of non-Newtonian fluids, the deformation rate γ̇ and the shear stress

σ are not linearly related. [109]

Indeed, under certain conditions, the ratio of applied shear stress and shear rate

is not dependent only on flow conditions but dependent on the kinematic history

of the fluid element also. Due to the complexity between shear stress and strain,

it is difficult to predict the exact nature of non-Newtonian fluids. Various math-

ematical models have been developed in order to study the rheological behaviour

of non-Newtonian fluids.

Fig. 2.2 represents various products behaving like non-Newtonian fluids. Depend-

ing on how viscosity changes over time, non-Newtonian fluids can be divided into

two different categories
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Figure 2.1: (a) water (b) mineral oil (c) ethyl alcohol (d) gasoline

Figure 2.2: (a) corn starch (b) Ketchup (c) paint (d) honey (e) toothpaste
(f) blood

2.3 Time-independent Fluid

Time-independent fluids are those in which the deformation rate γ̇ is assessed only

by the present value of σ at that instant.[109].Mathematically,

µ× γ̇yx = f(τyx). (2.2)

The many types of non-Newtonian fluids are depicted in Fig. 2.3. There are three

types of fluids that are time-independent.
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2.3.1 Pseudoplastic Fluids

Pseudoplastic fluids is the ratio of shear stress by shear rate mathematically writ-

ten as (
σyx

˙γyx
). The apparent viscosity diminishes gradually a result of an amplifi-

cation in the shear rate.

The shear stress by shear rate termed as apparent viscosity approaches a New-

tonian behaviour and moreover viscosity of the fluid is independent of zero shear

rate.

lim
γ̇→0

σyx
˙γyx

= η0. (2.3)

Fluid behaviour is non-Newtonian and moreover viscosity of the fluid is dependent

at high shear rate.

lim
γ̇→0

σyx
˙γyx

= η∞. (2.4)

Examples are milk, human blood, clay and paints.[109]

2.3.2 Dilatant Fluids

Yield stress is the amount of stress necessary for any material to be permanently

deformed. Although dilatant fluids do not exhibit yield stress, their apparent

viscosity escalates by virtue of a magnification in the shear rate. Mixture of corn

starch suspension in the water is the best example of dilatant type fluids.[109]

2.3.3 Bingham Plastic Fluids

This type of fluid relies on the yield stress phenomenon σ0. If the value of σ0 is

greater than the yield stress, the fluid start moving. The fluid is not moving if

the value of σ0 is less than the yield stress. Bingham polymers require a specific

amount of force to flow. A viscoplastic substance called a Bingham plastic acts

like a stiff body at low inertial forces but flows like a viscous fluid in the presence

of high inertial forces. Daily life examples of this sort of fluids are toothpaste,

mayonnaise, drilling mud.[109]
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2.4 Time-dependent fluids

Many products, particularly in the food, pharmaceutical, cosmetics comprising of

flow characteristics that are not easily represented by a straight forward math-

ematical formula like Eq. (2.1). In the case of fluids rely on time, the viscosity

of fluid deformation (γ̇) not depend only on stress (σ) but also on the function

of time. It is common to split time-dependent fluid behaviour into two kinds,

thixotropy and rheopectic, based on a material’s response under the application

of applied force and time as well.[109]

2.4.1 Thixotropic Fluids

Thixotropy is a phenomena that occurs throughout time. The apparent viscosity

η = σ
γ̇

decreases under the application of applied stress over any defined period of

time. Rheopectic fluids behave differently from thixotropic fluids. Examples are

Cytoplasm, synovial fluid, gelatine, cream, castor oil, tire rubber.[109]

2.4.2 Rheopectic Fluids

The viscosity of the fluid escalates with time under the effect of applied shear

stress is termed as rheopectic fluids also known as shear thinning fluids. When

these fluids are agitated, their viscosity increases. This implies that when the

fluid is jolted, it thickens or even solidifies. Gypsum pastes and printer inks are

rheopectic in nature.[109]

2.5 Basic Definitions

This section comprises of the some basic definitions regarding the various effects

used in momentum, temperature and mass transport equations in order to study

heat as well as mass transport phenomenons.
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Figure 2.3: Non-Newtonian Fluids

2.5.1 Radiation

Thermal radiation is electromagnetic waves produced as a result of thermal move-

ment of the molecules. The transmission of energy via radiation, unlike conduction

and convection, does not need the existence of an intervening medium. Thermal

radiation, which is the type of radiation released by substances as a result of their

temperature, is of particular importance in heat transfer research. Thermal ra-

diation is emitted by the objects having temperature greater than absolute zero.

The radiation discharge from a surface having temperature at zero Ts conveyed by

Stefan–Boltzmann law given below

Q̇emit,max = σAsT
4
s , (2.5)

where σ = 5.67×10−8 is the Stefan–Boltzmann constant having unit W m−2 K4.[110]

2.5.2 Specific Heat

Energy required to raise the temperature of a unit mass of a substance by one

degree is called specific heat.
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Mathematically,

C =
Q

m∆T
, (2.6)

here Q indicates heat energy, m is mass and ∆T represents temperature difference.

The SI unit is J kg−1 K−1.[110]

2.5.3 Thermal Conductivity

The rate of heat transfer through a unit thickness of the material per unit area

per unit temperature difference is termed as thermal conductivity which actually

measures the capacity of the material to transmit heat. Thermal conductivity of

a substance with a high value implies that it is a good heat conductor. Thermal

conduction phenomenon follows the Fourier’s law of thermal conduction.

Mathematically,

Q̇ = −κA∆T
∆x

, (2.7)

where κ, A, ∆T , ∆x represents thermal conductivity, area, temperature difference

and thickness of the material respectively. The SI unit of thermal conductivity is

W m−1 K−1.[110]

2.5.4 Thermal Diffusivity

Thermal Diffusivity represents how fast heat diffuses through a material. Mathe-

matically,

α =
Heat conducted

Heat stored
=

κ

ρCp
. (2.8)

where κ indicates the capacity of any material to transmit heat, and ρCp symbol-

izes the tendency of the material to store heat per unit volume.[110]

2.5.5 Activation Energy

The minimum energy necessary to initiate a chemical reaction is known as activa-

tion energy.
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Mathematically,

k = A exp

(
−Ea
RT

)
, (2.9)

where k, T , R and Ea are pre-exponential factor, temperature, gas constant and

activation energy. The SI unit of activation energy is J mol−1. Swante Arrhenius

presented the idea of activation energy in 1889.[111]

2.6 Dimensionless Numbers

Basic definitions regarding dimensionless numbers appear during numerical simu-

lation of the problems are given below.

2.6.1 Reynold’s Number

Reynold’s number is the ratio of inertial forces to the viscous forces.[111]

This is given by

Re =
wδ

ν
, (2.10)

symbols w, δ and ν are the velocity, layer thickness and kinematic viscosity respec-

tively. Reynold’s number describe the behaviour of viscous fluid flow. Reynold’s

number also explains the fluid behaviour is laminar or turbulent.

2.6.2 Biot Number

The ratio of the heat transferred by convection to the heat flow by conduction is

termed as Biot number. Biot number emerges from Fourier’s-Biot law.

Mathematically, Biot number is represented by

Bi =
hL

κ
, (2.11)

where h, L and κ denotes the heat transmission, length and heat transfer by

conduction respectively having units Wm−2K−1, m and W m−1K−1.[111]
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2.6.3 Schmidt Number

It is the ratio of momentum diffusivity to the mass diffusivity. It provides the

information of velocity and molecular concentration. Mathematically,

Sc =
kinematic viscosity

mass diffusivity
=

ν

D
. (2.12)

The units of ν and D are m2 s−1 and m2 s−1.[111]

2.6.4 Weissenberg Number

It expresses the ratio of relaxation time to the shear velocity. Mathematically,

We =
λµγ̇2

µγ̇
= λγ̇ (2.13)

where γ̇ and λ are the shear rate and the relaxation time having units s−1ands.[111]

2.6.5 Prandtl Number

It is the ratio of the momentum diffusivity to the thermal diffusivity. In the case

of Pr < 1, thermal diffusivity dominates the momentum diffusivity but situation

is opposite in the case of Pr > 1. Mathematically,

Pr =
Kinematic viscosity

Thermal diffusivity
=
ν

α
. (2.14)

The units of ν and α are m2s−1 and m2s−1.[111]

2.6.6 Lewis Number

It is the ratio of thermal diffusivity to the mass diffusivity. Mathematically,

Le =
α

D
, (2.15)
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where α andD are thermal and molecular diffusivites having same units m2s−1.[111]

2.6.7 Peclet Number

Peclet number is the ration of advection versus diffusion.

Large Peclet number indicates the advection flow and a small number indicates a

diffuse flow. Mathematically,

Pe =
Lu

D
, (2.16)

where L, u and D depicts the reference length, velocity and diffusion coefficient

having SI, units m, ms−1 and m2s−1 respectively.[111]

2.6.8 Eckert Number

The Eckert number provides a measure of the kinetic energy of the flow relative

to the enthalpy difference across the thermal boundary layer.

Mathematically, it can be expressed as

Ec =
u2

Cp∆T
, (2.17)

where u, Cp, ∆T denotes fluid flow velocity, specific heat, temperature difference

having units ms−1, m2 s2 K−1 and K.[111]

2.6.9 Grashof Number

Grashof number represents the ratio between the buoyancy force and the viscous

forces. Gravity is the main factor of the buoyancy force which is responsible for

the natural convection phenomenon.

Grashof number is analogous to the Reynold’s number. The free convection oc-

curred due to the buoyancy force and the motion is restricted by the viscous force.

Mathematically,

Gr =
gβ(Tw − T∞)L3

ν2
, (2.18)



Preliminaries 30

where g, β, (Tw − T∞), L, ν indicates gravity, volumetric thermal expansion co-

efficient, temperature difference, characteristic length, kinematic viscosity having

units K−1, K, m and m2 s−1.[111]

2.6.10 Nusselt Number

It is the ratio of the convective heat transfer to conductive heat transmission.

Mathematically,

Nu =
qconv

qcond

=
h∆T

κ∆T
L

=
hL

κ
, (2.19)

where h, L and κ are the heat transmission parameter, medium length and

heat conduction respectively having SI, units W m−2 K−1, m and W m−1 K−1

respectively.[111]

2.6.11 Sherwood Number

It represents the ratio of convective to the diffusive mass transfer. This number

perform same role in terms of mass transmission like Nusselt number in the case

of transmission. Mathematically,

Sh =
hmL

D
, (2.20)

where hm, L andD are the mass transfer coefficient, reference length and molecular

diffusivity having SI, m s−1, m and m2 s−1.[111]

2.7 Double Diffusive Convection

Double diffusive convection is a phenomenon that describes convection induced by

two distinct density gradients with different diffusion speeds. Convection is caused

by density variations within fluids acting under the influence of gravity. Because

the concentrations of heat and salt have independent gradients and diffusing rates,
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oceanography provides a good example of double diffusion convection. Cold water

coming from glacier as a result of melting phenomenon has a high density and

low temperature as compared to salty and high-temperature sea water having

low density. Both of these factors are affected by the input of cold freshwater

from an iceberg. Variables may cause these density changes. Thermal as well

as compositional gradients can disperse with time, diminishing their ability to

drive convection and necessitating the presence of gradients in other areas of the

flow to keep convection going. The conservation Eqs. (2.21)-(2.25) for continuity,

momentum, heat, salinity and buoyancy effect (under Boussinesq’s approximation)

are given by

∇.u = 0, (2.21)

∂u

∂t
+ u.∇u = − 1

ρ0

∇p− g ρ
ρ0

k + ν∇2u , (2.22)

∂T

∂t
+ u.∇T = κT∇2T, (2.23)

∂S

∂t
+ u.∇S = κS∇2S, (2.24)

ρ− ρ0

ρ0

= β(S − S0)− α(T − T0). (2.25)

Symbols, κT and κS are thermal conductivity of heat and salt, ν is the kinematic

viscosity and (ρ0, p0, T0, S0) denote the (constant) reference values of density, pres-

sure, temperature and salinity.[112]

For more details on double diffusive convection phenomenon, see references [112–

114].

2.8 Bioconvection

Bioconvection patterns are actually the joint phenomenon appear as a result of

swimming of microorganisms having denser than water in suspensions. The mi-

croorganisms gathering at the upper surface for the purpose of oxygen and light.

The upper surface of the fluid becomes too dense and becomes unstable as a result

of the gathering of microorganisms. The microorganisms fall down generate the
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bioconvection phenomenon.[115]

Taxes is actually the swimming of microorganisms in certain direction in response

to the certain stimuli. Different types of taxes are given below.

2.8.1 Gyrotaxis

Gyrotaxis phenomenon is obtained by the balancing the two torques. The first

one is termed as viscous torque that works on a body situated in a shear flow

direction. The second one is termed as the gravitational torque which is generated

by the gravity effect because the microorganism centre of mass is dislocated from

its center of buoyancy in a negative direction.[115]

2.8.2 Gravitaxis

In the case of Gravitaxis microorganisms swimming in the direction opposite to

the gravity effect. Algae cells like Chlamydomonas, ciliated protozoan exhibits

gravitactic behaviour. [115]

2.8.3 Phototaxis

Phototaxis is the phenomenon in which microorganisms move towards or away

from the light source. In the case of positive Phototaxis, microorganisms move

straight in the direction of light source and negative phototaxis directed the move-

ment of microorganisms away from the light source.[115]

2.8.4 Oxytaxis

The level of oxygen is not sufficient in the lower region of the fluid, the bacteria

present in lower region of the fluid consume all oxygen very quickly, as the result

the deficiency of the oxygen occur in the lower region of the fluid causing the bac-

teria inactive. The lively bacteria move toward the upper region having sufficient
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oxygen and causing the upper layer of the fluid unsettled due the abundance of

microorganisms which give rise to the process of bioconvection.[115]

For more details on bioconvection phenomenon, see reference [115].

2.9 Catalysis and Its Types

A catalyst speed up a chemical reaction. It is doing so by making bonds with the

molecules reacting with each other, and by permitting these molecules to react

with each other in order to create a product, which detaches from the catalyst,

and left it unchanged in such a way that it is accessible for the next reaction.[116]

There are three types of catalysis

2.9.1 Homogeneous Catalysis

In the case of homogeneous catalysis, both the catalyst and the reactants are

situated in the same phase, i.e. catalyst and the reactants are in the gas phase, or,

in the liquid phase. Ozone is the simple example of homogeneous catalysis given

by [116]

Cl + O3 → ClO3,

ClO3 → ClO + O2, (2.26)

ClO + O → Cl + O2,

or over all

O3 + O → 2O2. (2.27)

2.9.2 Biocatalysis

Enzymes are nature’s catalysts. Enzyme catalysis the decomposition of hydrogen

peroxide taken as reactant in order to form the product comprising of water and
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oxygen given by

2H2O2 → H2O(g) + O2. (2.28)

Enzymes are type of chemical reaction permit biological reactions to occur at the

rates mandatory to attain life cycle, in particular the formation of proteins and

DNA.[116]

2.9.3 Heterogeneous Catalysis

In the process of heterogeneous catalysis, catalyst are in solid form reacts with

molecules of a solution to form a product. As solids are usually porous in nature

and impenetrable, catalytic reactions happen at the solid surface. To utilize the

commonly used metal like platinum in an economical way to achieve the desired

chemical reaction, catalysts are 1-100 nanometer in size, supported on an inert,

porous structure.[117]

Different types of heterogenous reactions are

CaCO3(s) 
 CO2(g) + CaO(s), (2.29)

2H2O(l) 
 2H2(g) + O2(g). (2.30)

For more details on catalysis, see references [116] and [117].

2.10 Governing Laws Regarding Heat and Mass

Transport in Fluids

2.10.1 Continuity Equation

The expression regarding law of conservation of mass conservation is given by

∂ρ

∂t
+∇.(ρV) = 0. (2.31)



Preliminaries 35

The symbols ρ and V expresses the density and the fluid velocity. The expression

Eq. (2.31) in the case of incompressible fluid is given by

∇.V = 0. (2.32)

In term of cartesian coordinates

∂u

∂x
+
∂ν

∂y
+
∂w

∂z
= 0, (2.33)

whereas the symbols u, v and w denotes the elements of velocity components in

x, y and z direction. [118]

2.10.2 Momentum Equation

The mathematical form of momentum equation is conveyed by

∂(ρV)

∂t
+∇.[(ρV)V]−∇.τ1 − ρg = 0. (2.34)

Expression regarding the internal forces appears in the body is premeditated by

τ1 = −pI + S. (2.35)

Now the momentum expression takes the form

ρ

(
∂V

∂t
+ V.(∇V)

)
= ∇.(−pI + S) + ρg. (2.36)

The symbols g, p and S indicates the body force, pressure and extra stress tensor.

Cauchy stress tensor express in the following form

τ =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 . (2.37)
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The Eq. (2.36) can be further transformed into by taking scaler product with basis

vectors and further take g = −g∇z where z is distance from an arbitrary reference

elevation in the direction of gravity. Now the Eq. (2.34) is

ρ

(
DV

Dt

)
= ρ

(
∂V

∂t
+ V.(∇V)

)
= ∇.(−pI + S) +∇(−ρgz). (2.38)

Cartesian coordinates of the velocity are V = [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)].

The steady state incompressible momentum equation in components form is man-

ifested by

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=
∂σxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ ρgx. (2.39)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂u

∂y
+ w

∂v

∂z

)
=
∂τyx
∂x

+
∂σyy
∂y

+
∂τyz
∂z

+ ρgy. (2.40)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=
∂τzx
∂x

+
∂τzy
∂y

+
∂σzz
∂z

+ ρgz. (2.41)

Components of Cauchy stress tensor are τxx, τxy, τxz, τyx, τyy, τyz, τzx, τzy and τzz

and the body force comprises of gx, gy and gz.[118]

2.10.3 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is derived from magneto-mean magnetic field, hy-

dro-mean water, dynamics-mean motion. Magnetohydrodynamics analyze the

performance of electrically conducting fluids like salt water, electrolytes and plas-

mas. Hannes Alfven presented the idea of MHD in 1889. The expression for

momentum equation together with the magnetic field is given by

ρ

(
∂u

∂t
+ (V∇)V

)
= −∇P + j ×B, (2.42)

where P , B, V and j expresses kinetic pressure, magnetic field, velocity and

current density. The expression of current density in the light of Ohm’s law is

given by

j = σE′, (2.43)
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whereas the symbols σ and E ′ represents the electric conductivity and electric field.

The motion of plasma with velocity V in the occurrence of external magnetic field

as well as Lorentz transformation is given by

E′ = E + V×B, (2.44)

now Eq. (2.43) takes the form

1

σ
j = E + V×B, (2.45)

after assuming σ →∞ , we get

E = −V×B, (2.46)

mathematical expression for Faraday’s law is mentioned below

∇× E = −∂B
∂t
, (2.47)

after omitting electric field, the MHD equation is represented by

∂B

∂t
= ∇× (V×B). (2.48)

still the MHD expression incomplete, we implement fourth Maxwell’s law which

is actually the generalization of the Ampere circuital law.

The mathematical equation of fourth Maxwell’s law is denoted by

∇×B = µ0j +
1

c2

∂E

∂t
, (2.49)

neglecting ∂E
∂t

in the equation mentioned above we get

∇×B = µ0j, (2.50)

the magnetic field B should fulfil the condition ∇.B = 0. The expressions for

MHD in closed form are mentioned below:
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ρ

(
∂V

∂t
+ (V∇)V

)
= −∇P +

1

µ0

(∇×B)×B, (2.51)

and
∂B

∂t
= ∇× (V×B). (2.52)

The expressions V and B indicates the fluid velocity and magnetic field.[119]

2.10.4 Energy Transport

According to the energy conservation theory (Total energy remains constant).

[118] The mathematical expression regarding the conservation of energy is denoted

by

ρ

[
∂U

∂t
+ V.∇U

]
= [τ1 : ∇V + p∇.V] +∇(κ∇T )± Ĥr. (2.53)

The symbols U and Ĥr used in the above expression represents internal energy and

internal heat respectively. Introducing the expression of constant volume process

dU ≡ Cvdt in the expression given above provides

ρCv

[
∂T

∂t
+ V.∇T

]
= [τ1 : ∇V + p∇.V] +∇(κ∇T )± Ĥr. (2.54)

If the fluid is incompressible then V = 0, ∇.V = 0 and furthermore take Cv = C,

then the final form of energy equation become

ρC
∂T

∂t
= ∇(κ∇T )± Ĥr. (2.55)

2.10.5 Mass Transport

The mathematical expression regarding Fick’s second law is given by

dC

dt
= −∇.j. (2.56)

According to Fick’s first law, molar flux j and the diffusivity phenomenon D and
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directly linked with each other and mathematically written as

j = −D∇C. (2.57)

Taking derivative of Eq. (2.57) and using in Eq. (2.56) provides the mass transport

equation mentioned underneath

dC

dt
= D∇2C. (2.58)

The symbols C, D and j expresses the mass concentration, diffusion and flux.

2.11 Mass Transfer

Mass transfer is actually the transport of net mass from region of having high

concentration of the molecules towards the area having lower concentration of

the molecules and moreover concentration difference occur in the two objects is

the leading force responsible for net transport of the mass from one place to an-

other different place. The process of mass transport rely on two factors termed

as convection and diffusion. Mass transfer has distinguished utilizations in dif-

ferent areas like purification of kidneys and liver, reactor engineering, absorbers,

distillation of alcohol, cooling towers etc. Fick’s first and second law of diffusion

describes the mass transport process very precisely. The mass transport phe-

nomenon with the inclusion of effects like chemical reaction, activation energy,

homogeneous/heterogenous reaction, double diffusion convection and motile gy-

rotatic microorganisms have been discussed theoretically and experimentally in

next chapters.



Chapter 3

Impact of Heat Source/ Sink and

Variable Species Diffusivity on

Radiative Reiner-Philippoff Fluid

The impact of distinguished effects like variable thermal conductivity and molecu-

lar diffusivity on radiative Reiner-Philippoff fluid moving over a stretchable surface

accompanied with heat source/sink has been investigated in detail. Temperature

inside the fluid is controlled with the implementation of nonlinear based ther-

mal radiation and variable change in thermal conduction phenomenons. Variable

change in fluid concentration can be examined under the effect of variable molec-

ular diffusion. The PDEs are converted into ODEs with the help of suitable self

similarity variables. Furthermore, the dimensionless model is numerically handled

with the utilization of well established shooting technique. The influence of dimen-

sionless essential parameters on mass fraction field, Nusselt number, velocity field

are examined through tables and graphs. It is noteworthy that a magnification in

species diffusivity parameter guides to an incremental change in the concentration

field. An amplification in the Reiner-Philippoff fluid effect promotes shear thick-

ening behaviour inside the fluid which reduces the fluid speed and magnifies the

temperature field. Reliability of the numerical outcomes is judged by comparing

the obtained outcomes with the already available literature.

40
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3.1 Mathematical Formulation

The stress-deformation relation of Reiner–Philippoff fluid [8] is:

∂u

∂y
=

τij

µ∞ +
µ0 − µ∞

1 +

(
τ

τs

)2

. (3.1)

The distinguished symbols such as τ , τs, µ0 and µ∞ indicate the shear stress,

reference shear stress, zero shear viscosity and limiting viscosity. Reiner–Philippoff

fluid belongs to a class of non-Newtonian fluids which exhibits all three, dilatant,

Newtonian and pseudo-plastic type behaviours. The depicted flow function [9] is

defined as

f(ζ) =
ζ

1 +
λ− 1

1 + ζ2

, (3.2)

where ζ = τ
τs

and λ = µ0
µ∞

. The behaviour of the fluid varies with change in λ. Fluid

behaves like Newtonian in case of λ = 1, dilatant for λ < 1 and pseudo-plastic

for λ > 1. Figure 3.1 reflects the geometrical behaviour of two dimensional non-

Figure 3.1: Flow model

Newtonian Reiner-Philippoff fluid moving over a stretched sheet with stretching

velocity uw = U0x
1/3 acting along x-axis. At the surface of the sheet, the terms
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Tw and Cw indicates temperature as well as concentration whereas T∞ and C∞

depicts free stream temperature as well as concentration. The effects like thermal

radiation, thermal conductivity and heat source have been taken to study the heat

transfer phenomena in energy equation while the variable molecular diffusivity is

assumed to affect the mass transfer phenomenon. For the Reiner-Philippoff fluid

the relation between stress τij as well as strain-rate eij is given by [1]

τij =

[
µ0 +

µ∞ − µ0

1
2τ20

(
∑3

p=1

∑3
q=1 τpqτqp)

]
eij. (3.3)

This model has the ability to transform Newtonian models of the viscosity having

coefficients µ0 and µ∞ as well as the shear rate τ0 approaches to zero or infinity.

The fluid flow phenomenon of these types of fluid models are quite interesting in

terms of it applications. It is quite interesting that an increment or decrement in

τ0 changes the fluid properties to the Newtonian, while for the intermediate values

in the case of τ0, the behaviour is markedly non-Newtonian. The mathematical

expression of Navier Stoke’s equation is given by

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+
∂p

∂x
=
∂τxx
∂x

+
∂τxy
∂y

, (3.4)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+
∂p

∂y
=
∂τxy
∂x

+
∂τyy
∂y

, (3.5)

∂u

∂x
+
∂v

∂y
= 0. (3.6)

It is not easy to obtain the explicit values for the case of stress components relating

to the velocity components by considering the assumption given below

1. In the case of smaller value of τ0, the shear rate having order fourth or greater

is negligible, the mathematical of stress behaviour is given below

τxx = τ 0
xx + τ 2

0 τ
′
xx, (3.7)

where τ 0
xx indicates the stress element in terms of Newtonian fluid having

viscosity coefficient µ0 and moreover τ ′xx represents remaining contribution
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in the case of Reiner-Philippoff fluid in terms of stress component. The

mathematical expression of τ 0
ij is premeditated by

τ 0
xx = µ0

(
2
∂u

∂x

)
, τ 0

yy = µ0

(
2
∂v

∂y

)
, τ 0

xy = µ0

(
∂u

∂y
+
∂v

∂x

)
, (3.8)

subsisting from Eq. (3.7) and Eq. (3.8) in Eq. (3.3), we get

τij =

[
µ0 +

µ∞ − µ0

1
2τ20

(τ 02
xx + 2τ 02

xy + τ 02
yy + ...)

