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Abstract

The amount of information provided by high resolution palmprints and the fact

that they have considerable forensic value makes them a preferred biometric choice

for large-scale identification systems. In high resolution palmprints, extraction of

reliable features (minutiae) for identification is still a challenging task especially

because most of the palmprints found in the real world, e.g., in crime scenes, are

of poor quality. These palmprints suffer from multiple degradations, namely, poor

contrast, background textures, occlusions, poor ridge structure, false minutiae, etc.

Due to these degradations, palmprints cannot be directly used for identification

and need to go through various pre-processing steps. Keeping these challenges in

view, this thesis presents contributions in three areas.

An efficient frequency-domain ROI segmentation method is proposed that uses a

bandpass filter to isolate only those regions of the image that contain palmar ridge

patterns. Background textures and noise usually belong to low and high frequen-

cies and are effectively filtered out. Proposed method is independent of variations

in image intensity and contrast. Results show that the proposed frequency-domain

segmentation method out performs previously proposed texture-based segmenta-

tion methods. Proposed ROI segmentation helps in limiting the subsequent pro-

cessing including enhancement, feature extraction and matching to only the valid

regions of an otherwise very large image.

A two-step deep learning-based palmprint enhancement network (PEN ) is pro-

posed that is able to convert considerably large patches of palmprints directly into

corresponding enhanced patches by accentuating the palm ridge structure. In the

first step, a classification Convolutional Neural Network (Cnet) predicts dominant

ridge orientation in a patch of palmprint. Guided by this orientation prediction,

the patch passes through an image-to-image regression network (Rnet) which con-

verts the patch to its corresponding enhanced patch. All enhanced patches are

joined together to produce a complete enhanced palmprint. Both Cnet and Rnet

are trained separately. Cnet is a fine-tuned version of alexnet, while Rnet is a

4-layer deep network that is designed and trained from scratch. Results show that

when compared to state-of-the-art methods that use classical pixel-wise contextual



x

filtering methods either in the spatial or frequency domain, the proposed patch-

wise enhancement method is found to be more responsive to abruptly changing

ridge orientation and frequency in the palmprint. This is due to the fact that Rnet

has a sufficient number of kernels and depth to accommodate abrupt changes in

the ridge patterns. The performance of Rnet for palmprint enhancement is com-

pared with two popular deep learning paradigms, i.e., U-net and Resnet. Due to

a relatively simpler design and training procedure, the proposed method achieves

higher accuracy, both in the enhancement and identification of palmprints.

Lastly, an intuitive minutiae selection algorithm (MSA) is proposed that reduces

the number of minutiae required to match palmprints. This is important because

apart from the poor quality of high resolution palmprints, another problem en-

countered during matching is the high computational overhead incurred due to

the extraction of a large number of minutiae from the palmprint. Since most

of these minutiae are false, they prove detrimental for identification accuracy as

well. This simple histogram-based iterative algorithm utilizes only the basic prop-

erties of minutiae, i.e., (x, y, θ) to shortlist a subset of best minutiae candidates

for matching. This provides the dual benefit of: 1) a reduced number of minutiae

matches between two palmprints, and 2) improved matching accuracy through the

elimination of false minutiae.

All the results are acquired on the most popular and challenging high resolution

dataset that has been used in all state-of-the-art studies.
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Chapter 1

Introduction

1.1 Overview

The measurement and analysis of human physical characteristics is called Bio-

metrics. The use of biometrics for human identification has been in practice for

centuries. The last two decades in particular have seen substantial increases and

innovations in the use of biometrics. Although other digital identities such as

passwords, Personal identification numbers (PIN), and smart cards have been

mainstream in the recent past, these means of identification have failed to provide

an adequate sense of security to users. This is because digital IDs can be stolen

or faked easily. On the other hand, biometric identities provide a higher level of

security and accuracy.

In today’s modern era, human interaction and businesses are quickly shifting to

digital platforms. COVID-19 became a catalyst in the mass adoption of this digi-

tal culture resulting in consumers embracing biometrics with an increased level of

comfort for routine activities such as checking in at airports, online payments, etc.

Security concerns have also escalated among the public as well as law enforcement

agencies. The use of biometrics such as fingerprints, palmprints, face, iris, etc.

is not new but modern biometric trends are moving beyond traditional practices.

Biometric technologies have quickly replaced digital IDs such as passwords and

PINs and have potentially prevented unauthorized access to:

1
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• Cell phones

• ATM machines

• Computers

• Offices

• Airports

This sharp increase in the utility of biometrics has encouraged researchers to im-

prove the efficiency and accuracy of biometric systems. The main objective of a

biometric system is to automatically recognize the identity of a person using phys-

iological or behavioral characteristics or features. In order to achieve these goals,

reliable features need to be employed that exhibit the following characteristics:

• Uniqueness: Selected features should be able to uniquely identify a person

• Universality: Selected features should be present in all persons

• Persistence: Selected features should remain persistent during the lifetime

of a person

• Easy acquisition: Selected features should be extractable using simple meth-

ods and instruments

• User comfort: Selected features should be acquired with minimum inconve-

nience to persons

1.2 Historical Background

Search for appropriate physiological traits that can precisely discriminate one in-

dividual from other is not new. Interest in this field grew rapidly during the Age

of Enlightenment in Europe when every field of life started getting influenced by

scientific research. Police investigative procedures also started incorporating sci-

entific methods to improve the efficiency of their criminal identification systems.
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First dedicated effort to find out reliable human physiological features that do not

deform with age and are persistent under varying climates was made by Alphonso

Bertillon in the late nineteenth century. He created a human identification system

taking into account body measurements, identification marks, and other physical

characteristics. He called it “anthropometry”. He proposed that body dimensions

are persistent enough to last a complete lifetime and can be used to discriminate

one person from other. Although it was a good starting point for biometric iden-

tification, it had two major flaws. Firstly, multiple individuals can have similar

body dimensions. Secondly, in case of criminal investigation, no evidence will be

left behind once the criminal leaves the crime scene.

This led to the use of fingerprints as the prime biometric identification system.

The use of fingerprints dates back to 300 BCE in ancient China. However, it

was in India in the nineteenth century CE, that William Herschel proposed the

use of fingerprints and palmprints for registering citizens owing to the strong dis-

criminative properties of both. He used fingerprints and palmprints on contract

deeds in order to verify the authenticity of documents (see Figure 1.1). He also

used fingerprints and sometimes complete palmprints to register all government

employees in order to stop the collection of pensions by an employee’s relatives

after the employee’s death. A little later, Dr. Henry Faulds, who was a surgeon

in Tokyo, became the first researcher to publish his research on the effectiveness

of human identification based on fingerprints.

Later, it was conclusively proven by Galton [1] that fingerprints were unique for

every individual. Although there is a small amount of similarity between the fin-

gerprints of family members, but it is not to the point that one family member

can be mistaken for someone else. He also argued that fingerprints were persistent

during the lifetime.

Based on Galton’s research, Juan Vucetich, an Argentinian police officer became

the first person to create a database of fingerprints. This database was later in-

corporated into the Argentinian crime investigation department. Juan Vucetich

became the first police officer in history to solve a crime using the fingerprints left

at the crime scene. In later years, acquiring of fingerprints for human identification

more popular.
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Figure 1.1: Fingerprints taken by William Herschel 1859/1860 [2]

Since then, the study of biometrics has come a long way. Search for suitable

physical traits to verify a person’s identity has opened multiple research areas en-

compassing features extracted from the iris, face, hand geometry, finger and palm

veins, etc. Modern instruments and sensing techniques have enabled researchers

to use behavioral characteristics of people for identification as well. The follow-

ing section briefly introduces some of the currently popular biometric systems.

Regardless of the biometric modality being used, the general architecture of bio-

metric systems has remained the same. There is an enrollment stage in which

suitable biometric trait of all candidates is acquired, processed, and stored in a

database as a template. In the online stage, acquired biometrics are processed and

matched with templates of all candidates in the database. Figure 1.2 illustrates

the architecture of a fingerprint-based biometric system.
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Figure 1.2: General architecture of a biometric system

1.3 Types of Biometric Systems

Biometric systems can be categorized into Physiological or Behavioral biometric

systems (Figure 1.3). Physiological biometrics use the physical characteristics

of a person that show minimal change during the lifetime of a person. These

include fingerprints, palmprints, iris, face and hand geometry, etc. On the other

hand, behavioral biometrics identify a person by identifying patterns in a person’s

activities. These include gait analysis, keystroke dynamics, speech identification,

signature analysis, etc. Physiological biometric systems are more accurate but

Physiological biometric identities can be stolen. Behavioral biometric systems

don’t need any special sensors for acquisition and are therefore less costly. Also,

behaviors are integral to a person and hence identities based on human behaviors

cannot be stolen. In the following section, popular physiological and behavioral

biometrics are listed.
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Figure 1.3: Categories of Biometric Systems: Including the physiological and
relatively new behavioral biometrics[3]

1.3.1 Physiological Systems

1.3.1.1 Fingerprints

One of the oldest methods of verifying the identity of a person. Features contained

within a fingerprint are reliable, unique, and persistent during the lifetime of a

person. Fingerprints contain a peculiar pattern of alternating ridges and valleys

(Figure 1.4). In fingerprints, ridge lines are of utmost importance as they help in

uniquely identifying a person. The ridge structure exhibits discontinuities which

are either ridge endings or bifurcations. These discontinuities are exploited to

uniquely identify a person. Sensors used for fingerprint scanning are commonplace

and provide a level of convenience to users.
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Figure 1.4: Fingerprint sample

1.3.1.2 Iris

Iris is the circular portion between the retina and the lens of the eye illustrated

in Figure 1.5. It provides highly stable features for verifying the identity of a

person. Iris is first segmented out and broken down into blocks and subsequently

converted using numbers which become the unique template of a person. Iris pro-

vides exceptional identification accuracy but iris-based biometric systems have few

downsides. Firstly, sensors required for iris scanning are expensive. Secondly, the

iris cannot be scanned from distances more than two meters. This means users

have to experience inconvenience while dealing with iris-based systems.

1.3.1.3 Face

Non-invasive nature of facial biometric systems has made the face a popular bio-

metric choice for large-scale identification systems. Face recognition systems mea-

sure distances between various features on the face. These include:

• Distance between eyes, nose and mouth, forehead and chin

• Contours of lip, ears, and chin
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Figure 1.5: Iris sample

• Shape of cheekbones

• Depth of eye sockets

Face recognition systems have seen high demand in access control systems as well

as forensics. However, face recognition systems have certain limitations. Limi-

tations mainly arise from aging effects on the face. The use of face recognition

systems in uncontrolled environments is also limited due to challenges arising from

pose variations and background illumination, etc.

1.3.1.4 DNA

Deoxyribonucleic acid (DNA) is present in all cellular material like blood, hair,

skin, etc. but it is usually acquired from the inside of the mouth using a cotton

swab. Later, the DNA sample is cut into smaller segments and smaller strands

of DNA are separated from larger ones. The accuracy of DNA profiling depends

on the number of segments analyzed. Although DNA provides an accurate and

stable means of identifying a person, the time required for its extraction and post-

processing renders it an unsuitable choice for large-scale identification systems.

Secondly, enrollment of persons in a DNA-based database is a cumbersome process

that is likely to put off most people.
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1.3.1.5 Palmprints

Just like fingerprints, palmprints exhibit a peculiar pattern of alternating ridges

and valleys. They provide much more information as compared to fingerprints

and provide additional features as well. These additional features include princi-

pal lines and creases illustrated in Figure 1.6. Palmprints have remarkable forensic

value as they are more likely to be found on surfaces as compared to fingerprints.

Furthermore, it is much more difficult to fake palmprints as compared to finger-

prints. Like fingerprints, palmprints have peculiar epidermal ridge patterns which

Figure 1.6: Palmprint sample showing all intrinsic features: (a) region with
creases

are exploited to identify humans. Based on the properties of these ridges a variety

of palmprint authentication methods have been developed, e.g. correlation-based,

ridge pattern-based, or minutiae-based. The most accurate of these are minutiae-

based methods. Since the focus of this thesis is on palmprints, all components of
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a palmprint recognition system are discussed in the proceeding chapters.

Minutiae are minute details found in ridge patterns found in fingerprints or palm-

prints. Most notable of these are ridge endings and ridge bifurcations. A ridge

ending is a point where a ridge ends and ridge bifurcation is a point where a single

ridge splits into two. Both types are illustrated in Figure 1.7. Minutiae points

have other types too, but all of those can be constructed through combinations of

the two types mentioned above.

Figure 1.7: Portion of a binarized palmprint showing minutiae points (ridge
endings and bifurcations). Black lines are ridges, White lines are valleys [4].

1.3.2 Behavioral Systems

1.3.2.1 Keystroke Dynamics

Keystroke dynamics recognize patterns in typing behaviors of a person. These

patterns can include the speed of typing, use of the shift key or use of backspace

for mistakes, etc. Any anomaly in these patterns is identified and reported. Unlike

physiological biometric systems, keystroke dynamics do not require an active scan

of a person. Furthermore, they offer continuous validation of a person’s identity

rather than just once. In case any anomaly is detected in usual patterns attributed

to a person, the system can ask for additional validation.
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1.3.2.2 Signatures

A person’s signature is a modality that develops over time and becomes unique to

a person. With the shifting of most human processes to digital formats, most of

the paperwork has also taken up digital form. Documents are scanned and sent to

recipients in digital forms. Since documents have legal value, the main challenge

in this process is the authentication of signatures on a document. Verification

of signatures can be done in a static (offline) or dynamic (online) fashion. In the

static model, the scanned image of a signature is analyzed based on various aspects

of its shape and size and compared with templates available in the database. In

the dynamic model, the live signatures of a person are acquired on a digital pad.

Apart from shape and size, additional features are verified that include but are

not limited to the speed of signatures, pressure at each point, etc. illustrated in

Figure 1.8.

Figure 1.8: Example of features available in dynamic signature verification

1.3.2.3 Voice

Each person’s voice has unique characteristics that distinguish them from other

people. The shape of the mouth and throat, pitch, and speaking patterns all

dictate the output voice of a person. The input voice of a speaker is processed
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and suitable features from the voice are extracted and compared with one or more

samples available in the database. Based on similarity, the identity of a person is

validated.

1.4 Comparison of Biometrics

Each biometric technology comes with its own set of challenges and benefits. The

choice of biometrics is usually dependent on the application. Choosing accuracy of

identification as a metric of success seems an appropriate decision but sometimes

systems that give high accuracy are not acceptable to users. For example, the

iris is exceptional in terms of accuracy and longevity but users find iris-based

biometric systems to be intrusive. Similarly, DNA-based systems are also highly

accurate but collecting DNA samples and enrolling them in the database is a

tiresome process. Similarly, palm or finger vein systems are highly accurate but

need specialized scanners which are not commonplace.

Selection of an appropriate biometric is a trade-off between different considerations

which include Ease of Use, user acceptability, accuracy, challenges, susceptibility

to errors, Longevity, etc. A comparison of different biometrics on the above-

mentioned aspects is presented in Figure 1.9. The table shows that while some

biometric technologies are more accurate, they can not be chosen for mass adoption

due to low user acceptance or collectibility of samples. On the other hand, less

accurate technologies are widely acceptable to users and are easily adopted by the

masses.

1.5 Performance Evaluation of Biometric Sys-

tems

The performance of biometric systems is usually measured in terms of accuracy

with which they can classify test (query) samples as match or no-match with tem-

plates saved in the database. Biometric systems do not give an absolute answer
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Figure 1.9: Comparison of Biometric technologies [3]

to whether a test sample is matched or not. Instead, the similarity score between

the test (query) sample and templates stored in the database is calculated and an

acceptability threshold on the similarity score decides whether it matches a tem-

plate or not. Results provided by the system can also be classified as inconclusive

if the overall similarity scores calculated by the system are not satisfactory.

The following parameters are most commonly used in evaluating the performance

of biometric systems:

• False Acceptance Rate (FAR): Rate of wrongful classification of a non-

genuine sample as genuine

• False Rejection Rate (FAR): Rate of wrongful classification of a genuine

sample as non-genuine

• Equal Error Rate (EER): Rate where FAR and FRR are equal (Figure

1.10)

FAR and FRR are interdependent and it is not possible to reduce one rate without

reducing the other. That’s why the most effective biometric systems are the ones

with low FAR and FRR resulting in low EER. Acceptability threshold t in Figure

1.10 can be varied. Selecting a higher threshold means lower FAR but higher FRR

and vice versa.
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Figure 1.10: EER denotes when FAR=FRR, ZeroFAR denotes FRR when
FAR=0, ZeroFRR denotes FAR when FRR=0, t is the acceptability threshold

1.6 Use of Palmprints for Identification

Palmprints show persistence across time and climates. Palmprints are unique to a

subject and provide a sound foundation for the correct identification of individu-

als. Even identical twins have different finger and palmprints [5]. As compared to

fingerprints which contain only minutiae-based features, palmprints contain mul-

tiple types of intrinsic features that can be used for identification. In addition to

minutiae-based features, palmprints contain principal lines and wrinkles that can

also be utilized to uniquely identify a subject. In order to understand the potential

of palmprints, it is important to understand the physiology of the human hand.

Figure 1.11 illustrates various features in a palm.

Palm features illustrated in Figure 1.11 are formed during the embryonic stages

of a fetus. Features contained within a palm can be categorized as follows:

• Major Flexion Creases (Principal Lines): These are the major lines easily

visible in a palm to the naked eye. They follow a strict spatial pattern and

this pattern does not change at any point in time. These are the Distal

Line, Proximal Line, Thenar or Radial Line commonly referred to as Heart

Line, Head Line, and Life Line respectively. There is another type of crease,

known as minor flexion crease. These are mostly found in the thenar region
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of the palm and introduce discontinuities in local ridge patterns. They can

introduce a lot of errors during the enhancement or matching of palmprints.

• Ridges: Also known as friction ridges, help a hand in improving its grip on

objects. These structures are not easily visible to the naked eye and need

high-resolution scanners/ cameras to become apparent.

• Minutia: As described earlier, minutiae are ridge endings or bifurcations.

• Pores: Pores are visible at extremely high resolutions (ppi>1000)

Palmprint features listed above are obtained at different image resolutions. Some

features are available at low resolution while others are available at high resolu-

tion. Low resolution features are called Level 1 features and are obtained at a

resolution below or equal to 100 ppi, high resolution features are called Level 2

features which are obtained at image resolutions above 400 ppi, and then there

Figure 1.11: Physiology of human hand [6].
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are Level 3 features which are obtained at ultra-high resolutions equal to or above

1000 ppi using specialized sensors. Level 1, Level 2, and Level 3 features are listed

in Table 1.1.

Level 1 (100 ppi) Level 2 (400-500 ppi) Level 3 (1000 ppi)
Features Principal Lines Minutia Pores

Wrinkles Minor Creases Ridge Width
Texture Ridges

Valleys

Table 1.1: Palmprint Features Available at Different Resolutions.

Figure 1.12 illustrates these multi-level features thoroughly. Based on the image

acquisition method and resolution being used, appropriate features can be selected

for a specific application. This freedom in the choice of features is not available in

other biometric systems such as fingerprints, iris, etc. Apart from the features, it

is important to know the different regions of a palm, namely, interdigital, thenar

and hypothenar. As will become apparent in subsequent chapters, different re-

gions in a palm respond differently to enhancement and matching algorithms.

Figure 1.12: Level 1 Features (Distal, Proximal and Radial Transverse
Creases), Level 2 Features (Ridges, Minutia), Level 3 Features (Pores) [7]
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Figure 1.13: Palmprint categories: based on dimensions and resolutions of
image [8]

Based on the type and quality of images, palmprint identification systems can be

divided into high resolution and low resolution systems. Low resolution systems

can be further divided into contact-based or contact-less systems based on the

method of image acquisition. In contact-based methods, the palm is in contact

with the surface of the image sensor, while in contact-less methods, the palm is

not in contact with any sensor. Palmprints can also be categorized on the basis of

the dimensions of the image, i.e., 2D (two-dimensional) or 3D (three-dimensional)

systems. All categories are illustrated in Figure 1.13.

Low resolution systems provide a certain level of convenience due to easy and in-

expensive image acquisition methods like a smartphone or a CCD camera. But

low resolution systems make use of Level 1 features which provide low to middle-

level security and feature templates stored in a database is vulnerable to spoofing

attacks. As a result, feature templates have to be protected using encryption

techniques [9], or palmprint features are fused with other biometrics such as fin-

gerprints, iris, etc. to form a multi-modal identification system [10]. High reso-

lution systems make use of Level 2 features (ridges/ valleys and minutiae) which
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Figure 1.14: Generic architecture of a palmprint identification system

are considered the most reliable and have the advantage of providing latent-to-full

palmprint matching.

The generic model for palmprint identification systems is the same as illustrated

in 1.14. It should be noted that the detailed architecture of a particular palmprint

identification system depends on image resolution, image acquisition method, and

features used. For example, sometimes it makes sense to apply noise removal in

conjunction with ROI segmentation, and sometimes it does not. Similarly, whether

palmprints need to be aligned before matching also depends on the exact applica-

tion.
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Regardless of image resolution, an efficient and cost-effective palmprint identifi-

cation system takes five objectives into account, namely, financial cost, user ac-

ceptance, computational overhead, accuracy, and security. While low resolution

methods are more friendly to users and require less computation, they lack in pro-

viding an adequate level of security. On the other hand, high resolution palmprints

provide an advanced level of security and accuracy but at a great computational

cost.

Whether low or high resolution, palmprints have quickly paved their way into

mainstream biometric systems. The global biometric industry is expected to reach

$100 Billion growing at a compound annual growth rate (CAGR) of 14.6% by 2030

[11]. Palmprints are a relatively less explored biometric but they are gaining im-

portance rapidly on account of rich intrinsic features that are unique to a subject

and permanent during a lifetime. Palmprint-based systems along with fingerprints

were leaders in the biometric industry in the last decade and palmprint-based sys-

tems are expected to show a CAGR of 18.28% and touch around $2.6 Billion

by 2030 [12]. As a result of the growing popularity of palmprints, the research

community’s interest in palmprints has also seen a sharp increase [9, 10, 13–15].