]
eij. (3.9)

Ignoring higher powers of τ0, the expression of stress component is given by

τij =

[
µ0 +

2(µ∞ − µ0)

τ 02
xx + 2τ 02

xy + τ 02
yy

]
eij. (3.10)

2. when τ0 is large such that fourth and higher powers of 1
τ0

can be neglected,

the stress components are given by

τxx = τ∞xx +
τ ′′xx
τ 2

0

, (3.11)

where τ∞xx is the stress component for the Newtonian fluid of viscosity coeffi-

cient µ∞ and τ ′′xx is the remaining contribution of the Reiner-Philippoff fluid

to the stress components.

The mathematical expressions of τ 0
ij are premeditated by

τ 0
xx = µ∞

(
2
∂u

∂x

)
, τ∞yy = µ∞

(
2
∂v

∂y

)
, τ∞xy = µ∞

(
∂u

∂y
+
∂v

∂x

)
, (3.12)

substituting from Eq. (3.10) in Eq. (3.3) we get

τij =

[
µ∞ +

(µ0 − µ∞)(τ∞xx + 2τ∞xy + τ∞yy )

2τ 2
0

]
eij, (3.13)

In Eq. (3.7) and Eq. (3.11), the expressions mentioned in square brackets

can be expressed as λ0 as well as λ∞. The symbols λ0 and λ∞ expresses the

zero fluid shear rate and infinite fluid shear rate. The term eij represents the

rate at which the fluid deforms. Substituting the values of stress component
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from Eq. (3.7) and Eq. (3.11) in Eq. (3.4) and Eq. (3.5), we get

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

∂

∂x

[
2λ
∂u

∂x

]
+

∂

∂y

[
λ

(
∂u

∂y
+
∂v

∂x

)]
. (3.14)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

∂

∂x

[
λ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂y

[
λ.2

∂v

∂y

]
. (3.15)

The order of t, x and u are unity and y having order δ. In eq. (3.14), the

symbols v and λ are represented by orders δ and δ2. It s not a difficult

task to evaluate the orders of various expressions included in Eq. (3.14) and

Eq. (3.15). Under the application of boundary layer assumptions, the steady

state incompressible fluid in the light of Eq. (3.14) and Eq. (3.15) are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

[
∂

∂y
λ
∂u

∂y

]
, (3.16)

Pressure gradient is constant along the vertical direction y-axis

0 = −∂p
∂y
. (3.17)

The PDEs after the utilization of boundary layer theory approximations are

given by
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂U

∂x
+

1

ρ

[
∂

∂y
λ
∂u

∂y

]
, (3.18)

∂u

∂x
+
∂v

∂y
= 0. (3.19)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
=

1

ρ

[
∂

∂y
λ
∂u

∂y

]
, (3.20)

whereas
∂u

∂y
=

τij

µ∞ +
(µ0 − µ∞)

1 +

(
τij
τs

)2

. (3.21)

The governing equations [8], are enumerated underneath:

∂u

∂x
+
∂v

∂y
= 0, (3.22)
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u
∂u

∂x
+ v

∂u

∂y
=

1

ρf

∂τ

∂y
, (3.23)

1

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κ(T )

∂T

∂y

)
+
κ∞Uw(x)

xv

[
A∗(T0 − T∞)e−η

+B∗(T − T∞)
]
− ∂qr
∂y

, (3.24)

u
∂C

∂x
+ v

∂C

∂y
=

∂

∂y

(
DB(C)

∂C

∂y

)
. (3.25)

The boundary conditions associated with the above Riener-Philippoff model are

premeditated by

y = 0 : u(x, y) = U(x), v = 0, T = Tw, C = Cw,

y →∞ : u→ 0, T → T∞, C → C∞.

 (3.26)

The variable thermal conductivity and variable molecular diffusivity [7] are given

by

κ(T ) = κ∞

(
1 + ε1

(
T − T∞
Tw − T∞

))
, (3.27)

DB(C) = DB∞

(
1 + ε2

(
C − C∞
Cw − C∞

))
. (3.28)

The last expression mentioned in the governing modeled energy equation (3.52)

is termed as thermal radiation heat flux based on the Rosseland approximation.

Rosseland approximation relies on the hypotheses that the participating medium

fluid) is an optically thick in which the radiation cover a smaller distance before

it encounter with scattering or absorption phenomenon. The penetration length

of radiation is small compare to the characteristic length and moreover photon

mean free length is very small. The Rosseland Radiative heat flux [94] applies to

optically thick boundary layer flow mentioned in (3.52) is premeditated by

qr = −4σ∗

3κ∗
∂T 4

∂y
= −16σ∗

3κ∗
T 3∂T

∂y
. (3.29)

The symbols σ∗ signifies the constant worth of Stefan-Boltzmann and κ∗ symbols

the rate. The mathematical expressions for stream functions u = ∂ψ
∂y

and v = −∂ψ
∂x

.
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A similarity transformation [6] under the effect of the stretching velocity uw =

U(x) = U0x
1/3 is given below:

ψ =
√
U(x)xνf(η), η =

√
U(x)

νx
y, τ = ρ

√
U3

0 νg(η),

φ(η) =
C − C∞
Cw − C∞

, θ(η) =
T − T∞
Tw − T∞

.

 (3.30)

The detailed procedure for the conversion of Eqs. (3.50)-(3.53) are given below.

� ψ =
√
U(x)xνf

=
√
U0νx

2/3f

u =
∂ψ

∂y

=
√
U0νx

2/3∂f

∂η
.
∂η

∂y

= U0x
1/3f ′. (3.31)

� v = −∂ψ
∂x

= − ∂

∂x

√
U(x)νx2/3f

= −

(
2

3

√
U0

ν
x−1/3f +

√
U0

ν
x2/3f ′

(
−1

3

√
U0

ν
x−4/3y

))

= −

(
2

3

√
U0

ν
x−1/3f − 1

3

√
U0

ν
x2/3f ′x−1

(√
U0

ν
x−1/3y

))

= −2

3

√
U0

ν
x−1/3f +

1

3
η

√
U0

ν
x−1/3f ′. (3.32)

�

∂u

∂x
=

∂

∂x
(U0x

1/3f ′)

=
1

3
U0x

−2/3f ′ + U0x
1/3f ′′

(
−1

3
x−4/3y

)
=

1

3
U0x

−2/3(f ′ − ηf ′′) (3.33)

�

∂u

∂y
= U0x

1/3∂f
′

∂η

∂η

∂y

= U0x
1/3f ′′.

√
U0

ν
x−1/3

= U0

√
U0

ν
f ′′. (3.34)
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�

∂v

∂y
=

∂

∂y

(
−2

3

√
U0νx

−1/3f +
1

3
η
√
U0νx

−1/3f ′
)

= −1

3
U0x

−2/3f ′ +
1

3
ηU0x

−2/3f ′′

=
1

3
U0x

−2/3(−f+ηf ′′)

=
1

3
U0x

−2/3(−f ′ + ηf ′′). (3.35)

� u
∂u

∂x
= U0x

1
3f ′(η)

(
1

3
U0x

−2
3 f ′ − 1

3
ηU0x

−2
3 f ′′

)
=

1

3
U2

0x
−1
3 f ′2 − 1

3
ηU2

0x
−1
3 f ′f ′′. (3.36)

� v
∂u

∂y
=

(
−2

3

√
U0νx

−1
3 f +

1

3
η
√
U0νx

−1
3 f ′
)
.

√
U0

ν
U0f

′′

=
−2

3
U2

0x
−1
3 ff ′′ +

1

3
ηU2

0x
−1
3 f ′f ′′. (3.37)

� τ = ρ
√
U3

0 νg

∂τ

∂y
=

√
U0

ν
x−1/3ρ

√
U3

0 νg
′

= ρU2
0x
−1/3g′. (3.38)

�

∂T

∂x
= (Tw − T∞)

∂θ

∂η
.
∂η

∂x

= (Tw − T∞)θ′

(
−1

3

√
U0

ν
x−4/3y

)
. (3.39)

� u
∂T

∂x
= U0x

1/3f ′.

(
−1

3
x−1

(√
U0

ν
x−4/3y

)
(Tw − T∞)θ′

)
= −1

3
ηU0x

−2/3(Tw − T∞)f ′θ′. (3.40)

�

∂T

∂y
=

∂

∂y
((Tw − T∞)θ + T∞)

=
∂θ

∂η

∂η

∂y

= (Tw − T∞)

√
U0

ν
x−1/3θ′. (3.41)

� v
∂T

∂y
=

(
−2

3

√
U0νx

−1/3f +
1

3
η
√
U0νx

−1/3f ′
)
.(Tw − T∞)

√
U0

ν
x−1/3θ′(η)

= U0x
−2/3(Tw − T∞)

(
−2

3
fθ′ +

1

3
ηf ′θ′

)
. (3.42)
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� κ(T ) = κ∞

(
1 + ε1

(
T − T∞
Tw − T∞

))
= κ∞ (1 + ε1θ) . (3.43)

�

∂κ(T )

∂y
=

ε1κ∞
(Tw − T∞)

.
∂θ

∂η

∂η

∂y

=
ε1κ∞

(Tw − T∞)
.(Tw − T∞)

√
U0

ν
x−1/3θ′

= κ∞ε1

√
U0

ν
x−1/3θ′. (3.44)

�

∂T

∂y
.
∂κ(T )

∂y
= κ∞ε1

√
U0

ν
x−1/3θ′.(Tw − T∞)

√
U0

ν
x−1/3θ′

= (Tw − T∞)κ∞ε1

(
U0

ν

)
x−2/3θ′

2

. (3.45)

�

∂2T

∂y2
=

∂

∂y

(
∂T

∂y

)
=

∂

∂y

(
(Tw − T∞)

√
U0

ν
x−1/3θ′

)

= (Tw − T∞)

√
U0

ν
x−1/3.

∂θ′

∂η
.
∂η

∂y

=

√
U0

ν
x
−1
3 .

√
U0

ν
x−1/3(Tw − T∞)θ′′

=

(
U0

ν

)
x−2/3(Tw − T∞)θ′′. (3.46)

� κ(T )
∂2T

∂y2
= κ∞

√
U0

ν
x−2/3(Tw − T∞) (1 + ε1θ) θ

′′. (3.47)

�

1

ρCp

∂

∂y

(
κ(T )

∂T

∂y

)
=

1

ρCp

(
∂κ(T )

∂y

∂T

∂y
+ κ(T )

∂2T

∂y2

)
=

κ∞
ρCp

U0

ν
x−2/3(Tw − T∞)

(
ε1θ
′2 + (1 + ε1θ) θ

′′)
=

(Tw − T∞)U0x
−2/3 (ε1θ

′2 + (1 + ε1θ) θ
′′)(

µCp
κ∞

) . (3.48)

� T 3∂
2T

∂y2
= ((Tw − T∞)θ + T∞)3.

(
U0

ν

)
x−2/3(Tw − T∞)θ′′

= T 3
∞

(
1 +

(Tw − T∞)

T∞
θ

)3

.

(
U0

ν

)
x−2/3(Tw − T∞)θ′′

= T 3
∞(1 + (θw − 1)θ)3

(
U0

ν

)
x−2/3(Tw − T∞)θ′′. (3.49)
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� T 2

(
∂T

∂y

)2

= ((Tw − T∞)θ + T∞)2.

(
(Tw − T∞)

√
U0

ν
x−1/3θ′

)2

= ((Tw − T∞)θ + T∞)2.

(
(Tw − T∞)2

(
U0

ν

)
x−2/3θ′2

)
= T 3

∞

(
1 +

(Tw − T∞)

T∞
θ

)2(
(Tw − T∞)

(
Tw
T∞
− 1

)(
U0

ν

)
x−2/3θ′2

)
= T 3

∞(1 + (θw − 1)θ)2

(
(Tw − T∞)(θw − 1)

(
U0

ν

)
x−2/3θ′2

)
. (3.50)

� qr = −16σ∗

3κ∗
T 3∂T

∂y

1

ρCp

∂qr
∂y

= −16σ∗

3κ∗
1

ρCp

((
T 3∂

2T

∂y2

)
+ 3T 2

(
∂T

∂y

)2
)

= −16σ∗T∞3

3κ∗
1

ρCp

(
U0

ν

)
x−2/3

(
(1 + (θw − 1)θ)3(Tw − T∞)θ′′

+ 3(1 + (θw − 1)θ)2(θw − 1)(Tw − T∞)θ′2
)
. (3.51)

�

κ∞Uw(x)

xνρCp

(
A∗(Tw − T∞)e−η +B∗(T − T∞)

)
=
κ∞U0x

1/3(Tw − T∞)

xνρCp

(
A∗e−η +B∗θ

)
=
U0x

−2/3(Tw − T∞)(
µCp
κ∞

) (
A∗e−η +B∗θ

)
. (3.52)

�

∂C

∂x
=

∂

∂x
((Cw − C∞) + C∞)

= (Cw − C∞)
∂φ

∂η

(
−1

3

√
U0

ν
x−4/3y

)

= (Cw − C∞)φ′

(
−1

3
x−1

(√
U0

ν
x−1/3y

))

= (Cw − C∞)φ′
(
−1

3
ηx−1

)
= −1

3
ηx−1(Cw − C∞)φ′. (3.53)

� u
∂C

∂x
= U0x

1
3f ′(η).

(
−1

3
ηx−1(Cw − C∞)φ′

)
= (Cw − C∞)

(
−1

3
ηU0x

−2/3

)
f ′φ′

= −1

3
ηU0x

−2/3(Cw − C∞)f ′φ′. (3.54)
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�

∂C

∂y
=
∂C

∂η

∂η

∂y

= (Cw − C∞)φ′.

√
U0

ν
x−1/3. (3.55)

� v
∂C

∂y
= U0(Cw − C∞)x

−1
3

(
−2

3
x−1/3f +

1

3
ηx−1/3f ′

)
φ′

= (Cw − C∞)U0x
−2/3

(
−2

3
fφ′ +

1

3
ηf ′φ′

)
. (3.56)

� DB(C) = DB∞

(
1 + ε2

(
C − C∞
Cw − C∞

))
. (3.57)

�

∂DB(C)

∂y
= DB∞ε2

(
1

Cw − C∞

)
∂C

∂y

=
DB∞ε2

(Cw − C∞)
.(Cw − C∞)

√
U0

ν
x−1/3φ′(η)

= DB∞ε2

√
U0

ν
x−1/3φ′(η). (3.58)

�

∂DB(C)

∂y
.
∂C

∂y
= DB∞ε2(Cw − C∞)

(
U0

ν

)
x−2/3φ′2(η). (3.59)

�

∂2C

∂y2
= (Cw − C∞)

√
U0

ν
x−1/3∂φ

′

∂η
.
∂η

∂y

= (Cw − C∞)

(
U0

ν

)
x−2/3φ′′. (3.60)

� DB(C)
∂2C

∂y2
= DB∞

(
1 + ε2

(
C − C∞
Cw − C∞

))
.(Cw − C∞)

(
U0

ν

)
x−2/3φ′′

= DB∞(Cw − C∞)

(
U0

ν

)
x−2/3(1 + ε2)φ′′. (3.61)

�

∂

∂y

(
DB(C))

∂C

∂y

)
=

(
∂DB(C)

∂y

∂C

∂y
+DB(C)

∂2C

∂y2

)
= DB∞(Cw − C∞)

(
U0

ν

)
x
−2
3

(
ε2φ
′2(η) + (1 + ε2)φ′′

)
. (3.62)

The dimensionless form of stress deformation equation mentioned in (3.1) is given

by

�

∂u

∂y
=

τ

µ∞ +
µ0 − µ∞

1 +

(
τ

τs

)2
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=
τ

µ∞ +
τ 2
s (µ0 − µ∞)

τ 2 + τ 2
s

=
τ(τ 2 + τ 2

s )

µ∞τ 2
s + µ∞τ 2 + µ0τ 2

s − µ∞τ 2
s

=
τ(τ 2 + τ 2

s )

µ∞τ 2 + µ0τ 2
s

.

⇒ U
3/2
0√
ν
f ′′ =

ρ
√
U3

0 νg(τ 2
s + (ρ

√
U3

0 νg)2)

µ∞(ρ
√
U3

0 νg)2 + µ0τ 2
s

=
ρ
√
U3

0 νg.ρ
2U3

0 ν
(

τ2s
ρ2U3

0 ν
+ g2

)
µ∞ρ2U3

0 ν
(
µ0
µ∞

τ2s
ρ2U3

0 ν
+ g2

)
=
ρ
√
U3

0 νg

µ∞

g2 + γ2

g2 + λγ2
.

⇒ U
3/2
0

ρ
√
ν
.

µ∞

U
3/2
0

√
ν
f ′′ = g

g2 + γ2

g2 + λγ2

⇒ g = f ′′
g2 + λγ2

g2 + γ2
. (3.63)

Using (3.33) and (3.34) in the continuity equation (3.22), we get

∂u

∂x
+
∂v

∂y
=

1

3
U0x

−2/3(f ′(η)− ηf ′′(η)− f ′(η) + ηf ′′(η)) = 0. (3.64)

Using (3.36)-(3.38) in (3.23), the dimensionless momentum equation is

ρf

(
1

ρf
U2

0x
−1/3g′

)
=

1

3
U2

0x
−1/3f ′2 − 2

3
U2

0x
−1/3ff ′′

U2
0x
−1/3g′ =

1

3
U2

0x
−1/3f ′2 − 2

3
U2

0x
−1/3ff ′′

g′ =
1

3
f ′2 − 2

3
ff ′′. (3.65)

The dimensionless temperature equation (3.24) after using (3.39)-(3.52) is

− 2

3
U0x

−2/3(Tw − T∞)fθ′

= (Tw − T∞)U0x
−2/3

(
(ε1θ

′2 + (1 + ε1θ) θ
′′)

µCp
κ∞

+
16σ∗T∞3

3κ∗(ρCp)(µCp)

(
(1 + (θw − 1)θ)3θ′′

+ 3(1 + (θw − 1)θ)2(θw − 1)θ′2
)

+
(A∗e−η +B∗θ)

µCp
κ∞

)
.
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⇒
(
ε1θ
′2 + (1 + ε1θ) θ

′′)+
16σ∗T∞3

3κ∗κ∞

(
(1 + (θw − 1)θ)3θ′′

+ 3(1 + (θw − 1)θ)2(θw − 1)θ′2
)

+
(
A∗e−η +B∗θ

)
+

2

3

(
µCp
κ∞

)
fθ′ = 0

⇒
(
ε1θ
′2 + (1 + ε1θ) θ

′′)+
2

3
Prfθ′ +

4

3
Rd

(
(1 + (θw − 1)θ)3θ′′

+ 3(1 + (θw − 1)θ)2(θw − 1)θ′2
)

+
(
A∗e−η +B∗θ

)
= 0

⇒
(

(1 + ε1θ) +
4

3
Rd(1 + (θw − 1)θ)3

)
θ′′

+
(
ε1 + 4Rd(1 + (θw − 1)θ)2(θw − 1)

)
θ′2

+
2

3
Prfθ′ + (A∗e−η +B∗θ) = 0, (3.66)

where ε1 and ε2 are parameters depending on nature of the fluid, Rd denotes

thermal radiation, A∗ and B∗ are space and temperature dependent heat

source and sink

Using (3.53)-(3.62) in the concentration equation (3.25) gives

− 2

3
U0(Cw − C∞)x−2/3fφ′ = DB∞(Cw − C∞)

(
U0

ν

)
x−2/3((1 + ε2)φ′′ + φ′2)

⇒ − 2

3
fφ′ =

DB∞

ν
(((1 + ε2)φ)φ′′ + ε2φ

′2)

⇒ − 2

3
fφ′ =

1
ν

DB∞

(((1 + ε2)φ)φ′′ + ε2φ
′2)

⇒ − 2

3
fφ′ =

1

Sc
(((1 + ε2)φ)φ′′ + ε2φ

′2)

⇒ (1 + ε2φ)φ′′ + ε2φ
′2 +

2

3
Scfφ′ = 0. (3.67)

The distinguished parameters appearing in the above equations are given by

γ =

(
%s

ρ
√
U3

0 v

)
, λ =

µ0

µ∞
, P r =

µCp
k∞

, Sc =
ν

DB∞
, Rd =

4σT 3
∞

k∗k∞
,

θw =
Tw
T∞

.

 (3.68)

where γ and λ are Bingham number and Reiner-Philippoff fluid parameter.

The dimensionless boundary conditions is achieved through the procedure
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� u = U(x) at y = 0

⇒ U(x) = U0x
1
3f ′(η) at η = 0

⇒ U0x
1
3 = U0x

1
3f ′(η) at η = 0

⇒ f ′(η) = 1 at η = 0. (3.69)

� v = 0 at y = 0

⇒
√
U0νx

−2
3

3
(−2f(η) + ηf ′(η)) = 0 at η = 0

⇒ −2

3

√
U0νx

−2
3 f(η) + 0 = 0 at η = 0

⇒ −2

3

√
U0νx

−2
3 f(η) = 0 at η = 0

⇒ f(η) = 0 at η = 0. (3.70)

� T (x, y) = Tw at y = 0

⇒ (Tw − T∞)θ(η) + T∞ = Tw at η = 0

⇒ (Tw − T∞)θ(η) = Tw − T∞ at η = 0

⇒ θ = 1. at η = 0. (3.71)

� C(x, y) = Cw at y = 0

⇒ (Cw − C∞)φ(η) + C∞ = Cw at η = 0

⇒ (Cw − C∞)φ(η) = Cw − C∞ at η = 0

⇒ φ = 1. at η = 0. (3.72).

� U(x)→ 0 as y →∞

⇒ U0x
1
3f ′(η)→ 0 as η →∞

⇒ f ′ → 0. as η →∞ (3.73)

� T (x, y)→ T∞ as y →∞

⇒ (Tw − T∞)θ(η) + T∞ → T∞ as η →∞

⇒ (Tw − T∞)θ(η)→ T∞ − T∞ as η →∞

⇒ θ → 0 as η →∞. (3.74)
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� C(x, y)→ C∞ as y →∞

⇒ (Cw − C∞)φ(η) + C∞ → C∞ as η →∞

⇒ (Cw − C∞)φ(η)→ C∞ − C∞ as η →∞

⇒ φ→ 0 as η →∞. (3.75)

The surface drag coefficient, Cfx is given by

Cfx =
τ(
ρU2

w

2

)
=

2ρ
√
U3

0 νg

ρU2
0x

2/3

=
2U

3/2
0

√
νg

U2
0x

2/3

=
2
√
νg

U
1
2

0 x
2/3

⇒ Cfx
2

√
Rex = g. (3.76)

The Nusselt number is formulated as

Nux =
xqw

κ∞(Tw − T∞)
, where

qr = −16σ∗

3κ∗

(
T 3∂T

∂y

)
,

= −16σ∗

3κ∗
((Tw − T∞)θ + T∞)3(Tw − T∞)

√
U0

ν
x−1/3θ′,

= −16σ∗

3κ∗
T 3
∞(1 + (θw − 1)θ)3(Tw − T∞)

√
U0

ν
x−1/3θ′, (3.77)

qw = −κ∞
(
∂T

∂y

)
+ qr,

= (Tw − T∞)

√
U0

ν
x−1/3

(
−κ∞θ′ −

16σ∗

3κ∗
T 3
∞
(
(1 + (θw − 1)θ)3θ′

))
,

= −κ∞(Tw − T∞)

√
U0

ν
x−1/3

(
θ′ +

4

3
Rd(1 + (θw − 1)θ)3θ′

)
. (3.78)

therefore,

Nux =
−xκ∞(Tw − T∞)

√
U0

ν
x−1/3

(
1 + 4

3
Rd(1 + (θw − 1)θ)3

)
θ′

κ∞(T0 − T∞)
,

= −
√
U0

ν
x2/3

(
1 +

4

3
Rd(1 + (θw − 1)θ)3

)
θ′,

= −
√
Rex

(
1 +

4

3
Rd(1 + (θw − 1)θ)3

)
θ′. (3.79)
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Mass transfer rate is manifested by

Shx =
xqm

DB(Cw − C∞)
,where (3.80)

qm = −DB
∂C

∂y
,

= −DB(Cw − C∞)

√
U0

ν
x−1/3φ′(η). (3.82)

Therefore,

Shx =
−xDB(Cw − C∞)

√
U0

ν
x−1/3φ′(η)

DB(Cw − C∞)
,

= −
√
U0

ν
x2/3φ′,

= −
√
Rexφ

′. (3.83)

3.2 Solution Methodology

The solution of the modeled problem has been achieved numerically with the

assistance of shooting scheme [120].

Some key points regarding the shooting method for the solution of problems are

given below

� Reduce the higher order nonlinear ODEs to first order ODEs by using a

suitable notation.

� Assign values to the missing initial conditions

� Differential equations are numerically treated with RK4 scheme.

� If the solution at the terminal point is achieved with the help of suitable

values of the missing initial conditions then stop the process.

� If the solution is not obtained within the specified range of accuracy then

update the initial guesses again and again with the help of Newton’s method.

� Sometimes the method diverges because of bad choice of initial guesses,

several occasions this technique diverges as a result of singular Jacobian

matrix .
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� No specific rule hinder behind the suitable choice of initial guesses to achieve

the convergence criterion of the modelled problems.

In the light of above mentioned points. The detailed procedure of modeled problem

with the assistance of shooting scheme. For numerical solution, the unbounded

domain [0,∞) has been replaced by [0, η∞] where η∞ is a real number selected in

such a manner that the obtained solution does not show any significant variations

for η > η∞. It is noteworthy that η∞ = 7 assures the expected level of convergence

for all the numerical outcomes. The stress deformation and momentum equations

(3.63) and (3.65) will be tackled collectively by the assistance of shooting method

and then the temperature and concentration equations by using f as a known

function. Denoting f by y1, f ′ by y2, g by y3 and the missing initial condition

by c1, the momentum and stress deformations equations have been converted into

first order ODEs mentioned below:

y′1 = y2, y1(0) = 0,

y′2 =
y3(y2

3 + γ2)

(y2
3 + λγ2)

, y2(0) = 1,

y′3 =
1

3
y2

2 −
2

3
y1y
′
2, y3(0) = c1.


(3.84)

Now solve the momentum equation with the help numerical scheme called RK4

method along with choosing value of initial guess c
(0)
1 =0.1. There is no hard and

fast rule for the choice of initial guess c
(0)
1 . If system of equations satisfy the

approximate solution y1

(
η∞, c

(0)
1

)
= 1 then stop the process. Generally it is not

possible. If this condition cannot be achieved then solve the above system with

help of the iterative scheme called Newton’s method.

c
(n+1)
1 = c

(n)
1 −

y2

(
η∞, c

(n)
1

)
∂y2

∂c1

(η∞, c1)

∣∣∣∣
c1=c

(n)
1

, where n= 0, 1, 2, 3, .. (3.85)

where n in c
(n)
1 represent the iteration n. After adopting the following notations.

∂y1

∂c1

= y4,
∂y2

∂c1

= y5,
∂y3

∂c1

= y6. (3.86)
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Newton’s method take the form given below

c
(n+1)
1 = c

(n)
1 −

y2

(
η∞, c

(n)
1

)
y5

(
η∞, c

(n)
1

) . (3.87)

The differential form of Eq. (84) with respect to c1 are given underneath

y′4 = y5, y4(0) = 0,

y′5 =
(3y2

3y6 + y6γ
2)− 2y3y6y

′
2

(y2
3 + λγ2)

, y5(0) = 0,

y′6 =
2

3
y2y5 −

2

3
(y1y

′
5 + y4y

′
2), y6(0) = 1.


(3.88)

The Eqs. (3.88) have been handled numerically with the assistance of the RK-4

method. Furthermore the missing initial conditions are updated with the help of

Newton’s scheme until the criteria stated below is met.

|y2(η∞)− 0| < ε. (3.89)

Here the symbol ε is a positive number having value ε = 10−6.

The symbol ε is the desired efficiency. The solution y2(η∞) approaches 0 within

the desired efficiency criteria and the value of η∞ = 7.

In order to solve the temperature equation (3.66), it is converted into the fol-

lowing system comprising of the first order differential expressions mentioned in

Eqs. (3.66) signifying θ by u1, θ′ by u2 and using f as a known function. The

following system of ODEs together with the initial conditions is achieved.

u′1 = u2, u1(0) = 1,

u′2 = −

 (ε1 + 4Rd(θw − 1)(1 + (θw − 1)u1)2)u2
2

+2
3
Prfu2 + (A∗ exp−η +B∗u1)


(

(1 + ε1u1) +
4

3
Rd (1 + (θw − 1)u1)3

) , u2(0) = c2.


(3.90)

Now solve the energy equation with the utilization of numerical scheme called RK4

method along with choosing value of initial guess c
(0)
2 =0.1. If solution at the
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boundary u1

(
η∞, c

(0)
2

)
= 0 is achieved then terminate the process otherwise, refine

the initial guess with the utilization of iterative scheme called Newton’s method.

Mathematical form of Newton’s method is given by

c
(n+1)
2 = c

(n)
2 −

u1

(
η∞, c

(n)
2

)
∂u1

∂c2

(η∞, c2)

∣∣∣∣
c2=cn

(2)

. (3.91)

After adopting the following notations.

∂u1

∂c2

= u3,
∂u2

∂c2

= u4. (3.92)

Newton’s method take the form given below

c
(n+1)
2 = c

(n)
2 −

u1

(
η∞, c

(n)
2

)
u3

(
η∞, c

(n)
2

) . (3.93)

The differential form of eq. (90) with respect to c2 are given underneath

u′3 = u4, u3(0) = 0,

u′4 = −


(8Rd(θw − 1)2Ψu3u

2
2)+

(ε+ 4Rd(θw − 1)Ψ2(2u2u4))+(
(ε1u3) + 4RdΨ2 (θw − 1)u3u

′
2

)
+

(2
3
Prfu4 +B∗u3)


(

(1 + ε1u1) +
4

3
RdΨ3

) , u4(0) = 1,



(3.94)

where (1 + (θw − 1)u1) = Ψ.

Now Eq. (94) can solve numerically with the help of RK4 method and refined

initial guess c2 by Newton’s method until the criteria given below is achieved.

|u1(η∞)− 0| < ε. (3.95)

The concentration equation (3.67) is transformed into the first order ODEs by

denoting φ by z1, φ′ by z2 and taking f as a known function.
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The following resulting system of equations is achieved.

z′1 = z2, z1(0) = 1,

z′2 = −

(
ε2z

2
2 +

2

3
Scfz2

)
1 + ε2z1

, z2(0) = c3.

 (3.96)

Now solve the concentration equation with the help of numerical scheme called

RK4 method along with choosing value of initial guess c
(0)
3 =0.1 until the solution

at the boundary is achieved. Generally it is not possible in the first attempt.

Now refine the initial guess of Eq. (3.96) wirh the help of Newton’s iterative method

given below

c
(n+1)
3 = c

(n)
3 −

z1

(
η∞, c

(n)
3

)
∂z1

∂c3

(η∞, c3)

∣∣∣∣
c3=c

(n)
3

. (3.97)

After adopting the following notations.

∂z1

∂c3

= z3,
∂z2

∂c3

= z4. (3.98)

Newton’s method take the form given below

c
(n+1)
3 = c

(n)
3 −

z1 (η∞, c
n
3 )

z3(η∞, c
(n)
3 )

. ‘(3.99)

The differential form of Eq. (98) with respect to c3 are given underneath

z′3 = z4, z3(0) = 0,

z′4 = −

(
2ε2z2z4 +

2

3
Scfz4

)
1 + ε2z1

, z4(0) = 1.

 (3.100)

Now eq. (100) can solves numerically with the help of RK4 method with refined

initial guess with as far as the criteria mentioned below is not fulfilled.

max{|z1(η∞)− 0|} < ε. (3.101)
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A symbol ε > 0 depicts a positive number.

Table 3.1 is designed to display the comparison analysis of heat transport phe-

nomenon for present outcomes with those of Reddy et al. [8] by changing γ and

λ and keeping the other parameters fixed.

Table 3.1: Values of Nusselt number for various values of Pr.

NuxRe
−1
2
x

λ = 1
Pr Present Reddy et al. [8]
1 0.556065 0.559879
1.5 0.727928 0.727497
2 0.873992 0.886106

3.3 Results and Discussion

The current section displays the impact of sundry dimensionless quantities against

velocity, temperature, mas fraction field, surface drag coefficient, heat as well as

mass transfer rates are debated in the form of tables and figures.

3.3.1 Impact of γ and λ on velocity field f ′(η) and stress

field g′(η)

Figure 3.2 exhibits the response of the velocity field to variation in γ. It is quite

interesting that the viscosity of the fluid amplifies owing to an amplification in the

shear rate which amplifies the velocity field. Figure 3.3 shows the effectiveness of λ

on f ′(η). A magnification in λ brings about an amplification in the fluid viscosity

and depreciates the velocity field.Figure 3.4 shows that the viscosity of the fluid

diminishes on the behalf of an improvement in the γ eases the fluid motion and

enhances the shear stress field. Figure 3.5 reveals that the shear stress field abates

owing to an increment in λ. A magnification in viscosity of fluid lessens shear

stress field.
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3.3.2 Impact of A∗, B∗, Pr, ε1, Rd and θw on θ(η)

Figures 3.6 and 3.7 demonstrate the impact of A∗ and B∗ on the temperature

field. Evidently, a magnification in A∗ and B∗ produces more heat inside the fluid

which magnifies the temperature field. Figure 3.8 reflects the conduct of Prandtl

number Pr on θ(η). It is notable that a magnification in Pr weakens the thermal

diffusivity and depreciates the temperature field. Figure 3.9 reflects the impact

of ε1 on θη. Physically, a more frequent collision of molecules delivers more heat

energy inside the fluid and brings about a magnification in θ(η). Figure 3.10 is

sketched for the investigation of the temperature profile in response to the thermal

radiation parameter Rd. Physically, a magnification in Rd provides additional heat

to the operating fluid which amplifies the temperature field. Figure 3.11 displays

the impact of ambient to wall temperature ratio θw on θ(η) and observed that a

magnification in θw produces more heat and further augments the temperature

profile.
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Figure 3.6: Effect of A∗ on θ.
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Figure 3.11: Effect of θw on θ.

3.3.3 Impact of ε2 and Sc on Concentration Field φ(η)

A magnification in ε2 and Sc elevates φ(η) as shown in Figure 3.12 and 3.13.
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3.3.4 Impact of γ and λ on surface drag coefficient CfxRe
1
2
x

Fluid becomes shear thinning due to an increase in γ which lessens λ and amplifies

CfxRe
1
2
x as shown in Figure 3.14. In the case of λ <1, the fluid becomes less viscous

amplifies CfxRe
1
2
x but decreases in the case of λ >1 as shown in Figure 3.15.
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3.3.5 Impact of Rd and θw versus Pr, A∗ and B∗ versus θw,

λ versus γ on heat transfer rate NuxRe
−1
2
x

Figure 3.16 depicts the impact of Pr on the Nusselt number with respect to the

change in Rd. In the presence of both Pr and Rd, more heat is released which

amplifies the heat transport rate. Figure 3.17 demeanour Pr versus θw impact

on heat transport phenomenon and noticed that a positive variation in Pr and

θw causes an increment in nonlinear thermal radiation phenomenon and moreover

deliver substantial heat which magnifies NuxRe
−1
2
x . Figure 3.18 and 3.19 elaborate

the impact of A∗, B∗ on θw against the heat transport effect and canvassed that

more heat is generated inside the fluid in the case of A∗ >0 and B∗ >0, which

prompts an enhancement in θw and NuxRe
−1
2
x . Figure 3.20 sketches the influence

of λ on the Nusselt number in terms of a change in gamma. The viscosity of the

fluid decreases as a result of an abatement in fluid parameter λ <1 which lessens

the Nusselt number but a magnification in λ >1 improves heat transfer.
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3.3.6 Impact of Sc versus variable species diffusivity ε2 on

mass transfer rate ShxRe
−1
2
x

Figure 3.21 exhibits the effect of Sc on the mass fraction field with change in ε2.

Schmidt number can be defined as momentum to the mass diffusivity responsi-

ble for mass transport. Schmidt number is applicable in the case of the fluid in

which both momentum as well as mass diffusion convection are involved. Mass

diffusivity is actually the molecules transport from region having higher concen-

tration towards the lower region. Thats why diffusivity phenomenon is related to

the concentration. The role of variable species diffusivity in mass transfer is same

as thermal conductivity in the heat transfer. It is quite clear from the above dis-

cussion that Sc and ε2 relies on the diffusion process and species diffusivity varies

due to a variation in the concentration of the molecules. A gradual change in the

species diffusivity causes an embellishment in concentration which escalates the

mass transfer rate.
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Table 3.2 depicts the influence of sundry physical parameters on the physical

quantities like surface drag coefficient, heat as well as mass transport numbers.

These physical quantities are quite necessary in order to study the momentum,

heat and concentration aspects of the fluid. Amplification in Bingham number

γ brings about a magnification in surface drag coefficient but the surface drag

coefficient diminishes owing to an improvement in the Reiner-Philippoff fluid pa-

rameter λ. Moreover, a magnification in λ, thermal radiation Rd, temperature

ratio parameter θw and Prandtl number Pr generates an enhancement in the Nus-

selt number however an opposite behaviour is observed for Bingham number γ,

thermal conductivity ε1, species diffusivity ε2, heat generation/absorption coeffi-

cients A∗ and B∗ and Schmidt number Sc. The mass transfer rate escalates as a

result of an enhancement in λ and Sc but depreciates in the case of an augmen-

tation in γ and ε2. Table 3.3 reflects the effectiveness of distinguished parameters

against Nusselt number by keeping Sc=0.1 and ε2=0.1. Heat transfer amplified

more for nonlinear thermal radiation rather than thermal radiation.
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Table 3.2: Numerical values of skin friction, Nusselt and Sherwood numbers
for various physical parameters.

γ λ Rd θw ε1 ε2 A∗ B∗ Pr Sc 1
2
CfxRe

1
2
x NuxRe

−1
2
x ShxRe

−1
2
x

0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 1.7 0.1 -0.660273 0.674889 0.133592

0.5 -0.380604 0.514999 0.118724

1 -0.246415 0.403716 0.113661

2 -1.143974 0.382161 0.112794

0.3 -0.664497 0.673753 0.134262

0.5 -0.668484 0.674594 0.134825

0.7 -0.672282 0.675268 0.135308

0.3 -0.660271 0.678065 0.133592

0.5 -0.660271 0.683150 0.133592

0.7 -0.660271 0.687991 0.133592

0.3 -0.660271 0.674792 0.133592

0.6 -0.660271 0.681787 0.133592

0.9 -0.660271 0.694968 0.133592

0.03 -0.660271 0.662843 0.133592

0.05 -0.660271 0.653468 0.133592

0.07 -0.660271 0.644409 0.133592

0.03 -0.660271 0.672563 0.131896

0.05 -0.660271 0.672561 0.130263

0.07 -0.660271 0.672567 0.128701

0.03 -0.660271 0.658104 0.133592

0.05 -0.660271 0.643647 0.133592

0.07 -0.660271 0.629192 0.133592

0.03 -0.660271 0.656931 0.133592

0.05 -0.660271 0.640894 0.133592

0.07 -0.660271 0.624428 0.133592

1.9 -0.660271 0.723241 0.133592

2.1 -0.660271 0.771130 0.133592

2.3 -0.660271 0.816659 0.133592

0.3 -0.660271 0.672562 0.212701

0.5 -0.660271 0.672562 0.296095

0.7 -0.660271 0.672562 0.375564
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Table 3.3: Effect of physical parameters on Nusselt number.

NuxRe
−1
2
x

Dimensionless Parameters Absence of Rd Presence of Rd

γ Pr Rd θw A∗ B∗ ε1 λ=0.5 λ=1 λ=1.5 λ=0.5 λ=1 λ=1.5

0.1 0.5 0.7 0.7 0.01 0.01 0.1 0.23001 0.23340 0.23559 0.30364 0.30812 0.31102

0.2 0.22513 0.23340 0.23847 0.29720 0.30812 0.31482

0.3 0.22008 0.23340 0.24109 0.29054 0.30812 0.31827

1 0.37713 0.38129 0.38390 0.49787 0.50335 0.50680

1.5 0.50633 0.50981 0.51197 0.66842 0.67302 0.67587

2 0.61823 0.62084 0.62246 0.81614 0.81959 0.82173

1 0.22412 0.22721 0.22922 0.32661 0.33112 0.33405

1.5 0.21711 0.21978 0.22154 0.36604 0.37056 0.37352

2 0.21222 0.21458 0.21613 0.40633 0.41085 0.41381

1 0.17481 0.17759 0.17941 0.33798 0.34335 0.34685

1.5 0.10134 0.10295 0.10403 0.42059 0.42726 0.43173

2 0.06562 0.06639 0.06693 0.55561 0.56218 0.56669

0.1 0.17418 0.17777 0.18010 0.22994 0.23468 0.23776

0.2 0.11217 0.11599 0.11846 0.14808 0.15312 0.15639

0.3 0.05019 0.05423 0.05685 0.06626 0.07160 0.07506

0.02 0.21193 0.21570 0.21814 0.27977 0.28475 0.28798

0.03 0.19258 0.19681 0.19955 0.25423 0.25981 0.26343

0.04 0.17173 0.17652 0.17961 0.22671 0.23303 0.23711

0.5 0.18914 0.19209 0.19401 0.24969 0.25358 0.25612

1 0.15709 0.15965 0.16132 0.20738 0.21076 0.21296

1.5 0.13612 0.13836 0.13983 0.17970 0.18266 0.18460
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3.4 Concluding Remarks

The radiative Reiner-Philippoff fluid impinging on an extendable surface accompa-

nied with heat generation/absorption, thermal conductivity and variable molecu-

lar diffusivity is debated in detail. The computations indicate the following major

findings

� A positive variation in γ diminishes the shear stress field g′(η) but situation

is entirely different in the case of λ which magnifies g′(η).

� A magnification in ε1 escalates the temperature field.

� An improvement in heat transport phenomenon is observed owing to a mag-

nification in the values of θw and Rd.

� Heat transport Nusselt number is depressed in the case of shear thickening

fluid.

� The upshots revealed that a positive variation in heat source/sink parame-

ters A∗ and B∗ generate more heat which produces an enlargement in the

temperature field.

� The mass fraction field amplifies owing to a magnification in ε2 .

� Sherwood number abates for the larger values of Sc and ε2.



Chapter 4

Impact of Double-Diffusive

Convection and Motile Gyrotactic

Microorganisms on Bioconvection

Tangent Hyperbolic Nanofluid

The motive behind this chapter is to investigate the non-Newtonian double dif-

fusive tangent hyperbolic nanofluid containing motile gyrotactic microorganisms.

The modeled PDEs are renovated into ODEs with the utilization of necessary

transformations and moreover tackled numerically by adopting the well known

numerical procedure called Keller-box scheme. The behaviour of working fluid

against various parameters of physical nature has been analyzed though graphs

and tables. The impact of various dimensionless quantities appearing during the

numerical simulation on the drag force, Nusselt amount, microorganisms density

field and the mass transport field is analyzed in terms of tables and figures. The

noteworthy outcome of this analysis is that a magnification in Dufour and Brown-

ian motion parameters produces an amplification in the temperature profile. The

velocity field decays when both Weissenberg number and magnetic parameters

are increased. It is noted that a magnification in Dufour and moreover nanofluid

Lewis number magnifies the solutal field.

76
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4.1 Mathematical Formulation

Figure 4.1 reflects the movement of a tangent hyperbolic nanofluid flow subjected

to an expandable sheet having expanding rate uw = ax. The induced magnetic

field under the assumption of small Reynolds number is neglected as compared to

the applied magnetic field B0 which is applied transversely to the surface. The

expressions Tw, γw, Cw and Nw represent the temperature, solute concentration,

nanoparticles concentration and microorganisms concentration at the wall whereas

ambient temperature, solute concentration, nanoparticles as well as microorgan-

isms concentration are denoted as T∞, γ∞, C∞ and N∞. The diffusion-thermo

(Dufour) and thermo-diffusion (Soret) are also considered in terms of heat and

mass transport analysis.

The constitutive equation of tangent hyperbolic fluid is [24]:

S = −pI + τ , (4.1)

in which symbol I denotes the identity matrix, µ∞ as well as µ0 is zero and infinite

shear rates, Γ symbolizes the relaxation time, n expresses the flow behaviour index

and deformation rate γ̇ can be expressed as

γ̇ =

√
1

2
ΣΣγ̇ij γ̇ji =

√
1

2

∏
, (4.2)

where ∏
=

1

2
trac(gradV + (gradV)T )2. (4.3)

The equation mentioned is valid for the case µ = 0 because the fluid behaviour

is impossible to study at µ =∞ and moreover utilizing tangent hyperbolic based

fluid characterizing shear thinning phenomenon Γγ̇ < 1.

The above equation written as

τ = µ0[(Γγ̇)n]γ̇, (4.4)

= µ0[(1 + n(Γγ̇ − 1)]γ̇.
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Under the above assumptions and boundary approximation, the governing ex-

pressions regarding continuity, temperature, solutal as well as mass concentration

regarding tangent hyperbolic model accompanied with nanoparticles written as

Figure 4.1: Geometry of the problem.

∂u

∂x
+
∂v

∂y
= 0, (4.5)

u
∂u

∂x
+ v

∂u

∂y
= ν(1− n)

∂2u

∂y2
+
√

2Γvn
∂u

∂x

∂2u

∂y2
+

(
(1− φ∞)ρfgβ(T − T∞)

− g(ρp − ρf )(φ− φ∞)− g(ρp − ρf )γ(N −N∞)

)
− σ1

ρf
B2

0u, (4.6)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ τ

(
DB

(∂C
∂y

)(∂T
∂y

)
+
DT

T∞

(∂T
∂y

)2
)

+DTC

(∂2C

∂y2

)
, (4.7)

u
∂C

∂x
+ v

∂C

∂y
= Ds

∂2C

∂y2
+DCT

(∂2T

∂y2

)
, (4.8)

u
∂φ

∂x
+ v

∂φ

∂y
= DB

∂2φ

∂y2
+
DT

T∞

(∂2T

∂y2

)
, (4.9)

u
∂N

∂x
+ v

∂N

∂y
= Dm

∂2N

∂y2
− bWφ(

φw − φ∞
) ∂
∂y

(
N
∂φ

∂y

)
. (4.10)
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The conditions at the boundary are:

u = uw = ax, v = 0, T = Tw, C = Cw, φ = φw, N = Nw at y = 0,

u −→ 0, T −→ T∞, C −→ C∞, φ −→ φ∞, N −→ N∞ as y −→∞.

 (4.11)

Here ρf and ρp depict the density fluid and nanoparticles respectively. By adopting

the following similarity transformations [37], the PDEs are converted into ODEs.

η =

√
a

ν
y, u = axf ′(η), v = −

√
aνf(η), θ =

T − T∞
Tw − T∞

,

γ =
C − C∞
Cw − C∞

, ξ =
φ− φ∞
φw − φ∞

, χ =
N −N∞
Nw −N∞

.

 (4.12)

The detailed procedure for conversion of Eqs. (4.1)-(4.6) into dimensionless ODEs

are given below

�

∂u

∂x
=

∂

∂x
(axf ′(η)) = af ′(η) (4.13)

�

∂v

∂y
=

∂

∂y
(−
√
aνf(η))

= −
√
aν
∂f ′(η)

∂η

∂η

∂y

= −
√
aν

√
a

ν
f ′(η)

= −af ′(η). (4.14)

�

∂u

∂y
=
∂u

∂η
.
∂η

∂y

=
∂

∂η
(axf ′(η)).

∂

∂y

(√
a

ν
y

)
= ax

√
a

ν
f ′′(η). (4.15)

�

∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
= ax

√
a

ν

∂f ′′(η)

∂η
.
∂η

∂y

= ax

(√
a

ν

)2

f ′′′(η). (4.16)
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�

(
∂u

∂y

)(
∂2u

∂y2

)
= a2x2

(√
a

ν

)3

f ′′f ′′′. (4.17)

� u
∂u

∂x
= axf ′(η).af ′(η),

= a2xf ′2. (4.18)

� v
∂u

∂y
= −
√
aνf(η).

∂u

∂η
.
∂η

∂y

= a2xf ′f ′′. (4.19)

�

√
2Γνn

(
∂u

∂y

)(
∂2u

∂y2

)
=
√

2Γνna2x2

(√
a

ν

)3

f ′′f ′′′.

=
√

2Γna3x2

√
a

ν
f ′′f ′′′. (4.20)

� ν(1− n)
∂2u

∂y2
= ν(1− n)

(a
ν

)
axf ′′′

= a2x(1− n)f ′′′. (4.21)

�

σ1

ρf
B2

0u =
σ1

ρf
B2

0axf
′. (4.22)

� (1− φ∞)ρfgβ(T − T∞)− g(ρp − ρf )(φ− φ∞)

− g(ρp − ρf )γ(N −N∞)

= (1− φ∞)ρfgβ(Tw − T∞)

[
T − T∞
Tw − T∞

− g(ρp − ρf )(φ− φ∞)

(1− φ∞)gρfβ(Tw − T∞)

− gγ(ρp − ρf )(N −N∞)

(1− φ∞)gρfβ(Tw − T∞)

]

= (1− φ∞)ρfgβ(Tw − T∞)

[
θ − (ρp − ρf )(φw − φ∞)

(1− φ∞)ρfβ(Tw − T∞)

φ− φ∞
φw − φ∞

− γ(ρp − ρf )(Nw −N∞)

(1− φ∞)ρfβ(Tw − T∞)

N −N∞
Nw −N∞

]
= (1− φ∞)ρfgβ(Tw − T∞) [θ −Nrξ −Ncχ] . (4.23)

� T = (Tw − T∞)θ(η) + T∞ (4.24)

�

∂T

∂x
=

∂

∂x
((Tw − T∞)θ(η) + T∞) = 0. (4.25)

� u
∂T

∂x
= axf ′(η).0 = 0. (4.26)
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�

∂T

∂y
= (Tw − T∞)

∂θ

∂η

∂η

∂y

= (Tw − T∞)θ′
∂η

∂y

=

√
a

ν
(Tw − T∞)θ′. (4.27)

� v
∂T

∂y
= −
√
aνf(η).