1.7 Palmprint Applications

Applications requiring low to middle-level security prefer the use of Low resolution

palmprints. Easy and non-invasive image acquisition methods coupled with lower

costs make them more acceptable to users. Application areas for low resolution

palmprints include campus attendance systems, e-commerce, person registration,

access control management systems, etc. But if a higher level of security is re-

quired, low resolution palmprints alone cannot suffice. In such cases, palmprints

have to be fused with other biometrics to create a multi-modal authentication

system that gathers information from multiple modalities [16][17]. Furthermore,

low resolution palmprints can only be used in full-to-full palm matching. An il-

lustration of a multi-modal biometric system is presented in Figure 1.15.

Applications requiring a higher level of accuracy and security prefer using high
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Figure 1.15: Multi-modal biometric system combining palmprint with face
[18]

resolution palmprints. Minutiae-based level 2 features (Table 1.1) are more trust-

worthy and cannot be faked easily. High resolution palmprints can be divided

into two main categories: full and latent. Full palmprints are usually acquired in

a controlled environment using a scanner. Latent palmprints are found in crime

scenes and have forensic value. They are usually extracted from weapons and

vehicle steering wheels or windows etc. According to research conducted by the

Federal Bureau of Investigation (FBI) in the USA, 30% of biometric evidence

found in crime scenes is from palmprints [7]. Apart from an advanced level of

accuracy, high resolution palmprints provide the additional advantage of latent-

to-full matching. Whether full or latent, high resolution palmprints come with a

lot of challenges. Even if they are acquired in a controlled environment, various

factors like inconsistent flexibility of skin, and varying quality of ridge structure

in different regions (Figure 1.12) make processing difficult. Figure 1.16 illustrates

variations in ridge structure quality of within a palmprint.

Since high resolution palmprints are of large size, they have high computational

overhead. The large size of the palmprint means more information to process. For

example, high resolution palmprints provide approximately 8 times more minutia

than a fingerprint [7]. Despite their challenges, high resolution palmprints provide

the most reliable intrinsic features that have the potential to provide high identi-

fication accuracy in a uni-modal biometric system. Because of their high accuracy



Introduction 21

Figure 1.16: Different samples of local patches of palmprint depicting varia-
tion in ridge quality [15]

and forensic value, the focus of this thesis is on high resolution palmprints.

1.8 Palmprints vs Fingerprints

Components of a generic palmprint system are illustrated in Figure 1.14. First,

the Region of Interest (ROI) is segmented from the image to limit subsequent pro-

cessing to only the relevant areas of the image. Subsequently, image enhancement

is performed which aims at accentuating identification features in the image. This

is the most important step because error-prone enhancement deteriorates identi-

fication performance eventually. After enhancement, features are extracted and

encoded and saved as templates in the database. During the online stage, features

extracted from query images are compared with templates saved in the database,

and a matching score is produced.

Since fingerprints and high resolution palmprints employ the same minutiae-based

features for identification (Table 1.1), researchers have adopted algorithms used

in fingerprint identification systems while working on high resolution palmprints.

Fingerprint techniques used for ROI segmentation, enhancement, feature extrac-

tion, and matching have been tailored to work on palmprints. But palmprints

differ from fingerprints in a few aspects:
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• Large number of creases resulting in abrupt changes in ridge orientation

• Flexibility of skin resulting in abrupt changes in inter-ridge distance or ridge

frequency

• Palmprints are much larger and contain much more information which in-

creases computation complexity

Furthermore, high resolution palmprints provide a huge amount of information

that encounters a lot of computation challenges. For example, a fingerprint image

has a size of 512 x 512 in most datasets which provides 100 minutiae on average.

On the other hand, a high resolution palmprint has a size of 2048 × 2048. On

average, a palmprint would present 800 minutiae. This is exhaustive for the ex-

traction and matching phases of any algorithm. There is another major issue of

major and minor creases that makes high resolution palmprint enhancement very

challenging. The presence of minor creases, especially in the thenar region (see

Figure 1.12) affects the recovery of ridge structure adversely during the enhance-

ment stage. Broken or poor ridge structure introduces spurious minutiae which

not only increase computational requirements while feature extraction, encoding,

and matching but also deteriorate identification accuracy.

In fingerprints, these creases either appear less frequently or are very thin. Ridge

reconstruction or enhancement in fingerprints is much easier than in palmprints

on account of width and number of minor creases. That is why fingerprint en-

hancement methods cannot be directly applied to palmprints. Jain and Feng

[7] explained the detrimental effects of minor creases during the enhancement of

palmprint images using a commercial fingerprint enhancement tool. One of their

experimental results is shown in Figure 1.17. Verifinger is a commercially available

software extensively used for ridge reconstruction in fingerprint images. While it

performs excellently in fingerprints, it produces false ridges in palmprints. This

further verifies the observation, that in palmprints the presence of large and small

creases is a major issue that adversely affects the enhancement and feature ex-

traction techniques. Hence, techniques used for palmprint enhancement should be

tailored for palmprints.
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Figure 1.17: Creases in palmprints (a) a palmprint region with a major crease
and its ridge skeleton created by Verifinger (b) a palmprint region with minor

creases and its ridge skeleton created by Verfinger [7]

1.9 Purpose of the Thesis

The purpose of this thesis is to overcome the shortcomings of classical palmprint

processing methods which were originally designed for fingerprints including ROI

segmentation, enhancement, and minutiae processing that precede the matching

stage. The motivation for the thesis stems from the idea that without effective ROI

segmentation, enhancement, and selection of candidate minutiae, the accuracy of

palmprint identification will deteriorate. Hence, this thesis proposes:

• An ROI segmentation method that effectively removes background pixels

from the image to reduce processing and feature search space to only the

palmar region of the image.

• An enhancement method that is adaptable to frequently occurring creases

in the palmprint and varying ridge quality.

• A minutiae selection method to limit the number of minutiae that need to

be matched to attain good matching accuracy.
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1.10 Contributions of the Thesis

Major contributions of this thesis include:

• Contribution 1: A frequency domain palmprint Region of Interest (ROI)

segmentation method as a pre-processing step to remove background noise

from the palmprint. This reduces ROI to only the foreground pixels, thereby

reducing subsequent computation.

• Contribution 2: A palmprint enhancement method that is inspired by re-

cent work in image restoration using Convolutional Neural Networks (CNNs).

It employs a two-step palmprint enhancement network (PEN) that is able to

work on sufficiently large patches of palmprint, i.e., 96 × 96 without assum-

ing the underlying ridge patterns to be stationary or uniform. In the first

step, palm patches are classified by a CNN on the basis of dominant ridge

orientation. In the second step, an image-to-image regression CNN converts

patches directly into corresponding enhanced versions.

• Contribution 3: A novel matching algorithm that reduces the number of

matches during the online matching stage resulting in reduced computation

overhead. Since palmprints contain a lot of minutiae, running any match-

ing algorithm on all minutiae can be cumbersome. This thesis proposes a

minutiae selection algorithm that selects a limited number of minutiae for

matching. So instead of matching all minutiae contained in a query and

template image, a small subset of minutiae needs to be matched.

1.11 Structure of the Thesis

Chapter 2 reviews the literature available on low and high resolution palmprints.

Since the focus of the thesis is on high resolution palmprints, the literature on low

resolution is reviewed briefly while the literature on high resolution is reviewed in

detail. The literature review encompasses all processes involved in a palmprint
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identification system including Region of interest (ROI) segmentation, noise re-

moval, enhancement, encoding, and matching.

In chapter 3, a frequency-based ROI segmentation method is introduced which

sees the alternating ridge valley structure of the palm as a 2D sine wave and iso-

lates dominant frequencies resulting in the removal of the background from the

image.

Chapter 4 presents the proposed two-step enhancement method based on Con-

volutional Neural Network (CNN) in detail including material on the creation of

training datasets for CNNs, training of CNNs during the offline stage, and online

stages of CNNs presenting the overall flow of the proposed enhancement method.

Chapter 5 presents the results of the proposed method in two parts. In the first

part, enhancement results are compared with state-of-the-art enhancement meth-

ods. The efficacy of the proposed method in recovering ridge structure even in

high-noise areas (containing frequent minor or major creases) is illustrated. It

is shown that while classical methods fail to maintain the continuity of ridges in

noisy regions, the proposed method succeeds. The performance of the enhance-

ment method in high ridge curvature areas is also illustrated. In the second part,

the reliability of features (minutiae) extracted from the enhanced palmprint is es-

tablished by evaluating matching accuracy. Chapter 5 also contains a discussion

section on choices of architectures for CNNs used during enhancement.

Chapter 6 introduces the proposed minutiae selection algorithm that selects a small

number of candidate minutiae for matching resulting in reduced computation dur-

ing the matching stage. Chapter 7 concludes this thesis by listing the contributions

of the proposed work and their efficacy as compared to state-of-the-art methods.

1.12 Summary

This chapter provides an overall introduction to this thesis. The importance of

biometric technologies as a whole is presented along with the latest trends. Com-

parisons between popular biometric technologies are presented in terms of univer-

sality, user acceptance, cost, and collectibility. Later, palmprint is introduced as a
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biometric technology with its historical use in human identification. The increasing

utility and importance of palmprints as a biometric technology is argued because

of their uniqueness and reliability. Challenges in designing palmprint solutions are

discussed briefly. The next chapter provides an elaborate study of the literature

on palmprints. After a rigorous literature survey research gap is identified and the

objectives of the thesis are stated.
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Literature Review

There is abundant literature on the use of palmprints as biometric technology

which can be divided into two main categories, i.e., High Resolution Palmprints

and Low Resolution Palmprints. Due to a clear difference between high and low

resolution palmprints, literature available on both types of palmprint forms two

separate domains of knowledge. This is because physiological features, image

acquisition sensors, and challenges presented by high and low resolution palmprints

are totally different. The difference in features offered by palmprints at different

image resolutions is listed in Table 1.1. Features available at low resolution are

not available at high resolutions and vice versa. This is why methods pertaining

to palmprint enhancement, encoding, and matching of high and low resolution

palmprints are not comparable.

Although the focus of this thesis is on high resolution palmprints, this chapter

briefly reviews the literature available on low resolution palmprints (contact-based

and contact-less) as well for the sake of completeness.

2.1 Low Resolution Palmprints

Low resolution palmprint systems can be divided into two sub-categories, i.e.,

contact-based and contact-less systems. Contact-based palmprints are acquired

in a controlled environment using scanners. Contactless palmprints are acquired

27
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using commonplace cameras and enjoy increased user acceptability. Since they

are acquired in an uncontrolled fashion, there are additional challenges due to

rotation, translation, background illumination, etc. Below is a brief review of the

literature available on both categories.

2.1.1 Contact-based Palmprint Systems

A typical contact-based palmprint is shown in Figure 2.1. Palms are scanned on

specialized scanners that have pegs fixed in appropriate places. These pegs help

in aligning the palms during registration and query. Aligning all palms simplifies

subsequent enhancement and matching. In order to extract the palmar region

Figure 2.1: Contact Based Palmprint

from the image, almost every research work has used a Region of Interest (ROI)

extraction method. This process restricts processing to only the palmar region of

the image. This also helps to develop a common coordinate system for images

for alignment before matching. The most popular method was proposed by D.

Zhang et al [19]. Other methods are improvements of the same concept. The

main idea in [19] is to find the boundary of the palm through a boundary-tracking

algorithm. Then two reference points are calculated, which are the lowest points
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in the arch formed between the index and middle finger and the ring and small

finger, as depicted by red arrows in Figure 2.2 (c). A line segment joining these

two reference points is drawn. Then a perpendicular bisector of this line segment

is drawn to find the location of ROI as illustrated in Figure 2.2.

Figure 2.2: ROI segmentation: (a) Original Image, (b) binary image, (c)
boundary tracking, (d) building a coordinate system, (e) extracting the central

part as a sub-image, (f) resulting image [19]

Low resolution palmprints are texture-based images, and statistical characteristics
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of these textures can become suitable features for identification. Many suitable

local descriptors have been proposed by researchers which are mostly focused on

finding and enhancing line features of the palm which are visible to the naked

eye. The following features are most commonly used in low resolution palmprint

systems:

• Line Features: Edge or line detectors are used to enhance and extract

principal lines from the palm. Sobel, Difference of Gaussian (DoG), Radon,

or Gabor filters have been commonly employed by researchers to enhance

line features. The resulting image after convolution with these filters is a

binary image. For calculating the similarity between a query and template

image, hamming distance is used between the line features of both images.

However, line features have not been found to be very accurate due to the

fact that two subjects can have highly similar-looking principal lines.

• Orientation-based Features: Palmprint textures are full of features that

have strong orientation characteristics. The basic assumption is that every

patch of a palmprint contains a line (major or minor). When the orientation

of the convolving filter (e.g. an oriented Gabor Filter) matches the orienta-

tion of the line present in the sub-image, the filter response is maximum. So,

it is safe to infer that direction of the Gabor filter is the direction of the line.

So lines in different regions of the palm are enhanced and their orientation

characteristics are encoded and exploited for matching.

Gabor filters have been used to enhance line features extensively [20–22]. Radon

filter has been used in [23] for the same purpose. Radon transform estimates the

intensity of pixels around a line and depicts it as a peak. Hence, in the Radon

transform, one sees peaks corresponding to lines in the original image. The lo-

cation of these peaks in the transform gives the location of lines in the original

image. Results of [23] are improved by the use of MFRAT (Modified Finite Radon

Transform) in [24]. Difference of Gaussian (DoG) filters are used in [25]. A set of

line detectors is prepared, based on the first and second derivatives of a Gaussian

and convolved with the image. Figure 2.3 shows the results of line detection per-

formed using DoG filters.
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Figure 2.3: Results of [25] on PolyU dataset [26]. (a) and (b) are two palm
images, (c) and (d) are corresponding edge images.

Figure 2.4 shows the results of applying MFRAT on images taken from [26].

MFRAT converts an image into its corresponding energy image. Lines can be

detected based on the energy image. Wrinkles can be filtered out using a thresh-

old on energy.

Figure 2.4: MFRAT [24] applied on PolyU dataset [26]. (a) Input Image, (b)
Principal lines, (c) Wrinkles extracted by lowering the threshold.

Line enhancement algorithms are highly prone to noise and not very efficient in

differentiating wrinkles from principal lines. To overcome this problem, researchers

have exploited the orientation information present in the line features of the palm

to improve identification results. Orientation information can be encoded with the

position of features to create a palmprint template. The basic idea in orientation-

based methods is to convolve the original image with a template that is oriented

with an angle, say θ. After convolving, a mapping function converts the convolved
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output in orientation descriptors into codes.

Orientation code(x, y) = fun[Conv{T (θ), I(x, y)}] (2.1)

Zhang et al. [19] used a single template 2D Gabor filter, with θ = π/4 to extract a

spectral orientation feature. Convolved features are then translated into binarized

code using a mapping function. In [27], Kong and Zhang used 6 Gabor templates

with different orientations instead of one. Gabor filter that matches the dominant

information in the image gives maximum response or minimal convolved value.

They called it competitive code (Figure2.5.

Figure 2.5: Theory of Competitive Code, (a) Sub image of palm, (b) Intensity
value distribution of sub-image, (c) Gabor filter with similar orientation as the

sub-image[27]

In practice, since orientations of Gabor filters are limited, i.e., in most cases, it

is highly likely that no orientation will precisely define the orientation of the un-

derlying line feature. Dominant line orientation in palm patches is usually related

to the two closest Gabor filter orientations. Based on this observation, improve-

ments were suggested by Fei et al. [28] who introduced Double Orientation Codes

(DOCs). A lot of other improvements have been suggested by other researchers

such as Guoet al. [29], Zhang et al. [30] and Fei et al. [31, 32]. Orientation-based

methods translate dominant line orientation into binary codes. The hamming dis-

tance can be used to describe the similarity between them.

Recently, deep learning methods have also been employed in palmprint systems
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[33] where local features in a small patch of palm are represented using features

extracted from convolutional layers of deep CNN. Since features extracted from

low resolution palmprints provide low to middle-level security, recent work on low

resolution palmprints has been focused on improving the accuracy and security

[9] of the system by fusing palm features with other physical features[10], thereby

creating multi-modal biometric systems.

2.1.2 Contactless Palmprint Systems

Applications of contactless palmprints vary a great deal from contact-based palm-

prints. In contact-based methods, specialized scanners are used that have pegs

fixed on them at appropriate places so that the palms of all subjects are aligned to

a common coordinate system during enrollment and query (testing). In contactless

palmprint systems, palms are not scanned, they are photographed using a variety

of commercial devices (e.g. cameras, contactless scanners, etc.). Furthermore,

images are taken in a free environment with no control over the rotation, trans-

lation, scale, and illumination of the image. This introduces intra-class variation

which is not desirable. In order to improve the accuracy of contactless palmprint

systems, additional features are incorporated. Figure 2.6 shows different types

of contact-less palmprint images which illustrates the variation introduced during

the acquisition of images.

As illustrated, due to an uncontrolled environment, effects like rotation, transla-

tions, illumination, scaling, etc. are introduced during image acquisition. Features

thus chosen for matching should have a requisite level of robustness. Features gen-

erally used for matching in contactless palmprints are the following:

• Scale Invariant Feature Transform (SIFT): SIFT [37] is an algorithm

from the field of computer vision, originally developed for object identifica-

tion. It has been used in various applications, for example, image stitching,

gesture recognition, video tracking, etc. In the field of palmprint recogni-

tion, its ability to find local patterns in images is exploited. SIFT is totally

invariant to rotation and scaling and is partially invariant to projection and
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Figure 2.6: Contact-less palmprint images: First, second and third row are
samples taken from IITD [34], GPDS [35] and CASIA [36] datasets. On the
left are original palmprints and on the right are extracted Regions of Interest

(ROIs).

illumination. SIFT aims to find stable key points across multiple scales of

an image that have associated orientation information too.

• Local Bit Pattern (LBP): LBP shows immense resilience to illumination

variance along with total invariance to scaling and high robustness to ro-

tation. The idea is to divide each image into sub-images. Pixel values of

8 neighbors are inspected around each pixel (center pixel). If the value of

the neighboring pixel is greater than the center pixel, it is given a value of

”1”, otherwise ”0”. A histogram technique is used to define a texture and

calculate a local binary pattern. LBP can be improved to make it rotation

invariant as well.

• Local Direction Pattern (LDP): LDP can be thought of as an impro-

vised LBP adapted for images with rich line features (such as low resolution
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palms). In LDP, a 3 x 3 neighborhood is convolved with 8 directional edge

filters (Kirsch Edge Masks). Response to these filters is calculated and top k

responses are selected. Based on the calculated response, an eight-bit code

is defined which serves as a local texture descriptor. Bits corresponding to

top k filters are set to 1 and the rest are set to 0.

Above mentioned features have been used extensively in contactless palmprint

systems. For example, Wu et al. [38] exploited the robustness of SIFT towards

variations in rotation and scaling. He first extracted the SIFT features and then

discarded mismatched features between two palms. The final score in matching

two palms is equal to the total number of matched SIFT features. Euclidean

distance has been successfully used to match SIFT points in palmprints. A pair

of points with descriptors pi,qj are taken as matched if:

dij < tmin(dik), k = 1, 2, ...., N, and k ̸= j, (2.2)

where dij and dik are the Euclidean distances between pi,qj and pi,qk and t is the

threshold. Threshold t in the range [0.58, 0.83] is suitable for contactless palmprint

verification. Zhao et al. [39] improved the accuracy of SIFT descriptors. Based on

SIFT points, he aligned two palmprints and devised a scheme to create competitive

codes. The fusion of competitive codes with SIFT descriptors improves matching

accuracy. Generally speaking, SIFT can be combined with other features as well

for improved accuracy.

A directional gradient associated with LBP (DGLBP) was proposed by Michael et

al. [40]. Four directional masks, i.e., vertical, horizontal, 45 degrees, and 135 de-

grees are convolved with the original image. Each of the resulting gradient images

is divided into small sub-images and LBP is applied on each sub-window. The

final descriptor is obtained using concatenated LBP of each sub-window of each

gradient image. In [41] Lou et al. improved LDP to LLDP in which he used line

extraction filters, namely, MFRAT and Gabor Filters at 12 different orientations.

After convolution, encoding schemes like Enhanced LDP (ELDP)[42], Local Di-

rection Number (LDN)[43] is used.
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Results have shown that traditional methods for low resolution palmprint recog-

nition do not perform as accurately on contactless palmprints as on contact-based

methods. The reason is a high level of variations on account of translation, ro-

tation, scaling, and illumination. Hence, traditional methods cannot extract the

line features with the requisite amount of robustness. However, it is interesting to

note that despite low accuracy of contactless palmprints, they have gained a lot of

acceptability among users due to easy and non-invasive image collection methods.

2.2 High Resolution Palmprints

High resolution palmprints are the actual research area of this thesis. Most com-

mercial applications of palmprint identification employ palmprints captured at 100

ppi or less. The use of high resolution palmprints for identification is a relatively

less explored area. High resolution palmprints are taken at resolutions higher

than or equal to 500 pixels per inch (ppi) thus making it possible to extract more

detailed features of the palm resulting in lower identification errors. At this resolu-

tion, epidermal ridge lines of the palm are visible which are similar to fingerprints.

Ridge structure in the palmprint has been the prime focus of research on high

resolution palmprints. Ridge characteristics, namely, ridge orientation, ridge fre-

quency, ridge endings, and ridge bifurcations are extracted after enhancing palm

ridge structure. Ridge endings and bifurcations are called “minutiae” points. It is

these minutiae that are used for palmprint identification. A typical high resolution

palmprint is shown in Figure 2.7.

High resolution palmprints can be acquired using scanners in a controlled fashion

or can be extracted from flat surfaces where they might leave traces. Accurate

recovery of ridge structure in the palm is the most vital step and prime focus of

this thesis. Subsequent minutiae extraction, encoding, and matching are contin-

gent upon the success of ridge enhancement algorithms. All ridge enhancement

algorithms available in the literature depend on one fundamental step: Estima-

tion of local ridge orientation and frequency. Usually, both ridge orientation and

frequency are estimated in a local fashion. After the estimation of local ridge
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Figure 2.7: A high resolution palmprint [8]

orientation and frequency, appropriate contextual filters are applied to enhance

ridge structure and subdue creases or any other artifacts that may be present. Af-

ter enhancement of ridge structure, binarization and thinning of ridges is carried

out. In the end, minutiae are extracted from thinned palmprint. The generic flow

diagram of a biometric system presented in Figure 1.14 can be tailored for high

resolution palmprints as illustrated in Figure 2.8.

Since features contained in high resolution palmprints bear a lot of resemblance

with features contained in fingerprints (Level 2 features listed in Table 1.1), almost

all steps shown in Figure 2.8 are borrowed from the field of fingerprint enhance-

ment and identification and customized to work on palmprints. All of these steps

form separate areas of research. Recent work on high resolution palmprints has

focused on palmprint matching efficiency and limited novelty has been introduced

in palmprint enhancement. The following sections of this chapter review major
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Figure 2.8: Generic processes of a high resolution palmprint system

work done in these research areas.

2.2.1 ROI Segmentation

The foremost step in any biometric system is the extraction of the Region of In-

terest (ROI) from the image. ROI is also called the foreground of the image. ROI

segmentation serves various purposes: Firstly, it restricts processing to only the

valid parts of the image resulting in reduced computation, secondly, it mitigates

the possibility of mistaking textures or noise present in the background as intrinsic
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features. Hence, ROI segmentation reduces the feature search space.

High resolution palmprints are of large size, usually, 2040× 2040 [44]. This poses

computational challenges at every step. It is therefore essential to extract ROI in

the image before proceeding further. ROI in high resolution palmprint is the re-

gion containing palmar ridge lines. Palmprints extracted from real-world scenarios

such as crime scenes suffer from multiple degradations. There are complex back-

ground textures interfering with the ridge structure of the palm. Segmentation of

ROI not only reduces feature search space to the image portion containing palm

ridge lines but also ensures extraction of valid features from the image instead of

some artifacts that may have been introduced due to noise.

ROI segmentation techniques used in palmprints are borrowed from fingerprint

techniques. Most popular methods exploit textural information available in the

image to distinguish between foreground and background pixels. In [45], Maio and

Maltoni proposed a local variance-based strategy for segmentation. Variance in

image intensity within a patch of the image is calculated and compared against a

threshold. If the variance is below the threshold, that area is classified as back-

ground otherwise it is classified as foreground. In order to speed up the process,

non-overlapping patches are used. The variance of pixel or gray level intensity is

given by the equation

V ar(b) =
1

T 2

∑T−1

i=0

∑T−1

j=0
(G(i, j)−M(i, j))2 . (2.3)

In equation 2.3, V ar(b) is the variance of a patch b, G(i, j) is pixel intensity at

(i, j), and M(i, j) is the mean. The same concept is further extended by Bazen

et al [46], where local variance is fused with the mean and coherence of ridge

directions to find foreground pixels. Results are shown in Figure 2.9.

The same textural segmentation methods have been applied in high resolution

palmprints [47, 48]. However, for palmprints, methods employing local thresholds

prove computationally intensive due to the large image size. Results of grayscale

variance-based methods on palmprints are presented in Figure 2.10

It can be seen in Figure 2.10, that some background pixels have also been mistaken

as ROI. This is due to the fact that palmprints captured from real scenarios contain
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Figure 2.9: Segmentation results of [46] on fingerprints

Figure 2.10: Segmentation results of [46] on palmprints: (a) Original Palm-
print. (b) ROI mask

complex textures in the background. Sometimes, variance in grayscale levels of

background pixels also matches the foreground pixels. As a result, the background
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is mistaken as the foreground. In order to avoid this issue, a frequency-based

ROI segmentation method is proposed in Chapter 3 which aims to identify image

portions containing ridge lines rather than the variance of gray levels. Results

show that the proposed method is able to extract a much sharper ROI mask

which further reduces search space.

2.2.2 Initial Pre-processing

Like fingerprints, palmprints suffer from various degradations. One such degra-

dation is low contrast between ridges and valleys. In order to improve contrast,

sometimes segmented images are normalized. Normalization can be carried out

globally or locally. This step standardizes gray levels in the image by giving desired

mean and variance to image intensities. Normalization is sometimes referred to as

contrast stretching. If Mo and Vo are the desired mean and variance respectively,

normalization is expressed as:

I(i, j) = Mo +

√
Vo

V
(g(i, j)−M)2, ifg(i, j) < M,

I(i, j) = Mo −
√

Vo

V
(g(i, j)−M)2, ifg(i, j) > M.

(2.4)

In equation 2.4, g(i, j) is the actual gray level at (i, j) while I(i, j) is the nor-

malized gray level. Such steps improve contrast in the image which in turn makes

ridge lines more pronounced. This helps in mitigating image degradations intro-

duced by faulty image capture or non-uniform contact with scanners by users.

But they do not cater for the degradations in ridge structure caused by creases,

scars, or flexibility of the skin. To recover from these degradations in the ridge

structure, dedicated enhancement methods are used which are the prime focus of

this thesis. An example of mean-variance normalization is presented in Figure

2.11. Normalization of the images can be done during the enrollment stage. This
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Figure 2.11: Results of normalization [49] on palmprint after ROI segmenta-
tion [46]

reduces computational requirements during the online matching stage. During the

online stage, only query image needs to be normalized to bring a range of image

intensities in conformity with the template images saved in the database.

2.2.3 Ridge Orientation Estimation

Ridge orientation estimation is the first step in palmprint enhancement (Figure

2.8). In high resolution palmprints, ridge lines are the most important feature.

They are present everywhere in a palmprint and exhibit a continuous pattern of

alternating ridge/ valley structure. An important property of the ridge lines is

their orientation. Ridge orientation is not constant or stationary all across the

palmprint. As can be seen in Figure 2.11, ridge orientation is different in differ-

ent regions of palmprint. In regions of high curvature, ridge orientation changes

abruptly. Figure 2.12 highlights abruptly changing ridge orientation. Since ridge

orientation is not constant, algorithms designed for the estimation of local ridge

orientation work in a local fashion, i.e., they adapt according to the underlying

ridge structure in a local area. Subsequent filtering and final results of palmprint

enhancement depend on the accuracy of ridge orientation estimation. That’s why
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Figure 2.12: High curvature areas in a palmprint with abruptly changing ridge
orientation

the estimation of local ridge orientation is at the core of the palmprint enhance-

ment problem.

Gradient-based estimation of ridge orientation is by far the most popular method

found in the literature. These methods were initially designed for fingerprints

[50–53] which were later improvised for palmprints [47, 48, 54]. In the estimation

of local ridge orientation, an orientation image or map O(x, y) is created which

contains values of ridge orientation at all values of (x, y). This gives dominant

ridge orientation θi,j with respect to the x-axis at all pixels of the image as shown

in Figure 2.13. The orientation image of map O(x, y) thus created is used in sub-

sequent contextual filtering, feature extraction, and feature encoding as well. This

reiterates the importance of accuracy achieved in the estimation of ridge orienta-

tion as all subsequent steps involved in a palmprint system depend on it.

In gradient-based methods, ridge orientation estimation is done in the spatial do-

main [47, 48, 51, 54, 55]. Palmprint is divided into small patches, e.g. 17 × 17

centered at (xi, yj), and x and y gradients are computed. Horizontal and vertical

gradient images are expressed as equation 2.5 and 2.6 respectively, i.e.,
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Gx =
∑h=8

h=−8

∑k=8

k=−8
∇x (x+ h, y + k)2 , and (2.5)

Gy =
∑h=8

h=−8

∑k=8

k=−8
∇y (x+ h, y + k)2 . (2.6)

Where ∇x and ∇y are x and y gradient components of the palmprint image com-

puted using a Gaussian filter. ∇x and ∇y give the magnitude of intensity change

at each (x, y). Gxy is the product of gradients given by equation 2.7. Product of

Gx and Gy is calculated as

Gxy =
∑h=8

h=−8

∑k=8

k=−8
∇x (x+ h, y + k)2×

∇y (x+ h, y + k)2 .
(2.7)

Other than magnitude, gradients have orientation properties too. The direction

of the gradient at a given point gives the direction of maximum change in pixel

intensity. So, after calculating gradient magnitude values at each point in the im-

age, the direction of the gradient is also calculated. Based on these, an orientation

map O(x, y) is created. O(x, y) is constructed by taking the inverse tangent of the

gradients of the palmprint image as given by the equation

Figure 2.13: Ridge orientation at a point[50]
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Oxy = 90o +
1

2
tan−1

(
2Gxy

Gx −Gy

)
. (2.8)

Gradient-based methods work fine for fingerprints but a large number of creases

present in the palmprint deteriorate their performance. This is because gradient

calculation in palm regions with frequent creases picks up directions of creases

rather than ridges and as a result a faulty orientation map O(x, y) is created. An

example of orientation estimation is presented in Figure 2.14.

An alternative method for finding ridge orientation is the region-growing method.

Unlike gradient-based method, region-growing method is a frequency domain method.

Local ridge pattern can be modeled as a 2D sine wave [7]. Fourier analysis of a

Figure 2.14: Ridge orientation estimation depicted in a region of palmprint
by blue lines [48]
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Figure 2.15: 6 strongest sine waves corresponding to variable quality
patches(a) good patch with no crease (b) creases in one direction (c) creases

in two directions (d) thinned patch with minutiae [7]

2D sine wave shows peaks corresponding to the frequency and orientation of the

sine wave. Using this property of the Fourier transform, the local ridge orientation

and frequency of a palm patch can be estimated simultaneously. Different sizes

of patches have been used by different researchers. For example, Jain et al. [7]

used an 8× 8 patch while Dai et al. [56] used a patch size of 64× 64. Variations

of the same method have been used by [57, 58]. Patches with clear ridge struc-

tures produce clear peaks in the frequency spectrum showing the orientation of

the underlying ridge lines. But patches with creases show multiple peaks in the

frequency spectrum. In patches with creases, it is difficult to ascertain which peak

corresponds to the underlying ridge pattern. An example of modeling ridge lines

as 2D sine waves is presented in Figure 2.15.

It can be seen in 2.15, that in patches with creases, strongest sine waves corre-

spond to creases and not the ridges. These sine waves are produced from the peaks

observed in frequency spectrum of the patch. Good quality patches are classified

as ‘’seeds” and they are joined with adjoining patches using a region growing algo-

rithm to produce a complete orientation map O(x, y). An example of orientation

map created using region growing method is presented in Figure 2.16. However,
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Figure 2.16: Orientation map of a partial palmprint made from 1st strongest
sine wave of patches 64× 64 [7]

these methods assume underlying ridge pattern to be stationary or constant which

is a risky assumption in case of palmprint. Large number of creases and flexibility

of skin can introduce abrupt changes in ridge pattern even in a patch as small as

64× 64.

Another less popular frequency domain method of estimating local ridge orienta-

tion is through Gabor filter banks [59]. This method shares the same basic idea

as the region-growing method. The frequency spectrum of a small patch of palm-

print is multiplied with a series of Gabor filters and the direction of the Gabor

filter that gives the maximum is considered as the direction of the underlying local

ridge pattern. However, this method is costly in terms of time and computation.

Whether orientation is created using gradient-based methods or region-growing

methods, its accuracy is of prime importance for subsequent enhancement to suc-

ceed as orientation of local contextual filters used in enhancement is derived from

the estimated orientation map O(x, y).
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2.2.4 Ridge Frequency Estimation

Ridge frequency estimation is the second step in palmprint enhancement (Figure

2.8). Ridge frequency or inter-ridge distance is also an intrinsic feature of the palm

ridge structure. Ridge frequency estimation is as important as ridge orientation

estimation for the enhancement of palmprint. While ridge orientation helps de-

termine the orientation of the contextual filter used for palmprint enhancement,

ridge frequency estimation helps determine width of the contextual filter. Just like

ridge orientation, it is estimated in a local fashion and a ridge frequency map is

estimated containing ridge frequencies of different neighborhoods of palmprint.

Since palms have flexible skin, ridge frequency is not constant throughout the

palm. In general, it varies from 9 to 11 pixels in 500 ppi image [60]. Estimation

methods for ridge frequency are also borrowed from fingerprints. Hong et al. [50]

divided a fingerprint into small patches and estimated ridge frequency in the spa-

tial domain by the x-signature of ridges within an oriented window as shown in

Figure 2.17.

In this method, a window of a specified size is aligned with ridge orientation and

the number of ridges is counted within the window. The total number of ridges is

divided by the total distance (pixels) between the first and last ridge in the win-

dow. Let I be the palmprint image and O be the orientation map of the image.

x-signature method of frequency estimation is explained below:

• Divide image I into small patches or blocks (say 16× 16)

• Place a window of shape l × w at the center of a block centered at (i, j).

Orientation of the window should be aligned with local ridge orientation

identified from orientation map O (as shown in Figure 2.17).

• Calculate x-signature, X[0], X[1], ...., X[l−1] for ridges and valleys contained

in each block centered at (i, j), i.e.,

X[k] =
1

w

∑w−1

d=0
I(u, v), (2.9)
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Figure 2.17: Ridge frequency estimation: oriented window and x-signature
[50]

where

u = i+
(
d− w

2

)
cosO(i, j) +

(
k − l

2

)
sinO(i, j), (2.10)

and

v = j +
(
d− w

2

)
sinO(i, j) +

(
l

2
− k

)
cosO(i, j). (2.11)

• For a block centered at (i, j) consisting of uniform ridge structure, x-signature

takes the form of a discrete sinusoidal wave which has the same frequency

as that of palm ridges. Then the frequency of ridges in the block centered at

(i, j) is calculated by counting the number of pixels between two consecutive

peaks in the x-signature. That is if T (i, j) is the average number of pixels
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between two peaks in the x-signature, the ridge frequency in the block is

F (i, j) =
1

T (i, j)
. (2.12)

If peaks cannot be identified clearly in a block’s x-signature due to a non-uniform

ridge structure, the block is considered invalid. Non-uniform ridge structures can

appear due to degradations in gray scales or occlusions in the palmprint or the

presence of a large number of creases. In such cases, the frequency of the block is

calculated using interpolation between neighboring blocks.

This method is straightforward and effective, but many improvements have been

suggested to cater to fingerprints with scars or creases. For example, in [52]

Chikkerur proposed a Short Term Fourier Transform (STFT) based analysis for

simultaneous estimation of frequency and orientation in fingerprints. Later, ridge

frequency normalization was also suggested by Ghafoor et al. [53] to cater for

variations in frequency so that width of contextual filters can be standardized for

the complete fingerprint. Apart from scars, creases, and occlusions, another reason

for non-uniform ridge frequency is the flexibility of the skin. During acquisition,

non-uniform application of pressure on the sensing area can result in non-linear

distortion of ridge frequency. This problem is even more pronounced in the case of

palmprints as palm skin is many a time more flexible than finger skin. Frequency

normalization becomes useful in this scenario.

Process of frequency normalization proposed by Ghafoor et al. [53] is illustrated in

Figure 2.18. Image is divided in to small blocks of m×m and filtered in frequency

domain using directional filters whose direction is guided by the orientation im-

age. This helps in the isolation of dominant ridge frequencies in the frequency

spectrum. Once the frequencies corresponding to underlying ridge pattern have

been estimated, each block is brought back into spatial domain and is scaled to

bring ridge frequency as close to mean ridge frequency fm as possible. The effect

of frequency normalization on subsequent ridge enhancement is shown in Figure

2.19.

Techniques of ridge frequency estimation mentioned above were originally pro-

posed for fingerprints and later improvised for palmprints. An original work on
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Figure 2.18: Ridge frequency normalization architecture [53]

Figure 2.19: Ridge frequency normalization: (a) input fingerprint, (b), finger-
print enhanced without frequency normalization, (c) fingerprint enhanced after

ridge frequency normalization [53]
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palmprint ridge orientation and frequency estimation is the region growing method

[7, 56–58] as already described in section 2.2.3 which estimates ridge orientation

and frequency simultaneously by modeling ridge pattern in a block as a 2D sine

wave. Orientation of the peaks pertaining to ridge pattern gives the orientation

of the ridges while their distance from the center of DFT gives the magnitude of

the ridge frequency.

2.2.5 Contextual Filtering

After the estimation of ridge orientation and frequency, the last step in enhance-

ment is contextual filtering. As stated earlier, the direction and width of contextual

filters are guided by ridge orientation and frequency estimates. It is imperative for

filtering methods to be efficient in recovering genuine ridge structures in order to

extract reliable features that improve identification accuracy. Error-prone filtering

methods produce false features (minutiae) that deteriorate performance in iden-

tification and increase computational overhead. Whether gradient-based methods

are used for the estimation of ridge orientation and frequency or region growing

methods, recovery of ridge structure in palmprints or fingerprints is done using

contextual filters. The most popularly used contextual filters are Gabor filters,

cosine filters, or any other directional filters.

Most of the recent work in high resolution palmprints is focused on palmprint

matching algorithms and limited novelty has been introduced in enhancement

methods. As a result, most works still employ classical fingerprint enhancement

methods on palmprints. After estimation of ridge orientation and frequency, Ga-

bor filters are used in [7, 47, 48, 56, 57]. 2D Gabor filters are configured locally

usually in a window of 17×17 pixels according to orientation and frequency of the

underlying ridge structure. Gabor filter is in fact a Gaussian kernel modulated by

a sine wave oriented at an angle. Gabor filters are expressed by:

G(x) =
1

σ
√
2π

exp

(
−x2 + y2

2σ2

)
exp [jwx(xcosθ + ysinθ)] , (2.13)
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where wx is the frequency of sinusoidal wave, θ is the orientation and σ is spread

of Gaussian in both x and y directions. θ and σ depend on the orientation and

frequency maps of the image. Figure 2.20 illustrates the shape of a 2D Gabor

filter.

Figure 2.20: 2D Gabor filter: (a) θ = 0, (b) θ = 45

Directional filters can also be applied in the frequency domain [51]. The image is

converted into its DFT equivalent and multiplied by a directional filter. The filter

is applied in a local fashion where the orientation of the filter is changed according

to the underlying ridge orientation which is derived from the orientation map.

Figure 2.21 presents the results of contextual filtering on palmprints. Contextual

filters are applied in small blocks. Each contextual filter is configured according

to the orientation and frequency of the underlying ridge structure. A summary

table of enhancement methods found in literature is presented in Table 2.1.

Figure 2.21: Contextual filtering:(a) palmprint patch, (b) Gabor enhancement
[48]
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Table 2.1: Summary of enhancement techniques
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2.2.6 Binarization and Thinning

Sections 2.2.3, 2.2.4 and 2.2.5 constitute the enhancement phase of palmprint

systems. Once palmprints are enhanced, the next phase is to extract features

that can be encoded and used in the identification process. The first step in

this phase is binarization and thinning (Figure 2.8). Binarization is the process

where a multi-level grayscale image is converted into a black-and-white image.

After conversion, all ridges are represented by white pixels whereas valleys are

represented by black pixels. The decision of classifying pixels as black or white is

done on the basis of a threshold [55, 62]. Selection of thresholds is made easy by

filters used for enhancement as they reduce illumination variation in the image and

produce an output image with zero mean. So zero becomes a suitable threshold

for binarization. Pixels with intensities above that threshold are classified as white

while pixels with intensities below that threshold are classified as black. Figure

2.22 illustrates how an enhanced palmprint is binarized.

Figure 2.22: Palmprint binarization: (a) enhanced patch (b) binarized patch

The final step before feature extraction is thinning of the binary image. Thinning
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is the process of reducing ridge width to just 1 pixel. This forms a skeleton image

that keeps ridge continuity intact. This thinned image is used later for feature

(minutiae) extraction. An example of the thinned image is presented in Figure

2.23.

Figure 2.23: (a) Binary palm patch (b) Thinned palm patch

2.2.7 Feature Extraction

As explained in Table 1.1 in Chapter 1, palmprints provide multiple levels of fea-

tures at multiple image resolutions. Level 2 features ”Minutiae” are obtained at

high resolution and are considered the most reliable as palmprint templates based

on minutiae stored in the database cannot be easily faked or spoofed. Further-

more, minutiae have forensic value as well [7]. Another benefit of using minutiae

points for identification is that they provide sufficient identification accuracy and

do not need to be fused with other features to improve matching performance.

Minutiae were first observed in fingerprints by Galton [1] as discontinuities in ridge

lines. Each minutia could be represented by its position (x, y) and orientation with

respect to the x-axis θ. Initially, Galton identified seven different types of minu-

tiae in fingerprints. Among them, ridge endings and bifurcations were found to be

the most stable. Other minutiae types could be represented as a combination of

ridge endings and bifurcations. That’s why most minutiae extraction algorithms

extract ridge endings and bifurcations only. Various types of minutiae identified

by Galton are presented in Figure 2.24. Minutiae are generally extracted from

thinned images [62]. Each ridge line is followed pixel by pixel and at each pixel,
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Figure 2.24: Minutiae types (a) table showing types of minutiae, (b) ridge
ending or termination, (c) ridge bifurcation [1]

a local neighborhood of 3 is inspected. All 8 neighboring pixels are inspected in a

clockwise direction and the number of transitions between black and white pixels

is counted. If the number of transitions is 1 then it is a ridge ending. If the number

of transitions is 3, then it is ridge bifurcation. This is illustrated in Figure 2.25.

Figure 2.25: (a) Ridge ending: 1 transition from black to white (b) ridge
bifurcation: 3 transitions
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Figure 2.26: Complete palmprint processing steps: (a) Local orientation es-
timation in a patch depicted by small blue lines running along ridge lines, (b)
ridge frequency map, (c) contextual filtering, (d) thinned patch with minutiae

The overall process described in section 2.2.1 through section 2.2.7 including esti-

mation of ridge orientation, ridge frequency, contextual filtering, binarization and

thinning, and minutiae extraction is illustrated with a practical example in Figure

2.26.
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2.2.8 Dealing with False Features

Due to a large number of creases in the palm, most of the minutiae extracted

after thinning are false. These minutiae arise due to discontinuities in the ridges

resulting from scars, creases, or any other possible occlusions (Figure 2.27. Ridge

endings at the boundary of a palmprint are also wrongly classified as minutiae

by feature extraction algorithms. These false minutiae not only increase com-

putational overhead in subsequent encoding and matching but also deteriorate

identification accuracy by increasing the false acceptance rate (FAR).

Figure 2.27: An example of palm patch with large number of false minutiae

A rudimentary way of eliminating these false minutiae is by rejecting minutiae

from regions of poor ridge quality, rejecting minutiae that are too close to each

other but have different orientations, or rejecting minutiae from regions with an

extremely high density of minutiae because these minutiae depict broken ridges.

But researchers [7, 48, 63–65] have tried to remove these minutiae using different

statistical and structural methods. Chapter 6 delves deep into the issue of false

minutiae and proposes a minutiae selection approach that selects reliable candi-

date minutiae for the matching stage. The proposed method is able to reduce
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computations greatly by reducing the number of minutiae that enter the matching

stage. An example of false minutiae is presented in Figure 2.27. Palmprint is of

poor quality and is taken from THUPALMLAB dataset [44].