√
a

ν
(Tw − T∞)θ′

= −a(Tw − T∞)fθ′. (4.28)

� α
∂2T

∂y2
= α

∂

∂y

(
∂T

∂y

)
= α

∂

∂y

(√
a

ν
(Tw − T∞)θ′

)
= α

√
a

ν
(Tw − T∞)

∂θ′

∂η

∂η

∂y

= α

√
a

ν
(Tw − T∞)θ′′

∂η

∂y

= α(Tw − T∞)

(√
a

ν

)2

θ′′. (4.29)

�

∂C

∂y
=

√
a

ν
(Cw − C∞)γ′. (4.30)

� DB
∂T

∂y

∂C

∂y
= DB

√
a

ν
(Tw − T∞)θ′

√
a

ν
(Cw − C∞)γ′

= DB(Tw − T∞)
(a
ν

)
(Cw − C∞)θ′γ′. (4.31)

�

(
∂T

∂y

)2

=

(
(Tw − T∞)

√
a

ν
θ′
)2

= (Tw − T∞)2
(a
ν

)
θ′2. (4.32)

�

DT

T∞

(
∂T

∂y

)2

=
DT

T∞
(Tw − T∞)2

(a
ν

)
θ′2. (4.33)

� DTC
∂2C

∂y2
= DTC

∂

∂y

(
∂C

∂y

)
= DTC

∂

∂y

(√
a

ν
(Cw − C∞)γ′

)
= DTC

(a
ν

)
(Cw − C∞)γ′′. (4.34)

� C = (Cw − C∞)γ + C∞ (4.35)
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�

∂C

∂x
=

∂

∂x
((Cw − C∞)γ + C∞) = 0. (4.36)

� u
∂C

∂x
= axf ′(η).0 = 0. (4.37)

�

∂C

∂y
=

√
a

ν
(Cw − C∞)γ′. (4.38)

� DB
∂2C

∂y2
= DB

∂

∂y

(√
a

ν
(Cw − C∞)γ′

)
= DB

√
a

ν
(Cw − C∞)

∂γ′

∂η

∂η

∂y

= DB

(a
ν

)
(Cw − C∞)γ′′. (4.39)

�

DT

T∞

∂2T

∂y2
=
DT

T∞

∂

∂y

(√
a

ν
(Tw − T∞)θ′

)
=
DT

T∞

(a
ν

)
(Tw − T∞)θ′′. (4.40)

� v
∂C

∂y
= −
√
aνf.

√
a

ν
(Cw − C∞)γ′

= −a(Cw − C∞)fγ′. (4.41)

� φ = (φw − φ∞)ξ + φ∞ (4.42)

�

∂φ

∂x
=

∂

∂x
((φw − φ∞)ξ + φ∞) = 0. (4.43)

� u
∂φ

∂x
= 0 (4.44)

�

∂φ

∂y
=

√
a

ν
(φw − φ∞)ξ′. (4.45)

� v
∂φ

∂y
= −
√
aνf.

√
a

ν
(φw − φ∞)ξ′

= −a(φw − φ∞)fξ′. (4.46)

�

∂2φ

∂y2
=

∂

∂y

(√
a

ν
(φw − φ∞)ξ′

)
.

=

√
a

ν
(φw − φ∞)

∂ξ′

∂η

∂η

∂y

=
(a
ν

)
(φw − φ∞)ξ′′. (4.47)

� Ds
∂2C

∂y2
= Ds

(a
ν

)
(γw − γ∞)γ′′. (4.48)
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� DCT
∂2T

∂y2
= DCT

(a
ν

)
(Tw − T∞)θ′′. (4.49)

� N = (Nw −N∞)χ+N∞. (4.50)

�

∂N

∂x
=
∂N

∂η

∂η

∂x
= 0. (4.51)

� u
∂N

∂x
= 0. (4.52)

�

∂N

∂y
=
∂N

∂η

∂η

∂y

=

√
a

ν
(Nw −N∞)χ′. (4.53)

� v
∂N

∂y
= −
√
aνf.

√
a

ν
(Nw −N∞)χ′

= −a(Nw −N∞)fχ′. (4.54)

�

∂2N

∂y2
=

∂

∂y

(√
a

ν
(Nw −N∞)χ′

)
=

√
a

ν
(Nw −N∞)

∂χ′

∂η

∂η

∂y

=
(a
ν

)
(Nw −N∞)χ′′. (4.55)

� Dm
∂2N

∂y2
= Dm

(a
ν

)
(Nw −N∞)χ′′. (4.56)

�

∂

∂y

(
N
∂φ

∂y

)
= N

∂2φ

∂y2
+
∂N

∂y

∂φ

∂y

=

(
a(φw − φ∞)

ν

)((
(Nw −N∞)χ

+N∞
)
ξ′′(Nw −N∞)χ′ξ′

)
(4.57)

�

bWφ

(φw − φ∞)

∂

∂y

(
N
∂φ

∂y

)
=

bWφ

(
a
ν

)
(φw − φ∞)

(φw − φ∞)
(

(Nw −N∞)χ′ξ′

+ ((Nw −N∞)χ+N∞)ξ′′
)
. (4.58)

The continuity equation (4.5) is straightforwardly satisfied by utilizing (4.13) and

(4.14) as below.

∂u

∂x
+
∂v

∂y
= af ′(η)− af ′(η) = 0. (4.59)
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Using (4.15)-(4.23) in (4.6), the dimensionless momentum equation is given by

a2xf ′2 − a2xff ′′ = a2x(1− n)f ′′′ +
√

2Γna3x2

√
a

ν
f ′′f ′′′ − σ1

ρf
B2

0axf
′

+ (1− φ∞)ρfgβ(Tw − T∞) [θ −Nrξ −Ncχ]

⇒ f ′2 − ff ′′ = (1− n)f ′′′ +
(1− φ∞)ρfgβ(Tw − T∞)

a2x
[θ −Nrξ −Ncχ]

+
√

2Γnax

√
a

ν
f ′′f ′′′ − σ1B

2
0

ρfa
f ′

⇒ f ′2 − ff ′′ = (1− n)f ′′′ +
(1− φ∞)ρfgβ(Tw − T∞)

a2x
[θ −Nrξ −Ncχ]

+
√

2Γnax

√
a

ν
f ′′f ′′′ − σ1B

2
0

ρfa
f ′

⇒ f ′2 − ff ′′ = (1− n)f ′′′ +
(1− φ∞)ρfgβ(Tw − T∞)x3ν2

a2x4ν2
[θ −Nrξ −Ncχ]

+
√

2Γnax

√
a

ν
f ′′f ′′′ − σ1B

2
0

ρfa
f ′

⇒ f ′2 − ff ′′ = (1− n)f ′′′ +

(
(1− φ∞)ρfgβ(Tw − T∞)x3

ν2

)
(
a2x4

ν2

) [θ −Nrξ −Ncχ]

+
√

2Γnax

√
a

ν
f ′′f ′′′ − σ1B

2
0

ρfa
f ′

⇒ 0 = (1− n)f ′′′ +
Gr

Re2
x

(θ −Nrξ −Ncχ)− f ′2 + ff ′′ +
√

2Γnax

√
a

ν
f ′′f ′′′

− σ1B
2
0

ρfa
f ′

⇒ ((1− n) + nWef ′′)f ′′′ + Λ (θ −Nrξ −Ncχ)− f ′2 + ff ′′

−Mf ′ = 0. (4.60)

Temperature equation (4.7) after using (4.24)-(4.34) is given by

− a(Tw − T∞)fθ′ =
(a
ν

)(
α(Tw − T∞)θ′′ +

(
τDB(Tw − T∞)(Cw − C∞)θ′γ′

+
τDT

T∞
(Tw − T∞)2θ′

2
)

+DTC(Cw − C∞)γ′′
)

⇒ − fθ′ =

(
τ
(
a
ν

)
DB(Cw − C∞)θ′γ′

a
+
τ DT

T∞

(
a
ν

)
(Tw − T∞)2θ′2

a(Tw − T∞)

)

+
α

ν
θ′′ +

DTC

(
a
ν

)
(Cw − C∞)γ′′

a(Tw − T∞)
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⇒ 0 =
θ′′

Pr
+

(
τDB(Cw − C∞)θ′γ′

ν
+
τ DT

T∞
(Tw − T∞)θ′2

ν

)

+
DTC(Cw − C∞)γ′′

ν(Tw − T∞)
+ fθ′.

⇒ θ′′ + Pr
(
Nbθ′γ′ +Ntθ′2

)
+ PrNdγ′′ + Prfθ′ = 0. (4.61)

After using derivatives (4.35)-(4.41) in the concentration equation (4.8) give

− a(Cw − C∞)fγ′ = DB
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ν

)
(Cw − C∞)γ′′ +
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a
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a
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T∞

(Tw−T∞)
ν

(Cw − C∞)
θ′′

⇒ 0 = γ′′ +
DT

T∞

(
a
ν

)
(Tw − T∞)

DB

ν
(Cw − C∞)

θ′′ +

(
ν

DB

)
fγ′

⇒ 0 =
(τ
τ

)
γ′′ +

(τ
τ

) DT

T∞

(
a
ν

)
(Tw − T∞)

DB

ν
(Cw − C∞)

θ′′ +
(τ
τ

)( ν

DB

)
fγ′

⇒ 0 = γ′′ +
τ DT

T∞

(
Tw−T∞

ν

)
τ
(
DB

ν

)
(Cw − C∞)

+

(
ν

DB

)
fγ′

⇒ 0 = γ′′ +
Nt

Nb
θ′′ +

ν

α

α

DB

fγ′

⇒ γ′′ +
Nt

Nb
θ′′ + PrLnfγ′ = 0. (4.62)

Using (4.42)-(4.49), the dimensionless form of (4.9) takes the form

−a(φw − φ∞)fξ′ = Ds

(a
ν

)
(φw − φ∞)ξ′′ +DCT

(a
ν

)
(Tw − T∞)θ′′

⇒ − fξ′ =
Ds

(
a
ν

)
(φw − φ∞)

a(φw − φ∞)
ξ′′ +

DCT

(
a
ν

)
(Tw − T∞)

a(φw − φ∞)
θ′′

⇒ − fξ′ = Ds

ν
ξ′′ +

(
DCT

ν

)(
Tw − T∞

(φw − φ∞)

)
θ′′

⇒ −
(
ν

Ds

)
fξ′ = ξ′′ +

(
DCT

ν

)
ν

Ds

(
Tw − T∞
φw − φ∞

)
θ′′

⇒ − PrLefξ′ = ξ′′ + PrLdθ′′

⇒ ξ′′ + PrLdθ′′ + PrLefξ′ = 0. (4.63)

The motile gyrotactic microorganisms equation (4.10), using (4.50)-(4.58) gets the

following form
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Dm

(a
ν

)
(Nw −N∞)χ′′ = −a(Nw −N∞)fχ′ +

bWc

(
a
ν

)
(φw − φ∞)

(φw − φ∞)

(((Nw −N∞)χ+N∞)ξ′′ + (Nw −N∞)χ′ξ′)

⇒ Dm

(a
ν

)
(Nw −N∞)χ′′ − bWc

(a
ν

)(
((Nw −N∞)χ+N∞)ξ′′+

(Nw −N∞)χ′ξ′
)

+ a(Nw −N∞)fχ′ = 0

⇒ χ′′ −
bWc

(
a
ν

)
(Nw −N∞)

Dm

(
a
ν

)
(Nw −N∞)

((
χ+

(
N∞

Nw −N∞

))
ξ′′ + χ′ξ′

)
+

a(Nw −N∞)

Dm

(
a
ν

)
(Nw −N∞)

fχ′ = 0

⇒ χ′′ − bWc

Dm

((χ+ σ)ξ′′ + χ′ξ′) +
1
Dm

ν

fχ′ = 0

⇒ χ′′ − Pe ((χ+ σ)ξ′′ + χ′ξ′) + Lbfχ′ = 0. (4.64)

The dimensionless form of the boundary conditions (4.11), is achieved through the

following procedure

� u = ax at y = 0

⇒ axf ′(η) = ax at η = 0

⇒ f ′(η) = 1 at η = 0. (4.65)

� v = 0 at y = 0

⇒ −
√
aνf(η) = 0 at η = 0

⇒ − f(η) = 0. at η = 0 (4.66)

� T (x, y) = Tw at y = 0

⇒ (Tw − T∞)θ(η) + T∞ = Tw at η = 0

⇒ (Tw − T∞)θ(η) = Tw − T∞ at η = 0

⇒ θ = 1. at η = 0 (4.67)

� C(x, y) = Cw at y = 0

⇒ (Cw − C∞)γ(η) + C∞ = Cw at η = 0

⇒ (Cw − C∞)γ(η) = Cw − C∞ at η = 0

⇒ γ = 1. at η = 0 (4.68)
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� φ(x, y) = φw at y = 0

⇒ (φw − φ∞)ξ(η) + φ∞ = φw at η = 0

⇒ (φw − φ∞)ξ(η) = φw − φ∞ at η = 0

⇒ ξ = 1. at η = 0 (4.69)

� N(x, y) = Nw at y = 0

⇒ (Nw −N∞)χ(η) +N∞ = Nw at η = 0

⇒ (Nw −N∞)χ(η) = Nw −N∞ at η = 0

⇒ χ = 1. at η = 0 (4.70)

� u(x)→ 0 at y →∞

⇒ axf ′(η)→ 0 at η →∞

⇒ f ′ → 0. at η →∞ (4.71)

� T (x, y)→ T∞ at y →∞

⇒ (Tw − T∞)θ(η) + T∞ → T∞ at η →∞

⇒ (Tw − T∞)θ(η)→ T∞ − T∞ at η →∞

⇒ (Tw − T∞)θ(η)→ 0 at η →∞

⇒ θ → 0. at η →∞ (4.72)

� C(x, y)→ C∞ at y →∞

⇒ (Cw − C∞)γ(η) + C∞ → C∞ at η →∞

⇒ (Cw − C∞)γ(η)→ C∞ − C∞ at η →∞

⇒ (Cw − C∞)γ(η)→ 0 at η →∞

⇒ γ → 0. at η →∞ (4.73)

� φ(x, y)→ φ∞ at y →∞

⇒ (φw − φ∞)γ(η) + φ∞ → φ∞ at η →∞

⇒ (φw − φ∞)ξ(η)→ φ∞ − φ∞ at η →∞

⇒ (φw − φ∞)ξ(η)→ 0 at η →∞

⇒ ξ → 0. at η →∞ (4.74)
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� N(x, y)→ N∞ at y →∞

⇒ (Nw − C∞)χ(η) +N∞ → N∞ at η →∞

⇒ (Nw −N∞)χ(η)→ N∞ −N∞ at η →∞

⇒ χ→ 0. at η →∞ (4.75)

The dimensionless expression of drag force Cfx is given by

Cfx =
τw

1
2
ρU2

w

,

where

τw = µ(1− n)

(
∂u

∂y

)
+ µ

nΓ√
2

(
∂u

∂y

)2

,

= µ(1− n)ax

√
a

ν
f ′′ + µ

nΓ√
2

(
ax

√
a

ν

)2

f ′′2.

Therefore,

Cfx =
µ(1− n)ax

√
a
ν
f ′′ + µnΓ√

2

(
ax
√

a
ν

)2
f ′′2

1
2
ρa2x2

,

=

√
a
ν
x
(
µ(1− n)af ′′ + µnΓ√

2

√
a
ν
a2xf ′′2

)
1
2
ρa2x2

,

=

2
√

a
ν
axµ

(
(1− n)f ′′ + nΓ√

2

√
a3x2

ν
f ′′2
)

ρa2x2
,

⇒ Cfx
2

=

√
a
ν
axµ

(
(1− n)f ′′ + nΓ√

2

√
a3x2

ν
f ′′2
)

ρa2x2
.

⇒ Cfx
2

√
Rex =

√
a
ν
x
√

a
ν
axµ

(
(1− n)f ′′ + nΓ√

2

√
a3x2

ν
f ′′2
)

ρa2x2
,

=

√
a
ν
x
√

a
ν
axµ

(
(1− n)f ′′ + nΓ

2

√
2a3x2

ν
f ′′2
)

ρa2x2
,

=
a2x2νµ

(
(1− n)f ′′ + n

2
Wef ′′2

)
ρa2x2

,

=
µ

ρν

(
(1− n)f ′′ +

n

2
Wef ′′2

)
,

=
(

(1− n)f ′′ +
n

2
Wef ′′2

)
. (4.76)

The dimensionless form of Nusselt amount is given by
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Nux =
xqw

κ(Tw − T∞)
,where

qw = −κ∂T
∂y

= −κ
√
a

ν
(Tw − T∞)θ′.

Therefore,

Nux =
−xκ

√
a
ν
(Tw − T∞)θ′

κ(Tw − T∞)

=

√
a

ν
x
−κ(Tw − T∞)θ′

κ(Tw − T∞)

= −
√
Rexθ

′, (4.77)

solutal Sherwood number can be mathematically expressed as

Shx =
xqm

DB(Cw − C∞)
,where

qm = −DB
∂C

∂y
,

= −DB

√
a

ν
(Cw − C∞)φ′.

Therefore,

Shx =
−xDB

√
a
ν
(Cw − C∞)φ′

DB(Cw − C∞)

= −
√
Rexφ

′. (4.78)

The dimensionless form of the motile gyrotactic microorganisms is given by

Nnx =
xqn

Dn(Nw −N∞)
,where

qn = −Dn
∂N

∂y
,

= −Dn

√
a

ν
(Nw −N∞)χ′.

Therefore,

Nnx =
−xDn

√
a
ν
(Nw −N∞)χ′

Dn(Nw −N∞)

=

√
a

ν
x
−Dn(Nw −N∞)χ′

Dn(Nw −N∞)

= −
√
Rexχ

′. (4.79)
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Distinct physical parameters arising during the conversion of PDEs into ODEs

are:

We = Γx

√
2a3

ν
, Nb =

τDB

ν
(Cw−C∞) , Nt =

DT

T∞

τ

ν
(Tw−T∞) ,

P r =
ν

α
, Le =

α

Ds

, Lb =
α

Dm

, Ln =
α

DB

, P e =
bWc

Dm

, Ld =
α

Dm

,

Nd =
αDTC (Cw−C∞)

ν (Tw−T∞)
, M =

σB2
0

aρf
, Nr =

(ρp − ρf )(φw − φ∞)

(1− φ∞)ρfβ(Tw − T∞)
,

GT =
x3(1− C∞)ρfgβT (Tw − T∞)

ν2
, Nc =

(ρp − ρf )γ(Nw −N∞)

(1− φ∞)ρfβ(Tw − T∞)
,

Λ =
GT

Re2
x

, τ =
ρCp
ρCf

, σ =
N∞

Nw −N∞



(4.80)

4.2 Solution Methodology

The dimensionless system of ODEs along with boundary conditions can be tack-

led numerically with the utilization of well established scheme called Keller-box

method. There are four steps involved in Keller box method to obtained the

solution of an equation. These factors are mentioned below

1. Transform the system of equations into first order system.

2. Convert first order system od equations into difference equations utilizing

central differences.

3. Linearize system of equations and furthermore arrange them in matrix vector

form.

4. At the end solve those linear system of equations with block-tridiagonal

elimination method.

In the light of above mentioned points the dimensionless ODEs (4.56)-(4.60) in

association with the boundary conditions (4.61)-(4.71) have been handled with the

help of Keller box technique [121] for distinguished parameters emerged during the
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numerical simulation of the problem. This numerical technique is quite effective

and flexible to solve parabolic type boundary value problems of any order, un-

conditionally stable and attains remarkable accuracy. Keller box scheme [121] is

numerically more stable and converges using less iterations as compared to other

numerical techniques. Figure 4.2 describes the flow chart procedure of Keller box

method. By adopting the new variables

f ′ = z1, z
′
1 = z2, θ

′ = z3, γ
′ = z4, ξ

′ = z5, χ
′ = z6, (4.81)

The dimensionless Eqs. (4.56)-(4.60) mentioned above are converted into first

order ODEs given below:

((1− n) + nWez1)z2 − z2
1 + fz2 −M2z1+

Λ(θ −Nrξ −Ncχ) = 0, (4.82)

z′3 + Pr
(
fz3 +Nbz3z5

)
+Ntz2

3 +Ndz′4 = 0, (4.83)

z′4 + PrLefz4 + LdPrz′3 = 0, (4.84)

z′5 + PrLnz5 +
Nt

Nb
z′3 = 0, (4.85)

z′6 + Lbfz6 − Pe
(
z6z5 + z′5(σ + χ)

)
= 0. (4.86)

The surface boundary conditions are given below:

f(η) = 0, z1(η) = 1, θ(η) = 1, γ(η) = 1,

ξ(η) = 1, χ(η) = 1 at η = 0,

z1(η)→ 0, θ(η)→ 0, γ(η)→ 0, ξ(η)→ 0,

χ(η)→ 0 at η →∞.


(4.87)

Figure 4.3 portrays the mesh structure for central difference approximations. The

stepping procedure for the selection of nodes in the case of domain discretization

is mentioned given below:

η0 = 0, ηj = ηj−1 + hj, j = 1, 2, 3..., J, ηJ = ηmax. (4.88)
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Figure 4.2: Mechanism of the present technique

The derivatives of Eqs. (4.78)-(4.82) are approximated by employing the central

difference at the midpoint ηj− 1
2

mentioned underneath

fj − fj−1

hj
=

(z1)j + (z1)j−1

2
, (4.89)

(z1)j − (z1)j−1

hj
=

(z2)j + (z2)j−1

2
, (4.90)
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Figure 4.3: One-dimensional mesh for difference approximations.

θj − θj−1

hj
=

(z3)j + (z3)j−1

2
, (4.91)

γj − γj−1

hj
=

(z4)j + (z4)j−1

2
, (4.92)

ξj − ξj−1

hj
=

(z5)j + (z5)j−1

2
, (4.93)

χj − χj−1

hj
=

(z6)j + (z6)j−1

2
, (4.95)

[
(1− n) + nWe

(
(z2)j + (z2)j−1

2

)]
z2 −

(
(z1)j + (z1)j−1

2

)2

−M2

(
(z1)j + (z1)j−1

2

)
+

(
fj + fj−1

2

)(
(z2)j + (z2)j−1

2

)
+ Λ

(
θj + θj−1

2

)
− ΛNr

(
ξj + ξj−1

2

)
− ΛNc

(
χj + χj−1

2

)
= 0. (4.96)

(
(z3)j + (z3)j−1

hj

)
+ Pr

(
(z3)j + (z3)j−1

2

)(
fj + fj−1

2

)
+ PrNb

(
(z3)j + (z3)j−1

2

)(
(z5)j + (z5)j−1

2

)
+Nt

(
(z3)j + (z3)j−1

2

)2

+Nd

(
(z4)j + (z4)j−1

2

)
= 0. (4.97)

(
(z4)j + (z4)j−1

hj

)
+ PrLd

(
(z3)j + (z3)j−1

hj

)
+ PrLe

(
fj + fj−1

2

)(
(z4)j + (z4)j−1

2

)
= 0. (4.98)
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(
(z5)j + (z5)j−1

hj

)
+

(
Nt

Nb

)(
(z3)j + (z3)j−1

hj

)
+ PrLn

(
fj + fj−1

2

)(
(z5)j + (z5)j−1

2

)
= 0. (4.99)

(
(z6)j + (z6)j−1

hj

)
+ Lb

(
(z6)j + (z6)j−1

2

)
(
fj + fj−1

2

)
− Pe

(
(z6)j + (z6)j−1

2

)
(

(z5)j + (z5)j−1

2

)
− Pe

(
(z5)j + (z5)j−1

hj

)
(
σ +

(
χj + χj−1

2

))
= 0. (4.100)

Equations (4.91)-(4.95) are nonlinear in nature and will be linearized with the

utilization of any well established iterative scheme termed as Newton’s method

which is used to find the roots of a given equation.

To achieve this objective of linerization, Newton iterative scheme is implemented

with the philosophy illustrated in the equations mentioned below.

The detailed procedure for the linerization of discretized equations are given by

procedure mentioned underneath

fn+1
j = fnj + δfnj , (z1)n+1

j = (z1)nj + δ(z1)nj ,

(z2)n+1
j = (z2)nj + δ(z2)nj , (z3)n+1

j = (z3)nj + δ(z3)nj ,

(z4)n+1
j = (z4)nj + δ(z4)nj , (z5)n+1

j = (z5)nj + δ(z5)nj

(z6)n+1
j = (z6)nj + δ(z6)nj , θn+1

j = θnj + δθnj ,

γn+1
j = γnj + δγnj , ξn+1

j = ξnj + δξnj

χn+1
j = χnj + δχnj .



(4.96)

By putting (4.96) into (4.85)-(4.95) and moreover ignoring the quadratic as well

as higher order terms in δfnj , etc.

The power n mentioned in the above equations represent the iteration.

The linear tri-diagonal matrix can be written as

[A][δ] = [R] (4.101)
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where

A =



[A1] [B1]

[C2] [A2] [B2]
. . .

. . .

. . .

[CJ−1] [AJ−1] [BJ−1]

[CJ ] [AJ ]


,

δ =



[δ1]

[δ2]
...
...
...

[δJ−1]

[δJ ]


, R =



[R1]

[R2]
...
...
...

[RJ−1]

[RJ ]


Here A is J × J tri-diagonal matrix of block size 11 × 11, where δ and R consist

of column matrices of J rows.

Now (4.97) has been tackled with the help of LU factorization method with Lower

and Upper triangular matrices mentioned underneath.

L =



[α1]

[β2] [α2]
. . .

. . . [αJ−1]

[βJ ] [αJ ]


, U =



[I] [ξ1]

[I] [ξ2]
. . . . . .

[I] [ξJ−1]

[I]


The domain of integration has been considered [0, η∞] instead of [0,∞) where η∞

is a finite number and the step size is hj = 0.01.

All the numerical results achieved for the case of present problem with an error

tolerance having value 10−5. Table 4.1 displays the comparison analysis of the

present numerical results with those of Khan et al. [37].
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Table 4.1: Numerical comparison of the obtained results with Khan et al. [37]
for various values of Pr.

Pr Khan et al. [37] Present study
0.00 1.0000 1.00000
0.25 1.1180 1.11802
1.00 1.4142 1.41411

The initial profile taken for the case of Keller-box procedure f = xex, u = e−x −

xe−x, v = −2e−x + xe−x, θ = e−x, ξ = e−x, γ = e−x, χ = e−x, t = e−x, c = e−x,

g = e−x. The simulation of Keller-box procedure has been done in Matlab 2016

software.

4.3 Results and Discussion

The influence of various parameters against velocity, temperature, mass fraction

and microorganisms density fields have been discussed in detail and portrayed in

the form of figures and tables.