2.2.9 Feature Encoding

After the extraction of features, next step is to find a suitable representation for the

features called encoding (Figure 2.8). Minutiae are represented by their location

and orientation with respect to x-axis in the form (x, y, θ). This representation

helps in uniquely identifying a minutia point. If palmprints are acquired in a

controlled environment, they are aligned and (x, y, θ) representation is enough to

match the minutiae points between a query image and stored templates. But in

real scenarios, palmprints are not aligned and sometimes they are partial. Hence,

using merely (x, y, θ) is not robust to translation and rotation.

Matching algorithms in such scenarios need special minutiae encoding mechanisms

that are resilient to palmprint translation and rotation. In order to do that, encod-

ing methods associate additional information to each minutia. Like other meth-

ods, minutiae encoding for palmprints has also been borrowed from fingerprints.

In fingerprints, four types of information are attached to each minutia. These in-

clude: image intensity[66], texture[67], ridge characteristics [68] and neighboring

minutiae[69, 70].

Encoding each minutia with respect to its nearest neighboring minutiae is the

most popular method found in the literature. Neighbor-based minutiae schemes

can be classified as fixed radius and k -nearest neighbors methods. In [7], Jain et al.

proposed a fixed-radius method and divided a neighborhood around each minutia

into 32 sectors and classified all neighboring minutiae based on their reliability

and similarity of orientation with center minutiae. They called it MinutiaCode.

They categorized types of neighboring minutiae as below:

• RS: Reliable and same orientation as the center minutia

• US: Unreliable and same orientation as the center minutia
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• RO: Reliable and opposite orientation as the center minutia

• UO: Unreliable and opposite orientation as the center minutia

Figure 2.28: The configuration of a MinutiaCode. The numbers of four types
of neighboring minutiae, RS, US, RO, and UO, in sectors 1 and 2 are [1 0 1 0]
and [0 2 0 0], respectively. Square indicates reliable minutiae and circle indicates

unreliable minutiae.

The similarity between two minutiae (query and template) is calculated as a

weighted average of all valid sectors. If the score is more than 16, minutiae are

deemed similar, otherwise not. This is illustrated in Figure 2.28. Same technique

is improved by Dai et al [56] with the fusion of minutiae with other features. An-

other popular encoding scheme for minutiae encoding is Minutia Cylinder Code

(MCC) [54]. MCC is also a fixed-radius local descriptor that is invariant to trans-

lation and rotation. It encodes each minutia in the form of a finite-sized binary

vector. The fact that it is in the form of a bit vector makes it very efficient for

the matching process. MCC is used in some recent works on high resolution palm-

prints [57, 58].

Another popular method of encoding minutiae is by taking the nearest k num-

ber of minutiae and estimating the difference of x-coordinate, y-coordinate and θ
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from the reference minutia. These differences are calculated for all minutiae in a

palm and saved as a template in the database. Suppose a palmprint consists of

M number of minutiae, where each minutia is represented as (x, y, θ). Then for

each minutiae, there exists a set P which contains differences of (x, y) and θ given

by P = {(∆x1,∆y1,∆θ1), .......(∆xk,∆yk,∆θk)}, where k is the total number of

neighbours used for encoding. A similar set P exists for all M minutiae in a palm-

print.

Jiang and Yau [71] proposed an encoding scheme based on neighboring minutiae

using a polar vector. Polar vector-based encoding has been used in recent works

[47, 48, 51]. Figure 2.29 illustrates a reference minutia mi(xi, yi, θi) along with its

two neighboring minutiae n0(x0, y0, θ0) and n1(x1, y1, θ1).

Figure 2.29: Minutiae encoding scheme based on triplet structure [71]

Polar vector for reference minutia mi is described as

Fi = (ri0, ri,1, θi0, θi1, ϕi0, ϕi1, ni0, ni1, ti, t0, t1), (2.14)

where ri0 and ri1 are the distances of neighboring minutiae points n0 and n1 in

polar coordinates from reference minutia mi.

θi0 and θi1 are the differences in angles of neighboring minutia n0 and n1 and

reference minutia mi.

ϕi0 and ϕi1 are the difference between orientation of line sections joining mi with
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n0 and n1 and θi.

ni0 and ni1 are the number of ridges between mi and neighboring minutiae n0 and

n1, and

ti, t0, t1 represent types of minutiae, i.e., ridge ending or bifurcation

2.2.10 Matching

Regardless of encoding techniques, minutiae-matching methods include an exhaus-

tive search algorithm that compares each minutia from the query palmprint to each

minutia in the template palmprint. Let there be M minutiae in query and N in

template palmprint. Matching of a reference minutia mi (where i = 1, 2, ....M)

in query palmprint with every minutiae of template palmprint requires matching

of each component of encoded set Pi = {(∆x1,∆y1,∆θ1), .......(∆xn,∆yn,∆θn)}

for reference minutiae with all sets R = {R1, R2, ......RN} of template palmprint,

where n is the total numbers of neighbours used to encode a single minutia. Pro-

cess is illustrated in Figure 2.30. In order to match one query minutia with one

Figure 2.30: Process of matching minutiae of two palmprints [51]

template minutia, a total of n2 matches are performed. This means total matches

for two complete palmprints are M ×N ×n2. Generally, the accuracy of matching

increases with an increase in the number n but this comes at a great computational
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cost given the large number of minutiae extracted from a full-size palmprint. As

can be seen in Figure 2.30, based on matches a score matrix is calculated. For a

minutia pair (mi,m
′
i), if out of n neighbouring minutiae more than thn number

of minutiae match then query minutia mi is said to have matched with template

minutia m
′
i. thn is the threshold of neighboring minutiae matches for a minutiae

pair to match.

Although the generic method of minutiae matching remains the same, various im-

provements have been suggested by recent works. For example, in [48] Ghafoor

et al. proposed a two-stage matching algorithm: Local and Global matching. Lo-

cal matching is carried out similarly to the method described in the preceding

paragraph. Later, the top 20 matched minutiae are selected based on the match-

ing score calculated at the local level. These 20 minutiae are encoded again and

matched in a similar fashion to achieve superior functionality.

Recent works also include the fusion of multiple biometric modalities for better

performance. In [56], Dai et al. try different feature combinations of minutiae with

ridge orientation map, ridge density map, and principal creases and show that fu-

sion shows better accuracy at the cost of greater computations. In [58], Hussain

et al., use an orientation descriptor around each minutia m(x, y, θ) encoded us-

ing Minutia Cylinder Code (MCC). Before MCC matching between two minutiae

points, orientation descriptors are matched. If they are similar enough, then the

MCC matcher is used otherwise the match is discarded. This saved computation

during matching.

Convolutional neural networks (CNNs) have also seen remarkable success in the

image processing field in the last decade. Due to that success, there is a rise in

the use of CNNs in palmprint identification as well. However, the use of CNNs in

palmprints is more frequently seen in low resolution palmprint identification [72–

78]. This is because high resolution palmprints have a large region of interest that

is hard to be processed by a CNN in a single attempt and region-wise processing of

palmprints through CNNs has its associated computational cost. Additionally, the

large size complicates network training for the extraction of level 2 features. Due to

these reasons, limited application of CNNs for high resolution palmprints is found

in the literature. Ahmadi and Soleimani [79] applied CNNs on high resolution
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palmprints to roughly predict palmprint rotation around z-axis and subsequently

used Generalized Hough Transform (GHT) to find exact rotation and translation

difference between query and template palmprint for image registration. Image

registration brings both palmprints to the same coordinate systems which helps

in speeding up the matching process. Fanchang, Hao, et al. [15] used CNNs to

classify multiscale high resolution palmprint patches according to the quality of

ridge structure contained in them. A more recent work employing CNNs for high

resolution palmprints is presented by Bing and Feng [13] who employed Generative

Adversarial Networks (GANs) to estimate ridge orientation only. Limited appli-

cation of CNNs on high resolution palmprints shows that CNNs are more suitable

for palmprint identification based on low level features such as principal lines.

2.3 Research Gap Analysis

The topic of palmprint identification comprises an elaborate amount of literature.

Research spans multiple facets of palmprint systems like enhancement, finding

reliable features, feature encoding, and matching. Most of these methods have

been borrowed from fingerprints and customized for palmprints. Recent works

on palmprint systems have focused more on improving the efficiency of matching

algorithms in terms of accuracy and computational cost. It is highlighted that the

accuracy achieved in matching is contingent upon the success of ROI segmenta-

tion, enhancement, and selection of good minutiae candidates.

Research Gap-1: Due to the large size of the palmprint, a robust ROI segmen-

tation is required that does not confuse background textures with palmar regions

of the image. variance-based ROI segmentation methods used in fingerprints pre-

viously are not able to work on palmprints efficiently. This is due to the fact that

palmprints acquired from real-world scenarios contain complex background tex-

tures which can have the same textural properties (e.g. variance) as the palmar

regions in the image. Due to this results of ROI segmentation are not efficient

resulting in increased computational requirements and extraction of false features

from the background pixels.
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Research Gap-2: It can be seen in Table 2.1, that limited novelty has been in-

troduced in the palmprint enhancement. In order to recover palm ridge structure,

most enhancement methods employ contextual filtering either in the spatial do-

main or frequency domain. In palmprints, contextual filtering gives unreliable

results in high crease areas. This is because:

• Gradient-based spatial methods mistake palm creases as ridge lines as maxi-

mum intensity change in pixel values is provided by creases rather than ridge

lines in a high-crease region of the palmprint.

• All frequency domain methods assume the underlying ridge patterns to be

stationary or uniform in a local patch. This is a risky assumption in the case

of palmprint due to abruptly changing ridge patterns and a high number of

creases. For the same reason, the size of the patch has to remain small to

provide a more accurate estimate of local ridge orientation and frequency.

Research Gap-3: Limited effort has been rendered in eliminating false minutiae

from the palmprint after the feature extraction phase. This results in an unnec-

essarily high number of minutiae being forwarded to the matching stage. A large

number of false minutiae in the matching stage results in poor matching accuracy

as well as unnecessarily increased computational overhead.

2.4 Problem Statement

Since palmprints acquired from real-world scenarios contain complex background

structures, there is a need to develop an ROI segmentation method that isolates

only the pixels containing ridge lines in the image regardless of the variance or

other statistical properties.

In order to overcome the problem of a high number of creases present in the

palmprint, there is a need to find an enhancement method that is able to recover

the underlying ridge structure with adequate robustness even in high crease ar-

eas. This requires the enhancement method to be adaptable to abruptly changing
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ridge orientations, discontinuities introduced due to creases, the flexibility of palm

skin, poor ridge/valley contrast, and background noise. The enhancement method

should also be able to work on relatively larger patches of palmprint without as-

suming underlying ridge patterns to be stationary or uniform.

To improve matching efficiency in terms of accuracy and computational cost, there

is a need to devise a minutiae selection algorithm that eliminates false minutiae

after feature extraction and shortlists good candidates for subsequent feature en-

coding and matching. Algorithms should be able to improve accuracy as well as

computational efficiency.

2.5 Objectives of the Thesis

To summarize, high resolution palmprints provide the following challenges:

• Poor contrast between foreground pixels (palmar area) and background pix-

els (non-palmar area) of the image

• Large amount of minor creases resulting in abrupt changes in ridge orienta-

tion

• flexibility of skin in the palm resulting in the inconsistent inter-ridge distance.

• Large size of palmprint resulting in computational overhead during enhance-

ment and matching phases.

The objective of this thesis is to develop an ROI segmentation method that isolates

pixels containing palmar ridge lines only and a palmprint enhancement method

that is able to adapt to a multitude of challenges offered by palmprints acquired

either in a controlled environment or from real-world scenarios like crime scenes.

The goal of the enhancement method is to recover the ridge structure of the palm

despite frequently appearing creases, the flexibility of the skin, and poor contrast

of foreground and background pixels.

Secondly, this study aims to develop a minutiae filtering method for speeding up
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the matching or identification process. Since palmprints are large and provide 8

times more minutiae than fingerprints, it is essential to limit matching to only

good quality features which not only speeds up the matching process but also

improves accuracy.

2.6 Summary

This chapter presents a comprehensive literature survey on palmprint identifica-

tion systems ranging from low to high resolution palmprints. It lists the features

used in both low and high resolution palmprints and possible applications of both.

Chapter dives deep into high resolution palmprints and provides details about

the challenges involved in designing a high resolution palmprint system and the

importance of the efficacy of the palmprint enhancement algorithm. Processes

reviewed include ROI segmentation, ridge orientation, and frequency estimation,

contextual filtering, feature extraction, encoding, and finally matching.

Palmprint enhancement processes are more elaborately reviewed as they are the

prime focus of this thesis. It is reiterated that identification accuracy is contin-

gent upon feature enhancement and extraction. Removal of background textures

from the palmprint and extraction of reliable ridge patterns is essential for post-

processing to succeed. In the next chapter, a novel frequency-based ROI segmen-

tation method is proposed as a precursor to subsequent palmprint enhancement.

Instead of finding textual differences, it directly targets ridge patterns in the im-

age to extract only the foreground pixels. Later a palmprint enhancement method

is proposed for those by-passes traditional methods and recovers ridge structure

using deep learning techniques.



Chapter 3

Proposed Region of Interest

(ROI) Segmentation Method

3.1 Background

Fourier Transform is a popular tool for breaking down a signal and expressing it

as a sum of sinusoids, where each sinusoid represents a particular frequency in the

signal. Images can be thought of as two-dimensional (2D) signals with numer-

ous frequency components. So by extension of the same concept, a 2D Fourier

transform gives information about the frequencies contained in an image. In most

applications, the 2D Fourier transform is re-arranged to shift zero frequency F (0, 0)

or the DC offset to the center of the transform. In the frequency domain, different

frequency components contained in an image are represented as peaks at varying

distances from the center point, i.e. f0. The higher the frequency, the farther it

is from the center point. Each frequency is represented by two peaks on opposite

sides of f0 because the Fourier transform is symmetric around the center. Fur-

thermore, a spatial frequency component’s corresponding peak in the frequency

domain contains associated orientation information also.

Figure 3.1 presents a generic example of how spatial frequencies are represented

in the frequency domain. It shows two 2D sinusoidal waves: (A) is a low fre-

quency sinusoidal wave having zero angle with respect to the x-axis, while (B) is a

69
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Figure 3.1: 2D Fourier Transform example: (A) sinusoidal wave with low
frequency at zero angle with respect to the x-axis, (B) sinusoidal wave with
higher frequency at an angle with respect to the x-axis. The left column shows
the spatial domain, the middle column shows the frequency domain and the

right column is a magnified version of the frequency domain

high frequency sinusoidal wave at a certain angle with respect to the x-axis. Low

frequency wave (A) is represented by two peaks in the frequency domain which

are closer to the center of the spectrum. Whereas, higher frequency wave (B) is

represented by two peaks that are farther from the origin. Secondly, peaks are

oriented according to the orientation of spatial frequency. The amplitude of both

sinusoidal waves is represented by the brightness of peaks in the frequency domain.

The alternating ridge/ valley pattern in the palmprints can be thought of as a 2D

sinusoidal wave. The orientation and frequency of this sinusoidal are different in

different parts of the palm but the generic pattern remains constant. Figure 3.2

shows how the local palm ridge structure can be modeled as a suitable 2D sine

wave. The Fourier transform of palmprints that are extracted from real scenar-

ios contains a massive amount of frequency components corresponding to objects

other than the ridge pattern. It contains low frequency components corresponding

to background textures, higher frequency components corresponding to noise, and

frequency components corresponding to the ridge pattern.
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Figure 3.2: Ridge structure modeled as 2D sine waves: (a) palm patch con-
taining only ridges, (b) palm patch containing ridges and creases.

3.2 Proposed ROI Segmentation

The whole purpose of ROI segmentation is the extraction of the region of interest

in the image which in our case is the area containing the palm ridge structure. Due

to a constant sinusoidal pattern of ridge structure, it is possible to isolate ridge

frequency in the frequency spectrum and discard all others. Hence, the proposed

ROI segmentation is carried out in the frequency domain. The overall process of

proposed segmentation is explained in Figure 3.3. Palmprint is converted into its

Discrete Fourier Transform (DFT) equivalent and multiplied by a bandpass filter

that is configured to only allow frequencies corresponding to the ridge pattern.

After multiplication, the palmprint is brought back into the spatial domain. Heavy

blurring is used to smooth the image. subsequently, the image is binarized using a

threshold to yield a binary mask that is multiplied by the original image to output

only the ridge-containing regions of the palm.

The bandpass filter is a combination of low and high pass filters. It attenuates all

frequencies below and higher than an allowed band of frequencies. The bandpass

filter is particularly useful in enhancing edges while suppressing background (low

frequency components) and noise (high frequency components). Since ridge lines

are quite like edges, a bandpass filter suits our application. Ridge lines show

different orientations across the palmprint. Secondly, inter-ridge distance or ridge
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frequency keeps changing on account of the flexibility of the skin.

Ridge frequency changes between 9 to 11 pixels in a 500 ppi image [7](which is

the most common resolution of high resolution palmprints). Ridge frequency fridge

can be easily isolated in the DFT of the image. Maximum frequency fmax in an

image is the one which has a wavelength of just 2 pixels, i.e., it shifts from high to

low and back to high intensity in just 2 pixels. DFT of an image depicts frequency

components in such a way that the higher the spatial frequency, the farther it

is from the center (f0). This implies that a spatial frequency with a minimum

wavelength of 2 pixels (λmin) along the x-axis will be represented by a peak (fmax)

on the far right of the x-axis in DFT.

Figure 3.3: Proposed ROI segmentation: Palmprint is multiplied by a band-
pass filter in the frequency domain to remove noise. In the spatial domain,
Otsu’s thresholding is used to binarize the image and heavy blurring is used
subsequently to yield a binary mask which is multiplied with the original palm-

print to yield only the foreground pixels.

Since the image and its DFT have the same dimensions, the highest frequency

fmax along the x-axis in an N × N image will be at a distance (dmax) from the

center (f0). Based on this conclusion we can find the approximate distance of

ridge frequency, fridge (1/λridge, where λridge = 10 pixels [7] from the center (f0)
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in a 500 ppi image Distance of fmax from the origin is given by

dmax =
N

2
. (3.1)

Now since fmax is at a distance of dmax (N/2) from the centre, dridge can be

calculated as:

dridge =
N

2
× 2

10
, (3.2)

dridge =
N

10
. (3.3)

In the proposed implementation, a Gaussian bandpass filter has been used to

extract ridge frequency which is defined as:

H(u, v) = exp

[
−1/2

[
D2(u, v)−D2

o

D(u, v)W

]2]
, (3.4)

where D(u, v) is the distance of each frequency component from the center and

Do is the radial distance of the band center from the DFT image center. W is

the width of the filter and defines the Gaussian spread in both directions. While

dealing with 2040 × 2040 images, bandpass filter with a Do at 180 pixels with

bandwidth W of 50 was found to be effective in catering for variations in ridge

frequencies and ridge orientations. DFT analysis of palmprint is presented in Fig-

ure. 3.4.

It can be seen in Figure 3.4, that the DFT of palmprints shows a distinct ring of

frequencies that corresponds to ridge lines. In the middle of the DFT image, there

are very luminous low-frequency components that correspond to the background

in the image. While higher frequency components on the outside of the ring cor-

respond to noise. Bandpass filter discards both low and high frequencies. Once

filtered, the image is brought back into the spatial domain using Inverse DFT. At

this stage, due to the removal of DC offset and low frequency components, the

image is dark except where the ridges are. Ridge lines at this stage have varying

intensity values. In order to make a distinct difference between ridges and the
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Figure 3.4: DFT Analysis of palmprint, (a) Input palmprint, (b) DFT of
palmprint, (c) Bandpass filter, (d) Filtered palmprint in frequency domain

background, the image is binarized using a threshold obtained by Otsu’s method.

Otsu’s method aims at finding the threshold that minimizes the inter-class vari-

ance between two classes of pixels that are separated by the threshold. The image

obtained after applying Otsu’s method is then smoothed through heavy blurring

using a Gaussian filter with a standard deviation set at 20. This gives a binary

mask which is subsequently multiplied by the input palmprint to reveal only the

foreground pixels (ROI) of the palmprint. Results of multiplying binary mask with

input palmprint are illustrated in Figure 3.5.
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Figure 3.5: (a) Original palmprint, (b) Binary mask, (c) Segmented palmprint

3.3 Results

Some results of the proposed ROI segmentation method on a variety of image

qualities are presented in Figure 3.6.

Figure 3.6: Proposed ROI segmentation results: (a) Original palmprints, (b)
Segmented palmprints
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Figure 3.6 depicts that the proposed ROI segmentation is able to extract the

foreground by removing low frequency background and high frequency noise in

the palmprint.

3.3.1 Comparison with Variance-based Segmentation Meth-

ods

Segmentation methods used in fingerprints [46, 62, 71] and palmprints [47, 48, 51]

usually work by estimating local variances in the image. Area with ridges usu-

ally has a higher variance of gray scales due to alternating ridge/valley structure

than background textures. A threshold on local gray scale variance is used to dif-

ferentiate foreground from background pixels. The problem with this approach is

that palmprints extracted from real-world scenarios such as crime scenes have very

complex structures in the background whose variance can match the variance of

regions containing ridge pattern. In such cases, segmentation results can include

background pixels as well. This causes extra computation during all subsequent

steps of palmprint enhancement and identification. It also can adversely affect

identification accuracy as false features can be extracted from the background

that might affect the false acceptance rate (FAR). A comparison of the proposed

segmentation method with variance-based method is presented in Figure 3.7.

It can be seen the proposed segmentation method produces much sharper segmen-

tation masks. Variance-based method misclassifies some background portions of

the image as foreground due to the similarity in variance with foreground pixels.

These portions are identified with red arrows in Figure 3.7. Whereas, the same

portions are filtered out by the proposed segmentation. Another advantage of

using the proposed method is that one filter can be used globally for the image.