4.3.1 Impact of M , n and We on the Velocity Field f ′(η)

Figure 4.4 highlights the impact of M on the velocity field f ′(η). Actually, the

resistive force called Lorentz force is produced due to an amplification in M which

slows down the fluid motion. Figure 4.5 elaborates the impact of n on f ′(η). The

value of n decides the viscosity of fluid. The fluid is less viscous for n < 1, more

viscous in the case of n > 1 and not viscous in the case of n = 1. In the case of

n > 1 depreciation in fluid velocity occurs. Figure 4.6 depicts the effect of We on

f ′(η). According to the definition, We is viscous forces by inertial forces depicts

the elastic nature of the fluid. For greater values of Weissenberg number, the fluids

behave like solids, while lower values of Weissenberg number indicate the liquid

nature of the fluid. The fluid viscosity amplifies during this time. It is quite clear

that an augmentation in We reduces f ′(η) which brings about a decrement in the

velocity field.
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Figure 4.4: Impact of M on f ′(η).
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Figure 4.6: Influence of We on f ′(η).

4.3.2 Impact of M , Pr, Nb and Nt, Nd on θ(η)

Figure 4.7 reflects the impact of M on θ(η). It is observed that a positive vari-

ation in magnetic number reduces the fluid velocity, therefore additional heat is

produced which enhances the fluid temperature. Figure 4.8 highlights the influ-

ence of Pr on the temperature field θ(η). The thermal conductivity debacles owing

to an improvement in Pr which decelerates the fluid temperature. Figure 4.9 por-

trays the impact of Nb on θ(η). A magnification in Nb enhances the molecular

collision which augments the fluid temperature and θ(η).

Figure 4.10 portrays the performance of Nt on θ(η). In the case of thermophoresis

process, smaller particles migrated from high temperature region towards colder

one which ultimately improves θ(η) Figure 4.11 is designed to investigate the

influence of Dufour effect Nd on θ(η). The parameter Nd plays the role of con-

centration to the thermal energy flux inside the fluid which produces a monotonic

enhancement in θ(η).
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Figure 4.7: Impact M on θ(η).
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Figure 4.8: Effect of Pr on θ(η).
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Figure 4.10: Impact of Nt on θ(η).
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Figure 4.11: Implication of Nd on θ(η).

4.3.3 Impact of Nb, Nt, Ln on the Mass Fraction Field ξ(η)

Figure 4.12 highlights the impact of Nb on the mass fraction field. Brownian

diffusion and thermophoresis parameter emerges as a result of an amalgamation

of nanoparticles as well as the fluid. It is verified that an escalation in Nb boost

the phenomenon of random collision amongst the nanoparticles present inside the

base fluid which promotes a reduction in mass fraction field. Figure 4.13 shows

that an improvement in Nt push nanopartcles away from the warm surface. The

density of concentration boundary layer upsurges due to an augmentation in the

value of Nt, which brings about an embellishment in ξ(η).

Figure 4.14 sways the performance of nanofluid Lewis parameter Ln on the mass

ξ(η). Lewis number is thermal diffusivity divided by the mass diffusivity. Con-

centration profile abates by virtue of Lewis number Ln dependence on Brownian

diffusion DB and plays a major role in the mass transfer scrutinizing. As a result,

an augmentation in DB depreciates ξ(η) and Ln.
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Figure 4.12: Implication of Nb on ξ(η)
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Figure 4.13: Impact of Nt on ξ(η) .
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Figure 4.14: Effect of Ln on ξ(η).

4.3.4 Impact of Pe, Lb, Ω on χ(η)

Figure 4.15 describes the effect of Peclet number Pe on the microrotation dis-

tribution χ(η). During the diffusion process species migrate from area of high

concentration to lower one. It is found that the diffusivity of microorganisms

decreases in the case of an augmentation in Pe. As a result density of motile

microorganism declines.

Figure 4.16 displays impact of bioconvection Lewis parameter Lb on the density

of motile microorganism. Similarly like Figure 4.14 an augmentation in Lb results

an abatement in the diffusivity of microorganisms, which results in the density of

motile microorganism.

Figure 4.17 portrays the influence of microorganisms concentration difference pa-

rameter Ω and χ(η) on the density of motile microorganism. An amplification in

σ, the concentration of microorganisms at ambient fluid diminishes which brings

about a reduction in χ(η).
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Figure 4.15: Effect of Pe on χ(η).
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Figure 4.16: Impact of Lb on χ(η).
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Figure 4.17: Influence of Ω on χ(η).

4.3.5 Impact of Ld and Le on the solute profile γ(η)

Figure 4.18 portrays the impact of Ld and γ(η) on the solute profile. Dufour

Lewis number illustrates the effect of temperature gradient on the mass fraction

field. The diffusion process increases owing to an amplification in concentration

phenomenon. It is observed that a positive change in concentration excites the

fluid flow by virtue of an enhancement in the thermal energy which amplifies the

solute profile. Figure 4.19 reflects Lewis number Le influence on the solute profile

γ(η). According to the definition, Le is thermal diffusivity α1 divide by Brownian

diffusivity DB. Actually Le is inversely related to DB.

The concentration of nanoparticles increases by the virtue of an augmentation in

DB. The collision of the nanoparticles increases as a result of a magnification in

DB. It is observed that a positive variation in DB guides to an abatement in the

concentration of particles and depreciates. Thats why a positive variation in Le

produces an abatement in γ(η).
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Figure 4.18: Impact of Ld on γ(η).
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Figure 4.19: Effect of Le on γ(η).



Effect of Double-Diffusive Convection on Tangent Hyperbolic Nanofluid 107

4.3.6 Impact of Ld, Nt versus Ln on −ξ′

Figure 4.20 describes the influence of nanofluid Lewis number Ln on mass fraction

field for distinguished values of Dufour Lewis number Ln. Lewis number is defined

as thermal diffusion by the mass diffusion. The phenomenon of diffusivity relies

on the concentration. Both nanofluid and Dufour Lewis number are inversely

related to the diffusion. A positive variation in the Lewis number depreciates the

concentration of the fluid and mass transfer rate as well.

Figure 4.21 elucidates the influence of Nt on the mass fraction field as a result

of a variation in Ln. In the occurrence of thermophoretic force the nanoparticles

situated close to the surface having high temperature towards the surface having

lower temperature which abates the thermal boundary layer and heightens the

nanofluid Lewis number and amplifies Nt.
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Figure 4.20: Effect of Nb on ξ′(0).
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Figure 4.21: Impact of Nt on ξ′(0).

4.3.7 Impact of Pe on the density of motile microorgan-

isms profile −χ′(0)

Figure 4.22 presents the effect of microorganism concentration difference parame-

ter Ω on density of motile microorganism −χ′(0) with a positive change in Peclet

number Pe. Peclet number is the ratio of cell swimming speed of the microor-

ganisms to the microorganisms concentration difference. The swimming speed of

the microorganisms increases by the virtue of an incremental change in the Peclet

number which drives to a increment in the fluid density. The concentration dif-

ference of microorganisms depreciates as a result of an augmentation in Pe. It is

quite clear that both σ and Pe are responsible for an incremental change in the

microorganisms concentration. As a result both microorganism boundary layer

thickness and microorganisms density profile −χ′(0) increases.

Table 4.2 depicts the effect of various parameters on temperature field, mass

fraction field and motile microorganisms density profile when Nt=0.1, Pr=6.2,

Le=0.5, Ld=0.1 and Λ=0.1. Nusselt number abates owing to an amplification in
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Figure 4.22: Effect of σ on χ′(0).

magnetic parameter M , Weissenberg number We, modified Dufour parameter Nd,

power-law index n, nanofluid Lewis number Ln, buoyancy ratio parameter Nr but

an amplification in Nusselt number has been observed for the case of Brownian

motion parameter Nb and bioconvective Rayleigh number Nc. It is noteworthy

that the heat transfer rate indicates no variation in terms of an augmentation

in the microorganism concentration difference parameter σ, Peclet number Pe,

bioconvective Lewis number Lb. The mass fraction field decays by the virtue of an

improvement in M , Nc, nanofluid Lewis number Ln and buoyancy ratio parameter

Nr, but behaviour of mass fraction field is increasing owing to a magnification

in Nb, We, Nd and n whereas no change has been seen for σ, Pe and Lb. It

is noted that a positive variation in motile microorganisms density profile has

been monitored as a result of an elevation in M , σ, Pe, Lb and Ln, but motile

microorganisms density profile diminishes in the case of Nr, Nc, n, We, Nd, Nb.
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Table 4.2: Variation of NuxRe
−1/2
x , ShuxRe

−1/2
x and NnxRe

−1/2
x for diverse

parameters when Nt=0.1, Pr=6.2, Le=0.5, Ld=0.1 and Λ=0.1 are fixed.

M Nc Nr Nb We n σ Pe Lb Nd Ln −θ′(0) −ξ′(0) −χ′(0)

0.1 0.5 0.5 0.1 0.3 0.2 0.5 1 1 0.1 2 0.93786 1.48950 1.30837

0.2 0.93815 1.50424 1.32242

0.3 0.93841 1.51812 1.33562

0.1 2.03841 2.71812 3.45016

0.3 2.03853 2.72591 2.63562

0.5 2.03865 2.73339 2.64400

0.1 2.05487 3.12893 2.93505

0.2 2.05483 3.12731 2.93360

0.3 2.05480 3.12569 2.93214

0.4 0.33911 7.72999 11.6733

0.5 0.55922 7.70119 11.6306

0.6 0.68789 7.69032 11.6146

0.1 0.82446 4.07381 6.23334

0.2 0.82438 4.06941 6.22659

0.3 0.82431 4.06476 6.21943

0.3 0.82367 4.03450 6.17277

0.4 0.82271 3.98592 6.09800

0.5 0.82134 3.90893 5.97975

0.1 0.82438 4.06941 4.69593

0.2 0.82438 4.06941 5.07859

0.3 0.82438 4.06941 5.46126

0.1 0.82438 4.06941 1.03179

0.5 0.82438 4.06941 3.31479

1 0.82438 4.06941 6.22659

0.5 0.82438 4.06941 3.31479

1 0.82438 4.06941 6.22659

1.5 0.82438 4.06941 9.18276

0.1 0.89710 2.21688 3.50681

0.2 0.81434 2.20547 3.48796

0.3 0.78569 2.18375 3.45366

1 0.89710 2.21688 3.50681

2 0.85497 3.26596 5.04071

3 0.82438 4.06941 6.22659
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4.4 Concluding Remarks

The consequences of various effects like nanoparticles, double diffusive convection

along with motile gyrotatic microorganisms on incompressible fluid moving along

a stretching sheet has been discussed in this chapter. The numerical solution of

the developed model has been achieved with the help of well established scheme

termed as Keller box method. The prominent outcomes from the present study

are enumerated underneath:

� An improvement in We augments f ′(η).

� The mass fraction field portrays an opposite behaviour as a result of an

amplification in Ln.

� A positive variation in Pe drives to an abatement in the solute profile.

� The microrotation distribution profile declines in the case of an improvement

in Lb and σ.

� The solute profile diminishes for the case of an embellishment in the regular

Lewis number Le.



Chapter 5

Darcy-Forchheimer Flow of

Maxwell Nanofluid Moving over a

Stretching Sheet

The current chapter elucidates the performance of magneto Maxwell nanofluid

moving over a Darcy porous stretching medium. The heat and mass transfer

phenomena with regard to fluid flow under the effect of thermal conductivity,

nonlinear based thermal radiation and activation energy have been debated. The

temperature of the expandable sheet is controlled by the mechanism of convective

heat transfer. The concentration of the nanoparticles is zero at the surface of the

sheet. Buongioro nanofluid model is considered for the analysis of nanoparticles

on the non-Newtonian fluid. The modelled nonlinear modeled PDEs have been

further transformed into ODEs by adopting a suitable transformation which are

further handled by shooting scheme. The influence of sundry parameters like

Biot number, Brownian as well as thermophoresis nanofluid parameters, radiation

parameter, wall to ambient temperature parameter and reaction rate constant have

been observed on the velocity, temperature and concentration profiles in terms of

tables and figures. It is quite interesting that the mass concentration decreases by

the virtue of an improvement in the activation energy parameter but temperature

field heightens owing to an enhancement in the temperature ratio parameter.

112
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5.1 Mathematical Formulation

The model depicted in Figure 5.1 describes the Maxwell magneto nanofluid moving

over a stretching surface having pores in it. The sheet is stretching horizontally

with velocity uw(x) = ax and furthermore the applied magnetic field B0 direction

is perpendicular to the fluid flow. The fluid flow is laminar under the effect of small

Reynolds number which furthermore dismisses the influence of induced magnetic

effect. The convective heat transfer phenomenon denoted by hf is responsible for

the temperature adjustment of the expandable sheet. Zero mass flux condition

has been considered along with Brownian and thermophoresis effects.

Figure 5.1: Flow geometry.

The extra stress tensor for Maxwell fluid [61] are defined as

S̄ + λ1
DS̄

Dt
= µĀ1, (5.1)

where µ as well as λ1 indicates the fluid viscosity and relaxation time of the

material respectively. Ā1 is the Rivlin-Ericksen tensor defined by

Ā1 = L̄ + L̄T . (5.2)
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where L̄ denote the change in velocity and L̄T represents the transpose of velocity

components matrix defined as

L̄ =


∂u
∂x

∂u
∂y

0

∂v
∂x

∂v
∂y

0

0 0 0

 , L̄T =


∂u
∂x

∂v
∂x

0

∂u
∂y

∂v
∂y

0

0 0 0

 . (5.3)

The operator D
Dt

is defined for contravariant vector and for a contravariant tensor

of rank(2) respectively in Eq. (5.4) and Eq. (5.5) given below

DS̄

Dt
=
dS̄

dt
− L̄S̄, (5.4)

DS̄

Dt
=
dS̄

dt
− L̄S̄− S̄L̄T , (5.5)

Applying divergence on both sides of Eq. (5.1), we get

(
1− λ1

D

Dt

)
∇.S̄ = µ∇.Ā1, (5.6)

operating
(
1 + λ1( D

Dt
)
)

on both sides of ρdV̄
dt

= −∇p+DivS̄ and then eliminating(
1 + λ1( D

Dt
)
)
∇.S̄ from Eq. (5.6), we obtain the mathematical expression of the

form enumerated below

(
1− λ1

D

Dt

)(
ρ
dV̄

dt
+∇p

)
= µ∇.Ā1. (5.7)

Eq. (5.7) in components form are mentioned below

u
∂u

∂x
+ v

∂u

∂y
= −1

p

∂p

∂x
− λ1

p

(
u
∂2p

∂x2
+ v

∂2p

∂x∂y
− ∂u

∂x

∂p

∂x
− ∂u

∂y

∂p

∂y

)
+

v

(
∂2u

∂x2
+
∂2u

∂y2

)
− λ1

(
v2∂

2u

∂y2
+ 2uv

∂2u

∂x∂y
+ u2∂

2u

∂x2

)
,

(5.8)

and

u
∂u

∂x
+ v

∂u

∂y
= −1

p

∂p

∂y
− λ1

p

(
v
∂2p

∂y2
+ u

∂2p

∂x∂y
− ∂v

∂x

∂p

∂x
− ∂v

∂y

∂p

∂y

)
+

v

(
∂2v

∂x2
+
∂2u

∂y2

)
− λ1

(
v2∂

2v

∂y2
+ 2uv

∂2v

∂x∂y
+ u2 ∂

2v

∂x2

)
,

(5.9)
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after ignoring the pressure gradient we get

u
∂u

∂x
+ v

∂u

∂y
+ λ1

(
v2∂

2v

∂y2
+ 2uv

∂2v

∂x∂y
+ u2 ∂

2v

∂x2

)
= v

(
∂2v

∂x2
+
∂2u

∂y2

)
, (5.10)

and

u
∂u

∂x
+ v

∂u

∂y
+ λ1

(
v2∂

2v

∂y2
+ 2uv

∂2v

∂x∂y
+ u2 ∂

2v

∂x2

)
= v

(
∂2v

∂x2
+
∂2u

∂y2

)
. (5.11)

The governing modeled PDEs under the effect of boundary layer assumption are

enumerated underneath

∂u

∂x
+
∂v

∂y
= 0, (5.12)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σ1B

2
0

ρf

(
u+ λ1v

∂u

∂y

)
− ν

K2

u− Fu2

− λ1

(
u2∂

2u

∂x2
+ v2∂

2u

∂y2
+ 2uv

∂2u

∂x∂y

)
, (5.13)

u
∂T

∂x
+ v

∂T

∂y
=

1

ρcp

∂

∂y

(
κ
∂T

∂y

)
+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

ρcp

∂qr
∂y

, (5.14)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
−K2

r (C − C∞)

(
T

T∞

)n
exp

(
−Ea
κT

)
, (5.15)

with the boundary conditions

y = 0 : u = ax, v = 0,−k∂T
∂y

= hf (Tw − T ), DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0,

y →∞ : u→ 0, T → T∞, C → C∞.

 (5.16)

The parameter F = Cb

xK
1
2

depicts the inertia coefficient and the thermal conduc-

tivity is denoted by

κ(T ) = κ∞

(
1 + ε1

T − T∞
Tw − T∞

)
. (5.17)

The last expression in the right side of governing modeled energy equation (5.14)

is termed as thermal radiation heat flux based on the Rosseland approximation.

Rosseland approximation relies on the hypotheses that the participating medium

fluid) is an optically thick and radiation propagates over a small distance before

encounter a scattering phenomenon. The penetration length of radiation is small
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compare to the characteristic length and moreover photon mean free length is very

small. The equation regarding Rosseland heat approximation [94] is exhibited by

qr = −4σ∗

3κ∗
∂T 4

∂y
. (5.18)

The terms σ∗ and κ∗ indicates Boltzmann as well as absorption coefficients ac-

cordingly. The generalized form of the radiation heat flux is given by

∂qr
∂y

= −16σ∗T 3
∞

3κ∗
∂2T

∂y2
, (5.19)

where K2
r (C − C∞)

(
T
T∞

)n
exp(−Ea

κT
) represents the Arrhenius expression.

To convert PDEs to ODEs, we adopt the following similarity transformation [98]:

u = axf ′(η), v = −
√
aνf(η), η =

√
a

ν
y,

φ(η) =
C − C∞
Cw − C∞

, θ(η) =
T − T∞
Tw − T∞

.

 (5.20)

The detailed mechanism for conversion of (5.12)-(5.15) into dimensionless ODEs

is given below:

�

∂u

∂x
=

∂

∂x
(axf ′(η))

= af ′(η). (5.21)

�

∂v

∂y
=

∂

∂y
(−
√
aνf(η))

= −
√
aν

√
a

ν
f ′(η)

= −af ′(η). (5.22)

�

∂u

∂y
=

∂

∂y
(axf ′(η))

= ax

√
a

v
f ′′(η). (5.23)

� u
∂u

∂x
= axf ′.

∂

∂x
(axf ′)

= a2xf ′2. (5.23)
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� v
∂u

∂y
= −
√
aνf(η).ax

√
a

ν
f ′′(η)

= −ax
√
aν

√
a

ν
f(η)f ′′(η)

= −a2xff ′′(η). (5.24)

� ν
∂2u

∂y2
= ν

∂

∂y

(
∂u

∂y

)
= ax

(√
a

ν

)2

f ′′′(η)

= ax
(a
ν

)
f ′′′(η)

=
a2x

ν
f ′′′(η). (5.25)

� v2∂
2u

∂y2
=
(
−
√
aνf(η)

)2
.
a2x

ν
f ′′′

= a3xf 2f ′′′. (5.26)

� u2∂
2u

∂x2
= (axf ′)2.

∂

∂x

(
∂u

∂x

)
= (axf ′)2.

∂

∂x
(af ′(η))

= (axf ′)2.0

= 0. (5.27)

�

∂2u

∂x∂y
=

∂

∂x

(
∂u

∂y

)
=

∂

∂x

(
ax

√
a

ν
f ′′(η)

)
= a

√
a

ν
f ′′(η). (5.28)

� 2uv
∂2u

∂x∂y
= −2axf ′.

√
aνf.a

√
a

ν
f ′′

= −2axf ′.a2ff ′′

= −2a3xff ′f ′′. (5.29)

� λ1

(
u2∂

2u

∂x2
+ v2∂

2u

∂y2
+ 2uv

∂2u

∂x∂y

)
= λ1a

3x
(
f 2f ′′′ − 2ff ′f ′′

)
. (5.30)
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� u+ λ1v
∂u

∂y
= axf ′ − λ1

√
aνf.ax

√
a

ν
f ′′

= axf ′ − λ1a
2xff ′′

= ax(f ′ − λ1aff
′′). (5.31)

�

σ1B
2
0

ρf

(
u+ λ1v

∂u

∂y

)
=
σ1B

2
0

ρf
(axf ′ − λ1a

2xff ′′). (5.32)

� Fu2 = F (axf ′)2

= Fa2x2f ′2

= a2x2Ff ′2. (5.33)

�

∂T

∂x
= (Tw − T∞)

∂θ(η)

∂η
.
∂η

∂x
= 0. (5.34)

� u
∂T

∂x
= axf ′(η).(Tw − T∞)

∂θ(η)

∂η
.
∂η

∂x
= 0. (5.35)

�

∂T

∂y
= (Tw − T∞)

∂θ(η)

∂η
.
∂η

∂y

= (Tw − T∞)

√
a

ν
θ′ (5.36)

�

∂2T

∂y2
= (Tw − T∞)

∂

∂y

(
∂θ(η)

∂η
.
∂η

∂y

)
= (Tw − T∞)

∂

∂y

(√
a

ν
θ′
)

= (Tw − T∞)2

√
a

ν

√
a

ν
θ′′

= (Tw − T∞)2
(a
ν

)
θ′′ (5.37)

� v
∂T

∂y
= −
√
aνf(η).(Tw − T∞)

∂θ(η)

∂η
.
∂η

∂y
,

= −a(Tw − T∞)fθ′. (5.38)

�

∂C

∂y
= (Cw − C∞)

∂φ(η)

∂η
.
∂η

∂y

= (Cw − C∞)

√
a

ν
φ′. (5.39)

� DB
∂C

∂y
= DB(Cw − C∞)

√
a

ν
φ′. (5.40)
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� DB
∂C

∂y

∂T

∂y
= DB(Cw − C∞)

√
a

ν
φ′.(Tw − T∞)

√
a

ν
θ′

= DB(Cw − C∞)(Tw − T∞)
(a
ν

)
φ′θ′. (5.41)

�

∂T

∂y
= (Tw − T∞)

∂θ(η)

∂η
.
∂η

∂y

=

√
a

ν
(Tw − T∞)θ′(η). (5.42)

�

DT

T∞

(
∂T

∂y

)2

=
DT

T∞

(√
a

ν
(Tw − T∞)θ′(η)

)2

=
DT

T∞

(a
ν

)
(Tw − T∞)2θ′2. (5.43)

� DB
∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2

=
a(Tw − T∞)

ν

(
DB(Cw − C∞)θ′φ′+

DT

T∞
(Tw − T∞)θ′2

)
. (5.44)

� κ
∂2T

∂y2
= κ

∂

∂y

(
∂T

∂y

)
= κ∞

(
1 + ε1

T − T∞
Tw − T∞

)
.(Tw − T∞)

(a
ν

)
θ′′

= κ∞ (1 + ε1θ) .(Tw − T∞)
(a
ν

)
θ′′

= κ∞(Tw − T∞)
(a
ν

)
(1 + ε1θ) θ

′′. (5.45)

�

∂κ

∂y

∂T

∂y
=

∂

∂y

(
κ∞

(
1 + ε1

T − T∞
Tw − T∞

))
.(Tw − T∞)

√
a

ν
θ′

= κ∞

(
ε1

Tw − T∞

)
∂T

∂y
.(Tw − T∞)

√
a

ν
θ′

= κ∞

(
ε1

Tw − T∞

)
(Tw − T∞)2

(√
a

ν

)2

θ′2

= κ∞ε1(Tw − T∞)
(a
ν

)
θ′2. (5.46)

�

∂

∂y

(
κ
∂T

∂y

)
= κ

∂2T

∂y2
+
∂κ

∂y

∂T

∂y

= κ∞(Tw − T∞)
(a
ν

)
(1 + ε1θ) θ

′′ + κ∞ε1(Tw − T∞)
(a
ν

)
θ′2

=

(
aκ∞(Tw − T∞)2

ν

)
(1 + ε1θ) θ

′′ + ε1θ
′2. (5.47)

� T 3∂
2T

∂y2
=
(a
v

)
((Tw − T∞)θ + T∞)3 (Tw − T∞) θ′′. (5.48)
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� T 2 = ((Tw − T∞)θ(η) + T∞)2

3T 2 = 3((Tw − T∞)θ(η) + T∞)2

3T 2

(
∂T

∂y

)2

= 3((Tw − T∞)θ(η) + T∞)2
(a
v

)
(Tw − T∞)2θ′2. (5.49)

� T 3∂
2T

∂y2
+ 3T 2

(
∂T

∂y

)2

=
(

((Tw − T∞)θ(η) + T∞)3
(a
v

)
(Tw − T∞)θ′′

)
+
(

3
(a
v

)
(Tw − T∞)2

((Tw − T∞)θ(η) + T∞)2θ′2
)
. (5.50)

�

∂qr
∂y

= −16σ∗

3κ∗
∂

∂y

(
T 3∂T

∂y

)
= −16σ∗

3κ∗

((
T 3∂

2T

∂y2

)
+ 3T 2

(
∂T

∂y

)2
)
.