On the other hand, in variance-based methods, the variance threshold has to be

adapted according to small neighborhoods, which is computationally exhaustive.
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Figure 3.7: Comparison between proposed segmentation and variance-based
segmentation: (a) Original palmprints, (b) mask created through the variance-

based method, (c) mask created through proposed segmentation

3.4 Post processing

Sometimes palmprints acquired from real-world scenarios suffer from incomplete-

ness. This is due to the non-uniform application of pressure on surfaces by a

subject’s palm. This can also happen in controlled environments where a subject
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might not place his/ her palm properly on a scanner during the enrollment stage

of verification. The flexibility of palm skin coupled with the complex physiology

of the palm also contributes to this issue. In such cases, palmprints might contain

some disconnected regions. It is found that features extracted from these discon-

nected regions are not reliable. Hence, disconnected regions that are small and

do not provide any reliable features are removed as a post-processing step in the

proposed segmentation method.

Similarly, if the palmprint images contain impressions of fingers as well, then

fingerprints are not automatically segmented out by the proposed segmentation

method. This is because fingerprints also have the same ridge structure as palm-

prints having the same frequency. In these cases, fingerprints have to be removed

using post-processing methods because features extracted from the fingerprints

cannot be matched with features stored in palmprint templates. An example of

such a palmprint is provided in Figure 3.8

Figure 3.8: (a) Palmprint with associated fingerprints, (b) Segmented palm-
print with fingerprints, (c) Segmented palmprint after post-processing

3.5 Summary

This chapter presents the proposed frequency domain ROI segmentation method

which exploits the sinusoidal quality of ridge lines in the palmprint. Using a band-

pass filter, the frequency spectrum of palmprint is filtered. Filtering removes all
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low level frequency components pertaining to background and high level frequen-

cies pertaining to noise. Palmprint is brought back into the spatial domain and

binarized in which ridges are shown as white lines while the background is black.

Heavy blurring is used on this palmprint to convert it into a binary mask. Mask is

consequently multiplied with the original palmprint to yield only the foreground

pixels. Subsequent enhancement, feature extraction, and matching are performed

on the segmented image.



Chapter 4

Proposed Palmprint

Enhancement Network (PEN )

4.1 Background

As stated in Chapter 2, palmprint identification systems consist of image enhance-

ment, feature extraction, and matching stages. Palmprints cannot be used directly

for identification and need to be enhanced to extract reliable and unique features.

Performance achieved in enhancement dictates performance achieved during iden-

tification. High resolution palmprint enhancement techniques try to recover the

palm ridge structure that may be degraded in various ways. This is a challenging

task because most palmprints found in nature suffer from multiple degradations

such as incompleteness, poor ridge/valley contrast, broken ridges, and the addition

of external noise such as stains or background texture. Hence, it is imperative for

enhancement methods to be adaptive to variable image qualities. Enhancement

generally consists of the following processes:

• Estimation of local ridge orientation resulting in an orientation map for

complete palmprint

• Estimation of local ridge frequency resulting in a frequency map for complete

palmprint

80
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• Contextual filtering done in a local fashion guided by ridge orientation and

frequency maps.

Due to the similarity in features, most palmprint enhancement methods are bor-

rowed from fingerprint enhancement methods, but palmprints differ from finger-

prints in a few aspects, namely:

• Large number of creases resulting in abrupt changes in ridge orientation

• Flexibility of skin resulting in abrupt changes in inter-ridge distance or ridge

frequency

• Palmprints are much larger and contain much more information which in-

creases computation complexity

Due to the above-mentioned differences, applying fingerprint enhancement meth-

ods directly, or use of commercial software development kits (SDKs) designed for

fingerprints does not give satisfactory results for palmprint enhancement. A major

reason for this is the presence of a large number of major and minor creases in the

palmprint. Due to these creases, an error-prone orientation and frequency map

is calculated which subsequently results in the wrong configuration of contextual

filters. As a result, the exact underlying ridge pattern cannot be recovered.

The most important step in palmprint enhancement is the estimation of local

ridge orientation. Most popular high resolution palmprint enhancement methods

found in the literature (Chapter 2) can be divided into two categories based on

techniques used for the estimation of local ridge orientation. To summarize:

• Gradient-Based Methods: By far the most popular technique for en-

hancement. Local ridge orientation is estimated by calculating pixel-wise

gradients, whereas ridge frequency is estimated using x-signature method

described in section 2.2.4. Enhancement filters which are usually Gabor fil-

ters or other contextual filters, need to adapt their orientation and width

according to local ridge orientation and frequency respectively. Once local

ridge orientation is estimated for the whole image, filtering can be applied



Proposed Palmprint Enhancement Network (PEN) 82

in spatial domain [47, 48, 50, 51, 54, 55] or frequency domain [52, 53]. In the

spatial domain, filtering is applied pixel-wise, where filter orientation and

width are adapted to the ridge pattern in a small area centered at a pixel

(x, y). In the frequency domain, filtering is applied patch-wise by performing

a Fourier analysis of a patch of palmprint and multiplying with a suitable

directional filter: Gabor or a raised cosine filter (Figure ??).

Figure 4.1: (a) Spatial domain Gabor Filter, (b) Frequency domain raised
cosine filter [52]

These techniques work well in fingerprints but cannot handle abruptly chang-

ing ridge orientation and non-uniform ridge frequency resulting from flexibil-

ity of skin [53]. This results in an inexact configuration of contextual filters

and error-prone enhancement.

• Region-growing Methods: Seeing limitations of the gradient-based esti-

mation of local ridge orientation on palmprints, a frequency domain iterative

region growing method was proposed by Funada et al. [80] that estimates

local ridge orientation and frequency simultaneously. Assuming the Local

ridge pattern to be constant in small non-overlapping patches (usually 8×8),

they are modeled as 2D sine waves. In the image formed by the strongest

sine wave in each patch, continuous blocks are joined together to form re-

gions. Depending on various properties, regions are classified as seed or

crease regions. A region-growing algorithm is used to grow seed regions

until a complete orientation map of palmprint is produced. Subsequently,

contextual filters are applied to the image in a local fashion whose orienta-

tion and width are guided by the orientation map. This technique was used
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by Jain et al. in [7] and improvised by Dai et al. in [56] to speed up the

process. Some recent works have also used this method for orientation and

frequency estimation [57, 58, 61].

Figure 4.2: First row shows the original palmprint blocks and the second row
shows their DFT amplitude showing multiple peaks [57]

Contrary to Figure 4.2, in poor-quality regions containing a lot of creases

or background textures, the peak corresponding to ridgelines is not very

clear and multiple peaks are detected in DFT. In such regions, the strongest

frequency component detected by Fourier transform corresponds to creases

rather than ridge lines which introduces errors in orientation estimation.

Pixel-wise estimation is more robust to abrupt changes in ridge orientation and

frequency but proves computationally costly in the case of palmprints. And patch

wise frequency domain operations work on the assumption that underlying ridge

orientation and ridge frequency in a local area are stationary or uniform. This

assumption may be convenient in fingerprints but in palmprints can lead to mis-

leading results. Regardless of the methods used for orientation and frequency

estimation, final enhancement is done using contextual filters which are config-

ured according to ridge orientation and frequency estimates. However, in local

areas with high creases, conventional techniques pick up contextual information

pertaining to creases and end up enhancing creases rather than ridges. There

is a need to find an enhancement technique that is able to process sufficiently
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large patches without making the assumption that underlying ridge orientation

and ridge frequency are stationary or uniform.

4.2 Image-to-Image Regression Capabilities of Con-

volutional Neural Networks (CNNs)

The last two decades have seen a remarkable success of CNNs in classification

problems. CNNs have outperformed classical classification models on most bench-

marks. Contrary to image classification tasks which predict a single label for the

whole image, image-to-image regression extends the function of CNNs to pixel-

wise prediction. Semantic segmentation was the first application to use CNNs for

pixel-wise prediction [81, 82]. These applications used VGG [83] or ResNet [84] as

base architectures and customized them by introducing skip connections, deconvo-

lutional layers, etc. to facilitate the reconstruction/ restoration of input/ output

correspondences. Most of these architectures are task-dependent. This chapter

proposes a novel palmprint enhancement method that is inspired by recent works

in image restoration and segmentation employing pixel-to-pixel learning in an

end-to-end fashion using Convolutional Neural Networks (CNNs) [85–89]. These

models have achieved great success but have not been employed specifically for

the problem of palmprint enhancement.

Palmprint Enhancement Network (PEN ) is a two-step enhancement frame-

work consisting of a classification CNN (Cnet) and an image-to-image regression

CNN (Rnet). Rnet is a simple 4-layer deep CNN that is trained on a carefully

designed dataset of palm patches to convert a palm patch directly to its enhanced

version. Rnet is able to enhance sufficiently large patches of palmprint (96 × 96)

with adequate robustness. Sufficient depth and an adequate number of kernels

enable Rnet to learn complex ridge patterns containing abrupt changes in ridge

orientation and frequency. Unlike conventional methods, Rnet does not have to

configure its kernels for every patch or perform Fourier analysis. Even in high

crease areas, Rnet is able to enhance ridge patterns and subdue creases. Deep
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learning solutions are computationally intensive, but by harnessing the power of

GPUs, deep learning is quickly replacing classical approaches.

4.3 Palmprint Enhancement Network (PEN ) Ar-

chitecture

Figure 4.3 illustrates the overall architecture and flow of PEN. Palmprint is first

pre-processed to extract only the foreground pixels (palm area) in the image using

the DFT-based ROI segmentation procedure proposed in Chapter 3 that effec-

tively removes background noise. Removal of background noise is essential during

both offline and online stages in order to limit computation to the valid regions of

the image.

After ROI segmentation, palmprint is broken down into patches for subsequent

processing. Two separately trained CNNs are used to carry out enhancement.

Cnet, which is a classification CNN, classifies the palm patch according to domi-

nant local ridge orientation which it predicts directly from the patch. Guided by

the orientation prediction of Cnet, palm patches are rotated (if required) to align

with kernels of Rnet. Rnet, which is an image-to-image regression CNN, then

outputs an enhanced version of the patch using pixel-wise predictions. Enhanced

palm patches are then rotated back to their original orientation.

In classical methods, orientation and frequency of ridges are estimated pixel-wise,

whereas Cnet predicts dominant orientation in a 96×96 patch. A single prediction

label for a patch of this size is not a precise estimate of ridge orientations contained

within the patch. But PEN only needs to predict dominant orientation and feed

it to Rnet. Since Rnet has sufficient kernels, depth, and adequate adaptability, it

caters to changes in ridge orientation within a patch efficiently. Another important

aspect of Rnet is, that it is independent of ridge frequency. Just like changes in

orientation, Rnet kernels are able to cater to changes in ridge frequency as well.

This adaptability in PEN was made possible by designing a training procedure

that prepares both Cnet and Rnet for abrupt changes in ridge frequencies and

orientations. The training process is explained in the proceeding sections.
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Figure 4.3: PEN Architecture: Offline phase illustrates the preparation of
separate datasets for the training of Cnet and Rnet. The online phase illustrates
that after ROI extraction, 96 × 96 patches are extracted from palmprint. Each
patch is then passed through Cnet to predict dominant ridge orientation. Based
on this information, patches are rotated (if required) and passed through Rnet
to yield enhanced palmprint. All patches are later joined to form a complete

enhanced palmprint.

A patch size of 96 × 96 is chosen after sufficient experimentation. Prediction

scores of Cnet on patches bigger than 96 × 96 were found to be a poor estimate

of dominant ridge orientation and patches smaller than these were found to re-

quire greater overall computational time. After passing through Cnet and Rnet,

all enhanced patches are joined to produce a complete enhanced palmprint. Both

CNNs in the offline stage undergo separate training cycles using separate datasets

containing palm patches carefully extracted from THUPALMLAB [44] database.

Details about PEN components are given in subsequent sections.
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4.4 Offline Stage

4.4.1 Dataset Preparation for Cnet and Rnet

Training and validation datasets have been prepared using THUPALMLAB high

resolution palmprint dataset [44]. THUPALMLAB dataset has been used in all

state-of-the-art studies on high resolution palmprints [7, 47, 48, 54, 56–58, 61].

This dataset contains a total of 1280 palmprints from 80 subjects. There are 16

palmprints corresponding to each subject out of which 8 belong to the left palm,

and 8 belong to the right palm of the subject. Palmprints in the dataset are of

size 2040 × 2040 taken at 500ppi. Both Cnet and Rnet are trained on patches of

96× 96 pixels. On average one palmprint could produce around 100 to 150 valid

patches (of 96× 96 pixels) that were found to be suitable for inclusion in training

datasets.

The selection of palm patches for training was done carefully keeping the following

aspects in mind:

• Since different palm regions (thenar, hypo-thenar, and interdigital) provide

different levels of ridge structure quality, special emphasis was paid while

creating training data to include patches from all palm regions so that trained

CNNs are robust to variable ridge structures.

• Training data included patches with both high and low ridge curvatures

• Training data included patches having different contrast levels of ridge/valley

structure

• Training data had a blend of good and poor quality patches to strike a

balance between training performance during offline stage and robustness

during the online stage.

The above-mentioned considerations were aimed to make PEN adaptable to vari-

able ridge quality, ridge curvature, and contrast in the palmprints. The process

of associating ground truths and labels with training patches (for Cnet and Rnet)
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during the offline stage is explained below.

Using widely used gradient-based methods [63], an orientation image Oxy is created

that contains pixel-wise ridge orientations in a training patch. Oxy is constructed

by taking the inverse tangent of the gradient of the palmprint image in vertical

Gy and horizontal Gx directions, as given by the equation

Oxy = 90o +
1

2
tan−1

(
2Gxy

Gx −Gy

)
. (4.1)

Gx and Gy are calculated using equation 4.2 and equation 4.3, where ∇x and ∇y

are x and y gradient components of the palmprint image computed using Gaussian

filter. Gxy is the product of gradients given by equation 4.4.

Gx =
∑h=8

h=−8

∑k=8

k=−8
∇x (x+ h, y + k)2 , (4.2)

Gy =
∑h=8

h=−8

∑k=8

k=−8
∇y (x+ h, y + k)2 , (4.3)

Gxy =
∑h=8

h=−8

∑k=8

k=−8
∇x (x+ h, y + k)2×

∇y (x+ h, y + k)2 .
(4.4)

Since all patches extracted from [44] are not suitable for training purposes, patches

of a certain quality were chosen. Variance in ridge orientation within a patch was

chosen as the quality measure that determined whether to include a patch in the

training set or not. The variance of orientation distribution of a patch with a well-

defined ridge/ valley structure is much lower than a patch with broken ridges. The

variance threshold was set at 8 which was found to be a good trade-off between

achieving good training accuracy and imparting necessary robustness against bad

patches which might be experienced in the online stage. Figure 4.4 shows the

distribution of pixel-wise orientations available in good and relatively bad patches

with a Gaussian curve fitted on them.
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Figure 4.4: Ridge orientation distribution: (Top) Uniform, (Bottom) Less
Uniform

The mode of the orientation distribution in the patch was taken as an indicator

of the dominant orientation as mode gives the most frequently occurring value in

data. 0 to 180 degrees range of orientation was quantized in steps of 15 degrees,

thereby leaving only 12 classes for patch classification. As a result, a patch with

a dominant orientation between 0 to 15 degrees is placed in a bin labeled 15 and

a patch with a dominant orientation between 16 and 30 is placed in a bin labeled

30, and so on. Bin labels are used as ground truths or class labels for Cnet.

Once selected patches have been placed in separate bins, gradient-based 2D con-

textual filtering method [48] is used to produce corresponding enhanced versions

of these patches. These enhanced versions of patches are used as ground truth for

image-to-image learning of Rnet. For the sake of simplicity, Rnet is only trained

on patches of a single orientation label. For patches of all other orientations, every

patch goes through necessary rotation before passing through Rnet. The process

of dataset creation is illustrated in Figure 4.5.

4.5 Cnet - Architecture and Training

Transfer learning was used to fine-tune pre-trained alexnet for the classification of

palm patches based on dominant ridge orientation. Alexnet [90] is a deep CNN
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Figure 4.5: Training dataset creation process for Cnet and Rnet: Based on the
most frequently occurring value in orientation distribution, patches are given
class labels and used for training Cnet. Patches from only one class are enhanced

using contextual filtering to form ground truth labels for Rnet training

that is trained on a subset of imagenet dataset [91] with over 1 million images.

It is originally capable of classifying between 1000 classes. Alexnet consists of 5

convolutional layers, 3 max pooling layers, 2 normalization layers, 2 fully connected

layers and 1 softmax layer (Figure 4.6. The last three layers of pre-trained alexnet

were replaced with a fully connected layer, a softmax layer, and a classification

output layer to classify between 12 distinct ridge orientations. During fine-tuning,

the weight learning rate for the new layers was increased to 20 to focus learning

more on the new layers while the weight learning rate for the transferred layers was

kept to minimal, i.e. 0.0001, to bring minimal changes to these layers. Stochastic

Gradient Descent (SGD) training method was used with a batch size of 10.
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Figure 4.6: Alexnet: illustration shows 5 convolutional layers, which are con-
nected to two Fully-connected layers (FC6-7), the output is a fully-connected

1000-way soft-max layer[90]

ReLUs have become the default activation function (equation 4.5) in the recent

past because they help train the models faster. Pooling layers help in reducing the

dimensions of the image to improve processing speed and also impart robustness

in terms of the location of features of interest in the image. Values obtained from

the output of the softmax layer (equation 4.6) indicate class predictions.

F (x) = max(0, x), (4.5)

Softmax(xi) =
exp(xi)

sum j
exp(xj). (4.6)

In fingerprints, 5 easily identifiable ridge patterns exist, namely, whorl, left loop,

right loop, arc, and tented arc [92] that help in making identification through

CNNs easy (Figure 4.7). In palmprint, owing to large ROI, it is not easy to pre-

define local patterns of ridge structure. Hence, orientation prediction in palms

using CNNs is a potentially difficult task. Carefully selected images in the dataset

contain a good compromise between good and bad quality images that help in

improving training performance while achieving robustness at the same time.

With extensive trials, a prediction accuracy of 90% was achieved for dominant local

ridge orientation. Owing to a large number of creases in the palmprints coupled

with variable quality of images and lack of predefined patterns in the palmprints,
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Figure 4.7: Ridge patterns in fingerprints [92]

90% is an encouraging accuracy. Inter-class difference of 15 degrees was chosen

after sufficient experimentation. Differences lower than 15 degrees produce poor

prediction results. 20% of the dataset was used for validation while 80% was used

for improving training performance. During online testing, classification errors

made by Cnet (if any) were removed using smoothing of class prediction values

within neighboring patches.

4.6 Rnet - Architecture and Training

Apart from image classification, CNNs have proved to be extraordinary in image-

to-image regression tasks as well. The output layer of a traditional CNN is modified

to use it as a regression CNN. Image regression CNNs have attained state-of-the-

art performance in computer vision problems such as head pose estimation [93],

human pose estimation [94], facial landmark detection [95] or image registration

[96]]. Rnet is inspired by recent developments in pixel-to-pixel learning which in-

cludes image restoration and image super-resolution [85, 86]. Rnet is a 4− layer

deep CNN illustrated in Figure 4.8.

Convolutional layers extract features and encode primary components while elimi-

nating unwanted abstractions (creases or background noise) in the image. Pooling
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Figure 4.8: Rnet architecture: 4 Convolutional layers Conv1, Conv2, Conv3
and Conv4 with ReLU activation function. Conv1 has 20 kernels of size 15×15,
Conv2 has 16 kernels of size 11×11, Conv3 has 8 kernels of size 7×7 and Conv4
has 1 kernel of size 5× 5. Euclidean loss (MSE) between the output of Conv4

and ground truth patch is used for training

layers not used as the low-level image enhancement problem is more focused on

reducing corruptions in low-level features rather than learning complex image ab-

stractions. Secondly, pooling layers remove vital image details while reducing

feature space which cannot afford in image enhancement.

Since padded convolutional layers have been used, the size of the output image

equals input image i.e., 96×96. Training data for Rnet is in the form (X, Y ) where

X is a 96×96 patch and Y is the corresponding enhanced version or ground truth

for X. The convolution layer can be expressed as:

F (X i) = Wk ∗X i +Bk. (4.7)

X i is the ith training sample and Wk and Bk represent kernels and biases, respec-

tively. Output Al of a layer l (wherel = 1, 2, 3, 4) is given by:

Al = Gl(W l
k ∗X i +Bl

k). (4.8)

Gl is the ReLU activation function of lth layer, given by:

Gl = max(0, x). (4.9)
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The output of Conv4 (A4) was used as the final activation. Pixel-wise prediction

of enhanced patches given the real patches involves estimating convolutional kernel

weights W for all pairs (X i,Y i) in a training dataset, where i = 1, 2, . . . , N and

X i and Y i represent real and enhanced patch or the ground truth respectively,

the objective function is to minimize Mean Squared Error (MSE) expressed in

equation (4.10).

L(W ) =
1

N
max

N∑
i=1

||F (X i : W )− Y i||2. (4.10)

Rnet was trained on Caffe [97] with an initial learning rate of 0.00001, momentum

of 0.85, batch size of 64 using SGD solver. Figure 4.9 illustrates the training curve

of Rnet.

Figure 4.9: Training curve of Rnet

4.7 Online Stage

The online stage of the PEN is illustrated in Figure 4.10. Palmprint first goes

through the ROI extraction to obtain only the foreground pixels. After ROI seg-

mentation, palmprint is broken down into overlapping patches of 96×96. Horizon-

tal and vertical overlapping of 24 pixels is used. Patches are then fed to Cnet for

dominant orientation prediction. After orientation prediction, the patch is fed to
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Figure 4.10: PEN : Online Stage

Rnet. But prior to passing through Rnet, the patch has to go through rotation if

required. This is because Rnet has been trained on patches of only one orientation

class.

If Cnet predicts the orientation class of a patch to be other than the one Rnet is

trained on, the patch undergoes two rotations: one before and one after passing

through Rnet. The first rotation will align patch orientation with Rnet and the

second rotation will bring the patch back to its original orientation. One alterna-

tive to this step is to train Rnet for all orientations which causes Rnet architecture

to become unnecessarily complex and training even more difficult. Another alter-

native is to train separate versions of Rnet for all orientations. It can be easily

argued that giving suitable rotation to the patch is a less cumbersome option. At

the end, all patches are joined together to output a complete enhanced palmprint.

Since overlapping patches are used, discontinuity in patches while joining can be

avoided through careful implementation.

Results of palmprint enhancement through PEN show the efficacy of the pro-

posed framework. Owing to adaptability imparted during training, Rnet is able

to recover ridge structure even in the high-crease areas resulting in the extraction
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of reliable features (minutiae). Performance of PEN is evaluated from both as-

pects: recovery of palm ridge structure and identification accuracy of palmprints

enhanced by PEN. Results of PEN are presented in Chapter 5.

4.8 Summary

This chapter proposes a novel deep learning-based two-step Palmprint Enhance-

ment Network PEN consisting of two CNNs, i.e., Cnet and Rnet. First of all, clas-

sical enhancement methods are described and categorized according to techniques

used for the estimation of local ridge orientation, i.e., gradient-based and region-

growing techniques. Problems with these methods are highlighted and an out-of-

the-box solution is proposed that is able to process considerably large patches of

palmprints without having to configure enhancement filters locally. PEN converts

a palm patch directly to its corresponding enhanced version in the spatial domain.

The proposed method removes the need for pixel-wise estimation of ridge orienta-

tion and ridge frequency maps.

The architecture of PEN is explained with a description of the offline and online

stages. The training process for both Cnet and Rnet is explained along with the

process of creating training datasets. Careful selection of training patches with the

aim of imparting an increased amount of adaptability to PEN is described. The

architectures of Cnet and Rnet are also explained. In the end, the online stage of

PEN is presented explaining the overall flow from input palmprint to enhanced

palmprint.



Chapter 5

Results of the Proposed

Enhancement Method

The proposed Palmprint enhancement network (PEN ) is designed to eliminate

two fundamental assumptions in previous enhancement methods, namely, ridge

pattern in a local area is stationary and ridge frequency is constant. In order to

validate the performance of PEN, it was needed to ascertain the following: 1) PEN

is robust to abruptly changing ridge orientation and frequency without assuming

the ridge pattern to be stationary in a local area 2) Even in the high crease areas,

PEN is able to extract underlying ridge pattern, and 3) Palmprints enhanced by

PEN produce promising results during matching.

5.1 Dataset and Experimental Setup

Results are acquired on renowned and challenging THUPALMLAB dataset [44].

Literature review reveals that this high resolution palmprint dataset has been

used in all state-of-the-art studies on high resolution palmprints. Dataset consists

of 1280 palmprint images taken from both left and right hands of 80 different

subjects, with eight impressions per hand. The images have a resolution of 2040

× 2040 pixels at 500 ppi with 256 grey levels. Performance assessment of PEN is

based on both, enhancement of palmprints, and accuracy of subsequent matching

97
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or identification. The following metrics are used in evaluating the performance of

PEN :

• False Acceptance Rate (FAR): Rate of wrongful classification of a non-

genuine as genuine

• False Rejection Rate (FAR): Rate of wrongful classification of a genuine

sample as non-genuine

• Equal Error Rate (EER): Rate where FAR and FRR are equal

FAR and FRR are interdependent and it is not possible to reduce one rate without

reducing the other. That’s why the most effective biometric systems are the ones

with low FAR and FRR resulting in low EER. Acceptability threshold t in Figure

5.1 can be varied. Selecting a higher threshold means lower FAR but higher FRR

and vice versa.

Figure 5.1: EER denotes when FAR=FRR, ZeroFAR denotes FRR when
FAR=0, ZeroFRR denotes FAR when FRR=0, t is acceptability threshold

Apart from EER,Rank-1 accuracy and Detection Error Trade-off (DET) results
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are also calculated to verify the quality of enhancement. Results are compared

with the state-of-the-art. In addition to the results, section 7.3 contains details

about architectural choices for Rnet and analysis of the chosen architecture, in-

formation about the combination of hyperparameters, and the impact of Cnet on

the performance of Rnet.

All experiments pertaining to this article are performed on a system equipped with

Intel i7-6700 HQ CPU, 8 GB of RAM, and an NVIDIA GTX 960M GPU with

4GB memory.

5.2 Enhancement Results

Enhancement results of PEN are compared with contextual filtering methods

[47, 48, 50–55], since they have been most popularly used for recovering palmprint

ridge structure. Figure 5.2 shows a variety of regions extracted from different

palmprints. Performance of PEN can be observed to be robust to the quality of

input patches. Figure 5.3, shows the conversion of a complete palmprint to its

enhanced version. Figures 5.2 and 5.3 highlight the adaptability of PEN on high

curvature areas of palmprints which are challenging for any enhancement algo-

rithm. It can be seen in Figure 5.3, that the hypothenar region provides the best

results for enhancement and subsequent minutiae extraction due to smooth ridge

orientation and less number of creases. Comparison between PEN and state-of-

the-art contextual filtering methods is drawn in Figure 5.4. Some poor-quality

patches have been chosen for comparison.

It can be seen that PEN performs better at maintaining ridge consistency than

contextual filtering methods. This is because, in classical methods, the results of

contextual filtering depend mainly on the estimation of underlying ridge orienta-

tion. In high crease areas, both gradient-based and region-growing (Chapter 4)

methods of orientation field estimation end up detecting creases rather than ridge

lines. This results in the configuration of contextual filters according to crease ori-

entation rather than ridge lines. Consequently, contextual filters tend to enhance

creases instead of ridge lines in high crease areas.
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Figure 5.2: Enhancement Results of PEN. (a) Steady ridges in the hypothenar
region (b) Region with major crease, (c) Region with high curvature and incon-
sistent ridge frequency, (d) Region with poor contrast and broken ridges, (e)

Non-existent ridge structure with frequent creases

Figure 5.3: PEN on high curvature areas with inconsistent ridge frequency
indicated in red. (a) Original Palmprint (b) Enhanced Palmprint
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Figure 5.4: Enhancement Comparison between PEN and contextual filtering.
(a) Original palm patch (b) Enhancement by contextual filtering (c) Enhance-
ment by PEN. Results show that contextual filters applied in small local areas
containing creases (indicated by red circles) pick up contextual information per-
taining to creases and end up enhancing creases instead of ridges, while PEN is

able to enhance ridge structure and subdue creases

5.3 Matching Results

In order to further verify the enhancement performance of PEN, the identification

accuracy of palmprints enhanced by PEN is also evaluated. Minutiae-based palm-

print matching scheme was used where minutiae are described as the ridge endings

or ridge bifurcations (Figure 1.12). A recently published two-stage minutiae-based
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matching technique was used [48], with the difference that instead of using contex-

tual filtering-based enhancement of palmprints, PEN was used. Without paying

much focus to post enhancement and matching algorithms, PEN were able to

achieve remarkable matching results which strengthens confidence in PEN. Minu-

tiae are extracted from the enhanced palmprint produced by PEN after bina-

rization and thinning [55]. Spurious or false minutiae are removed in the post-

processing.

Valid minutiae extracted from each palmprint are then represented as Minlist =

[m1,m2....mN ]. Each minutiae mj is a triplet, mj = [xj, yj, θj], where j =

1, 2. . . .N . (x, y) are the coordinates of minutiae and θ is the ridge orientation

at the minutia point with respect to the x-axis. Each minutia is then encoded

based on its n nearest neighboring minutiae. The value of n is chosen to be

10. Encoding of all minutiae in a palmprint is stored as its PalmCode. During

matching, PalmCode of input palmprint called the query palmprint is matched

with every other PalmCode in the database. Matching occurs in two stages; local

and global. At the local stage, each out of M minutiae in the query palmprint

is matched with each out of N minutiae in the candidate palmprint. For a sin-

gle minutia pair to match, at least thn amount of neighboring minutiae need to

match. Value of thn is chosen to be 5, i.e., at least 5 out of 10 neighbors of both

minutiae must match. The similarity score is calculated for every minutia in the

same way. Minutiae matched at this local stage are further processed at the global

stage, while unmatched minutiae are discarded. At the global stage, each minutia

is encoded again with respect to its top 20 nearest neighbors. The similarity score

of these minutiae is calculated in the same way as on the local stage to give the

final matching score of palmprints.

Equal Error Rate (EER) is used to assess the accuracy of matching results. EER

is calculated by computing the False Acceptance Rate (FAR) and the False Re-

jection Rate (FRR). EER represents a threshold where both FAR and FRR are

equal. FRR (also called genuine matching) is determined by comparing each palm-

print sample of a hand of a subject with other samples of the same subject’s hand.

The total number of genuine matches is calculated as ((87)/2)802 = 4480. FAR

(also called impostor matching) is determined by comparing the first palmprint
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sample of each hand of a subject with the first palmprint sample of the same hand

of the remaining subjects. The total number of imposter matches is calculated as

(8079)/2)2 = 6320.

Results of the matching algorithm on palmprints enhanced by PEN are shown

in Table 5.1. Without spending any effort on optimization of minutiae encoding

and matching algorithm for deep learning-based enhancement, PEN was able to

achieve EER of 0.15 (see PEN in Table 5.1) which is remarkably low. Matching

scores of palmprints were inspected and it was found that palmprints performing

poorly in the matching stage showed some common properties. Three properties of

palmprints were picked to identify poorly performing images, namely, the number

of valid minutiae (MinV alid) in a palmprint, mean ridge curvature (CurvMean)

of complete palmprint, and mean of local curvatures around each minutia in a

palmprint in a 15 × 15 window (LocCurvMean). The average of these three

attributes is calculated for each palmprint to depict palmprint quality, i.e.,

PalmQuality = Avg(MinV alid, CurvMean, LocCurvMean). (5.1)

PalmQuality was calculated for each palmprint and the results were analyzed.

In proposed implementation, the value of PalmQuality varied from 0.40 to 1.32.

It was observed that palmprints that severely affected EER results had produced

the lowest PalmQuality values. During the matching stage, the value of thn was

lowered to 4 instead of 5 for palmprints that produced PalmQuality values lower

than 0.45. Incorporating this simple adaptability into the system lowered the

overall EER to 0.13 (see PENadapt in Table 5.1) which is lower than most state-

of-the-art methods. EER curve is illustrated in Figure 5.5. This value of EER

is impressive because it comes without making any improvement to the minutiae

encoding and matching algorithm. And by only dropping 10 palmprints with the

lowest PalmQuality from the matching stage as a pre-processing step, EER was

calculated as 0.06 (see PENpreproc in Table 5.1).

Seeing EER results, it can be easily argued that by using superior minutiae en-

coding and matching techniques [58] and limiting feature search space to only
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Figure 5.5: Equal Error Rate (EER) of palmprints enhanced through PEN

good quality areas using pre-processing techniques like [15], proposed enhance-

ment scheme can provide the foundation for the best minutiae matching results.

In order to further verify results, FRR values at different FAR thresholds were

calculated and compared with other state-of-the-art methods. Results are pre-

sented in Table 5.2 which shows that the proposed method performs favorably in

comparison to state-of-the-art.

The detection error trade-off (DET) graph is an alternative metric to EER. DET

graph plots the False Rejection Rate (FRR) against the False Acceptance Rate

(FAR) on a logarithmic scale. DET graph showing a comparison between PEN

and other enhancement schemes that use similar minutiae encoding and matching

algorithms is presented in Figure 5.6. The graph shows that PEN gives lower

FRR values as compared to other enhancement schemes. This is a testament to

the quality and reliability of features extracted using the proposed enhancement

scheme.

As another test of matching accuracy, the rank-1 identification rate was calculated
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Method Ridge orientation Enhancement EER

estimation

Jain et al.[7] Region-growing Gabor Filters 5.04

Dai and Zhou[56] Region-growing Gabor Filters 2.99

Tariq et. al.[47] Gradient-based Gabor Filters 0.38

Ghafoor et. al.[48] Gradient-based Gabor Filters 0.18

Hussain et. al.[58] Region-growing Gabor Filters 0.04

Khodadoust et. al.[14] Curved Gabor Filters Directional Filters 2.01

PEN Cnet Rnet 0.15

PENadapt Cnet Rnet 0.13

PENpreproc Cnet Rnet 0.06

Table 5.1: EER Comparison of PEN with state of the art

Method FRR at FRR at FRR at (%)

FAR < 0.01% FAR < 0.001% FAR = 0

Jain et al. [7] 17.32% 19.43% 22.5%

Dai and Zhou [56] 8.78% 10.45% 11.58%

Tariq et. al. [47] >0.38% >0.38% >0.38%

Hussain et. al. [58] 0.12% 0.14% 0.24%

PEN 0.20% 0.25% 0.44%

Table 5.2: EER Comparison of PEN with state of the art

and compared with the state-of-the-art. In order to calculate the rank-1 identifi-

cation rate, each palmprint is compared with at least two palmprints of each hand

of all 80 subjects in the THUPALMLAB database. It can be seen in Table 5.3,

PEN helps in attaining good rank-1 accuracy.

Method Rank-1 Identification Rate

Jain et al. [7] 82.0

Dai and Zhou [56] 91.7

Liu and Feng [13] 99.3

PEN 99.6

Table 5.3: Rank-1 identification rate comparison
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Figure 5.6: DET graph: comparison with different enhancement schemes
using similar minutiae encoding and matching method

5.4 Discussion

5.4.1 Analysis of Rnet Architecture

Traditionally in CNNs, the number of kernels increases in deeper layers, and kernel

size decreases. Initial layers act like Gabor filters and extract low-level features

such as edges, blobs, etc. which can be represented using a small number of

kernels. On the other hand, deeper layers are trained to extract various high-level

features which need a large number of kernels for correct representation. But

for low-level image enhancement problems, this proves counter-productive. It was

observed that a large number of kernels in deeper layers make Rnet more receptive

to complex structures in palmprint which include creases and other kinds of noises.

This is equivalent to enhancing noise rather than the original ridge pattern and

this is exactly what should be avoided. Hence, the number of kernels in Rnet

is gradually decreased in every subsequent layer to keep the focus on low-level
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features only, i.e., ridge lines. Further details about Rnet architecture are listed

in Table 5.4.

Layer Output Trainable Convolution (%)

Shape Parameters layer details

Input 96x96x1 0 -

Conv1 96x96x20 4520 Kernels: 20@15x15, Stride=1, Pad=7

ReLU 96x96x20 0 -

Conv2 96x96x16 38736 Kernels: 16@11x11, Stride=1, Pad=5

ReLU 96x96x16 0 -

Conv3 96x96x8 6280 Kernels: 8@7x7, Stride=1, Pad=3

ReLU 96x96x8 0 -

Conv4 96x96x1 201 Kernels: 1@5x5, Stride=1, Pad=2

Table 5.4: Rnet architectural details

Extensive tests were performed to optimize the performance of Rnet. Various

alterations of the following hyper parameters were performed to arrive at the best

results:

• Number of convolutional layers: The number of convolutional layers

was changed from 3 to 6. Architectures with convolutional layers between 4

to 5 showed promising results.

• Size of kernels: Different sizes of kernels were employed in different layers

to improve enhancement results.

• Training optimization algorithms: Training was conducted using SGD

[98], [99] and Adam [100] optimization algorithms.

• Activation layers: Performance comparison of ReLU and Leaky-ReLU was

performed.

• Pooling Layers: Pooling layers are not used as they reduce feature space

which is not desirable in pixel-to-pixel image learning problems.
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During experiments, different variations of Rnet architecture were tested to find

the best results. The architecture illustrated in Figure 4.8 was empirically chosen

to be the best performing architecture after extensive testing. Details of tested

Rnet architectures and matching results are given in Table 5.5 along with the

number of convolutional layers, the number and size of kernels, and trainable pa-

rameters (paras). EER results in Table 5.5 show that increasing the number of

convolutional layers and kernels deteriorates EER. This is because palmprint en-

hancement is a low-level image enhancement problem. Deeper and more complex

architectures end up extracting high-level objects in the image such as creases and

noise which undermines the ridge pattern in palmprint. Keeping convolutional

layers up to 4 and gradually reducing the number and size of kernels in the 2nd

and 3rd layers gives the best results.

Rnet Conv Conv Paras EER

Variations layers kernels %

Rnet 4 20@15x15, 16@11x11, 8@7x7, 1@5x5 49,737 0.15

Rnet-var1 4 20@11x11, 16@11x11, 8@11x11, 1@11x11 57,641 0.51

Rnet-var2 4 32@13x13, 16@11x11, 12@9x9, 1@7x7 58,289 0.33

Rnet-var3 4 20@15x15, 16@9x9, 8@7x7, 1@5x5 36,937 0.36

Rnet-var4 5 20@15x15,16@11x11,8@7x7,4@7x7,1@5x5 51,209 0.26

Table 5.5: Different variations of Rnet architecture

Figure 5.7 shows training curves of Rnet and its variations. Although variations of

Rnet show a similar training curve as Rnet, their performance during the matching

stage was found to be below par. This is due to the fact that their kernel sizes and

depth of convolutional layers were not suited for the low level ridge enhancement

tasks. Enhancement using these variations created some artefacts during post pro-

cessing which were falsely classified as false minutiae which deteriorates matching

accuracy. Recovery of palm ridges is aimed at removing discontinuities in the ridge

structure found in real-world palmprints. For that enhancement techniques need

to smooth the ridge structure where discontinuities occur.
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Figure 5.7: Training curves of Rnet and its variations

While comparing the performance of various training optimization algorithms,

SGD was found to be most suited to the problem of palmprint enhancement.

Comparison of SGD, Adam, and RMSProp optimization algorithms during train-

ing is illustrated in Figure 5.8.

Figure 5.8: Comparison of SGD [98], RMSProp [99] and Adam [100] opti-
mization algorithms during Rnet training
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5.4.2 Comparison of Proposed Rnet with Recent Deep

Learning Paradigms

In the recent past, CNNs have seen remarkable success in image-to-image re-

gression. Various image processing fields, especially image restoration, image de-

noising, and image segmentation [85–89] have seen an extensive application of

image-to-image regression. Deep encoding-decoding architectures consisting of

symmetric convolutional-deconvolutional layers have been a popular choice for

calculating end-to-end mappings between corrupted and clean images. U-net [89]

is an advanced type of encoder-decoder architecture containing additional connec-

tions between encoder and decoder parts. It was first proposed for medical image

segmentation but gained an overwhelming success in other image processing prob-

lems too. Residual network (ResNet) [84] is another remarkably successful deep

learning framework. ResNet has mitigated the problem of training very deep net-

works by using residual blocks. Main concept of a residual block is that output of

a layer is not only fed to next layer but also added to the output of another layer

much deeper in the path. This connection to the deeper layer is called a “skip

connection”. These connections also help gradients to flow without interruptions

during training, thus overcoming the problem of vanishing gradients in deeper lay-

ers.

Although these architectures are immensely popular but to the best of our knowl-

edge, they have not been used for the specific problem of palmprint enhancement.

In this section, we compare palmprint enhancement performance of the proposed

Rnet architecture with U-net and ResNet. U-net is originally designed for image

segmentation and has been adapted for image-to-image regression. For ResNet,

we have used ResNet-18 with the necessary modifications for it to perform image-

to-image regression as it is originally a deep image classification network.

Figure 5.9 illustrates a thinned palm patch derived from a palm patch enhanced

by Rnet, U-net, and ResNet. It can be seen that Rnet is able to maintain the

continuity of ridges while very deep U-net and ResNet models create some arti-

facts during enhancement that are manifested as anomalies in the thinned images.

These anomalies are depicted by red circles in Fig. 17. These anomalies act as
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false minutiae and deteriorate matching accuracy. This is because deeper layers

and a large number of convolutional kernels in very deep CNN architectures tend

to learn complex structures in the image and end up creating false structures in

the enhanced image.

Figure 5.9: Palm patch after thinning: (a) Rnet, (b) U-net, (c) ResNet

Table 5.6 presents two more comparisons between the proposed Rnet, U-net, and

ResNet. Firstly, it compares the number of trainable parameters in all three net-

works. Training time and training complexity are directly linked to the number of

trainable parameters in a network. Secondly, Table 5.6 presents the comparison

of matching accuracy achieved by the features extracted from all three networks.

It can be seen that Rnet performs favourably in comparison to the other two.

Features extracted after enhancement by Rnet show superior matching accuracy.

Also, due to a very simple architecture, Rnet has very little number of trainable

parameters that require very little training time and offers minimal complexity as

compared to U-net and ResNet.

Model Trainable Parameters EER(%)

Rnet 49,737 0.15

U-net [89] 31 Million (approx) 0.78

Resnet18 [84] 11 Million (approx) 1.41

Table 5.6: Comparison between the proposed Rnet, U-net [89] and ResNet
[84]
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Both Figure 5.9 and Table 5.6 reiterate the fact that deeper convolutional net-

works, although very successful for complex image mappings, are not suited for

low level palmprint enhancement problems. As a further proof of this concept,

proposed Rnet architecture consisting of 4 convolutional layers is compared with

Rnet-var4 (section 5.4.1) consisting of 5 convolutional layers, and results are illus-

trated in Figure 5.10. It can be seen, that increasing number of convolutional layers

deteriorates ridge continuity which is depicted by red circles in Figure 5.10(b).

Figure 5.10: Comparison of proposed Rnet with Rnet-var4: (a) Rnet: 4 layers,
(b) Rnet-var4: 5 layers

5.4.3 Impact of Cnet on Performance of Rnet

In order to simplify design and training, Rnet is trained on palm patches of a

specific ridge orientation. Patches with other orientations are rotated to align

with Rnet and then passed through it. This requires the estimation of dominant

ridge orientation in a patch. During experiments, the gradient-based method

was used at each point (x, y) to provide ridge orientation in a patch of 96 ×

96. Since ridge orientation is not constant in the patch, dominant orientation

was estimated using two statistical measures separately, namely, mean and mode.

However, after extensive trials, it was ascertained that the estimation of dominant

ridge orientation using these statistical properties did not give optimal results. As

a result, trials were conducted to predict dominant orientation in patches using

a classification CNN (Cnet). It was found that matching results of palmprints

enhanced by Rnet were better when it was aided by Cnet. EER results with and
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without Cnet are given in Table 5.7.

Dominant Orientation Estimate EER%

Mean 0.71%

Mode 0.24%

Cnet 0.15%

Table 5.7: EER comparison of PEN with and without Cnet

The process of training dataset creation and training is explained in section 4.4.

Various architectures were trained using transfer learning to find the best results.

The results of tests are presented in Table 5.8. Owing to superior accuracy and

relatively lower prediction time, alexnet was chosen as the best candidate for Cnet

in PEN.

Architecture Accuracy% Average Prediction Time (secs)

Googlenet [101] 88 0.017

Alexnet [90] 90 0.013

Resnet18 [84] 87 0.016

Resnet50 [84] 86 0.022

Squeezenet [102] 86 0.010

Table 5.8: Comparison of candidates for Cnet in terms of accuracy and pre-
diction time (one patch of 96x96)

5.5 Computational Complexity of Rnet

Deep learning solutions have high computational requirements. The recent success

of deep learning owes a great deal to the use of graphical processing units (GPUs).