= −16σ∗

3κ∗

((
((Tw − T∞)θ(η) + T∞)3

(a
v

)
(Tw − T∞)θ′′

)
+
(

3
(a
v

)
(Tw − T∞)2

((Tw − T∞)θ(η) + T∞)2θ′2
))

(5.51)

�

1

ρCp

∂qr
∂y

= − 16σ∗

3κ∗ρCp

((
((Tw − T∞)θ(η)T∞)3

(a
v

)
(Tw − T∞)θ′′

)
+
(

3
(a
v

)
(Tw − T∞)2((Tw − T∞)θ(η) + T∞)2θ′2

))
. (5.52)

�

1

ρCp

∂

∂y

(
κ
∂T

∂y

)
− 1

ρCp

∂qr
∂y

=
a(Tw − T∞)κ∞

ρvCp

(
(1 + ε1θ) θ

′′ + ε1θ
′2
)

+
16σ∗a

3κ∗ρvCp

((
(Tw − T∞)θ

+ T∞
)3

(Tw − T∞)θ′′ + 3((Tw − T∞)θ + T∞)2(Tw − T∞)2θ′2
)

=
aκ∞(Tw − T∞)

ρνCp

((
16σ∗T 3

∞
3κ∗κ∞

(((
Tw
T∞
− 1

)
θ(η) + 1

)3

θ′′

+ 3

(
Tw
T∞
− 1

)((
Tw
T∞
− 1

)
θ(η) + 1

)2

θ′2

))
+ ((1 + ε1θ)θ

′′ + ε1θ
′2

)
=
aκ∞(Tw − T∞)

ρνCp
(1 + ε1θ) θ

′′ + ε1θ
′2 +

(
4

3

)
Rd
(

((θw − 1) θ + 1)3 θ′′

+ 3 (θw − 1) ((θw − 1) θ + 1)2 θ′2
))
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=
a(Tw − T∞)(

µCp

κ∞

) ((
(1 + ε1θ) θ

′′ + ε1θ
′2)+

(
4

3

)
Rd
(

((θw − 1) θ + 1)3 θ′′

+ 3 (θw − 1) ((θw − 1) θ + 1)2 θ′2
))

=
a(Tw − T∞)

Pr

((
(1 + ε1θ) θ

′′ + ε1θ
′2
)

+

(
4

3

)
Rd
(

((θw − 1) θ + 1)3 θ′′

+ 3 (θw − 1) ((θw − 1) θ + 1)2 θ′2
))

=
a(Tw − T∞)

Pr

((
(1 + ε1θ) +

4

3
Rd ((θw − 1) θ + 1)3

)
θ′′

+
(
ε1 + 4Rd (θw − 1) ((θw − 1) θ + 1)2) θ′2). (5.53)

�

∂C

∂x
= (Cw − C∞)

∂φ(η)

∂η
.
∂η

∂x
= 0. (5.54)

� u
∂C

∂x
= axf ′(η).(Cw − C∞)

∂φ(η)

∂η
.
∂η

∂x
= 0. (5.55)

�

∂C

∂y
= (Cw − C∞)

∂φ(η)

∂η
.
∂η

∂y
.

= (Cw − C∞)

√
a

ν
φ′. (5.56)

�

∂2C

∂y2
=

∂

∂y

(
∂C

∂y

)
∂2C

∂y2
=
∂
(
(Cw − C∞)

√
a
ν
φ′
)

∂y

= (Cw − C∞)
(a
ν

)
φ′′. (5.57)

� DB
∂2C

∂y2
= DB

∂

∂y

(
(Cw − C∞)

√
a

ν
φ′
)

= DB(Cw − C∞)
(a
ν

)
φ′′

�

(
T

T∞

)n
=

(
(Tw − T∞)θ + T∞

T∞

)n

=

T∞
((

Tw−T∞
T∞

)
θ + 1

)
T∞

n

=

(
T∞ (δ2θ + 1)

T∞

)n
= (1 + δ2θ)

n . (5.58)
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� exp

(
−Ea
κT

)
= exp

(
−Ea

κ ((Tw − T∞)θ + T∞)

)

= exp

 −Ea
κT∞

(
(Tw−T∞

T∞
)θ + 1

)


= exp

(
−E

(1 + δ2θ)

)
. (5.59)

The continuity equation after utilizing (5.21) and (5.22) in (5.12) is given below

∂u

∂x
+
∂v

∂y
= af ′(η)− af ′(η) = 0. (5.60)

Inserting (5.23)-(5.33) in (5.13) to get dimensionless momentum equation

a2xf ′2 − a2xff ′′ + λ1

(
a3xf 2f ′′′ − 2a3xff ′f ′′

)
= a2xf ′′′

− σ1B
2
0a

2x

ρf
(f ′ − λ1ff

′′)− ν

k2

axf ′ − Fa2x2f ′2

⇒ ν
a2x

ν
f ′′′ − σ1B

2
0

ρf
(axf ′ − λ1a

2xff ′′)− ν

k2

axf ′ − Fa2x2f ′2

− a2xf ′2 + a2xff ′′ − λ1

(
a3xf 2f ′′′ − 2a3xff ′f ′′

)
= 0

⇒ f ′′′ − σ1B
2
0ax

ρfa2x
(f ′ − λ1aff

′′)− ν

k2a
f ′ − Fxf ′2 − f ′2 + ff ′′

− λ1a
(
f 2f ′′′ − 2ff ′f ′′

)
= 0

⇒ f ′′′ − σ1B
2
0

ρfa
(f ′ − λ1aff

′′)− ν

k2a
f ′ − Fxf ′2 − f ′2 + ff ′′

− λ1a
(
f 2f ′′′ − 2ff ′f ′′

)
= 0

⇒ f ′′′ −M2(f ′ − β2ff
′′)− λ2f

′ − Frf ′2 − f ′2 + ff ′′

− β2

(
f 2f ′′′ − 2ff ′f ′′

)
= 0

⇒ f ′′′ −M2(f ′ − β2ff
′′)− λ2f

′ − Frf ′2 − f ′2 + ff ′′

− β2

(
f 2f ′′′ − 2ff ′f ′′

)
= 0

⇒ f ′′′ −M2f ′ +M2β2ff
′′ − λ2f

′ − Frf ′2 − f ′2 + ff ′′

− β2f
2f ′′′ + 2β2ff

′f ′′ = 0

⇒ (1− β2f
2)f ′′′ − (M2 + λ2)f ′ − (M2β2 + 1)ff ′′

− (1 + Fr)f ′2 − 2β2ff
′f ′′ = 0. (5.61)

Utilizing (5.34)-(5.53) in (5.14), we get dimensionless energy equation
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− a(Tw − T∞)fθ′ = a(Tw − T∞)

(
1

Pr

((
(1 + ε1θ) +

4

3
Rd ((θw − 1) θ + 1)3

)
+
(
ε1 + 4Rd (θw − 1) ((θw − 1) θ + 1)2) θ′2)

+
τ

ν

(
DB(Cw − C∞)θ′φ′ +

DT

T∞
(Tw − T∞)θ′2

))
⇒ − fθ′ = 1

Pr

((
(1 + ε1θ) +

4

3
Rd ((θw − 1) θ + 1)3

)
+(

ε1 + 4Rd (θw − 1) ((θw − 1) θ + 1)2) θ′2)+(
τDB

ν
(Cw − C∞)θ′φ′ +

τDT

νT∞
(Tw − T∞)θ′2

)
.

⇒
(

(1 + ε1θ) +
4

3
Rd ((θw − 1) θ + 1)3

)
θ′′ +

(
ε1 + 4Rd (θw − 1)

((θw − 1) θ + 1)2 )θ′2 + Pr
(
Nbθ′φ′ +Ntθ′2

)
+ Prfθ′ = 0. (5.62)

Using (5.54)-(5.59) in (5.15), the dimensionless concentration equation is given by

− a(Cw − C∞)fφ′ = DB(Cw − C∞)
(a
ν

)
φ′′ +

(
DT

T∞

)
(Tw − T∞)

(a
ν

)
θ′′−

Kr2(C − C∞) (1 + δ2θ)
n exp

(
−E

(1 + δ2θ)

)
⇒ φ′′ −

(
ν

DB

)
Kr2

a

(C − C∞)

(Cw − C∞)
(1 + δ2θ)

n exp

(
−E

(1 + δ2θ)

)
+

(
DT

νT∞

)
(
DB

ν

)
 (Tw − T∞)

(Cw − C∞)
θ′′ + fφ′ = 0

⇒ φ′′ −
(

ν

DB

)
Kr2

a

(C − C∞)

(Cw − C∞)
(1 + δ2θ)

n exp

(
−E

(1 + δ2θ)

)
+

(
τDT

νT∞
(Tw − T∞)

)
(
τDB

ν

)
(Cw − C∞)

 θ′′ +

(
ν

DB

)
fφ′ = 0

⇒ φ′′ − PrLe
(
Scσ2 (1 + δθ)n exp

(
−E

(1 + δθ)

)
φ

+ fφ′
)

+

(
Nt

Nb

)
θ′′ = 0. (5.63)

Dimensionless momentum boundary condition is given by

� u = ax at y = 0

⇒ axf ′(η) = ax at η = 0

⇒ f ′(η) = 1 at η = 0. (5.64)
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� v = 0 at y = 0

⇒ −
√
aνf(η) = 0 at η = 0

⇒ f(η) = 0 at η = 0

⇒ f = 0 at η = 0. (5.65)

� − k∂T
∂y

= hf (Tw − T ) at y = 0

⇒ − k
√
a

ν
θ′ = hf (Tw − T∞ + T∞ − T ) at η = 0

⇒ = hf
(Tw − T∞ + T∞ − T )

(Tw − T∞)
at η = 0

⇒ = hf

(
1− (T − T∞)

(Tw − T∞)

)
at η = 0

⇒ = hf (1− θ) at η = 0

⇒ = −hf (1− θ) at η = 0

⇒ θ′ = −

(
hf

k
(√

a
ν

)) (1− θ) at η = 0

= −γ2 (1− θ) at η = 0. (5.66)

� DB
∂C

∂y
+
DT

T∞

∂T

∂y
= 0 at y = 0

⇒
√
a

ν

(
DB(Cw − C∞)φ′ +

DT

T∞
(Tw − T∞)θ′

)
= 0 at η = 0

⇒ DB(Cw − C∞)φ′ +
DT

T∞
(Tw − T∞)θ′ = 0 at η = 0

⇒
τ
ν
DB(Cw − C∞)φ′ + τ

ν
DT

T∞
(Tw − T∞)θ′(

τ
ν

) = 0 at η = 0

⇒ τ

ν
DB(Cw − C∞)φ′ +

τ

ν

DT

T∞
(Tw − T∞)θ′ = 0 at η = 0

⇒ Nbφ′ +Ntθ′ = 0 at η = 0. (5.67)

� u→ 0 as y →∞

⇒ axf ′(η) = 0 as η →∞

⇒ f ′(η) = 0 as η →∞. (5.68)

� T → T∞ as y →∞

⇒ (Tw − T∞)θ + T∞ → T∞ as η →∞

⇒ (Tw − T∞)θ → 0 as η →∞

⇒ θ → 0 as η →∞. (5.69)
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� C → C∞ as y →∞

⇒ (Cw − C∞)φ+ C∞ → C∞ as η →∞

⇒ (Cw − C∞)φ→ 0 as η →∞

⇒ φ→ 0. as η →∞ (5.70)

Different dimensionless parameters appearing during the numerical simulation are

enumerated underneath

Rex =
ue(x)x

ν
, b = a/c, E =

(
Ea
κT∞

)
, δ2 =

Tw − T∞
T∞

β2 = λ1a, λ2 =
ν

Ka
, Pr =

ν

α
, Le =

α

DB

, γ2 =
h

k

√
ν

c
,

Nb =
τDB

ν
(Cw−C∞) , Nt =

DT

T∞

τ

ν
(Tw−T∞) , Fr =

Cb

K
1
2

,

Rd =
4σT 3

∞
k∗k∞

, σ2 =
k2
r

c
, τ =

ρCp
ρCf

.


(5.71)

Derivation regarding heat transfer rate is given by

Nux = − x

(Tw − T∞)

∂T

∂y


y=0

+
xqr

k(Tw − T∞)


y=0

, where

qr = −4σ∗

3κ∗
∂T 4

∂y

⇒ = −16σ∗

3κ∗
T 3∂T

∂y

⇒ = −16σ∗

3κ∗
((Tw − T∞)θ(η) + T∞)3

√
a

v
θ′(η)

⇒ = −16σ∗T 3
∞

3κ∗
(1 + (θw − 1)θ(η))3(Tw − T∞)

√
a

v
θ′(η)

⇒ = −
(

4

3

)
Rd(1 + (θw − 1)θ(η))3(Tw − T∞)

√
a

v
θ′(η).

Therefore,

Nux =
−x
√

a
v
(Tw − T∞)θ′

(Tw − T∞)
−
x
(

4
3

)
Rd(1 + (θw − 1)θ)3(Tw − T∞)

√
a
v
θ′

(Tw − T∞)

⇒ = −x
√
a

v
θ′(η)− x

√
a

v

(
4

3

)
Rd(1 + (θw − 1)θ(η))3θ′(η)

⇒ = −x
√
a

v

(
θ′ +

(
4

3

)
Rd(1 + (θw − 1)θ(η))3θ′

)
⇒ = −

(
1 +

4

3
Rd(1 + (θw − 1)θ(η))3

)
θ′
√
Rex. (5.72)
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5.2 Solution Methodology

The solutions of dimensionless system of equations (5.61)-(5.63) are numerically

achieved with the employment of well established shooting scheme [120]. The

interval of integration has been taken [0, 7] instead of [0, ∞]. To transform

the boundary value problem (BVP) into initial value problem (IVP)comprising of

ODEs having order one, f has been denoted by y1, θ by y4 and φ by y6. The

resulting first order ODEs are given by

y′1 = y2,

y′2 = y3,

y′3 =
[(M2 + λ2) y2 + (1 + Fr) y

2
2 − (M2β2 + 1) y1y3 − 2β2y1y2y3]

1− β2y2
1

,

y′4 = y5,

y′5 = −

 (ε1 + 4Rd(θw − 1)(1 + (θw − 1)y4)2y2
5)

+Prfy1y5 + Pr (Nby5y7 +Nt y2
5)


(
(1 + ε1y4) + 4

3
Rd (1 + (θw − 1) y4)3)

y′6 = y7,

y′7 = PrLe σ2 (1 + δ2y4)n exp

(
−E

1 + δ2y4

)
y6 − PrLey1y7 −

(
Nt

Nb

)
y′5,



(5.73)

together with the boundary conditions:

η = 0 : y1(0) = 0, y2(0) = 1, y3(0) = s, y4(0) = t,

y5(0) = −γ (1− t) , y6(0) = u, y7(0) =
Nb

Nt
γ (1− t) .

η →∞ : y2(∞)→ 0, y4(∞)→ 0, y6(∞)→ 0.

 (5.74)

For some appropriate choice of the missing initial conditions s, t and u, the IVP

is solved numerically with the utilization of RK4 scheme. The iterative scheme

called Newton’s method is employed to refine the initial guesses s, t and u until

mentioned below is fulfilled.

max{|y2(η∞)|, |y4(η∞)|, |y6(η∞)} < ε, (5.75)
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where η∞ is a finite number and ε > 0 represents any positive number with tol-

erance level ε = 10−6. Tolerance is actually the level of error acceptable for any

numerical scheme. Solution is convergent with an error less than tolerance level.

5.3 Results and Discussion

The impact of various dimensionless parameters appear during numerical simu-

lation of the problem on velocity, temperature as well as concentration fields are

discussed and displayed the results in terms of figures and tables mentioned below.

5.3.1 Impact of β2, Fr, λ2 and M on the velocity field f ′(η)

The impact of Deborah number on f ′(η) is sketched in Figure 5.2. It can be seen

that the field f ′(η) depreciates by increasing the value of Deborah number. A

smaller change in the Deborah number change the material state from solid to the

fluid however a converse finding means that the material acts like a solid. Thats

why a magnification in β2 diminishes the fluid velocity and moreover the velocity

field likewise. A positive variation in the case of inertia coefficient brings about

a decrement in the velocity field as displayed in figure 5.3. It is found that by

increasing the inertia coefficient, the thermal boundary layer becomes more thick

and the fluid cannot move easily. Figure 5.4 is potted for the varying values of

porosity parameter on f ′(η). It can be seen that an incremental variation in the

porosity parameter debacles f ′(η). It is noted that the fluid speed diminishes

when moving across a porous expandable medium. Figure 5.5 displays the change

in f ′(η) in response to the deviation in M . When we increase the value of M , the

profile f ′(η) decreases because of the magnetic field. An electrically conducting

fluid along with the magnetic field produces a Lorentz force which provide hurdle

to the fluid flow. Collision of molecules increases as a result of this resistive force.

Due to this, the temperature of fluid rises and a reduction in fluid flow velocity is

observed within the boundary layer. As a result decrement in the velocity field is

observed by the virtue of an amplification in magnetic field.
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Figure 5.2: Impact of β2 on f ′.
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Figure 5.3: Effect of Fr on f ′.
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5.3.2 Impact of β2, Fr, ε1, λ2, M , Nt, Pr, Rd, θw, γ2 on θ(η)

Figure 5.6 represents the fact that when the Deborah number increase, the tem-

perature field θ(η) increases. It is note worthy that a magnification in β2 turn

liquids into solids which reduces the fluid speed and velocity field as well. The

influence of the variable thermal conductivity on θ(η) has been discussed in Figure

5.7. The impact of variable thermal conductivity ε amplifies θ(η) meaningfully but

reverse in the case of the volume fraction nanoparticles, thats why the cooling rate

is more faster in the case of coolant possesses minimum thermal based conductiv-

ity parameter. Figure 5.8 displays the relationship between the inertia coefficient

Fr and the temperature profile θ(η). An increase in Fr brings about a magnifica-

tion in the temperature field. Figure 5.9 is portrayed to analyze the relationship

between the porosity parameter λ2 and the temperature profile θ(η). It is noticed

that the presence of porous media creates an increment in the resistance against

the fluid flow which magnifies the temperature profile. Figure 5.10 indicates that

the temperature profile is enhanced owing to a magnification in M in the presence

of resistive force which increases the fluid viscosity and amplifies the temperature

field. The behavior of the thermophoresis parameter on the temperature field has

been discussed in Figure 5.11. The nanoparticles scattered around the bound-

ary region possesses high temperature migrate towards the region possesses low

temperature subject to the availability of thermophoretic force which amplifies

the temperature field. Figure 5.12 displays the Prandtl number influence on θ(η).

When the Prandtl number increases, a decrease in the thermal conductivity takes

place which ultimately guides to a reduction in the temperature field θ(η). Figure

5.13 shows that an increment in the thermal radiation Rd gives more heat to the

fluid which results an increment in the temperature. Thermal radiation is one of

the pertinent parameter in order to determine the heat transfer analysis. Figure

5.14 sketches the impact of θw on the temperature profile. It is quite clear that the

temperature increases with a decrease in θw. Figure 5.15 depicts that a magnifi-

cation in Biot number γ results an increase in the temperature profile θ(η). When

the Biot number increases, higher convective heat transfer increases.
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Figure 5.6: Effect of β2 on θ.
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Figure 5.8: Impact of Fr on θ.
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Figure 5.10: Influence of M on θ.
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Figure 5.11: Influence of Nt on θ.
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Figure 5.12: Impact of Pr on θ.
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Figure 5.13: Effect of Rd on θ.
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Figure 5.14: Influence of θw on θ.
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Figure 5.15: Impact of γ2 on θ.
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5.3.3 Impact of γ2, λ2, Le, Nt, σ2, β2 and E on the concen-

tration field φ(η)

Figures 5.19-5.22 are designed to study the impact of various dimensionless pa-

rameters γ2, λ2, Le, Nt, σ2, β2, E arise during numerical simulation of the problem

on mass fraction field φ(η). The impact of γ2 against φ(η) is sketched in Figure

5.16. It is quite evident that a magnification in γ2 escalates φ(η) and furthermore

elevates the concentration thickness in the case of boundary layer. In Figure 5.17,

a variation in porosity parameter λ, magnifies the mass fraction field and thickness

of the concentration boundary layer. Figure 5.18 is utilized to represent the in-

fluence of Le on φ(η). Diffusion process relies on the concentration of the species.

The net flux of the molecules move from the region of higher concentration towards

the lower one. The parameter Le is related to the diffusivity phenomenon. It is

analyzed that an increment in the Lewis number amplifies the Brownian diffusion

which elevates φ(η). Diffusion in the fluid elevates the concentration of the species.

5.19 illustrate the influence of Nt on φ(η). In the occurrence of Nt, little particles

migrated away from surface having high temperature towards the surface having

low temperature. It is researched that by enlarging the estimation of Nt brings

about a magnification in the nanoparticle mass fraction profile. Figure 5.20 dis-

plays the behaviour of σ2 on φ(η) and found that a magnification in σ2 results in

a decrement of nanoparticle concentration. Thus a destructive chemical reaction

takes place. A a result φ(η) escalates. Impact of Deborah effect on the concen-

tration profile is portrayed in Figure 5.21. It is observed that an amplification

in relaxation to retardation time in the fluid give ascent to φ(η), yet reverse in

the case of smaller value of relaxation time to retardation time brings about an

abatement in the concentration profile. Figure 5.22 is designed to investigate the

influence of E on φ(η). It is quite interesting that the value of Arrhenius function

declines as a result of a magnification in the parameter E, which contributes a lot

in the process to generate a chemical reaction results in an augmentation in φ(η).

In the presence of low temperature and high energy brings about an increment in

σ2 which elevates chemical reaction and moreover φ(η) diminishes.
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Figure 5.16: Effect of γ2 on φ.
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Figure 5.17: Influence of λ2 on φ.
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Figure 5.18: Impact of Le on φ.
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Figure 5.19: Effect of Nt on φ.
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Figure 5.20: Influence of σ2 on φ.
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Figure 5.21: Impact of β2 on φ.
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Figure 5.22: Impact of E on φ.

In Table 5.1, the present results for Nusselt number are compared with those

obtained by Muhammad et al. [55] for different parameters, which shows a very

good agreement. Through Table 5.2, it can be observed that an increase in the

Biot number β2, Rd, Pr brings about an amplification in Nusselt number, whereas

incremental change in M , ε2, Nt, Le depreciates the Nusselt number. From Table

5.3, an enhancement in β2, reaction rate constant σ, fitted rate constant n, porosity

parameter λ, temperature difference parameter δ leads to a magnification in the

heat transfer phenomenon. In the case of an augmentation in β2 more heat is

entered into the system which improves heat transfer rate. Thermal radiation

occurs due thermal motion of the molecules and non-linear thermal radiation is

used where temperature difference is large. An augmentation in non-linear thermal

radiation increases the heat transfer rate. An amplification in the Prandtl number

delivers more heat to the fluid which brings about an amplification in the heat

transport phenomenon. More heat diffuses into the fluid brings about an escalation

in M and the Nusselt number.
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Table 5.1: Computation of −θ′(0) showing resemblance with Ref. [55]

�

β2 M λ2 Fr Le Pr γ2 Nt Ref. [55] Shooting

0.0 0.20321 0.20325

0.5 0.19945 0.19955

1.0 0.19587 0.19606

0.0 0.20178 0.20185

0.5 0.19954 0.19939

0.8 0.19633 0.19592

0.0 0.20358 0.20361

0.4 0.19990 0.19999

0.8 0.19656 0.19676

0.0 0.20203 0.20207

0.5 0.20042 0.20050

1.0 0.19895 0.19905

0.5 0.20203 0.20188

1.0 0.20169 0.20175

1.5 0.20160 0.20166

0.5 0.15592 0.15955

1.0 0.19306 0.19326

1.5 0.21147 0.21146

0.2 0.15100 0.15103

0.7 0.32691 0.32708

1.2 0.40532 0.40559

0.0 0.20204 0.20120

0.5 0.20022 0.20028

1.0 0.19828 0.19883
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Table 5.2: Computation of Nusselt number against various values of embedded
parameters.

NuxRe
−1
2
x

M Rd β2 ε1 Nt Pr Le Shooting

0.2 0.288567

0.4 0.286350

0.6 0.282915

0.7 0.280399

0.5 0.315386

0.6 0.341821

0.7 0.367946

1.6 0.301540

1.7 0.315907

1.8 0.331768

0.3 0.285396

0.4 0.282241

0.5 0.279105

0.9 0.287217

1.0 0.285850

1.2 0.283961

1.2 0.303084

1.4 0.315554

1.6 0.326182

1.2 0.288249

1.4 0.287996

1.6 0.287789
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Table 5.3: Computation of Nusselt number for different embedded parameters.

NuxRe
−1
2
x

E σ2 n δ2 β2 λ2 Fr γ2 Shooting

0.3 0.288891

0.5 0.289222

0.7 0.289553

1.2 0.288281

1.4 0.288048

1.5 0.287947

0.7 0.288402

0.9 0.288239

1.1 0.288079

1.8 0.288389

2.0 0.288156

2.2 0.288048

0.4 0.285732

0.6 0.283048

0.8 0.280507

1.0 0.285352

1.2 0.282384

1.4 0.279635

0.3 0.287491

0.5 0.286455

0.7 0.285455

0.5 0.360750

0.7 0.399335

0.9 0.422897
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5.4 Concluding Remarks

The present investigation is carried out to analyze the magnetohydrodynamics

(MHD) stretchedflow of Maxwell nanofluid with the convective boundary condi-

tion and consideration of some relevantphysical parameters like activation energy,

radiative heat flux and variable thermal conductivity. Someof the conclusive re-

marks for the present work are presented below.

� The velocity profile f ′(η) show an opposite impact against the magnetic

parameter M and inertia coefficient Fr.

� The temperature profile θ(η) has increasing behavior for the thermal con-

ductivity ε1, porosity parameter λ2 and Deborah number β2.

� Incremental change in thermophoresis quantityNt, radiation effectRd boosts

θ(η).

� Magnification in β and λ2 show an enhancing effect on φ(η) but opposite

behaviour is observed in case of Le and σ.

� Rising value of γ2 amplifies both the velocity and the concentration profiles.

� Nusselt number decreases for boosting the value of thermophoresis parameter

Nt.