By harnessing the power of GPUs, large blocks of data can be processed in parallel.

Image processing problems are pixel-based where the same operation is performed

on all pixels and the values of pixels do not depend on each other. These oper-

ations are more suited to parallelism offered by GPUs rather than the sequential

processing of CPUs. A comparison of computation requirements is drawn between
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Rnet and Gabor filter-based enhancement [50] below.

The computational complexity of both approaches is assessed by evaluating the

number of multiplication-accumulation (MAC) operations. For an input image

of size M × M , using a Gabor filter of size m × m, expressions (5.2) and (5.3)

give multiplication and addition operations for Gabor filter-based enhancement

respectively, i.e., :

M2m2 + 4M2(1 +
1

m
(4m+ 0.5log2(m) + 1)), and (5.2)

M2m2 + 2M2(1 +
2

m
(3m+ log2(m) + 2)) (5.3)

Whereas MAC operations of CNNs (single convolutional layer) are calculated as

K2 × Cin ×Hout ×Wout × Cout. (5.4)

Where K is the size of a square convolutional kernel, Hout and Wout are the height

and width of output which remain constant in Rnet. Cin and Cout are the input

and output channels of a single layer, respectively. In the case of Rnet, MAC

operations are calculated for each of the 4 convolutional layers using 5.4 and added

up. This gives us total MAC operations in the forward pass of Rnet. Analysis of

the computational complexity of both Gabor-based enhancement and Rnet-based

enhancement is presented in Table 5. Comparison is drawn on the input image

size of 96 × 96. Value of m for Gabor filters in (5.2) and (5.3) is chosen to be

17. It can be seen that Rnet-based enhancement has much more computational

overhead for a CPU, but by using the parallelism offered by even a modest GPU

this predicament can be easily overcome.

Enhancement Approx MAC Operations Average Time (seconds)

(Mns) CPU GPU

Gabor filters 5.7 0.15 -

Rnet 456 0.033 0.01

Table 5.9: Comparison: Gabor-based and Rnet-based enhancement
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5.6 Summary

This chapter presents multiple facets of the performance of PEN. It first compares

the quality of enhancement to state-of-the-art methods by illustrating the recov-

ery of ridges in high-curvature and high-crease areas. Subsequently, enhancement

results are corroborated by presenting the palmprint identification accuracy on the

features extracted through PEN. Matching performance on multiple metrics is pre-

sented, i.e. EER, DET graph, and rank-1 identification. At the end, Architectural

choices for Cnet and Rnet during the design of PEN are discussed.



Chapter 6

Proposed Minutiae Selection

Algorithm (MSA) For

Computationally Efficient

Palmprint Matching

6.1 Background

Section 2.2.8 briefly highlights the presence of spurious or false minutiae in the

palmprints. These minutiae exist because of discontinuities in the ridge structure

of the palm. The main contributors to these discontinuities are minor and ma-

jor creases in the palmprint. These discontinuities in the ridge lines are falsely

classified as minutiae by feature extraction algorithms. Another place where false

minutiae appear is the boundary of the palmprints. Ridge endings at the palm

boundaries are also wrongly classified as minutiae. Removal of spurious minutiae is

essential for two reasons: Firstly, the presence of spurious minutiae artificially in-

creases computational overhead during matching, and secondly, spurious minutiae

deteriorate the matching accuracy of the matching algorithm. False or spurious

minutiae can be identified in the thinned image and can be classified into six dif-

ferent types (Figure 6.1).

116
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Figure 6.1: False minutiae types: From left to right and top to bottom, we
have: spike, bridge, hole, break, spur, and ladder [62]

Different researchers have tried to solve the problem of false minutiae before [63–

65]. Proposed methods use statistical and structural approaches to remove false

minutiae. As a simpler approach adopted by [7, 48], the following techniques are

employed to detect and remove false minutiae illustrated in Figure 6.1:

• Since each minutia is expressed as (x, y, θ), if two minutiae are close to

each other and have inconsistent θ values then this means they are false

minutiae introduced due to discontinuities in ridges and are removed as a

post-processing step.

• Minutiae along the boundary of the palmprint are removed.

• Minutiae belonging to a region with a dense population of minutiae are

removed. This is because the region probably has too many broken ridges

and the minutiae extracted are false.
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• Ridge endings too close to ridge bifurcations are removed

Instead of inspecting each minutia individually, some classical minutiae-based

methods [7, 47, 48, 50–55] take into account the following properties in small

palmprint regions:

• Variance of ridge curvature

• Variance of grayscales, and

• Eligibility of ridges

A high variance of ridge curvature in an L × W region means rapidly chang-

ing ridge orientation depicting poor ridge quality. Similarly, a low variance of

grayscales means poor ridge/valley contrast. And eligibility of ridges is usually

estimated by calculating the minimum length of ridges. Based on these regional

properties, minutiae are discarded or accepted. Results of the above-mentioned

techniques are illustrated in Figure 6.2 which shows a portion of the thenar region

of a palmprint. It can be seen that some false minutiae have been removed after

post-processing. But still, there are a lot of minutiae present in the palmprint that

have no contribution in identifying the palmprint and only increase the computa-

tional cost of the matching process.

Figure 6.2: Portion of thenar region(a) original extracted minutiae, (b) some
minutiae removed using post-processing techniques [7, 48]
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Generally, minutiae extracted from the hypothenar region are most reliable be-

cause of less number of creases, whereas minutiae extracted from the thenar re-

gion are least reliable due to the presence of a large number of creases [7]. Figure

6.3 shows minutiae found in the thenar and hypothenar regions of the palm after

post-processing illustrated in Figure 6.2. In Figure 6.3, minutiae orientation (θ) is

depicted by red arrows. It is can be seen that minutiae extracted from the thenar

region exhibit inconsistent orientation and are hence, mostly false.

Figure 6.3: Mintuiae Orientation: (a) hypothenar region (b) thenar region

Regardless of the efficiency of minutiae removal methods, palmprints still pose a

tough computational challenge. This is because palmprints produce 8 times more

minutiae than fingerprints [7]. Figure 6.4 illustrates the generic minutiae matching

process. As shown in Figure 6.4, each minutia mi (where i = 1, 2, ...., N) in the

query image has to be compared with all minutiae m
′
j (where j = 1, 2, ....,M) of

a template image. This means a minimum of M × N × k2 matches are required

to match two palmprints, where k is the number of neighboring minutiae of each

reference minutiae mi of query palmprint that needs to match with neighbors of

each minutia m
′
j of a template palmprint (as already explained section 5.3). It is

evident that computation requirements for matching two palmprints are directly

proportional to the number of minutiae in the palmprints and the value k. As a

result, it becomes important to reduce the number of minutiae in the palmprints

by only selecting reliable (real) minutiae for the matching stage. A dedicated al-

gorithm for minutiae selection is required that effectively reduces computational

requirements by:
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Figure 6.4: Generic minutiae matching process

• Identifying and removing false minutiae

• Selecting only a subset out of reliable minutiae to reduce computational

overhead

6.2 Proposed Minutiae Selection Algorithm (MSA)

The proposed Minutiae Selection Algorithm (MSA) is aimed at shortlisting only a

subset of minutiae extracted from a palmprint that has the potential of producing

good matching accuracy at a reduced computational cost. MSA is designed to act

as a precursor to minutiae encoding and matching. The proposed algorithm uses

a simple histogram-based technique that tries to find the best candidate minutiae

for matching using basic minutia characteristics, i.e., spatial coordinates (x, y) and

orientation θ. Let’s say a palmprint template stored in a database has M number

of minutiae associated with it. The proposed method selects a subset Msub out of

M minutiae that will be used in the matching stage and exclude the rest from the

matching process.

The main idea in the proposed algorithm is that although (x, y, θ) properties of

minutiae cannot be directly used to classify minutiae as false or true, differences

of orientation θ and (x, y) coordinates between minutiae of a query (input) and
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a template palmprint can be used to shortlist strong candidates for the match-

ing process. This is accomplished by storing differences of (x, y, θ) between query

and template minutiae in an array and creating histograms of differences (HoD).

Peaks in these HoDs are identified in an iterative process to shortlist minutiae of

choice. A step-wise explanation of MSA is given below and further illustrated in

Figure 6.5:

Figure 6.5: Minutiae Selection Algorithm (MSA): A list STotal containing
minutiae pairs mim

′
j is created. Differences of orientation θ between mim

′
j are

calculated (∆θij) and a histogram of difference (HoD∆θ) is created. The peak

of this histogram (∆θ̂) shows the dominant ∆θ between minutiae pairs and
corresponds to the true orientation difference between the query and template.
Minutiae pairsmim

′
j with ∆θij greater than ∆θthresh are eliminated from the list

yielding a reduced list Sθ. At this stage, query minutiae mi in Sθ are rotated
with the angle ∆θ̂ and Sθ is updated with new (x, y) values for mi. In the
updated list Sθ, a similar elimination process follows for translation difference
∆xij between minutiae yielding a further reduced list Sθ,x. Consequently, a
similar elimination process follows for translation difference ∆yij yielding the
final reduced list Sθ,x,y. Minutiae in the Sθ,x,y are significantly fewer than STotal

and give better matching accuracy.
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Minutiae Selection Algorithm (MSA)

Step-1: Load query minutiae list MinListQ = (m1,m2, ....,mN) and tem-

plate minutiae list MinListT = (m
′
1,m

′
2, ....,m

′
M), where mi = (xi, yi, θi);

i = 1, 2, ...., N , and m
′
j = (xj, yj, θj); j = 1, 2, ....,M . Create a list STotal of

N × M combinations containing minutiae IDs, i, j, and associated (x, y, θ)

values, i.e.

STotal = {(i, j, (xi, yi, θi), (xj, yj, θj))|i ∈ {1, 2, ..., N}, j ∈ {1, 2, ...,M}}.

(6.1)

Orientation comparison between query and template minutiae :

Step-2: Find the angular difference between each minutiae pairmim
′
j in STotal

as follows:

∆θij = θi − θj. (6.2)

Step-3: Create a histogram of differences (HoD) for all values of ∆θij (de-

picted byHoD∆θ in Figure 6.5) and smooth it by convolving it with a Gaussian

smoothing filter. For smoothing, we have used a 21-point Gaussian window

with a standard deviation of 4.

HoD∆θ(l) =
∑
i

∑
j

δ(∆θij − l), for l = [−179o, 180o], (6.3)

HoD∆θ(l) = HoD∆θ(l) ∗ g(z). (6.4)

Here g(z) is a gaussian smoothing filter, and δ is defined as

Continued on next page
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Minutiae Selection Algorithm (MSA)

δ(∆θij − l) =

1, if ∆θij = l

0, otherwise

Step-4: Find the peak of HoD∆θ(l) as follows:

∆θ̂ = arglmax(HoD∆θ(l). (6.5)

Since the difference between true minutiae will be constant and most frequent

in HoD∆θ(l), the value of l corresponding to the peak in HoD∆θ(l), will rep-

resent the orientation difference between the true minutiae of both palmprints

and also serves as an overall measure of the orientation difference between

palmprints.

Step-5: Define a threshold ∆θthresh on both sides of the peak ∆θ̂. Create a

reduced minutiae list Sθ by eliminating all minutiae combinations STotal with

∆θij greater than ∆θthresh, i.e.,

Sθ = {(i, j, (xi, yi, θi), (xj, yj, θj))|(∆θ̂ −∆θthresh) < ∆θij < (∆θ̂ +∆θthresh)}.

(6.6)

Step-6: At this point rotate query minutiae in the reduced minutiae list Sθ

with the angle ∆θ̂

x̃i = xicos(∆θ̂)− yisin(∆θ̂), (6.7)

ỹi = xisin(∆θ̂) + yicos(∆θ̂). (6.8)

Translation comparison between query and template minutiae :

Step-7: For the reduced minutiae list Sθ, calculate x-component difference

between minutiae pairs, i.e., ∆xij:

Continued on next page
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Minutiae Selection Algorithm (MSA)

∆xij = x̃i − xj, i, j ∈ Sθ, (6.9)

and create a smoothed histogram HoD∆x for ∆xij.

HoD∆x(l) =
∑
i

∑
j

δ(∆xij − l) for l ∈ [∆xmin,∆xmax], (6.10)

HoD∆x(l) = HoD∆x(l) ∗ g(z). (6.11)

Step-8: Now find the dominant x-translation by finding the peak of

HoD∆x(l),

∆x̂ = arglmax(HoD∆x(l)). (6.12)

Step-9: Define a threshold ∆xthresh on both sides of the peak ∆x̂. Create

a further reduced minutiae list Sθ,x by eliminating all minutiae combinations

mim
′
j with ∆xij greater than ∆xthresh, i.e.,

Sθ,x = {(i, j, (x̃i, ỹi), (xj, yj)|i, j,∈ Sθ ∩ (∆x̂−∆xthresh) < ∆xij < (∆x̂+∆xthresh)}.

(6.13)

Step-10: In the same way, create a further reduced list by comparing y-

translation of the remaining minutiae pairs mim
′
j in Sθ,x, i.e,

Sθ,x,y = {(i, j, (x̃i, ỹi), (xj, yj)|i, j,∈ Sθ,x ∩ (∆ŷ −∆ythresh) < ∆yij < (∆ŷ +∆ythresh)}.

(6.14)

Continued on next page
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Minutiae Selection Algorithm (MSA)

The final minutiae list Sθ,x,y with their original coordinates and angles are the

shortlisted minutiae for matching.

Step-11: By iteratively applying thresholds on ∆θij, ∆xij, and ∆yij, size of

the array STotal is considerably reduced to Sθ,x,y. This means during matching,

instead of carrying out N ×M matches (Figure 6.4), fewer matches need to

be performed which reduces the computational cost remarkably and at the

same time improves matching accuracy. Both these claims are quantified in

the proceeding sections.

Proposed MSA is an iterative method of eliminating false or unreliable minutiae

simultaneously from query and template palmprint. By applying thresholds on

HoD∆θ, HoD∆x, and HoD∆y in an ordered fashion, all minutiae combinations

mim
′
j outside ∆θthresh, ∆xthresh, and ∆ythresh are eliminated resulting in a decrease

in the size of mim
′
j combinations. The remaining minutiae combinations mim

′
j fall

within ∆θthresh, ∆xthresh, and ∆ythresh. This subset of MinListQ and MinListT

can be then forwarded to the matching stage. Figure 6.6 shows minutiae selected

from the thenar region of two palmprints taken from the same subject (genuine

match). Minutiae indicated by red circles are the ones shortlisted by the proposed

algorithm, whereas green circles indicate minutiae eliminated by the proposed

method.

6.2.1 Time and Space Complexity Analysis

Time and space complexity is the most popular way of analyzing an algorithm.

The time complexity of an algorithm is defined as the time taken by the algorithm

to run as a function of the input size. Similarly, space complexity is the space in
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Figure 6.6: MSA use case: (a),(b), and (c) are HoD∆θ, HoD∆x, and HoD∆y

respectively. (d) and (e) are patches from two palmprints taken from the same
subject with selected minutiae indicated by red circles and eliminated minutiae

indicated by green circles

the memory required by the algorithm described as a function of the input size.

Although practical time and space calculations depend on a number of different

variables such as hardware, operating system, processor cores etc., only the input

size is considered to describe the time and space complexity. The execution time

of each step is considered to be constant.

In order to represent the time and space complexity of the proposed algorithm,

we use the variable n to denote the size of the input to any step of the algorithm

and assume a constant running time for each process for simplicity. The process of

creating STotal represented by equation 6.1 requires running N ×M times and has

a quadratic time complexity of O(n2). The runtime of the processes represented
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by equations 6.2, 6.3, 6.5, and 6.6 grows linearly with the size of the input n.

The cumulative time complexity of these 4 processes can be denoted by 4O(n).

Process of 1d convolution (equation 6.4) using an FFT-based algorithm has a time

complexity of O(nlogn). Whereas, the minutia rotation process represented by

equations 6.7 and 6.8 in step 6 involves the multiplication of a 1×2 minutia vector

(x, y) with a 2 × 2 rotation matrix. The time complexity of this multiplication

for a single minutia is denoted by O(1 ∗ 2 ∗ 2) and this process runs for all values

of the input n. Assuming a large value for n, the time complexity of step-6 can

be simplified to O(n) only. The processes represented by equations 6.2 through

equation 6.6 are repeated 2 more times, i.e., once for ∆x and once for ∆y (equations

6.9 through 6.14). The overall time complexity of MSA can be calculated as:

T (n) = O(n2) + 3O(nlogn) + 13O(n). (6.15)

In equation 6.15, the term O(n2) has a much large growth rate as compared to

O(nlogn) and O(n). So the overall time complexity of MSA can be simplified to

O(n2).

We follow similar steps to compute the space complexity of MSA. Step-1 needs

a storage space proportional to N × M and has a space complexity of O(n2).

Cumulative space complexity for processes represented by equations 6.2, 6.3, and

6.4 can be simplified to 3O(n) as it grows linearly with the size of input data. For

equation 6.5, space complexity is O(1). Equation 6.6 has no space requirement

and for equations 6.7 and 6.8, space complexity can be simplified to O(n). Since,

the processes represented by equations 6.2 through equation 6.6 are repeated 2

more times, i.e., once for ∆x and once for ∆y (equations 6.9 through 6.14). the

overall space complexity of MSA can be calculated as in equation 6.16. Like time

complexity, space complexity of MSA can also be simplified to O(n2):

S(n) = O(n2) + 9O(n) + 3O(1). (6.16)
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6.3 Conclusion

This chapter provides background, concept, and implementation details of the

proposed MSA along with time and space complexity analysis. MSA has both

online and offline applications. Both types of applications and their effect on

computation and identification accuracy are discussed in the proceeding chapter

7.



Chapter 7

Results and Applications of the

Proposed Minutiae Selection

Algorithm (MSA)

Experiments have been conducted on THUPALMLAB high resolution dataset

[44]. To the best of our knowledge, this challenging dataset has been used in

all state-of-the-art studies on high resolution palmprints. The dataset consists of

1280 palmprint images taken from both the left and right hands of 80 different

subjects, with eight impressions per hand. The images have a resolution of 2040

× 2040 pixels at 500 ppi with 256 grey levels. n-nearest neighbor matching [103]

implemented by Ghafoor et al. [48] has been applied on the minutiae shortlisted

by MSA. In the n-nearest method, each minutia is encoded based on its n nearest

neighboring minutiae. The value of n is chosen to be 10. An overview of the

matching scheme used [48] is as follows:

For a reference minutia mi, encoding en(mi) based on n nearest neighbors mk is

done using rik: distance between mi and mk, ∆θik: angle difference between mi

and mk, and ϕik: angles of the edges joining mi and mk. This implies that a

reference minutia mi is encoded as follows:

en(mi) = {rik,∆θik, ϕik}. (7.1)

129
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Here rik, ∆θik, and ϕik are calculated as:

rik =
√
(xi − xk)2 + (yi − yk)2, (7.2)

∆θik = (θi − θk), and (7.3)

ϕik = tan−1

(
yi − yk
xi − xk

)
, (7.4)

Here n = 1, 2, ..., 10. Encoded minutiae are then stored as a template of the

palmprint in the database.

En(N) = {en(m1), en(m2), ..., en(mN)}. (7.5)

During matching, each minutia of a query (input) palmprint is matched with all

minutiae of template palmprints using an exhaustive point-pattern search algo-

rithm as shown in Figure 6.4. Since each minutia is encoded using n-nearest

neighbors, matching one minutia pair mim
′
j requires n

2 feature comparisons. For

a minutia in query palmprint to match with a minutia in template palmprint, at

least thk amount of neighbors out of n need to match. The number of matching

neighbors (Aij) between a minutia pair mim
′
j are calculated and stored in a score

matrix S as

S(i, j) =

1, if Aij ≥ thk

0, otherwise

In all the experiments, the value of thk is fixed at 5. Similarly, the score matrix

S values for each minutia pair mim
′
j are calculated. Finally, the consolidated

percentage similarity score between two palmprints is evaluated by computing the

ratio of matched minutiae pairs in score matrix S and the total number of minutiae

pairs as

Similairty =
minutia pairs matched

min(M,N)
× 100. (7.6)
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Performance of MSA is judged in two domains, i.e., a significant reduction in

minutiae matches (N ×M) and improvement in matching accuracy. Specifically,

it is shown that changing the values of ∆θthresh, ∆xthresh, and ∆ythresh has a

significant effect on the number of minutiae eliminated and resulting matching

accuracy. Through contrast analyses, it is shown that tight values of ∆θthresh,

∆xthresh, and ∆ythresh give a greater reduction in the number of minutiae matches

but deteriorate matching performance. On the other hand, lose values of ∆θthresh,

∆xthresh, and ∆ythresh give smaller reduction in minutiae matches.

In order to calculate matching accuracy, the metric of Equal Error Rate (EER)

is used. EER is calculated by computing the False Matching Rate (FMR) and

the False Non-Matching Rate (FNMR). EER represents a threshold where both

FMR and FNMR are equal. FNMR (also called genuine matching) is determined

by comparing each palmprint sample of a hand of a subject with other samples

of the same subject’s hand. The total number of genuine matches is calculated

as ((8×7)/2)×80×2 = 4480. FMR (also called impostor matching) is determined

by comparing the first palmprint sample of each hand of a subject with the first

palmprint sample of the same hand of the remaining subjects. The total number

of imposter matches is calculated as (80×79)/2)×2=6320. Effects of employing

MSA prior to matching are also illustrated using Detection Error Tradeoff (DET)

SinceMSA is designed as a precursor to minutiae matching, it finds its applications

in both offline (enrollment) and online stages. Results in both types of applications

show that MSA allows the matching algorithm to achieve higher accuracy at a

reduced computational cost. Details about the offline and online application of

MSA are given in the proceeding sections with results and discussion.

7.1 Offline Application

Offline application of the proposed minutiae selection algorithm is carried out at

the enrollment stage. Enrollment is the stage when persons are registered into a

biometric system. During enrollment, each person inputs multiple samples from
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the same palm. Each palmprint is then enhanced, and features are extracted, en-

coded, and saved in the database as templates. MSA is employed before encoding

the extracted minutiae. MSA is able to reduce the total number of minutiae that

need to be encoded and stored in database templates during the offline or enroll-

ment stage. This reduces computation requirements during the online matching

stage because fewer minutiae need to be matched.

Let’s assume that the database contains a total of T subjects and 4 samples per

subject (for THUPALMLAB dataset [44], T=80 and there are 8 samples per palm

for each subject). After initial minutiae extraction, there is a minutiae listMpq cor-

responding to each palmprint, where p indicates the subject, i.e., p = (1, 2, ...., T )

and q indicates sample number of each subject p, i.e., q = (1, 2, 3, 4). Minutiae lists

Mpq extracted from multiple samples of the same subject are compared using the

MSA to reduce of the number of minutiae that need to be encoded and matched at

later stages. Application steps are illustrated in Figure 7.1 and further explained

below:

Figure 7.1: Offline Application of MSA: For each subject, p, where p =
(1, 2, ...., T ), each sample q is compared with other samples of the same subject
p using MSA and selected minutiae are shortlisted . For each sample of subject
p, minutiae in the union set U(Mpq) give final selected minutiae S

′
(Mpq) which

are encoded and stored in the database.



Results and Applications of MSA 133

Offline Application of MSA

Step-1: For a particular subject p, load minutiae list of the first sample p, i.e.,

Mp1.

Step-2: Match Mp1 with minutiae lists of remaining samples of the same subject

p, i.e., Mp2, Mp3, and Mp4 using MSA (section ??). This will give a reduced list

of selected minutiae depicted by S(Mp1,Mp2), S(Mp1,Mp3), and S(Mp1,Mp4) (see

Figure 7.1).

Step-3: Extract selected minutiae belonging to Mp1 from S(Mp1,Mp2),

S(Mp1,Mp3), and S(Mp1,Mp4) and perform union operation U(Mp1) to remove

repeating minutiae. This gives us the reduced minutiae list S
′
(Mp1) (see Figure

7.1) which is the final list of shortlisted minutiae for Mp1.

Step-4: Repeat Step-2 and Step-3 for all samples of all subjects p = (1, 2, ...., T ).

This will give us a set S
′
(Mpq) corresponding to all samples of all subjects in the

database.

Step-5: Encode S
′
(Mpq) using n-nearest neighbor method [103] and store encoded

templates En(S
′
(Mpq)) in the database.

Step-6: During online matching, carry out minutiae-based matching (Figure 6.4)

using En(S
′
(Mpq)) templates.

The fact that S
′
(Mpq) contains a considerably smaller amount of minutiae as com-

pared to Mpq, minutiae-based matching in the online stage is computationally

more efficient. Also due to the elimination of most false minutiae by employing

MSA, matching accuracy also improves. Results of selecting potentially better
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candidate minutiae through MSA at the offline stage are presented in Table 7.2.

Best results are highlighted in gray.

∆θthresh ∆xthresh ∆ythresh Reduction in Minutiae Matches EER %

5 10 10 46% 1.3

10 20 20 25% 0.22

15 30 30 17% 0.01

20 40 40 9% 0.02

25 50 50 5% 0.04

Table 7.2: Results of Offline MSA Application using different configurations
of ∆θthresh, ∆xthresh, and ∆ythresh

Table 7.2 lists results of employingMSA at the offline stage in terms of reduction in

minutiae matches and matching accuracy. It can be seen that by varying values of

MSA parameters, i.e., ∆θthresh, ∆xthresh, and ∆ythresh superior performance can be

achieved. Tighter values of these parameters yield a larger reduction in minutiae

matches but deteriorate matching performance, while relaxed values show higher

matching accuracy but provide a smaller reduction in minutiae matches. Since

n-nearest neighbor matching method [103] implemented by Ghafoor et. al. [48]

has been used, the efficacy of offline application of MSA can be easily established

by comparing the performance of the matching algorithm with and without MSA.

Method MSA
parameters

EER % Details

Ghafoor et al.[48] - 0.18 Without MSA

Ghafoor et al.[48] ∆θthresh=10,
∆xthresh=20,
∆ythresh=20

0.22 With MSA, 25% fewer minutiae

Ghafoor et al.[48] ∆θthresh=15,
∆xthresh=30,
∆ythresh=30

0.01 With MSA, 17% fewer minutiae

Table 7.3: Matching accuracy with and without MSA (Offline)

Table 7.3 shows that the same matching algorithm is able to perform better

by choosing better minutiae using MSA. MSA offers the opportunity of strik-

ing a balance between accuracy and computational efficiency. For example with
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∆θthresh=10, ∆xthresh=20, and ∆ythresh=20, MSA is able to provide almost same

EER% with 25% fewer minutiae matches. On the other hand, with ∆θthresh=15,

∆xthresh=30, and ∆ythresh=30, MSA achieves a remarkable accuracy with EER

value of 0.01 with 17% fewer minutiae matches. In order to further corroborate

the proposed MSA, this EER value has been compared with EER values achieved

in state-of-the-art studies in Table 7.4. Table 7.4 shows that the use of MSA en-

ables the matching algorithm to fare better as compared to most state-of-the-art.

Method EER%

Jain et al. [7] 5.04

Dai and Zhou [56] 2.99

Capelli et al. [104] 0.01

Tariq et. al. [47] 0.38

Hussain et. al. [58] 0.04

Khodadoust et. al. [14] 2.01

Ghafoor et. al. [48] 0.18

Ghafoor et. al. [48] with MSA 0.01

Table 7.4: Matching accuracy comparison with state-of-the-art using MSA
(Offline)

The next section argues the efficacy of employing MSA at the online stage.

7.2 Online Application

This application of MSA is carried out during the online matching stage. The

input query palmprint is pre-processed and minutiae are extracted from it, i.e.

MQ. The query minutiae list MQ is then compared using MSA with the template

minutiae list MT . This way only a subset of minutiae are selected from both query

and template palmprints and sent to the matching stage. Details are illustrated

in Figure 7.2 and further explained below:

A stepwise implementation of the online application of MSA is explained below:
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Figure 7.2: Online Application of MSA: Query minutiae list MQ alongwith
template minutiae list MT is passed to MSA and a subset of minutiae are se-
lected in the list S(MQMT ). Subsequently, the corresponding subset of encoded

minutiae templates is used to match both palmprints.

Online Application of MSA

Step-1: Pass MQ and MT as inputs to the MSA. This outputs a reduced list

depicted as S(MQMT ) in Figure 7.2.

Step-2: Extract S(MQ) and S(MT ) from the list. Forward S(MQ) to the

online matching stage after encoding, i.e., create En(S(MQ)).

Step-3: Based on IDs of the minutiae shortlisted in S(MT ), extract

En(S(MT )) from En(MT ) (stored in the database) and forward to the on-

line matching stage.

Step-4: Based on encoded minutiae subsets En(S(MT )) and En(S(MQ)) cal-

culate similarity score between query and template palmprint using equation

7.6.
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Since S(MT ) and S(MQ) contain a considerably smaller amount of minutiae as

compared toMT andMQ, minutiae-based matching in the online stage is computa-

tionally more efficient in terms of computational cost. Results of online application

of MSA using different values of ∆θthresh, ∆xthresh, and ∆ythresh are listed in Table

7.6. It can be observed that the values of ∆θthresh, ∆xthresh, and ∆ythresh are a lot

more relaxed in the online application as compared to offline application. This is

because, in the online application, the query palmprint is matched with a template

palmprint in a one-to-one fashion, while in the offline application, each palmprint

is compared with all samples of the same subject and union of all minutiae subsets

is taken as the final minutiae subset.

∆θthresh ∆xthresh ∆ythresh Reduction in Minutiae Matches EER %

15 30 30 64% 1.26

20 40 40 51% 0.54

25 60 60 38% 0.36

30 80 80 27% 0.12

30 100 100 23% 0.15

Table 7.6: Results of Online MSA Application using different configurations
of ∆θthresh, ∆xthresh, and ∆ythresh

The efficacy of online application of MSA can be easily established by comparing

the performance of the matching algorithm with and without MSA (7.7).

Method MSA

parameters

EER % Details

Ghafoor et al.[48] - 0.18 Without MSA

Ghafoor et al.[48] ∆θthresh=30,

∆xthresh=80,

∆ythresh=80

0.12 With MSA, 36% fewer minutiae

Ghafoor et al.[48] ∆θthresh=30,

∆xthresh=100,

∆ythresh=100

0.15 With MSA, 32.5% fewer minu-

tiae

Table 7.7: Matching accuracy with and without MSA (Online)
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By comparing Table 7.3 and Table 7.7, it can be seen that the online application of

MSA is not able to achieve matching accuracy comparable to the offline application

but it still performs favorably as compared to the state-of-the-art methods listed

in Table 7.8 with fewer minutiae matches.

Method EER%

Jain et al. [7] 5.04

Dai and Zhou [56] 2.99

Capelli et al. [104] 0.01

Tariq et. al. [47] 0.38

Hussain et. al. [58] 0.04

Khodadoust et. al. [14] 2.01

Ghafoor et. al. [48] 0.18

Ghafoor et. al. [48] with MSA 0.12

Table 7.8: Matching accuracy comparison with state-of-the-art using MSA
(Online)

7.3 Discussion

Results achieved using different configurations of MSA thresholds in Table 7.2 and

Table 7.6 reveal that ∆θthresh, ∆xthresh, and ∆ythresh can be conveniently used

to trade-off between accuracy and computational efficiency (number of minutiae

matches). Strict thresholds are good at eliminating false minutiae but also have

the potential of eliminating some of the true minutiae resulting in an increased

false non-match rate (FNMR). Hence, although strict thresholds provide good

computational efficiency they deteriorate matching performance. On the other

hand, relaxed thresholds keep most of the true minutiae intact but end up includ-

ing false minutiae as well. This not only reduces computational efficiency but the

inclusion of false minutiae also adversely affects matching performance by increas-

ing the false match rate (FMR). This phenomenon is illustrated below in Figure

7.3.
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Figure 7.3: Effect of MSA thresholds (Offline) on (a) matching accuracy, (b)
Reduction in minutiae matches (Genuine plus Impostor matches), (c) FNMR,

(d) FMR.

The effect of strict vs relaxed configurations of MSA thresholds in the offline ap-

plication has been illustrated by plotting four quantities, namely, accuracy, com-

putational overhead, FMR, and FNMR at various values of ∆θthresh, ∆xthresh,

and ∆ythresh. Figures 7.3(a) and 7.3(b) show that keeping MSA thresholds tight

achieves a greater reduction in minutiae matches but does not provide the best

matching accuracy. Similarly, matching accuracy decreases when MSA thresholds

are relaxed too much. This phenomenon is explained by the increase of FNMR at

tight thresholds in Figure 7.3(c) and the increase of FMR at relaxed thresholds

in Figure 7.3(d). Both FNMR and FMR contribute towards the overall matching

accuracy achieved by the matching algorithm.

Similar behavior can be seen in the online application of MSA (Figure 7.4) where

a trade-off can be achieved between accuracy and matching speed. As explained
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in section 7.2, MSA thresholds are kept relaxed as compared to the offline stage

due to different matching scenarios. Although MSA employment at the online

stage achieves slightly lower matching accuracy, it provides a greater reduction in

minutiae matches required.

The detection error trade-off (DET) graph is an alternative metric to EER. DET

graph plots False Non-Match Rate (FNMR) against False Match Rate (FMR) on

a logarithmic scale. DET graphs for offline and online applications of MSA us-

ing the same encoding and matching algorithm are presented in Figure 7.5. By

comparing FMR and FNMR plots of the matching algorithm with and without

employing MSA, it can be seen that MSA significantly improves the performance

of the matching algorithm and at the same time reduces the number of minutiae

matches required considerably.

Figure 7.4: Effect of MSA thresholds (Online) on (a) matching accuracy, (b)
Reduction in minutiae matches (Genuine plus Impostor matches), (c) FNMR,

(d) FMR.
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Figure 7.5: DET graphs for offline and online applications of MSA

In order to arrive at a more precise conclusion regarding the significance of ∆θthresh,

∆xthresh, and ∆ythresh, we use contrast analysis to get additional insight into dif-

ferences produced by modifying these thresholds on the number of minutiae elim-

inated. Here combinations of ∆θthresh, ∆xthresh, and ∆ythresh values are taken as

the independent variable and their effect on the reduction of minutiae is observed.

Through contrast analysis, we are able to show that by changing the values of

thresholds, a statistically significant difference between means of eliminated minu-

tiae is observed in both genuine and impostor matches irrespective of the online

or offline choice of application. In Figure 7.6, the number of minutiae eliminated

in genuine matches using MSA are distributed among five groups, which are the

five different combinations of MSA thresholds. The trend observed in Figure 7.6 is

consistent with the hypothesis that the number of minutiae eliminated is reduced

as we move from tight to loose MSA thresholds. Also, a p-value of ¡ 0.001 presents

strong evidence that MSA thresholds have a statistically significant effect on the

number of minutiae eliminated. Similar trends are observed in impostor matches

in Figure 7.7.

It is highlighted that all the results presented in section 7.1, 7.2, and 7.3 are

acquired on THUPALMLAB [44] database which is a very challenging high reso-

lution palmprint database. MSA thresholds presented in this paper were chosen

after sufficient experimentation on the mentioned dataset. MSA thresholds can
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Figure 7.6: Contrast Analysis (Genuine Matches): Effect of MSA thresholds
on means of the number of minutiae eliminated during Genuine matches in

Offline and Online Application

Figure 7.7: Contrast Analysis (Impostor Matches): Effect of MSA thresholds
on means of the number of minutiae eliminated during Impostor matches in

Offline and Online Application

be easily tailored according to the dataset, application, minutiae encoding, and

matching algorithms as MSA is totally independent of these choices.

7.4 Conclusion

The last two chapters propose a simple histogram-based Minutiae Selection Algo-

rithm (MSA) that acts as a precursor to minutiae matching. While comparing two

palmprints, the proposed method utilizes only the basic properties of minutiae, i.e.,

(x, y, θ) to shortlist the best candidates in both palmprints for matching. Employ-

ment of MSA before matching not only reduces the number of minutiae matches
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but also improves matching accuracy. Previous research works have employed

elaborate pre-processing techniques such as image registration using Generalized

Hough Transform (GHT) and CNNs or blockwise matching algorithms to speed

up the palmprint matching process. MSA does not require image registration and

is independent of minutiae encoding and matching methods. This means it can

be used in conjunction with any minutiae encoding or matching methods. Fur-

thermore, MSA can be applied at both offline and online stages. Results in both

applications show that by employing MSA, the matching algorithm achieves su-

perior accuracy with reduced computational overhead. In the future, we intend to

use MSA by aiding it with ridge quality information from the palmprint to further

improve its computational and matching performance.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis highlights the recent increase in the worldwide utility of biometric

systems. Market indicators and the rise of the research community’s interest in

biometric systems have been shown to point toward this rising trend. The shifting

of more and more consumer services to online systems and ever-rising security

concerns have added to the importance of dependable biometric means for human

identification. Human face, iris, gait, signatures, fingerprints, and palmprints have

been popular choices for large-scale identification systems in the recent past. How-

ever, this study points out htat palmprints along with fingerprint-based systems

were the leaders in the biometric industry in the last decade.

A literature survey of modern palmprint applications done during the course of

this study shows that palmprints are a unique biometric trait as they provide a

variety of identification features at low and high image resolutions. While low res-

olution applications of palmprints give more convenience to users, high resolution

palmprints provide higher identification accuracy and security against the stealth

of digital identities. Available literature on palmprints also reveals that according

to a survey conducted by USA’s Federal Bureau of Investigation (FBI), 30% of

evidence found in crime scenes is in the form of high resolution palmprints which

is conclusive proof that palmprints based systems are the future of the biometric

144
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industry.

This thesis further points out that most methods used for pre-processing, post-

processing, and matching high resolution palmprints have been borrowed from

the domain of fingerprints. However, despite apparent similarities between fin-

gerprints and high resolution palmprints, fingerprint-based approaches cannot be

directly applied to high resolution palmprints. The flexibility of skin, major and

minor creases, and poor ridge structure of palmprints acquired from real-world

scenarios present challenges during pre-processing steps that are not encountered

in fingerprints. As a result, the efficiency of pre-processing steps is greatly deterio-

rated resulting in poor matching accuracy and increased computational overhead.

Recent work on high resolution palmprints has focused more on improving the ef-

ficiency of matching algorithms. Surprisingly, limited novelty has been introduced

in the pre-processing of palmprints, which include: palmprint region of interest

(ROI) segmentation, palmprint enhancement, and feature selection.

After reviewing recent work on palmprint identification systems, this thesis points

out that the major problems for any matching algorithm are the large number

of features (minutiae) extracted from the palmprint and the fact that most of

these features are false due to error-prone enhancement of palmprints. It has been

argued that the adverse effects of these factors can be greatly mitigated by em-

ploying pre-processing techniques that are specifically designed for palmprints. In

order to supplement this claim with quantitative proofs, this thesis presents three

separate studies dealing with pre-processing of palmprints.

Firstly, this thesis highlights the performance issues of grayscale variance-based

ROI segmentation methods used by previous studies. When employed on palm-

prints, they do not perform as efficiently due to complex background structures

resulting in an image containing unwanted segments of the background. While

dealing with real-world palmprints, it is hard to distinguish between foreground

and background by calculating the textural differences. After studying the results

of previous methods, this thesis proposes a frequency domain ROI Segmentation

method specifically designed for palmprints to deal with background textures and

additive noise. Instead of estimating the grayscale variance, the proposed method

is able to extract the palmar region in the image by isolating only palm ridge
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frequencies and removing all others. A comparison drawn with the previous ap-

proaches verifies the efficacy of the proposed method. By significantly reducing

the area of interest, subsequent processing is restricted to valid regions only. Con-

sidering the large size of high resolution palmprints, this significantly reduces the

computational overhead of the subsequent processes. Secondly, the possibility of

background textures being falsely classified as palm ridges is also eliminated. Since

the method is implemented in the frequency domain, it is independent of image

contrast and illumination which are generally poor in naturally acquired high res-

olution palmprints.

Secondly, recent palmprint enhancement techniques have been studied and their

shortcomings have also been identified. It has been argued that techniques bor-

rowed from the fingerprint domain donot work as efficiently for palmprints due

to the challenging nature of palm ridge structure. Apart from lacking the requi-

site robustness to deal with palmprint ridge structure, they are computationally

exhaustive. In order to tackle both these issues in palmprint enhancement, a ro-

bust high resolution palmprint enhancement method is proposed which bypasses

traditional enhancement methods completely using deep learning. The proposed

enhancement method converts a palm patch directly from the spatial domain to

its corresponding enhanced version. Furthermore, the proposed method is able to

work on sufficiently large patches of palmprint (96 × 96) which reduces overall

processing time. Palmprint is split into 96 × 96 patches which are classified by

Cnet on the basis of dominant ridge orientation. After prediction by Cnet, patches

are rotated (if needed) to align with the kernels of Rnet. Rnet directly converts

a patch to its corresponding enhanced version without the need for any ridge ori-

entation or frequency estimate. Rnet produces corresponding enhanced versions

of patches which are subsequently joined to produce a complete enhanced palm-

print. It has sufficient depth and kernels to accommodate difficult ridge patterns

encountered in palmprints due to abruptly changing ridge orientation and various

types of noise. The proposed method is totally independent of ridge frequency. By

looking at the results of the proposed enhancement method, it can be concluded

that it performs favorably in comparison to the state-of-the-art by being able to
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recover ridge continuity even in high crease areas. Enhancement results are fur-

ther corroborated by matching results. Matching results achieved for palmprints

enhanced using the proposed method are compared with state-of-the-art and are

a testament to the reliability of extracted features.

Lastly, this study also points out that limited effort has been put in to reduce the

number of minutiae required to match palmprints. To deal with the issue of a large

number of minutiae extracted from palmprints (most of which are false), a minu-

tiae selection algorithm is proposed that shortlists the best candidate minutiae for

matching using an intuitive histogram-based algorithm. While previous studies

employ additional parameters like ridge quality or local ridge orientation proper-

ties to judge the quality and reliability of minutiae, the proposed algorithm utilizes

only the basic properties of minutia to make the decision, i.e., (x, y, θ). The main

idea in the proposed algorithm is that although (x, y, θ) properties of minutiae

cannot be directly used to uniquely identify palmprints, histograms of differences

(HoD) of orientation θ and (x, y) coordinates between minutiae of two palmprints

can be used to shortlist strong candidates for forwarding to the matching process.

Since palmprints produce a large number of minutiae, a reduction in the number

of minutiae to be matched serves major computational benefits. Secondly, the

selection of more reliable minutiae significantly improves matching accuracy. The

false acceptance rate (FAR) is clearly reduced due to the elimination of most false

minutiae. From the results, it can be concluded that the proposed algorithm is

able to produce matching results comparable to state-of-the-art with much fewer

minutiae matches. The proposed algorithm is independent of the dataset, minu-

tiae encoding, and matching methods.

By conducting these studies, this thesis concludes that palmprint matching accu-

racy can be greatly improved by making the pre-processing of palmprints more

efficient as the performance achieved in pre-processing dictates the performance

achieved in matching. Instead of focusing only on the efficiency of matching algo-

rithms, future research should lay equal emphasis on improving the performance of

enhancement and feature selection methods for palmprints. Enhancement meth-

ods should cater to the unpredictable and abrupt changes in the palm ridge pattern
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to extract reliable features. Secondly, future efforts should also focus on develop-

ing more intelligent algorithms to reduce the number of overall minutiae required

for palmprint matching to improve computational efficiency.

8.2 Future Work

Seeing the effects of improved palmprint enhancement and feature selection, we

intend to focus more on improving the pre-processing of palmprints. There is a

need to perform a more elaborate comparison with other segmentation techniques

and create masks that represent the palmar region in the image more sharply and

help in further reducing feature search space. We are also interested in explor-

ing the possibility of improving the accuracy of palmprint matching by coupling

the proposed enhancement and feature selection methods with superior minutiae

encoding schemes such as Minutiae Cylindrical Code and developing a robust

minutiae matching algorithm that is both fast and efficient. We also intend to use

GANs to reconstruct corrupted images prior to palmprint enhancement for better

matching accuracy. Also, we intend to use the Graphical Processing Unit (GPU)

to speed up the compute-intensive and time-consuming palmprint matching pro-

cess. Lastly, we intend to create a custom palmprint dataset with artificially

induced image degradations like poor contrast, occlusions, background texture,

blurring, etc. to check the efficacy of the proposed methods on palmprints other

than THUPALMLAB dataset.
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