Chapter 6

Role of Maxwell Velocity and

Smoluchowski Temperature Jump

Slip Boundary Conditions on

Carreau Fluid

The motive behind this chapter is to study three dimensional magneto Carreau

fluid past a bidirectional stretchable surface accompanied with Joule heating,

non-linear Rosseland thermal radiation and homogenous/heterogenous reaction

process. Both velocity and temperature slips boundary conditions have also been

taken at the sheet surface. Heat and mass transport phenomena have been studied

for the effects like nonlinear Rosseland thermal radiation and cubic autocatalysis

chemical reaction. By adopting a suitable transformation, the PDEs regarding

continuity, momentum, temperature and homogenous/heterogenous reaction have

been converted into ODEs and the shooting scheme is adopted to handle the

differential equations numerically. The effect of relevant dimensionless physical

quantities on velocity field, temperature as well as mass fraction fields are debated

and displayed. The velocity field depreciates owing to an increment in the velocity

slip parameter and the temperature field escalates by the virtue of an enhancement

in the radiative parameter.

145
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6.1 Mathematical Formulation

Three dimensional electrically conducting magneto radiative Carreau fluid flow

subjected to an expandable medium with expanding sheet velocities Uw(x) = ax

and Vw(x) = by has been portrayed in Figure 6.1. A magnetic effect of strength

B0 is utilized normal to the expandable sheet. Furthermore the induced magnetic

field is not considered because of low Reynold’s number. The Maxwell veloc-

ity slip [122] and Smoluchowski temperature jump [123] boundary conditions are

also considered. The stress tensor behaviour of Carreau rheological model [89] is

premeditated by the expression mentioned below

τ = −pI + ηA1, (6.1)

with

η = η∞ + (η0 − η∞)[1 + (Γγ̇)2]
n−1
2 , (6.2)

where p is the symbol of pressure, identity tensor is denoted by the symbol I,

η0 and η∞ symbolizes the fluid thickness at zero as well as infinite-shear rate, n

Figure 6.1: Physical model of the problem.
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expresses the power law index, and Γ a material time expression. The shear rate

γ̇ is expressed as

γ̇ =

√
1

2
ΣΣγ̇ij γ̇ji,

=

√
1

2

∏
,

=

√
1

2
tr(A2

1). (6.3)

Here
∏

is the second invariant strain rate tensor and A1 is the Rivlin-Ericksen

tensor given by

A1 = (gradV) + (gradV)T . (6.4)

We consider the most practical cases where in η0 � η∞. Hence η∞ represent the

shear rate at the infinity and moreover taken to be zero and consequently Eq. (6.1)

reduces as

τ = −pI + η0[1 + (Γγ̇)2]
n−1
2 A1, (6.5)

where A1 is the Rivlin-Ericksen tensor. Carreau fluid model is a four parameter

model derived from power law model. The expression n in Carreau-model usually

lie between 0 < n < 1 determine how much viscous the fluid is. In the case of

n >1 the fluid behaviour is dilatant but shear thickening as a result of n <1. The

velocity components of the Carreau fluid flow subjected to an expandable surface

and temperature are premeditated by the mathematical expressions mentioned

below

V = [u(x, y), v(x, y), 0], T = T (x, y), (6.6)

symbols u and v indicates the direction of fluid flow along the x-axis and y-axis.

Implementing Eq. (6.4) and Eq. (6.6) in Eq. (6.3), the strain rate γ̇ is expressed

as:

γ̇ =

[
4(
∂u

∂x
)2 + (

∂u

∂y
+
∂v

∂x
)2

] 1
2

. (6.7)

The fundamental equation regarding Carreau fluid flow rheological model is men-

tioned below

τ = µ∞ + (µ0 + µ∞)
[
1 + Γ2γ̇2

]n−1
2 γ̇, (6.8)
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whereas the terms µ0 and µ∞ symbolize the shear rate at zero and infinity and

moreover the parameter n denotes the power-law index. The symbol n represents

the nature a of the fluid and viscosity of the fluid. The fluid behaviour is dilatant

for n > 1, pseudoplastic in the case of n < 1 and the behaviour is Newtonian as

n = 1.

In the current formulation of the problem the viscosity effect at infinity termed

as µ∞ is considered as zero. Then stress tensor regarding Carreau fluid model

reduces to

τ = µ0

[
1 + Γ2γ̇2

]n−1
2 γ̇, (6.9)

where Γ is the material constant and generally represent the relaxation time. The

parameter γ̇ symbolizes the movement of the layer of the liquid over another layer.

The symbol γ̇ is used to represent the deformation rate. The homogeneous as well

as the heterogeneous reaction between species A and B is premeditated by Mansur

et al. [124]. Both of the reaction processes exhibit the isothermal phenomenon,

bestowed by

A+ 2B → 3B, rate = K0a1b
2
1, (6.10)

A→ B, rate = Ksa1. (6.11)

The concentration of chemical species A and B is established by the symbols a1

and b1 whereas the terms K0 and Ks represent the homogeneous as well as hetero-

geneous reaction rate constants. It is reported that homogeneous and heteroge-

neous chemical reactions have immense utilizations in engineering and industrial

applications like manufacturing of polymer products, design of chemical process-

ing equipment, and food processing, etc.

In the light of boundary layer assumptions and the inclusion of effects like nonlinear

thermal radiation and chemical reactions the modeled partial differential equations

(PDEs) regarding continuity, momentum, energy and homogeneous/heterogenous

reactions along with temperature and velocity slip boundary conditions are enu-

merated below:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (6.12)
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u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν(n− 1)Γ2

(
∂u

∂z

)2
∂2u

∂z2

(
1 + Γ2

(
∂u

∂z

)2
)n−3

2

(6.13)

+ ν
∂2u

∂z2

(
1 + Γ2

(
∂u

∂z

)2
)n−1

2

− σ1B
2
0

ρf
u,

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν(n− 1)Γ2

(
∂v

∂z

)2
∂2v

∂z2

(
1 + Γ2

(
∂v

∂z

)2
)n−3

2

(6.14)

+ ν
∂2v

∂z2

(
1 + Γ2

(
∂v

∂z

)2
)n−1

2

− σ1B
2
0

ρf
v,

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

µ

ρCp

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)

+
σ1B

2
0

ρCp

(
u2 + v2

)
(6.15)

+ α
∂2T

∂z2
− 1

ρCp

∂qr
∂z

,

u
∂a1

∂x
+ v

∂a1

∂y
+ w

∂a1

∂z
= DA

∂2a1

∂z2
−K0a1b

2
1, (6.16)

u
∂b1

∂x
+ v

∂b1

∂y
+ w

∂b1

∂z
= DB

∂2b1

∂z2
+K0a1b

2
1. (6.17)

The relevant boundary conditions have been included below

z = 0 : u = ax+
2− σv
σv

λ0
∂u

∂z
, v = by +

2− σv
σv

λ0
∂v

∂z
, w = 0,

T = Tw +
2− σT
σT

(
2r

r + 1

)
λ0

Pr

∂T

∂z
, DA

∂a1

∂z


y=0

= Ksa1(0),

DB
∂b1

∂z


y=0

= −Ksa1(0).

z →∞ : u→ 0, v → 0, T → T∞, a1 → a0, b1 → 0,


(6.18)

where σv and σT are the velocity and temperature accomodation coefficients,

λ0 is the mean free path, r is the gas constant respectively, The mathematical

expression of Rosseland approximation is premeditated by:

qr = −4σ∗

3κ∗
∂T 4

∂z
= −4σ∗

3κ∗
T 3∂T

∂z
. (6.19)

The symbol σ∗ and κ∗ in the above mentioned expression represents the Stefan-

Boltzmann constant and absorption coefficient of the medium. The Rosseland

approximation regarding radiative heat flux is applicable where the medium is
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optically thick.

By introducing the following non-dimensional variables

u = axf ′(η), v = ayg′(η), w = −
√
av (f(η) + g(η)) , η = z

√
a

ν
,

θ(η) =
T − T∞
Tw − T∞

, h(η) =
a1

a0

, q(η) =
b1

a0

,

 (6.20)

the modelled PDEs are converted into the ODEs. The detailed procedure for

transformation of Eqs. (6.12)-(6.17) are given below.

�

∂u

∂x
=

∂

∂x
(axf ′(η))

= af ′(η). (6.21)

�

∂v

∂y
=

∂

∂y
(ayg′(η))

= ag′(η). (6.22)

�

∂w

∂z
= −

√
(av)

(
∂f

∂η

∂η

∂z
+
∂g

∂η

∂η

∂z

)
= −

√
(av)

√
a

v
(f ′(η) + g′(η))

= −a(f ′(η) + g′(η)). (6.23)

� u
∂u

∂x
= axf ′(η).af ′(η) = a2xf ′

2

(η) (6.24)

�

∂u

∂y
=

∂

∂y
(axf ′(η))

= ax
∂f ′

∂η

∂η

∂y

= ax

(√
a

v

)
f ′′. (6.25)

� v
∂u

∂y
= ayg′(η).ax

(√
a

v

)
f ′′

= 0. (6.26)

�

∂u

∂z
= ax

∂

∂η
(f ′(η)) .

∂η

∂z

= ax

√
a

v
f ′′(η). (6.27)
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� w
∂u

∂z
= −

√
(av)(f + g).ax

√
a

v
f ′′(η)

= −(a2xf + a2xg)f ′′(η)

= −a2x(f + g)f ′′(η). (6.28)

� v(n− 1)Γ2

(
∂u

∂z

)2

= v(n− 1)Γ2

(
ax

√
a

v
f ′′
)2

(6.29)

�

(
∂u

∂z

)2

=

(
a3x2

v

)
f ′′2(η) (6.30)

�

∂2u

∂z2
=

∂

∂z

(
∂u

∂z

)
=

∂

∂z

(
ax

√
a

v
f ′(η)

)
= ax

(√
a

v

)
∂f ′′(η)

∂η
.
∂η

∂z

= ax

(√
a

v

)2

f ′′′(η)

=

(
a2x

v

)
f ′′′. (6.31)

� v
∂2u

∂z2

(
1 + Γ2

(
∂u

∂z

)2
)n−1

2

= v

(
a2x

v

)
f ′′′(η)

(
1 + Γ2

(
ax

√
a

v
f ′′(η)

)2
)n−1

2

= a2xf ′′′
(

1 + Γ2

(
a3x2

v

)
f ′′2
)n−1

2

= a2xf ′′′
(
1 +We2

1f
′′2)n−1

2 . (6.32)

� v(n− 1)Γ2

(
∂u

∂z

)2
∂2u

∂z2

(
1 + Γ2

(
∂u

∂z

)2
)n−3

2

= v(n− 1)Γ2

(
a3x2

v

)
f ′′2

(
ax

(√
a

v

)2

f ′′′

)(
1 + Γ2

(
a3x2

v

)
f ′′2
)n−3

2

= v(n− 1)Γ2

(
a3x2

v

)
f ′′2
((

a2x

v

)
f ′′′
)(

1 + Γ2

(
a3x2

v

)
f ′′2
)n−3

2

= v(n− 1)

((
a2x

v

)
f ′′′
)(

1 +

(
Γ2a

3x2

v

)
f ′′2
)n−3

2
(
Γ2a

3x2

v

)
f ′′2

= v(n− 1)

((
a2x

v

)
f ′′′
)(

1 +We2
1f
′′2)n−3

2 We2
1f
′′2 (6.33).

�

σ1B
2
0

ρf
u =

σB2
0

ρf
(axf ′(η)) . (6.34)



Role of Slip Boundary Conditions on Carreau Fluid 152

�

∂v

∂x
=

∂

∂x
(ayg′(η)) = 0 (6.35)

� u
∂v

∂x
= ayg′(η).

∂

∂x
(ayg′(η)) = 0. (6.36)

�

∂v

∂y
=

∂

∂y
(ayg′(η))

= ag′(η). (6.37)

� v
∂v

∂y
= ayg′(η).ag′(η) = a2yg′(η)2. (6.38)

�

∂v

∂z
=
∂v

∂η
.
∂η

∂z

=
∂

∂η
(ayg′(η)) .

∂η

∂z

= ayg′′(η).

√
a

v

= ay

√
a

v
g′′(η). (6.39)

� w
∂v

∂z
= −

√
(av)(f + g).ay

√
a

v
g′′(η)

= −(a2yf + a2yg)g′′(η)

= −a2y(f + g)g′′(η). (6.40)

� v(n− 1)Γ2

(
∂v

∂z

)2

= v(n− 1)Γ2

(
ay

√
a

v
g′′
)2

= v(n− 1)Γ2

(
a3y2

v

)
g′′2

= v(n− 1)We2
2g
′′2. (6.41)

�

(
∂v

∂z

)2

=

(
ay

√
a

v
g′′
)2

.

=

(
a3y2

v

)
g′′2(η). (6.42)

�

∂2v

∂z2
=

∂

∂z

(
ay

√
a

v
g′′
)

= ay

(√
a

v

)
∂g′′(η)

∂η
.
∂η

∂z

= ay

(√
a

v

)
g′′′(η).

(√
a

v

)
=

(
a2y

v

)
g′′′. (6.43)
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� v
∂2v

∂z2

(
1 + Γ2

(
∂v

∂z

)2
)n−1

2

= v

(
a2y

v

)
g′′′
(

1 + Γ2

(
a3y2

v

)
g′′2
)n−1

2

= a2yg′′′
(

1 + Γ2

(
a3y2

v

)
g′′2
)n−1

2

= a2yg′′′
(
1 +We2

2g
′′2)n−1

2 . (6.44)

� v(n− 1)Γ2

(
∂v

∂z

)2
∂2v

∂z2

(
1 + Γ2

(
∂v

∂z

)2
)n−3

2

= v(n− 1)Γ2

(
a3y2

v
g′′′
)(

ayx2

v

)
g′′2
(

1 + Γ2

(
a3y2

v

)
g′′2
)n−3

2

= v(n− 1)Γ2

((
a2y

v

)
g′′′
)(

1 + Γ2
(a3y2

v

)
g′′2
)n−3

2

(
a3y2

v

)
g′′2

= v(n− 1)

((
a2y

v

)
g′′′
)(

1 +

(
Γ2a

3y2

v

)
g′′2
)n−3

2

(
Γ2a

3y2

v

)
g′′2

= a2y(n− 1)g′′′We2
2g
′′2 (1 +We2

2g
′′2)n−3

2 . (6.45)

�

σ1B
2
0

ρf
v =

σ1B
2
0

ρf
(ayg′(η)) . (6.46)

�

∂T

∂x
= (Tw − T∞)

∂θ(η)

∂η
.
∂η

∂x

= (Tw − T∞)
∂θ(η)

∂η
.0 = 0. (6.47)

� u
∂T

∂x
= axf ′(η).(Tw − T∞)

∂θ(η)

∂η
.
∂η

∂x
= 0. (6.48)

�

∂T

∂y
= (Tw − T∞)

∂θ(η)

∂η
.
∂η

∂y
= 0. (6.49)

� v
∂T

∂y
= ayg′(η).(Tw − T∞)

∂θ(η)

∂η
.
∂η

∂y
= 0. (6.50)

�

∂T

∂z
= (Tw − T∞)

∂θ(η)

∂η
.
∂η

∂z

=

√
a

v
(Tw − T∞)θ′(η). (6.51)

� α
∂2T

∂z2
= α

(√
a

v

)2

(Tw − T∞)θ′′ (6.52)

� w
∂T

∂z
= −
√
av(f + g)

√
a

v
(Tw − T∞)θ′(η)

= −a(Tw − T∞)(f + g)θ′(η). (6.53)
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�

µ

ρCp

((
∂u

∂z

)2

+

(
∂v

∂z

)2
)

=
µ

ρCp

(
a3

v

)(
x2f ′′2(η) + y2g′′2(η)

)
. (6.54)

�

σ1B
2
0

ρCp
(u2 + v2) =

σ1B
2
0

ρCp
(a2x2f ′2 + a2y2g′2)

=
σ1B

2
0a

2

ρCp
(x2f ′2 + y2g′2). (6.55)

� qr = −16σ∗

3κ∗
T 3∂T

∂z
.

∂qr
∂z

= −16σ∗

3κ∗
∂

∂z

(
T 3∂T

∂z

)
= −16σ∗

3κ∗

((
T 3∂

2T

∂z2

)
+ 3T 2

(
∂T

∂z

)2
)
. (6.56)

� T 3∂
2T

∂z2
= ((Tw − T∞)θ + T∞)3

(a
v

)
(Tw − T∞) θ′′. (6.57)

� 3T 2

(
∂T

∂z

)2

= 3((Tw − T∞)θ + T∞)2
(a
v

)
(Tw − T∞)2θ′2. (6.58)

� T 3∂
2T

∂z2
+ 3T 2

(
∂T

∂z

)2

=
(a
v

)(
((Tw − T∞)θ + T∞)3(Tw − T∞)θ′′+

3((Tw − T∞)θ + T∞)2(Tw − T∞)2θ′2
)
. (6.59)

�

1

ρCp

∂qr
∂z

= − 16σ∗

3κ∗ρCp
(((Tw − T∞)θ(η) + T∞)3

(a
v

)
(Tw − T∞)θ′′ + 3

(a
v

)
(Tw − T∞)2

((Tw − T∞)θ(η) + T∞)2θ′2. (6.60)

� α
∂2T

∂z2
− 1

ρCp

∂qr
∂z

=
16σ∗

3κ∗ρCp
(((Tw − T∞)θ(η) + T∞)3

(a
v

)
(Tw − T∞)θ′′+

3((Tw − T∞)θ(η) + T∞)2
(a
v

)
(Tw − T∞)2θ′2)+

α
(a
v

)
(Tw − T∞)θ′′

= α
(a
v

)
(Tw − T∞)

(
1 +

16σ∗T 3
∞

3κ∗ρCpα
(1 + (θw − 1)θ)3θ′′+

3(1 + (θw − 1)θ(η))2(θw − 1)θ′2
)
θ′′. (6.61)

� a1 = a0h(η)

∂a1

∂x
= a0

∂h

∂η
.
∂η

∂x
= 0. (6.62)
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�

∂a1

∂y
= a0

∂h

∂η
.
∂η

∂y

= a0
∂h

∂η
.0 = 0. (6.63)

�

∂a1

∂z
= a0

∂h

∂η
.
∂η

∂z

= a0h
′(η)

√
a

v
. (6.64)

� u
∂a1

∂x
= axf ′(η).0 = 0. (6.65)

� v
∂a1

∂y
= ayg′(η).a0

∂h

∂η
.
∂η

∂y
= 0. (6.66)

� v
∂a1

∂y
= ayg′(η).a0

∂h

∂η
.
∂η

∂y

= ayg′(η).0 = 0. (6.67)

� w
∂a1

∂z
= −
√
av(f(η) + g(η))a0

√
a

v
h′(η) (6.68)

�

∂2a1

∂z2
= a0

√
a

v

∂h′(η)

∂(η)
.
∂(η)

∂z

= a0

(√
a

v

)2

h′′(η)

= a0
a

v
h′′(η). (6.69)

� DA
∂2a1

∂z2
= DAa0

(a
v

)
h′′(η). (6.70)

� K0a1b
2
1 = K0h(η)a0a

2
0q

2(η)

= K0h(η)a3
0q

2(η). (6.71)

�

∂b1

∂x
= a0

∂q

∂η
.
∂η

∂x
= 0. (6.72)

�

∂b1

∂y
= a0

∂q

∂η
.
∂η

∂y

= a0q
′(η).0

= 0. (6.73)

�

∂b1

∂z
= a0

∂q

∂η
.
∂η

∂z

= a0q
′(η)

√
a

v
. (6.74)
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� u
∂b1

∂x
= axf ′(η).0 = 0. (6.75)

� v
∂b1

∂y
= axf ′(η).0 = 0. (6.76)

� w
∂b1

∂z
= −
√
av(f(η) + g(η))a0

√
a

v
q′(η)

= aa0(f(η) + g(η))q′(η) (6.77)

�

∂2b1

∂z2
= a0

√
a

v

∂q′(η)

∂η
.
∂η

∂z

= a0

√
a

v
q′′.

√
a

v

= a0

(√
a

v

)2

q′′(η)

= a0

(a
v

)
q′′(η). (6.78)

� DB
∂2b1

∂z2
= DBa0

(a
v

)
q′′(η). (6.79)

� K0a1b
2
1 = K0h(η)a0a

2
0q

2(η)

= K0h(η)a3
0q

2(η). (6.80).

Using (6.24)-(6.34) in the momentum equation (6.13), we get

a2xf ′
2 − a2x(f + g)f ′′ = a2xf ′′′

(
1 +We2

1f
′′2)n−1

2 + v(n− 1)

(
a2x

v

)
f ′′′

We2
1f
′′2 (1 +We2

1f
′′2)n−3

2 − σ1B
2
0

ρf
(axf ′)

a2(xf ′
2 − (f + g)f ′′) = a2x

(
f ′′′
(
1 +We2

1f
′′2)n−1

2 + v(n− 1)

(
1

v

)
f ′′′

We2
1f
′′2 (1 +We2

1f
′′2)n−3

2 − a2σ1B
2
0

ρf
(axf ′)

)
⇒ f ′

2

(η)− (f + g)f ′′(η) = (n− 1)f ′′′f ′′2
(
1 +We2

1f
′′2)n−3

2 We2
1−

σ1B
2
0

ρfa
(f ′(η)) + f ′′′

(
1 +We2

1f
′′2)n−1

2

⇒ f ′
2

(η)− (f + g)f ′′(η) = f ′′′
(
1 +We2

1f
′′2)n−3

2

(
(n− 1)We2

1f
′′2+

(1 +We2
1f
′′2)
)
−Mf ′

⇒ f ′′′
(
1 +We2

1f
′′2)n−3

2 (1 + nWe2
1f
′′2)− f ′2 + (f + g)f ′′ −Mf ′ = 0. (6.81)
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After utilizing (6.35)-(6.46) in (6.14), we get

a2yg′
2 − a2y(f + g)g′′ = a2yg′′′

(
1 +We2

2g
′′2)n−1

2 + v(n− 1)

(
a2y

v

)
g′′′

We2
2g
′′2 (1 +We2

2g
′′2)n−3

2 − σ1B
2
0

ρf
(ayg′)

⇒ g′
2

(η)− (f + g)g′′(η) = (n− 1)g′′′g′′2
(
1 +We2

1f
′′2)n−3

2 We2
1−

σ1B
2
0

ρfa
(g′(η)) + g′′′

(
1 +We2

2g
′′2)n−1

2

⇒ g′′′
(
1 +We2

2g
′′2)n−3

2

(
(n− 1)We2

2g
′′2 + (1 +We2

2g
′′2)
)
−Mg′

− g′2 + (f + g)g′′ = 0.

⇒ g′′′
(
1 +We2

2g
′′2)n−3

2 (1 + nWe2
2g
′′2)− g′2 + (f + g)g′′ −Mg′ = 0. (6.82)

After utilizing (6.47)-(6.61) in (6.15), the following is achieved

− a(Tw − T∞)(f + g)θ′ =
αa(Tw − T∞)

v

(
1 +

16σ∗T 3
∞

3κ∗κ
((1 + (θw − 1)θ)3θ′′

+ 3(1 + (θw − 1)θ)2(θw − 1)θ′2)

)
+
σ1B

2
0

ρCp

(
a2x2f ′2

+ a2y2g′2
)

+
µ

ρCp

(
a3x2

v
f ′′2 +

a3y2

v
g′′2
)

⇒ − (f + g)θ′ =
(1 +Rd((1 + (θw − 1)θ))3θ′′ + 3(1 + (θw − 1)θ)2(θw − 1)θ′2)(

v
α

)
+
σ1B

2
0

ρa

( a2x2f ′2

Cp(Tw − T∞)
+

a2y2g′2

Cp(Tw − T∞)

)
+

µ

ρCpa

( a3x2f ′′2

v(Tw − T∞)
+

a3y2g′′2

v(Tw − T∞)

)
⇒ − Pr(f + g)θ′ = (1 +Rd((1 + (θw − 1)θ)3θ′′ + 3(1 + (θw − 1)θ)2(θw − 1)θ′2))

+ Pr
(( Ma2x2f ′2

Cp(Tw − T∞)
+

Ma2y2g′2

Cp(Tw − T∞)

)
+

µ

ρv

( a2x2f ′′2

Cp(Tw − T∞)

+
a2y2g′′2

Cp(Tw − T∞)

))
.

⇒ (1 +Rd((1 + (θw − 1)θ)3θ′′ + 3(1 + (θw − 1)θ(η))2(θw − 1)θ′2))+

Pr((f + g)θ′ +M(Ecxf
′2 + Ecyg

′2) + (Ecxf
′′2 + Ecyg

′′2)) = 0. (6.83)

Using (6.62)-(6.71) in (6.16), the dimensionless concentration equation is
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−aa0h
′(η)(f(η) + g(η)) = DAa0

(a
v

)
h′′(η)−K0h(η)a3

0q
2(η)

−aa0h
′(η)(f(η) + g(η)) = DAa0

(a
v

)
h′′(η)−K0h(η)a3

0q
2(η)

.

⇒ − h′(η)(f(η) + g(η)) =
DA

(a
v

)
h′′

a
− K0h(η)a2

0q
2(η)

a
.

⇒ − h′(η)(f(η) + g(η)) =

(
DA

v

)
h′′ − K0a

2
0

a
h(η)q2(η)

⇒ 1(
v
DA

)h′′ + h′(η)(f(η) + g(η))−Kh(η)q2(η) = 0

⇒ 1

Sc
h′′ + h′(η)(f(η) + g(η))−Kh(η)q2(η) = 0

⇒ h′′ + Sc h′(η)(f(η) + g(η))−K Sc h(η)q2(η) = 0. (6.84)

.

After using (6.72)-(6.80) in (6.17) gets the following form

− aa0q
′(η)(f(η) + g(η)) = DBa0

(a
v

)
q′′(η) +K0h(η)a3

0q
2(η)

⇒ −
(
DA

DA

)
q′(η)(f(η) + g(η)) =

DB

DA

(a
v

)
q′′a+

K0h(η)a2
0q

2(η)

a

⇒ − q′(η)(f(η) + g(η)) =
DB

DA

1(
v
DA

)h′′ − K0a
2
0

a
h(η)q2(η)

⇒ DB

DA

1(
v
DA

)h′′ + h′(η)(f(η) + g(η)) +Kh(η)q2(η) = 0.

⇒ ξ

Sc
q′′ + q′(η)(f(η) + g(η)) +Kh(η)q2(η) = 0. (6.85)

.

The species diffusions are of comparable size by takingDA=DB=1.[104]

In this case,

h(η) + q(η) = 1,

q(η) = 1− h(η), (6.86)

and hence (6.84) and (6.85) reduce to

1

Sc
h′′ + h′(η)(f(η) + g(η))−Kh(η)(1− h)2(η) = 0, (6.87)

having boundary conditions given in (6.92) at η = 0 and (6.97) at η → ∞. The

dimensionless boundary conditions are achieved through the procedure mentioned

below
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� u = ax+
2− σv
σv

λ0a
∂u

∂z
at z = 0

⇒ axf ′(η) = ax+
2− σv
σv

λ0a

√
a

v
xf ′′ at η = 0

=
ax+ 2−σv

σv
λ0ax

√
a
v
f ′′

ax
at η = 0

= 1 +
2− σv
σv

λ0

√
a

v
f ′′(η) at η = 0

= 1 + γ3f
′′(η). at η = 0 (6.88)

� v = by +
2− σv
σv

λ0a
∂v

∂z
at z = 0

⇒ ayg′(η) = by +
2− σv
σv

λ0ayg
′′
√
a

v
at η = 0

=
b

a
+

2− σv
σv

λ0g
′′
√
a

v
at η = 0

= β3 + γ3g
′′(η). at η = 0 (6.89)

� w = 0 at z = 0

⇒ f(η) + g(η) = 0 at η = 0

⇒ f(η) = 0 at η = 0

⇒ g(η) = 0 at η = 0. (6.90)

� T = Tw +
2− σT
σT

2r

r + 1

λ0

Pr

∂T

∂z
at z = 0

⇒ (Tw − T∞)θ + T∞ =

Tw +
2− σT
σT

2r

r + 1

λ0

Pr

√
a

v
(Tw − T∞)θ′ at η = 0

⇒ (Tw − T∞)θ =

Tw − T∞ +
2− σT
σT

2r

r + 1

λ0

Pr

√
a

v
(Tw − T∞)θ′ at η = 0

⇒ θ(η) = 1 +
2− σT
σT

2r

r + 1

λ0

Pr

√
a

v
θ′(η) at η = 0

⇒ = 1 + δ3θ
′(η). at η = 0 (6.91)

� DA
∂a1

∂z


y=0

= +Ksa1(0) at z = 0

DAa0h
′(η)

√
a

v
= +Ksa0h(η) at η = 0
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⇒ h′(η) =
+Ks√
a
v
DA

h(η) at η = 0

⇒ h′(η) = K1h(η) at η = 0. (6.92)

• DB
∂b1

∂z


y=0

= −Ksa1(0) at z = 0

⇒ DBa0q
′(η)

√
a

v
= −Ksa0h(η) at η = 0

⇒
(
DA

DA

)
DBa0q

′(η)

√
a

v
= −

(
DA

DA

)
Ksa0h(η) at η = 0

⇒
(
DB

DA

)
DAa0q

′(η)

√
a

v
= −

(
DA

DA

)
Ksa0h(η) at η = 0

⇒
(
DB

DA

)
q′(η) = − +Ks√

a
v
DA

h(η) at η = 0

⇒ ϕq′(η) = −K1h(η). at η = 0. (6.93)

• u→ 0 as z →∞

⇒ axf ′(η)→ 0 as η →∞

⇒ f ′ → 0. as η →∞ (6.94)

• v → 0 as z →∞

⇒ ayg′(η)→ 0 as η →∞

⇒ g′ → 0. as η →∞ (6.95)

• T → T∞ as z →∞

⇒ (Tw − T∞)θ + T∞ → T∞ as η →∞

⇒ (Tw − T∞)θ → 0 as η →∞

⇒ θ → 0. as η →∞ (6.96)

• a1 → a0 as z →∞

⇒ a0h→ a0 as η →∞

⇒ h→ 1. as η →∞ (6.97)

• b1 → 0 as z →∞

⇒ a0q → 0 as η →∞

⇒ q → 0 as η →∞. (6.98)

The dimensionless Nusselt number is given by

� Nux = − x

(Tw − T∞)

∂T

∂z


z=0

+
xqr

k(Tw − T∞)


z=0

,where
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qr = −16σ∗

3κ∗
T 3∂T

∂z

= −16σ∗

3κ∗
((Tw − T∞)θ(η) + T∞)3

√
a

v
θ′(η)

= −16σ∗T 3
∞

3κ∗
(1 + (θw − 1)θ(η))3(Tw − T∞)

√
a

v
θ′(η)

= −Rd(1 + (θw − 1)θ(η))3(Tw − T∞)

√
a

v
θ′(η).

Therefore,

Nux =
−x
√

a
v
(Tw − T∞)θ′

(Tw − T∞)
−
xRd(1 + (θw − 1)θ)3(Tw − T∞)

√
a
v
θ′

(Tw − T∞)

= −x
√
a

v
θ′(η)− xRd(1 + (θw − 1)θ(η))3θ′(η)

= −x
√
a

v
(θ′(η) +Rd(1 + (θw − 1)θ(η))3θ′(η))

= −(1 +Rd(1 + (θw − 1)θ(η))3)θ′(η)
√
Rex. (6.99)

The dimensionless form of skin friction coefficients along x − axis and y − axis

are given by

� Cfx =
τxz

1
2
ρfU2

w

, where

τxz = µ
∂u

∂z

(
1 + Γ2

(
∂u

∂z

)2
)n−1

2

= µa

√
a

v
xf ′′

(
1 +We2

1f
′′(η)2

)n−1
2 .

Therefore,

Cfx =
τxz

1
2
ρfU2

w

=
2µa

√
a
v
xf ′′ (1 +We2

1f
′′(η)2)

n−1
2

ρfa2x2

=
2µa

√
a
v
xf ′′ (1 +We2
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√
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2

µa2x2
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′′2)

n−1
2 . (6.100)
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Various dimensionless parameters appearing during numerical simulation are given

by

We1 = Γ2a
3x2

ν
, Pr =

ν

α
, M =

σ1B
2
0

ρa
, Ecx =

a2x2

CP (Tw − T∞)
,

We2 = Γ2a
b2y3

ν
, µ = ρν, ϕ =

DB

DA

, Ecy =
b2y2

CP (Tw − T∞)
,

Rd =
16σ∗T 3

∞
3k∗κ

, θw =
Tw
T∞

, K =
Ks

DAa0

√
v

a
, Sc =

ν

DA

, β3 =
b

a
,

K1 =
Kca

2
0

a
, γ3 =

2− σv
σv

λ0

√
a

v
, δ3 =

2− σT
σT

(
2r

r + 1

)
λ0

Pr

√
a

v
.


(6.102)
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6.2 Solution Methodology

The nonlinear, non-dimensional system of equations (6.81)-(6.87) along with bound-

ary conditions (6.88)-(6.98) can be comprehended with the assistance of the shoot-

ing strategy [99] utilizing the RK4 integrated scheme. For numerical solution, the

unbounded domain [0,∞) has been replaced by [0, η∞] where η∞ is a real num-

ber chosen in such a way that the solution doesn’t show significant variations for

η > η∞. After giving different values to η∞, it is observed that η∞ = 7 guarantees

an asymptotic convergence for all the results presented in this article. For conve-

nience in the choice of missing conditions and computational efficiency, first the

momentum Eqs. (6.81) and (6.82) are solved numerically by the shooting method.

Later on, using f and g as known functions, the energy Eq. (6.83) will be treated

numerically. Finally the concentration Eq. (6.87) can be handled numerically with

the assistance of shooting technique. The momentum equations (6.81) and (6.82)

have been converted into first order ODEs signifying f by y1, f ′ by y2, f ′′ by y3,

g by y4, g′ by y5, g′′ by y6, y3(0) by l1 and y6(0) by l2. The symbols l1 as well

as l1 denote the missing initial conditions of the modeled problem. The resulting

system of equations along with the initial conditions is:

y′1 = y2, y1(0) = 0,

y′2 = y3, y2(0) = 1 + γ3l1,

y′3 =
[y2

2 − y3 (y1 + y4) +My2]

(1 +We2
1y

2
3)

n−3
2 (1 + nWe2

1y
2
3)
, y3(0) = l1,

y′4 = y5, y4(0) = 0,

y′5 = y6, y5(0) = β3 + γ3l2,

y′6 =
[y2

5 − y6 (y1 + y4) +My5]

(1 +We2
2y

2
6)

n−3
2 (1 + nWe2

2y
2
6)
, y6(0) = l2,



(6.103)

To reach close enough to the missing initial conditions, Newton’s method is iter-

atively applied until the following criteria is met.

max{|y2(η∞)|, |y5(η∞)|} < ε, (6.104)
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where ε denotes a small positive number.

The energy equation (6.83) has been converted in to first order ODEs by taking θ

by w1, θ′ by w2 and w2(0) by l3, we get

w′1 = w2, w1(0) = 1 + δ3l3,

w′2 =


Pr(f + g)w1 + Pr(Ecxf

′′2+

Ecyg
′′2) +MPr(Ecxf

′2 + Ecyg
′2)

+3Rd(1 + (θw − 1)y1)2(θw − 1)w2
2


−
(
1 +Rd (1 + (θw − 1)w1)3) , w2(0) = l3,


(6.105)

For the refinement of the initial guess l3, Newton’s method is applied unless the

condition underneath is fulfilled.

|w1(η∞)− 0| < ε, (6.106)

where ε = 10−6 is the tolerance level. Tolerance is actually the level of error

acceptable for any numerical scheme. If solution at the boundary is achieved

with in the tolerance level value then solution is said to be convergent otherwise

divergent. In divergent case refine the initial guess with the help of Newton’s

method until the solution within the tolerance level is achieved.

The concentration eq. (6.87) is converted into the first order ODEs by denoting h

by z1, h′ by z2. The first order ODEs are then given by:

z′1 = z2, z1(0) = l4,

z′2 = Sc
(
−z2 (f + g) +Kz1 (1− z1)2) , z2(0) = K1l4.

 (6.107)

For the improvement of the initial guess l4, the iterative scheme called Newton’s

iterative method has been considered unless the condition mentioned below is

achieved.

|z1(η∞)− 1| < ε. (6.108)

Tables (6.1)-(6.3) give a comparison analysis of the presently computed values of
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different physical quantities with those already published in literature.

Table 6.1: Comparison of f ′′(0).

f ′′(0)
β3 Ariel [125] Present
0.1 1.01702 1.02038
0.2 1.03458 1.03958
0.3 1.05747 1.05802
0.4 1.07052 1.07583
0.5 1.08866 1.09313

Table 6.2: Comparison of g′′(0).

g′′(0)
β3 Ariel [125] Present
0 0 0

0.1 0.0668 0.0668
0.2 0.1487 0.1487
0.3 0.2433 0.2433
0.4 0.3492 0.3492
0.5 0.4652 0.4652

Table 6.3: Comparison of Nux.

Nux
β3 Liu [126] Present

0.25 0.6659 0.6661
0.50 0.7353 0.7354
0.75 0.7964 0.7965

6.3 Results and Discussion

This portion discusses the impact of various physical parameters on velocity, tem-

perature and concentration distributions. The numerical solution of the dimen-

sionless mathematical model has been presented and analyzed.
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6.3.1 Impact of M , n, We1, γ3, We2, β3 on the velocity fields

f ′ and g′

Figure 6.2 exhibits the dynamics of the velocity fields f ′ as well as g′ under the

effect of M . Within an amplification in the dimensionless magnetic parameter M ,

velocity profiles depreciate. It is observed that the current carrying fluid passing

through a magnetic field produces a resistive force termed as Lorentz force which

depreciates fluid speed inside the boundary layer and moreover lessens the velocity

field. Figure 6.3 delineates the impact of n on f ′ and g′. The power law index n

is the important parameter of the non-Newtonian fluid and determines how much

visous the fluid is. The values of n have been taken for n < 1, n > 1 and n = 1.

Actually parameter n tells us how much viscous the fluid is. From this figure, it can

be clearly seen that a boost in f ′ and g′ happens due to an embellishment in n. The

impact of Weissenberg number We1 on f ′ is manifested in Figure 6.4. Weissenberg

number describes the shear rate time divided by relaxation time. Relaxation

time is the time in which the fluid is allowed to relax after the application of

shear stress. Viscosity of the fluid decreases by the virtue of an amplification in

We1. Liquids turn out to be more thicker because of an augmentation in the

Weissenberg number. Therefore velocity profile is reduced with an enrichment in

the Weissenberg number. The execution of γ3 on f ′ is displayed in Figure 6.5.

Rising γ3 lessens the fluid velocity. The impact of the Wessenberg number We2

on g′ is considered in Figure 6.6. The fluid thickness improves on the behalf of an

improvement in We2 which depreciates the value of g′. Figure 6.7 elucidates the

dynamics of γ3 on g′. The fluid velocity depreciates as a result of an incremental

change in γ3. The physical reason behind the velocity decrement is actually an

increment in the frictional resistance existing between the surface and the fluid

particles. Figure 6.8 displays the impact of the stretching parameter β3 on g′.

Actually β3 depicts the ratio of fluid flow velocity. More precisely the parameter

β3 is directly related to y-axis instead of x-axis. Change in y-axis tkes place as a

result of an amplification in β3. As a result of this diminishment in g′ take place.
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Figure 6.8: Impact of β3 on g′.

6.3.2 Impact of Pr, Ecx, Ecy, M , Rd, θw on θ(η)

Figure 6.9 displays the performance of Pr, which is inversely related to the thermal

diffusivity. It is well established that Prandtl number reduces the fluid tempera-

ture θ(η). Figure 6.10 portrays the behavior of temperature field θ(η) versus the

Eckert number Ecx. By boosting Ecx, more heat is generated due to the frictional

heating which improves θ(η). From Figure 6.11, it is probed that by mounting the

Eckert number Ecy, an additional heat in the liquid is generated on account of

the frictional force which amplifies the temperature field. Figure 6.12 portrays the

nature of M on θ(η). Lorentz force which is basically a resistive force depreciates

the fluid flow and escalates θ(η). The behavior of radiation parameter Rd on θ(η)

is deliberated in Figure 6.13. An augmentation in Rd enhances the temperature

rise inside the boundary layer, and hence θ(η) escalates. Figure 6.14 determines

the impact of the temperature ratio parameter θw on θ(η). By ascending θw, an

enlargement in the wall temperature and temperature profile occurs.
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6.3.3 Impact of Sc, K, K1 on h(η)

In case of the fixed molecular diffusion, when Sc amplifies, the viscous diffusion

also amplifies. Schmidt number is directly related to the diffusion phenomenon

and perform same role for concentration equation like Prandtl number for the

energy equation. Schmidt number is related to the molecular diffusivity. It is

quite clear that an incremental change in the molecular diffusivity enhances the

concentration of the fluid which guides to a magnification in the concentration

profile. The concentration of the fluid increases by the virtue of an amplification

in Sc which increases h(η) as shown in Figure 6.15. Figure 6.16 and 6.17 displayed

the impact of K and K1 on h(η). Diffusivity and the concentration are directly

linked with each other. In the case of homogeneous reaction both liquid and

catalyst are in the same phase which is also one of the prominent factor for an

augmentation in the concentration field. The flow diffusivity also fluctuates by

rising the value of the homogeneous reaction, which lessens h(η).
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Figure 6.15: Impact of Sc on h.
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The skin friction coefficient and h′(0) against various parameters is delineated in

Table 6.4 by keeping Rd = 1, θw = 1.5, Ecx = 0.5, Ecy = 0.5, Pr = 1, δ3 = 1

as fixed. According to Table 4, an enrichment in magnetic parameter M and the

stretching rate β3 prompts a decrease in the skin friction coefficient. Incremental

change in M produces a resistive force termed as Lorentz force which reduces the

fluid motion and skin fiction coefficient. The viscosity of fluid increases as a re-

sult of a magnification in stretching parameter β3 which reduces the skin friction

coefficient. An amplification in power-law index n (shear thickening) and the slip

parameter γ3 depreciates the skin friction coefficient along x-axis. Slip phenome-

noun occurs when the surface is rough and not perfectly smooth. Due to this

reason the velocity of the liquid moving across the expandable medium and the

velocity of expandable medium is not same which depreciates the liquid velocity

and surface drag coefficient. An improved behavior is seen in the surface drag

coefficient along y-axis for M and β3. However for n and γ3 a reverse behavior is

experienced for skin friction coefficient.

Table 6.5 demonstrates the behaviour of the heat transfer rate against different

parameters, for fixed values of We1 = 0.1, We2 = 0.1, Sc = 0.2, K = 2,K1 = 1.

It is quite clear that boosting the values of n (shear thickening), the radiation

parameters Rd, the ratio of wall temperature and ambient temperature θw and

Pr brings about an enlargement in the Nusselt number. The parameter n de-

scribes how much viscous the liquid is. In the case of n <1 the fluid behaviour is

shear thinning but the behaviour is shear thickening in the case of an incremental

change in n which depreciates the fluid velocity and amplifies the heat transfer

rate. Temperature inside the fluid escales by the virtue of a magnification in the

nonlinear thermal radiation parameter Rd which amplifies the heat transfer rate.

Temperature ratio parameter θw is one of the pertinent parameter of the nonlinear

thermal radiation term and utilized where large temperature diffrence is required

with remaing two parametrs are Pr and Rd. A magnification in θw elevates the

temperature of the fluid and the heat transfer Nusselt number. It is quite clear

that an amplification in M , Eckert number Ec, stretching rate β, slip parameters

γ3 and δ3 brings about a reduction in the temperature field.
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Table 6.4: Impact of momentum and concentration equations parameters on
surface drag coefficient and concentration profile.

M n β3 γ3 We1 We2 K K1 Sc 1
2
CfRe

1
2
x

1
2
Cf

Uw

Vw
Re

1
2
x h′(0)

0.3 1.5 0.5 0.3 0.1 0.1 2 1 0.2 -0.82451 -0.37790 -0.05860

0.5 -0.86909 -0.40432 -0.05484

0.7 -0.89921 -0.52581 -0.01194

0.9 -0.94024 -0.44931 -0.52558

0.5 -0.82311 -0.37773 -0.05856

1 -0.82382 -0.37782 -0.05858

1.7 -0.82479 -0.37794 -0.05861

0.7 -0.83707 -0.55927 -0.06339

0.9 -0.84888 -0.75331 -0.06805

1.1 -0.86005 -0.95834 -0.07263

0.5 -0.68525 -0.31865 -0.05415

0.7 -0.58884 -0.27663 -0.05094

0.9 -0.51764 -0.24505 -0.04846

0.3 -0.82987 -0.37808 -0.05873

0.5 -0.83969 -0.37839 -0.05858

0.7 -0.85270 -0.37879 -0.05931

0.3 -0.82454 -0.37840 -0.05861

0.5 -0.82461 -0.37938 -0.05865

0.7 -0.82470 -0.38079 -0.05870

2.2 -0.82451 -0.37791 -0.04947

2.4 -0.82451 -0.37791 -0.04171

2.6 -0.82451 -0.37791 -0.03519

1.2 -0.82451 -0.37791 -0.06197

1.4 -0.82451 -0.37791 -0.06466

1.6 -0.82451 -0.37791 -0.06686

0.4 -0.82451 -0.37791 -0.03171

0.6 -0.82451 -0.37791 -0.02326

0.7 -0.82451 -0.37791 -0.02259
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Table 6.5: Impact of various embedded parameters on Nux.

M n Rd θw Ecx Ecy Pr β3 γ3 δ3 NuxRe
−1
2
x

0.3 1 1 1.5 0.5 0.5 1 0.5 0.3 1 0.5305

0.5 0.5041

0.7 0.4808

0.9 0.4048

0.5 0.5303

1 0.5304

1.7 0.5305

1.2 0.5757

1.4 0.6209

1.6 0.6664

1.7 0.5983

1.9 0.6748

2.1 0.7634

0.7 0.4732

0.9 0.4156

1.1 0.3578

0.7 0.5161

0.9 0.5016

1.1 0.4872

1.2 0.5697

1.4 0.6077

1.6 0.6436

0.7 0.5279

0.9 0.5112

1.1 0.4809

0.5 0.5434

0.7 0.5471

0.9 0.5467

1.2 0.5077

1.4 0.4865

1.6 0.4665
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6.4 Concluding Remarks

Three dimensional Carreau fluid accompanied with viscous-Ohmic dissipation, ho-

mogenous/heterogenous reaction, velocity slips nonlinear thermal radiation mov-

ing along a stretchable surface is analyzed. The numerical scheme termed as

shooting method is utilized in order to solve ODEs. Some decisive comments from

the concluding work are as below:

� Rising the values of Eckert number along x − axis and y − axis termed as

Ecx and Ecy brings about an augmentation in the temperature profile.

� The velocity profile is quite opposite in the case of Weissenberg numbers

We1 and We2. By enhancing We1 and We2, a decrement in the velocity

profiles is prompted.

� The temperature profile escalates as a result of a magnification in M and

Schmidt parameter Sc.

� In case of boosting the velocity slip parameter γ3, a diminishment of both

f ′(η) and g′(η) is observed.

� Homogenous and heterogenous reactions are inversely related to the concen-

tration profile.



Chapter 7

Conclusion and Future Work

The purpose of this dissertation was to develop various mathematical models re-

garding fluid moving across a stretchable surface accompanied with various effects

for the purpose of heat and mass transfer analysis. The important results achieved

in this thesis have been presented underneath.

7.1 Main Findings

1. The heat as well as the mass transfer analysis is carried out regarding

Reiner-Philippoff fluid accompanied with nonlinear thermal radiation, vari-

able species diffusivity, heat source and sink. No literature is available re-

garding the mass transfer analysis of the Reiner-Philippoff fluid. Heat trans-

fer analysis with the inclusion of nonlinear based thermal radiation, temper-

ature varying conductivity and heat source/sink is studied extensively. It

is observed that an amplification in Rd, θw, ε1 and A∗ amplifies the fluid’s

temperature and moreover amplifies the heat transfer rate. A magnification

in variable molecular diffusivity ε2 enhances the mass transfer rate of the

Reiner-Philippoff fluid.

2. The novel idea regarding the influence of double diffusion convection along

with motile gyrotactic microorganisms on tangent hyperbolic tangent nanofluid
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has not been studied yet in the literature. The impact of double diffu-

sion convection and microorganisms species diffusivity on tangent hyper-

bolic nanofluid is investigated. It is noted that an augmentation in regular

Lewis number Le and Dufour Lewis number Ld lessens the solute profile.

A positive variation in Peclet number Pe, bio convective Lewis number Lb,

microorganisms concentration difference parameters σ guides to a reduction

in the density of the motile microorganism profile.

3. The mathematical model regarding Maxwell nanofluid past a convectively

heated expandable sheet accompanied with nonlinear thermal radiation, vari-

able thermal conductivity and activation energy is also analyzed. The heat

transfer rate of the fluid improves by the virtue of an amplification in the

thermal conductivity ε1, thermal radiation Rd, inertia coefficient Fr and

Biot number γ. The mass transfer rate and concentration of the fluid am-

plifies by the virtue of an enhancement in the activation energy E, porosity

parameter λ2, reaction rate constant σ parameters respectively.

4. An attempt is made to study the influence of Maxwell velocity and Smolu-

chowski temperature slip boundary conditions on 3D Carreau fluid which is

never studied yet. The heat and mass transfer aspect of Carreau fluid with

the inclusion of various effects like homogeneous/heterogenous reactions, vis-

cous dissipation, Joule heating an nonlinear thermal radiation is debated in

detail. It is observed that the fluid velocity depreciates owing an improve-

ment in the velocity slip parameter γ3 and furthermore heat transfer rate of

the fluid diminishes owing to an increment in the temperature slip parameter

slip parameter δ3. Both homogenous/heterogenous reactions depreciate the

mass transfer rate.

7.2 Future Work

The work presented in this thesis can be extended in many directions. Few of this

open problem have been listed below.
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1. The work presented in Chapter 3 can be extended in terms of Reiner-

Philippoff fluid flow over different geometries like wedge, cylinder, sphere,

cone etc.

2. The literature mentioned in Chapter 4 can be extended in the direction of

hyperbolic tangent fluid flow through parallel stretching disks, converging/-

diverging channels, inclined stretching sheet with the inclusion of effects like

hybrid nanoparticles, carbon nanotubes, activation energy etc.

3. This study presented in Chapter 5 can be extended in the direction of

Maxwell nanofluid past an oscillatory stretching sheet, needle, peristaltic

flow, sensor surface, nonlinear stretching sheet etc with the inclusion of ef-

fects like gyrotactic microorganisms, melting surface, convective heat and

mass transfers, variable molecular diffusivity etc.

4. The momentum and temperature slip boundary conditions presented in

Chapter 6 for the case of Carreau fluid can be further utilized in other

viscoelastic type non-Newtonian fluids flow over different geometries like

channel, sphere, cone, wedge, pipe etc.

5. The non-Newtonian fluid problems mentioned in this thesis can be extended

in the field of fractional calculus and furthermore, studied the impact of

Reimann-Liouville, Caputo-Erdelyi-Kober fractional derivative and Caputo-

Fabrizio types fractional derivatives on momentum and energy equation for

the case of fluid flow over various geometries like stretching sheet, stretching

wedge, circular cylinder and microchannels.
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